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GENERALISED MATHIEU MOONSHINE

MATTHIAS R. GABERDIEL, DANIEL PERSSON, HENRIK RONELLENFITSCH,

AND ROBERTO VOLPATO

Abstract. The Mathieu twisted twining genera, i.e. the analogues of Norton’s gener-

alised Moonshine functions, are constructed for the elliptic genus of K3. It is shown that

they satisfy the expected consistency conditions, and that their behaviour under modular

transformations is controlled by a 3-cocycle in H3(M24, U(1)), just as for the case of holo-

morphic orbifolds. This suggests that a holomorphic VOA may be underlying Mathieu

Moonshine.
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1. Introduction

1.1. Monstrous Moonshine. In mathematics and physics the word ‘Moonshine’ has come

to represent various surprising and deep connections between a priori unrelated fields, such

as number theory, representation theory of finite groups, algebra and quantum field theory.

The first and most well-known example of such a connection is, of course, Conway and

Norton’s Monstrous Moonshine conjecture [1]. Their starting point was the observation of

McKay that the first few Fourier coefficients of the modular invariant J-function J(τ) are

dimensions of representations of the Monster group M, the largest finite simple sporadic

group. Conway and Norton then conjectured that to each element g ∈ M of the Monster,

one can associate a function Tg(τ) (the so-called McKay-Thompson series) on the upper

half-plane H+ that is invariant under some subgroup Γg ⊂ SL(2,R). They also conjectured

that the invariance group Γg must be genus zero, meaning that, as a Riemann surface, the

quotient Γg\H+ is topologically a sphere. Furthermore, they conjectured that Tg(τ) is in

fact the Hauptmodul for Γg.

Subsequently, Frenkel, Lepowsky and Meurman (FLM) [2] constructed a graded M-module

V ♮ =
⊕∞

n=−1 V
♮
n , such that the dimension of the graded subspaces a(n) = dimV ♮

n reproduce
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precisely the Fourier coefficients in the q-expansion of the J-function, J(τ) =
∑∞

n=−1 a(n)q
n,

q = e2πiτ . The coefficients ag(n) in the Fourier expansion of the McKay-Thompson series

are then identified with the characters Tr
V ♮
n
(g). Physically, the FLM-module is the Z2-

orbifold of the open bosonic string compactified on the Leech torus (R24/ΛLeech), where

ΛLeech is the Leech lattice. The FLM-construction provided important clues into the moon-

shine conjectures, but fell short of proving them. The final proof was found by Borcherds

[3], making heavy use of the FLM-module V ♮, but also introducing yet another set of ingre-

dients to the story, namely generalised Kac-Moody algebras and automorphic denominator

identities. Thus, by the time the original conjectures were proven, Monstrous Moonshine

encompassed not only the realms of finite groups and modular forms, but also string theory

and infinite-dimensional algebras, for a nice review see [4].

1.2. Mathieu Moonshine. Recently, a very interesting new moonshine phenomenon was

conjectured by Eguchi, Ooguri and Tachikawa (EOT) [5]: they observed that the first

few Fourier coefficients of the elliptic genus of K3 are dimensions of representations of

the largest Mathieu group M24. This suggests the existence of a new moonshine-type

connection between Mathieu groups, Jacobi forms and K3 surfaces. The analogues of the

McKay-Thompson series, the twining elliptic genera φg(τ, z), g ∈ M24, were constructed

in a series of papers [6, 7, 8, 9], and it was shown that they are all weak Jacobi forms of

weight 0 and index 1 (with multiplier system) for subgroups Γ0(Ng) ⊂ SL(2,Z), where

Ng is the order of the element g. (The elliptic genus φK3 itself corresponds to taking g to

be the identity element.) The compatibility with M24-representations was checked up to

the first 600 coefficients [8, 9]; according to Gannon [10] this is sufficient to prove that all

Fourier coefficients of the elliptic genus of K3 are dimensions of M24 representations. It is

also shown in [10] that the multiplicities of the real M24 representations are always even,

see also [11].

Although in a certain sense the above results establish the Mathieu Moonshine conjecture,

there are many aspects of it that are much less understood compared to Monstrous Moon-

shine. For instance, the genus zero property of Monstrous Moonshine does not seem to

hold for the M24-twining genera since some of the invariance groups Γ0(Ng) are not genus

zero.∗ More importantly, the analogue of the FLM module V ♮ is not yet known for Mathieu

Moonshine, i.e. we do not know of any CFT with automorphism group M24 whose elliptic

∗It was proposed in [12] that the correct generalisation of the genus zero property is a certain Rademacher-

summability condition, which does seem to be satisfied in all cases.
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genus reproduces the elliptic genus of K3. In particular, none of the K3-sigma models have

this property since M24 is not contained in the automorphism group of any of them [13].

1.3. Generalised Monstrous Moonshine. A few years after the original Monstrous

Moonshine conjectures, Norton proposed a generalisation that he dubbed generalised Moon-

shine [14]. He suggested that for each commuting pair of Monster group elements g, h ∈ M

there exists a function f(g, h; τ) that is also invariant under a genus zero subgroup of

SL(2,R). These functions generalise the McKay-Thompson series to which they reduce

for g = e. Furthermore, they transform into one another under a simultaneous action of

SL(2,Z) on (τ ; g, h) ∈ H+ ×M×M. Finally, the Fourier coefficients in the q-expansion of

f(g, h; τ) are conjectured to be dimensions of (projective) representations of the centraliser

of g in M, CM(g) = {k ∈ M : gk = kg}. Although this conjecture has been proven in special

cases [15, 16], the general case is still open.†

The generalised Moonshine conjecture was given a physical interpretation by Dixon, Gins-

parg and Harvey [21] that was later elaborated upon by Tuite [16]. They showed that

the Norton series f(g, h; τ) arises naturally as the character in the twisted sector V ♮
g of an

orbifold of the Monster CFT V ♮ by the element g ∈ M, ‘twined’ by the group element h; in

standard CFT language, they can therefore be interpreted as

f(g, h; τ) = g

h

= Tr
V ♮
g

(
h qL0−1

)
. (1)

Many of the properties conjectured by Norton then follow from standard holomorphic or-

bifold considerations.

1.4. Generalised Mathieu Moonshine. In this paper, we show that Norton’s generali-

sation also applies to Mathieu Moonshine. More specifically, for every pair of commuting

group elements g, h ∈ M24, we construct ‘twisted twining genera’ φg,h : H+ × C → C that

either vanish or are weak Jacobi forms of weight 0 and index 1 for some Γg,h ⊂ SL(2,Z).

For g = e, they reduce to the twining genera of [6, 7, 8, 9], and they transform under the

modular group SL(2,Z) into one another. The multiplier phases that appear in these trans-

formations behave as though these twisted twining genera were twisted twining characters of

a holomorphic orbifold; in particular, they are controlled by a 3-cocycle α ∈ H3(M24, U(1))

via a formula that was first written down by Dijkgraaf and Witten in [22]. Furthermore,

the Fourier coefficients of the twisted elliptic genera f(g, e; τ) equal dimensions of projective

representations of the centraliser CM24(g), and the central extension that characterises the

†Carnahan has announced a series of papers [17, 18, 19, 20] which he claims will lead to a complete proof.



GENERALISED MATHIEU MOONSHINE 5

projective representation is again determined by the cohomology class α ∈ H3(M24, U(1)).

The idea for using the cohomology group H3(M24, U(1)) and the formalism of Dijkgraaf

and Witten in order to understand the multiplier phases of the twisted twining genera was

first suggested to us by Terry Gannon in 2011 [23], see also [10]. Mason has also speculated

[24] that H3(M, U(1)) should play a similar role in the context of generalised Monstrous

Moonshine, although this has, to our knowledge, not yet been worked out (partially, because

H3(M, U(1)) is unknown).

We should also mention that Mason has previously proposed a version of generalised Moon-

shine for M24 [25], where the role of the Norton series f(g, h; τ) is played by products of eta

functions η(τ). The precise relation between our twisted twining genera and Mason’s eta

products will be explained elsewhere [26].

1.5. Outline. The paper is organised as follows. In section 2 we introduce the twisted

twining genera φg,h, and discuss their general properties, in particular the expected be-

haviour under modular transformations. We then explain how many independent twisted

twining genera there are, and list all of them explicitly, see table 3. In section 3 we review

the structure of holomorphic orbifolds and explain in particular, the role of the 3-cocycle

in characterising the various transformation properties of the twisted twining characters.

We then postulate that the transformation properties of the twisted twining genera are

similarly constrained, and determine the underlying 3-cocycle in H3(M24, U(1)). This then

allows us to find all twisted twining genera explicitly. We also check that the resulting func-

tions are compatible with the requirement that they arise from the appropriate projective

representation of the centraliser. In section 4 we subject our results to two independent

consistency checks. First, for group elements whose orbifold leads again to a K3 sigma-

model, we calculate the twining genera of the orbifold from the twisted twining genera of

the original theory, and show that we reproduce answers from [8, 9]. However, as it turns

out, the relevant group element is sometimes different from what one would have expected,

and we explain this ‘relabelling’ phenomenon in quite some detail in section 4.1, see also

section 4.2 for an explicit example. Secondly, we explain the vanishing of some of the twisted

twining genera from a geometrical point of view, see section 4.3. Finally we end with some

conclusions and open problems in section 5. We have relegated some of the more technical

material to various appendices to which we refer throughout the main body of the paper.
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Moreover, all character tables and decompositions of the twisted twining genera can be

found in the TEX-source file in the arXiv repository of this paper.

2. Twisted Twining Genera

Let us begin by introducing the twisted twining genera that are the main object of this

paper. Suppose we are given a K3 sigma-model H, i.e. a CFT describing string propagation

on K3, whose automorphism group contains two commuting elements g, h ∈M24. Then we

can consider the orbifold of the sigma-model by g, and in particular, define the g-twisted

sector Hg. Since g and h commute, h gives rise to an action on Hg, and we can define the

twisted twining genus φg,h(τ, z) by

φg,h(τ, z) = TrHg

(
h(−1)J0+J̄0qL0−

c
24 q̄L̄0−

c̄
24 yJ0

)
, (2)

where q = e2πiτ and y = e2πiz . We expect that φg,h : H+×C → C is holomorphic in both τ

and z. Furthermore, since the elliptic genus is independent of the choice of the underlying

K3 sigma-model, we expect that the same is true for these twisted twining genera, i.e. we

expect that (2) does not depend on the choice of H (as long as g and h are automorphisms

of H). By construction, for g = e the identity element in M24, the twisted twining genus

φe,h agrees with the twining genus φh considered in [6, 7, 8, 9]; in particular, for g = h = e

φe,e is just the elliptic genus of K3.

Unfortunately, while for some commuting pairs (g, h) an actual K3 sigma-model for which

both g and h are automorphisms can be found, this is not true in general [13]; in fact, this

problem already arises for the usual twining genera, i.e. for the pairs (e, h). In the spirit

of the EOT conjecture, we shall nevertheless assume that twisted twining genera φg,h can

be defined — albeit not directly by a formula of the form (2) — for all commuting pairs

g, h ∈M24. The fact that our construction will be successful is an a posteriori justification

for this assumption.

2.1. Properties of the twisted twining genera. The definition of the twisted twining

genera φg,h in terms of (2) suggests that they should satisfy the following properties:

(A) Elliptic and modular properties:

φg,h(τ, z + ℓτ + ℓ′) = e−2πi(ℓ2τ+2ℓz) φg,h(τ, z) ℓ, ℓ′ ∈ Z (3)

φg,h

(aτ + b

cτ + d
,

z

cτ + d

)
= χg,h( a b

c d ) e
2πi cz2

cτ+d φhcga,hdgb(τ, z) , ( a b
c d ) ∈ SL(2,Z) (4)
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for a certain multiplier χg,h : SL(2,Z) → U(1). In particular, each φg,h is a weak

Jacobi form of weight 0 and index 1 with multiplier χg,h under a subgroup Γg,h of

SL(2,Z) (see [27] for the definitions).

(B) Invariance under conjugation of the pair g, h in M24,

φg,h(τ, z) = ξg,h(k)φk−1gk,k−1hk(τ, z) , k ∈M24 , (5)

where ξg,h(k) is a phase.

(C) If g ∈ M24 has order N , the twisted twining genera φg,h have an expansion of the

form

φg,h(τ, z) =
∑

r∈λg+Z/N
r≥0

TrHg,r

(
ρg,r(h)

)
chh= 1

4
+r,ℓ(τ, z) , (6)

where λg ∈ Q, and chh,ℓ(τ, z) are elliptic genera of Ramond representations of the

N = 4 superconformal algebra at central charge c = 6. (Here ℓ = 1
2 , except

possibly for h = 1
4 , where ℓ = 0 is also possible — if both ℓ = 0, 12 appear for

r = 0, it is understood that there are two such terms in the above sum. We use the

same conventions for the elliptic genera as e.g. in [28].) Furthermore, each vector

space Hg,r is finite dimensional, and it carries a projective representation ρg,r of the

centraliser CM24(g) of g in M24, such that

ρg,r(g) = e2πir , ρg,r(h1) ρg,r(h2) = cg(h1, h2) ρg,r(h1h2) , (7)

for all h1, h2 ∈ CM24(g). Here cg : CM24(g) × CM24(g) → U(1) is independent of r,

and satisfies the cocycle condition

cg(h1, h2) cg(h1h2, h3) = cg(h1, h2h3) cg(h2, h3) (8)

for all h1, h2, h3 ∈ CM24(g).

(D) For g = e, where e is the identity element of M24, the functions φe,h correspond to

the twining genera considered in [6]–[9]. In particular, φe,e is the K3 elliptic genus.

Since the elliptic genus behaves essentially like the character of a holomorphic CFT —

in particular, it is modular invariant and holomorphic by itself — it is natural to believe

that the same will be true for the twisted twining genera, i.e. that they will be analogous

to twisted twining characters of a holomorphic CFT. As we will review in more detail in

section 3, the modular properties of the twisted twining characters of a holomorphic CFT

are controlled by a 3-cocycle α : G×G×G→ U(1) representing a cohomology class in the
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third cohomology group H3(G,U(1)). (Some background material about group cohomology

can be found in appendix B.) We will therefore postulate that

(E) The multipliers χg,h, the phases ξg,h, and the 2-cocycles cg associated with the

projective representations ρg,r are completely determined (by the same formulas

as for holomorphic orbifolds) in terms of a 3-cocycle α representing a class in

H3(M24, U(1)).

The third cohomology group of M24 was only recently computed with the result [29]‡

H3(M24, U(1)) ∼= Z12 . (9)

The fact that this group is known explicitly plays a crucial role in our analysis. The

specific cohomology class [α] ∈ H3(M24, U(1)) that is relevant in our context is uniquely

determined by the condition that it reproduces the multiplier system for the twining genera

φe,h as described in [8], namely

χe,h( a b
c d ) = e

2πicd
o(h)ℓ(h) ,

(
a b
c d

)
∈ Γ0(o(h)) . (10)

Here, o(h) is the order of h and ℓ(h) is the length of the smallest cycle, when h ∈ M24 is

regarded as a permutation of 24 symbols [12]. Indeed, since ℓ(12B) = 12, it follows that α

must correspond to the primitive generator of H3(M24, U(1)). The main result of our paper

can now be stated as follows:

There exists a unique set of functions φg,h (unique up to redefinitions by (g, h)-dependent

but otherwise constant phases) and a unique cohomology class [α] ∈ H3(M24, U(1)) such

that all conditions (A)–(E) are satisfied.

In the following we want to explain how this set of functions can be determined, and which

explicit form it takes. As it turns out, a surprisingly large number of the twisted twining

genera vanish, as we shall now explain.

2.2. Cohomological obstructions. For some pairs of commuting elements g, h ∈ M24,

the transformation properties above can only be satisfied if φg,h vanishes identically. In this

case, we will say that the corresponding twisted twining genus is obstructed. As will be

‡Note that for a finite group G one has the isomorphisms

Hn−1(G,Z) ∼= H
n(G,Z) , H

n(G,Z) ∼= H
n−1(G,U(1)) ,

which in particular imply that H3(M24,Z) ∼= H3(M24, U(1)).
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shown in more detail in section 3, these obstructions are also controlled by the cohomology

class of the cocycle α ∈ H3(M24, U(1)).§

In order to understand the origin of these obstructions, let us first derive some general

consequences of our assumptions (A)–(E). First we note that the SL(2,Z) action on the

twisted twining characters can be extended to GL(2,Z) by setting

φ∗g,h(τ, z) = χg,h(
1 0
0 −1 ) φg,h−1(τ, z) , (11)

where φ∗g,h(τ, z) is obtained by taking the complex conjugate of all Fourier coefficients of

φg,h(τ, z)

φ∗g,h(τ, z) = φg,h(−τ̄ ,−z̄) . (12)

The identity (11) follows from eq. (6), together with the observation that, for any projective

representation R of a finite group G, TrR(h
−1) equals TrR(h) up to a phase, which we

have denoted by χg,h(
1 0
0 −1 ). As we will see, this phase also depends on the 3-cocycle α. We

also note that since the N = 4 characters are invariant under z → −z, we have the identity

φg,h(τ,−z) = φg,h(τ, z) . (13)

With these preparations we can now describe two possible kinds of obstructions.

Obstruction 1: Let us consider pairwise commuting g, h, k. Then, by (5), we have

φg,h(τ, z) = ξg,h(k)φg,h(τ, z) , (14)

and if

ξg,h(k) 6= 1 , (15)

it follows that φg,h(τ, z) = 0.

Obstruction 2: Suppose there are g, h, k ∈M24, with g and h commuting and

k−1g−1k = g , k−1h−1k = h , (16)

i.e. the commuting pair (g, h) is conjugate within M24 to the pair (g−1, h−1). Then, by

eqs. (44) and (42) (see section 3 for details), we obtain the relations

φg,h(τ, z) = χg,h(
−1 0
0 −1 )φg−1,h−1(τ,−z) (17)

= χg,h(
−1 0
0 −1 ) ξg−1,h−1(k)φg,h(τ,−z) . (18)

Therefore, if

χg,h(
−1 0
0 −1 ) ξg−1,h−1(k) 6= 1 , (19)

§The fact that such obstructions might exist was first suggested to us by T. Gannon.



10 GENERALISED MATHIEU MOONSHINE

eq. (13) implies φg,h(τ, z) = 0.

As we shall see, these two obstructions are responsible for the fact that most twisted twining

genera vanish.

2.3. Classification of independent twisted twining genera. Our next aim is to enu-

merate all possible independent twisted twining genera. Let us denote the set of commuting

group elements by

P = {(g, h) ∈M24 ×M24 | gh = hg} . (20)

This set carries an action of GL(2,Z) ×M24, given by

(g, h) 7→ (k−1(gahc)k, k−1(gbhd)k) ,
(
a b
c d

)
∈ GL(2,Z) , k ∈M24 , (21)

and the twisted twining genera associated to different (g, h)’s in the same orbit are related to

one another by modular transformations, see eqs. (4), (5), and/or by complex conjugation,

see eq. (11). We therefore want to describe the set of orbits of P under the action (21).

First we note that theGL(2,Z) orbit of a pair (g, h) consists of all possible pairs of generators

of the abelian group 〈g, h〉 ⊂ M24. Thus the orbits of GL(2,Z) ×M24 are in one-to-one

correspondence with the conjugacy classes of abelian subgroups of M24 generated by two

elements, i.e.

P̄ = P/(GL(2,Z) ×M24) = {M24 − conjugacy classes of groups 〈g, h〉 ⊂M24, gh = hg} .
(22)

This description allows a complete classification of the orbits [g, h] ∈ P̄ : there are 55

such orbits, 21 of which correspond to cyclic subgroups, i.e. to subgroups of the form

[e, h]. The associated twisted twining genera are therefore just the twining genera φe,h, for

which explicit expressions were already derived in [8, 9]. Thus we only need to construct

the remaining 34 genuinely twisted twining genera. We have tabulated the corresponding

conjugacy classes of groups 〈g, h〉 in table 1. There we have described their structure as an

abelian group, i.e. as Zm × Zn, the M24 classes of all its elements (excluding the identity),

the order of the centraliser C(g, h), the index |N(g, h)|/|C(g, h)| of the centraliser in the

normaliser of 〈g, h〉 in M24, and the lengths of the orbits of 〈g, h〉 ⊂ M24 when acting as a

group of permutations of 24 objects. Finally, the last column gives the conjugacy classes

of the non-cyclic maximal subgroups. For example, group 27 has three distinct non-cyclic

maximal subgroups, all of the form Z2 × Z4; two of them are conjugated to group 12 and

one is conjugated to group 11.
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# Structure Elements |C(g, h)| |N(g,h)|
|C(g,h)| Orbits on 24 Max subgr.

1. Z2 × Z8 (2A)(2B)2(4B)4(8A)8 16 8 22 · 41 · 161 30

2. Z2 × Z2 (2B)3 96 6 46

3. Z2 × Z10 (2B)3(5A)4(10A)12 20 12 41 · 201 33

4. Z2 × Z2 (2A)3 1536 6 18 · 44

5. Z2 × Z2 (2A)3 1536 6 212

6. Z2 × Z2 (2A)(2B)2 512 2 24 · 44

7. Z2 × Z2 (2A)3 128 6 14 · 26 · 42

8. Z2 × Z2 (2A)(2B)2 128 2 24 · 44

9. Z2 × Z4 (2A)3(4B)4 64 8 14 · 22 · 82 4

10. Z2 × Z4 (2A)3(4A)4 64 8 24 · 82 4

11. Z2 × Z4 (2A)3(4B)4 64 8 24 · 44 5

12. Z2 × Z4 (2A)3(4A)4 64 8 46 5

13. Z2 × Z4 (2A)(2B)2(4A)4 64 8 42 · 82 6

14. Z2 × Z2 (2A)2(2B) 256 2 28 · 42

15. Z2 × Z4 (2A)(2B)2(4C)4 32 4 42 · 82 6

16. Z2 × Z4 (2A)2(2B)(4A)2(4B)2 32 2 22 · 43 · 81 14

17. Z2 × Z4 (2A)(2B)2(4A)4 32 8 42 · 82 6

18. Z2 × Z6 (2A)3(3A)2(6A)6 12 12 12 · 32 · 41 · 121 4

19. Z2 × Z6 (2A)3(3A)2(6A)6 12 12 23 · 63 5

20. Z2 × Z6 (2B)3(3B)2(6B)6 12 12 122 33

21. Z2 × Z6 (2B)3(3B)2(6B)6 12 12 122 2

22. Z2 × Z4 (2A)3(4B)4 16 8 12 · 23 · 42 · 81 7

23. Z2 × Z4 (2A)(2B)2(4C)4 16 4 42 · 82 8

24. Z4 × Z4 (2A)3(4B)12 16 96 14 · 41 · 161 9, 9, 9

25. Z4 × Z4 (2A)3(4B)12 16 96 46 11, 11, 11

26. Z2 × Z4 (2A)(2B)2(4B)4 16 8 24 · 82 8

27. Z4 × Z4 (2A)3(4A)8(4B)4 16 32 42 · 82 11, 12, 12

28. Z4 × Z4 (2A)3(4A)8(4B)4 16 32 22 · 41 · 161 9, 10, 10

29. Z4 × Z4 (2A)(2B)2(4A)4(4C)8 16 16 81 · 161 13, 15, 15

30. Z2 × Z4 (2A)(2B)2(4B)4 64 8 24 · 82 6

31. Z3 × Z3 (3A)2(3B)6 9 12 32 · 92

32. Z3 × Z3 (3A)8 9 48 13 · 34 · 91

33. Z2 × Z2 (2B)3 3840 6 46

34. Z2 × Z2 (2B)3 64 6 46

Table 1. The 34 conjugacy classes of abelian subgroups of rank 2 in M24.
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For M24 it turns out that the orbits of P under SL(2,Z) ×M24 are exactly the same as

those under GL(2,Z) ×M24, i.e.
¶

P̄ = P/(GL(2,Z) ×M24) = P/(SL(2,Z) ×M24) . (23)

Thus the twisted twining genera in each orbit in P̄ are just related by phases, see eqs. (4)

and (5), and we do not need to invoke eq. (11).

2.4. Modular properties of the twisted twining genera. For each commuting pair

(g, h) ∈ P, let us denote by Γ̃g,h ⊂ SL(2,Z) ×M24 the group of elements (γ, k) that leave

the pair (g, h) fixed or map it to its inverse (g−1, h−1)

Γ̃g,h =
{((

a b
c d

)
, k
)
∈ SL(2,Z)×M24 |

(
k−1(gahc)k, k−1(gbhd)k

)
= (g, h) or (g−1, h−1)

}
.

(24)

It follows from (4) and (5), together with (13) as well as (44) below, that the corresponding

twisted twining genus φg,h will be invariant (up to a phase) under Γg,h ≡ π(Γ̃g,h), where π

denotes the projection of SL(2,Z)×M24 onto its first factor, i.e. onto SL(2,Z).

Each twisted twining genus φg,h belongs to a (finite-dimensional) vector representation of

SL(2,Z), that is spanned by the functions {φ(g,h)γ(τ, z)}, where γ ∈ SL(2,Z). Since every

γ ∈ Γg,h acts trivially (i.e. up to a phase) on φg,h, the SL(2,Z) representation is spanned

by {φ(g,h)γ(τ, z)}γ∈Γg,h\SL(2,Z), where γ runs over a set of representatives for the cosets in

Γg,h\SL(2,Z). Each of these functions φ(g,h)γ is a weak Jacobi form of weight 0 and index

1 for the congruence subgroup γ−1Γg,hγ ∈ SL(2,Z). We have tabulated for each orbit

[g, h] ∈ P̄ the functions φ(g,h)γ (starting with φg,h) and the invariance group Γg,h in table 2.

(Note, however, that some of these functions vanish identically; in particular, this will be

the case if there is an obstruction.)

Because of (11), most of the functions satisfy a ‘reality’ condition of the form

φ∗g,h = ζ φg,h , (25)

for some constant phase ζ, which implies that the Fourier coefficients of ζ1/2φg,h are all real.

Note that even if φ∗g,h and φg,h are not proportional to one another, they are necessarily

related by a modular transformation because of (23); if this is the case, they are listed as

distinct functions in the same orbit in P̄ . For example, in group 1, there are 4 distinct ‘real’

¶For a generic group G different from M24, some SL(2,Z)×G orbits might be strictly smaller than the

GL(2,Z)×G orbits.



GENERALISED MATHIEU MOONSHINE 13

# Structure Functions Γg,h

1. Z2 × Z8 φ2B,8A, φ8A,2B, φ4B,8A, φ8A,4B, φ8A,8A, φ
∗
8A,8A Γ0(4)

2. Z2 × Z2 φ2B,2B Γ(1)

3. Z2 × Z10 2× φ2B,10A, 4× φ10A,10A, 4× φ∗10A,10A, 2× φ10A,2B Γ2B,10A

4. Z2 × Z2 φ2A,2A Γ(1)

5. Z2 × Z2 φ2A,2A Γ(1)

6. Z2 × Z2 φ2A,2B, φ2B,2A, φ2B,2B Γ0(2)

7. Z2 × Z2 φ2A,2A Γ(1)

8. Z2 × Z2 φ2A,2B, φ2B,2A, φ2B,2B Γ0(2)

9. Z2 × Z4 φ2A,4B, φ4B,2A, φ4B,4B Γ0(2)

10. Z2 × Z4 φ2A,4A, φ4A,2A, φ4A,4A Γ0(2)

11. Z2 × Z4 φ2A,4B, φ4B,2A, φ4B,4B Γ0(2)

12. Z2 × Z4 φ2A,4A, φ4A,2A, φ4A,4A Γ0(2)

13. Z2 × Z4 φ2B,4A, φ4A,2B, φ4A,4A Γ0(2)

14. Z2 × Z2 φ2B,2A, φ2A,2B, φ2A,2A Γ0(2)

15. Z2 × Z4 φ2A,4C, φ4C,2A, φ4C,2B, φ2B,4C, φ4C,4C, φ
∗
4C,4C Γ0(4)

16. Z2 × Z4
φ2A,4A, φ2A,4B, φ2B,4A, φ2B,4B, φ4A,2A, φ4A,2B,
φ4B,2A, φ4B,2B, φ4B,4A, φ

∗
4B,4A, φ4A,4B, φ

∗
4A,4B

Γ2A,4A

17. Z2 × Z4 φ2B,4A, φ4A,2B, φ4A,4A Γ0(2)

18. Z2 × Z6 φ2A,6A, φ6A,2A, φ6A,6A, φ
∗
6A,6A Γ0(3)

19. Z2 × Z6 φ2A,6A, φ6A,2A, φ6A,6A, φ
∗
6A,6A Γ0(3)

20. Z2 × Z6 φ2B,6B, φ6B,2B, φ6B,6B, φ
∗
6B,6B Γ0(3)

21. Z2 × Z6 φ2B,6B, φ6B,2B, φ6B,6B, φ
∗
6B,6B Γ0(3)

22. Z2 × Z4 φ2A,4B, φ4B,2A, φ4B,4B Γ0(2)

23. Z2 × Z4 φ2A,4C, φ4C,2A, φ4C,2B, φ2B,4C, φ4C,4C, φ
∗
4C,4C Γ0(4)

24. Z4 × Z4 φ4B,4B Γ(1)

25. Z4 × Z4 φ4B,4B Γ(1)

26. Z2 × Z4 φ2B,4B, φ4B,2B, φ4B,4B Γ0(2)

27. Z4 × Z4 φ4B,4A, φ4A,4B, φ4A,4A Γ0(2)

28. Z4 × Z4 φ4B,4A, φ4A,4B, φ4A,4A Γ0(2)

29. Z4 × Z4 2× φ4A,4C, 2× φ4C,4A, φ4C,4C, φ
∗
4C,4C Γ4A,4C

30. Z2 × Z4 φ2B,4B, φ4B,2B, φ4B,4B Γ0(2)

31. Z3 × Z3 φ3A,3B, φ3B,3A, φ3B,3B, φ
∗
3B,3B Γ0(3)

32. Z3 × Z3 φ3A,3A Γ(1)

33. Z2 × Z2 φ2B,2B Γ(1)

34. Z2 × Z2 φ2B,2B Γ(1)

Table 2. The independent functions and the group Γg,h for each [g, h] ∈ P̄ .
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functions φ2B,8A, φ8A,2B, φ4B,8A, φ8A,4B, while φ8A,8A is not proportional to its complex

conjugate φ∗8A,8A. These six functions correspond to the six cosets of Γ0(4)\SL(2,Z).

Most of the modular groups Γg,h are of the form Γ(1) = SL(2,Z) or

Γ0(N) := {
(
a b
c d

)
∈ SL(2,Z) | c ≡ 0 mod N} , (26)

or conjugates of Γ0(N) in SL(2,Z). The exceptions are the group in case 3, where

Γ2B,10A =
⋃

i∈Z/3Z,j∈Z/4Z

(
1 1
−5 −4

)i (−3 −1
10 3

)j
Γ2,10 , (27)

is a subgroup of index 12 in SL(2,Z) and

Γ2,10 = {
(
a b
c d

)
∈ SL(2,Z) | a ≡ 1, b ≡ 0 mod 2, c ≡ 0, d ≡ 1 mod 10} , (28)

is the group of elements γ ∈ SL(2,Z) such that (g, h) ·γ = (g, h); the group in case 16, with

Γ2A,4A = {
(
a b
c d

)
∈ SL(2,Z) | b ≡ 0 mod 2, c ≡ 0 mod 4} , (29)

which is a conjugate of Γ0(8) in SL(2,R); and the group in case 29, with

Γ4A,4C = 〈
(
−1 1
−2 1

)
, ( 1 2

0 1 ) , (
1 0
4 1 ) ,

(
3 −2
−4 3

)
〉 . (30)

2.5. Explicit twining genera. We have now reduced our problem to finding 34 functions

φg,h that are weak Jacobi forms with respect to Γg,h up to some multiplier phases. As

will be explained in the following section 3, our assumption (E) allows us to determine the

precise form of these multipliers explicitly. Then most of the 34 functions vanish because

of the obstructions, see table 3. For those that do not, the modular properties are strong

enough to determine them explicitly, see also table 3. These explicit results are one of the

main results of this paper, and their derivation is sketched in section 3, see in particular

section 3.4, as well as appendix A. As will be explained below in section 3.5, these functions

are also compatible with the expected projective representation of the centraliser CM24(g)

on the g-twisted sector, see property (C) in section 2.

3. Holomorphic Orbifolds and Group Cohomology

In this section we review the modular properties of holomorphic orbifolds since, according

to our assumption (E), these are also relevant for the twisted twining genera of K3. We then

explain how, in our context, the known multiplier phases of the twining genera determine

the underlying 3-cocycle α ∈ H3(M24, U(1)) uniquely, and how to obtain from this our

explicit results given in table 3. Finally, we shall check that these formulae indeed give rise

to the appropriate projective representations of the centraliser CM24(g).
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# φg,h Obstr.

1. φ2B,8A = 2η(2τ)2

η(τ)4
ϑ1(τ, z)

2 no

2. 0 2

3. 0 2

4. 0 1

5. 0 1

6. 0 1

7. 0 1

8. 0 1

9. 0 1

10. 0 1

11. 0 1

12. 0 1

13. φ2B,4A = 4η(2τ)2

η(τ)4 ϑ1(τ, z)
2 no

14. 0 1

15. 0 1

16. 0 1

17. 0 1

# φg,h Obstr.

18. 0 2

19. 0 2

20. 0 2

21. 0 2

22. 0 1

23. 0 1

24. 0 2

25. 0 2

26. 0 1

27. φ4B,4A = 2
√
2η(2τ)2

η(τ)4
ϑ1(τ, z)

2 no

28. φ4B,4A = 2
√
2η(2τ)2

η(τ)4 ϑ1(τ, z)
2 no

29. 0 2

30. 0 2

31. φ3A,3B = 0 no

32. φ3A,3A = 0 no

33. 0 2

34. 0 1

Table 3. For each of the 34 cases we give here the explicit result for the

twisted twining genus, as well as where applicable, the obstruction that it

responsible for its vanishing.

3.1. Review of holomorphic orbifolds. Suppose C is a self-dual VOA, and G is a group

of C-automorphisms. We are interested in the ‘orbifold’ of C by G. To this end we consider

the G-invariant sub-VOA of C,

CG = {ψ ∈ C : gψ = ψ, ∀g ∈ G} . (31)

Each representation of C gives rise to a representation of CG. In addition, there are new

representations of CG that appear in the different twisted sectors CA; since C is holomorphic

there is a unique twisted sector CA for each conjugacy class A in G.

3.1.1. Twisted twining characters. Each twisted sector CA defines a representation of the

G-invariant sub-VOA CG, but it is typically not irreducible. In particular, for each gA in
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the conjugacy class gA ∈ [A], we can project CgA onto a CG-invariant subspace using any

(projective) character χ of CG(gA). Thus we can label the irreducible representations of CG

by pairs (A,χ). In physics, by the orbifold of C by G one usually means the theory where

one chooses χ = 1 in each twisted sector, i.e. the full partition function takes the form

Zorb(τ) =
∑

A

1

|CG(A)|
∑

h∈CG(gA)

ZgA,h(τ) , (32)

where

Zg,h(τ) ≡ g

h

= TrCg

(
ρg(h) q

L0−
c
24

)
, (33)

and ρg denotes the action of CG(g) on Cg. We should mention that this action is usually

not canonically defined; for example, what is usually referred to as discrete torsion [30] can

be thought of as being an ambiguity in the definition of ρg. Incidentally, the fact that the

action is not canonically defined will be important to us later, see in particular section 4.1.

For the moment though, we want to assume that such an action has been chosen.

3.1.2. Projective representations. As alluded to above, the twisted sectors Cg typically do

not form genuine representations of CG(g) but only projective representations. A projective

representation ρ of a finite group G is characterised by the relation (see also appendix C

for some introductory comments)

ρ(g1) ρ(g2) = c(g1, g2) ρ(g1g2) , (34)

where c : G × G → U(1) is a (normalised) 2-cocycle representing a cohomology class in

H2(G,U(1)). Genuine representations of finite groups are classified, up to equivalence,

by their characters Trρ(g). This is, however, no longer true for projective representations

since taking the trace over a projective representation does not lead to a class function,

i.e. a function that is invariant under conjugation by elements in G. Instead, for projective

representations one has

Trρ(hgh
−1) =

c(h, h−1gh)

c(g, h)
Trρ(g) , (35)

as follows from the defining relation (34) together with the cyclicity of the trace (see e.g.

[31] for a nice discussion). For the case of the holomorphic orbifold, this then results in the

conjugation relation

Zg,h(τ) =
cg(h, k)

cg(k, k−1hk)
Zk−1gk,k−1hk(τ) , (36)

where the 2-cocycle cg represents a class in H2(CG(g), U(1)) specifying the projective rep-

resentation of the centralizer CG(g) on Cg, and we have assumed that k and g commute so
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that both expressions are evaluated in the same twisted sector. (In fact, (36) is even true

if k and g do not commute, see [22].) If in addition k commutes with h, (36) reduces to

Zg,h(τ) =
cg(h, k)

cg(k, h)
Zg,h(τ) , (37)

which therefore implies that Zg,h vanishes unless the 2-cocycle is regular,

cg(h, k) = cg(k, h) . (38)

This is the holomorphic orbifold version of the first type of obstruction discussed in section

2.2 above.

3.1.3. The underlying cohomology. The possible choices for the 2-cocycles cg in the various

twisted sectors are constrained; for example this follows from demanding consistency of

the OPE involving fields from different twist sectors.‖ In particular, it was argued in [22]

that the various consistent choices are in one-to-one correspondence with elements in the

third cohomology group [α] ∈ H3(G,U(1)), see also [32, 33, 34, 35] for subsequent work.

The 3-cocycle α determines distinguished elements cg ∈ H2(CG(g), U(1)) via the formula

[22, 32]

cg(h1, h2) =
α(g, h1, h2)α(h1, h2, (h1h2)

−1g(h1h2))

α(h1, h
−1
1 gh1, h2)

. (39)

Since α fixes all 2-cocylces cg via (39), it is clear that the choice of α determines the

behaviour of the twisted twining characters under conjugation (36). Furthermore, α also

determines all the multiplier phases that appear under modular transformations, since it

follows from [32] that∗∗

Zg,h(τ + 1) = cg(g, h)Zg,gh(τ) ,

Zg,h(−1/τ) = ch(g, g−1)Zh,g−1(τ) .
(40)

The choice of a particular representative α in the class [α] ∈ H3(G,U(1)) corresponds to

a choice of normalisation for the action of h on the g-twisted sector. To see this, let α̃

represent a 3-cocycle in the same cohomology class [α] ∈ H3(G,U(1)), so that α̃ = α · ∂β
(see eq. (151)) for some 2-cochain β. Then the associate 2-cocycles cg and c̃g differ (for each

g ∈ G) only by a 2-coboundary i.e. c̃g = cg ·∂γg, with γg(h) = β(h,g)
β(g,h) , see appendix B. Thus,

‖This origin of the constraint was suggested in [33].
∗∗Note that (40) is obtained from [32] upon working with the inverse 3-cohomology element. We also

thank Terry Gannon for explaining these formulae to us. It is believed (and we have verified this in simple

cases) that (40) follows from the transformation rules for the irreducible orbifold characters, see [34, eqs.

(5.23) and (5.24)], but we have not proven this in complete generality.
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the 3-cocycle α̃ is associated with the modular properties of the functions Z̃g,h = γg(h)Zg,h,

which, by (33), simply correspond to a different normalisation ρ̃g(h) = γg(h)ρg(h) for the

action of h on the g-twisted sector.

3.2. Application to Mathieu Moonshine. Given what we said before, it is now natural

to postulate that for the twisted twining genera of K3, the various multiplier phases also

come from a 3-cocycle α ∈ H3(M24, U(1)). This is to say, we postulate that the projective

representation appearing in (C) is the one determined by cg, given by (39). Furthermore,

χg,h

(
a b
c d

)
in (4) is determined by (40), and ξg,h(k) in (5) agrees with (37), where in both

cases cg is again the function determined by (39) for a fixed α ∈ H3(M24, U(1)). More

explicitly, we therefore propose that

φg,h
(
− 1

τ ,
z
τ

)
= ch(g, g−1) e2πi

z2

τ φh,g−1(τ, z) ,

φg,h(τ + 1, z) = cg(g, h)φg,gh(τ, z) , (41)

with cg(h1, h2) given by (39), and

φg,h(τ, z) =
cg(h, k)

cg(k, k−1hk)
φk−1gk,k−1hk(τ, z) , k ∈M24 . (42)

Moreover, we postulate that

φg,h−1(τ, z) = cg(h, h
−1)φ∗g,h(τ, z) , (43)

where φ∗g,h(τ, z) is defined in (12).

Note that the charge conjugation operator C = S2 acts on the genera φg,h(τ, z) by flipping

the sign of the second argument z. In fact, writing τ = − 1
τ̃ and z = z̃

τ̃ , we get from twice

applying (41)

φg,h(τ, z) = φg,h(− 1
τ̃ ,

z̃
τ̃ ) =

e2πi
z̃2

τ̃

ch(g, g−1)
φh,g−1(τ̃ , z̃) (44)

=
e−2πi z

2

τ

ch(g, g−1)
φh,g−1(− 1

τ ,− z
τ ) =

1

ch(g, g−1)cg−1(h, h−1)
φg−1,h−1(τ,−z) .

Together with (13), this then leads to

φg,h(τ, z) =
1

ch(g, g−1) cg−1(h, h−1)
φg−1,h−1(τ, z) , (45)

thus reproducing (17). This identity played a key role in the derivation of obstruction 2 in

section 2.2.
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Combining modular transformations with conjugation one obtains a whole set of relations

among the twisted twining genera, in particular

χg,h(γ1γ2) = χg,h(γ1)χ(g,h)γ1(γ2) , γ1, γ2 ∈ SL(2,Z) , (46)

χg,h

(
0 −1
1 0

)
=

1

ch(g, g−1)
, (47)

χg,h ( 1 1
0 1 ) = cg(g, h) , (48)

χg,h

(
−1 0
0 −1

)
=

1

ch(g, g−1)cg−1(h, h−1)
, (49)

ξg,h(k) =
cg(h, k)

cg(k, k−1hk)
, (50)

χg,h

(
1 0
0 −1

)
=

1

cg(h, h−1)
. (51)

While our proposal about the multiplier phases is certainly natural, we do not have a direct

proof for it. However, the fact that with this assumption we shall find consistent answers

is in our opinion very convincing evidence in favour of this ansatz.

3.3. Determining the cohomology class. In order to have explicit formulae for the mul-

tipliers, the next step consists of determining [α] ∈ H3(M24, U(1)). As explained following

(9), the cohomology class [α] is already uniquely determined by the multiplier phases of the

original twining genera. However, already these define an overdetermined problem, and we

therefore first need to check that there is a consistent choice for α that is compatible with

these multiplier phases.

First we note that the normalisation condition for α, see eq. (152), implies that ce(g, h) = 1

for all g, h ∈ M24. Thus φe,g(τ + 1, z) = φe,g(τ, z) and φe,g(τ, z) = φe,k−1gk(τ, z) for all

k ∈ M24, as expected. Furthermore, the representation ρe in the decomposition (6) is a

genuine representation of CM24(e) =M24.

Next we observe that eq. (41) implies

φga,gb(τ + o(ga), z) = κ(ga, gb)φga,gb(τ, z) , (52)

where

κ(ga, gb) :=

o(ga)∏

k=1

cga(g
a, gb+ak) =

o(ga)∏

k=1

α(ga, gb+ak, ga) . (53)

Therefore, for any g ∈M24, φe,g obeys the expected modular properties if and only if

κ(ga, gb) = e
− 2πi

ℓ(ga) , (54)
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for all a, b ∈ Z, where ℓ(ga) is the length of the smallest cycle of ga when considered

as a permutation of 24 objects. It is easy to verify that κ(ga, gb) only depends on the

cohomology class of the 3-cocycle α. Thus we have to prove that there is a unique class

[α] ∈ H3(M24, U(1)) such that (54) is satisfied for all g ∈M24, a, b ∈ Z.

In order to show that such an α exists, we first need two basic facts about group cohomology.

Given two finite groupsG andH and a homomorphism ι : H → G, we can define the induced

map ι∗ from U(1)-cochains α for G to U(1)-cochains ι∗(α) for H

ι∗(α)(g1, . . . , gn) = α(ι(g1), . . . , ι(gn)) , (55)

which induces a well-defined map on cohomologies ([40], Chapter III.8). A particular case

is when H = G and the map H → G is conjugation ιk(g) = k−1gk by an element k ∈ G. In

this case, the induced map on the cohomology ι∗k acts as the identity, i.e. [ι∗(α)] = [α] (see

[40], Chapter III Proposition 8.3). A second interesting case is when H is a subgroup of G

with ι the natural inclusion; in this case, Res ≡ ι∗ is called a restriction map. In particular,

if H is a Sylow p-subgroup SylpG of G,†† then the image of the restriction map

Resp : H
n(G,U(1)) → Hn(Sylp(G), U(1)) (56)

is isomorphic to the p-part of Hn(G,U(1)) ([40], Chapter III Theorem 10.3). For G =M24,

using that H3(M24, U(1)) ∼= Z12 [29], this implies

Res2(H
3(M24, U(1))) ∼= Z4 , Res3(H

3(M24, U(1))) ∼= Z3 , (57)

while Resp(H
3(M24, U(1))) is trivial for all primes p > 3.

With these preparations we can now prove the existence of a class [α] ∈ H3(M24, U(1)) such

that (54) is satisfied. From the invariance of the cohomology classes under the conjugation

map ι∗k, it follows that the multiplier in (54) only depends on the conjugacy class of g. Next

we note that in order to compute κ(ga, gb), it is sufficient to consider the restriction of the

cocycle α to the group 〈g〉 generated by g. For a cyclic group ZN , the third cohomology

H3(ZN , U(1)) is isomorphic to ZN , and a set of cocycle representatives for the cohomology

classes are given by [41, 34]

ωq(g
a, gb, gc) = e

2πi qa

o(g)2
([b]+[c]−[b+c])

, q = 0, . . . , o(g) − 1 , (58)

where [·] : Z → {0, . . . , o(g) − 1} is the reduction modulo o(g).

††Recall that a p-group (p prime) is a finite group with order a power of p; a Sylow p-subgroup of a group

G is a p-subgroup of G that is maximal, i.e. that is not properly contained in any other p-subgroup. For

each p, all Sylow p-subgroups of G are isomorphic and conjugate to one another inside G.
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Let us assume, without loss of generality, that 1 ≤ a < o(g) − 1 and 0 ≤ b < a, and that a

divides o(g); in fact, if this was not true, we can rewrite both ga and gb as powers of another

g̃ in 〈g〉 for which this is then true. The multiplier corresponding to a 3-cocycle ωq is

κ(ga, gb) =

o(ga)−1∏

k=0

ωq(g
a, gb+ak, ga) = e

2πi qa

o(g)2

∑o(ga)−1
k=0 ([b+ak]+[a]−[b+a(k+1)])

(59)

= e
2πi qa

o(g)2
([b]+o(ga)[a]−[b+ao(ga)])

= e
2πi qa

o(g) ,

where we have used that o(ga) = o(g)/a when a divides o(g). Thus, κ(ga, gb) ≡ κ(ga)

is independent of b, and κ(ga) = κ(g)a whenever a divides o(g). The latter property is

consistent with (54) thanks to the identity

1

ℓ(ga)
≡ a

ℓ(g)
mod 1 , (60)

that holds for all elements g ∈M24 and for all divisors a of o(g).∗

It therefore follows that it is sufficient to prove (54) for a = 1 and b = 0, and for one

representative g for each conjugacy class. Furthermore, thanks to κ(ga) = κ(g)a, we can

restrict to classes whose order is a prime power. In other words, we only need to check (54)

for a Sylow p-subgroup Sylp(M24) and for each prime p.

Using the software GAP [38] with the package HAP [39] implemented, we have computed a

basis of cocycle representatives for H3(Syl2(M24), U(1)) and H3(Syl3(M24), U(1)). Note

that any 3-cocycle in the image of Resp has the property that, for any g ∈ Sylp(M24),

the corresponding multiplier κ(g) depends only on the conjugacy class of g in M24. We

have verified that there is a unique Z4 subgroup of H3(Syl2(M24), U(1)) and a unique Z3

subgroup of H3(Syl3(M24), U(1)) satisfying this property. Therefore these subgroups must

correspond to the restrictions Resp(H
3(M24, U(1))), for p = 2 and p = 3, respectively.

Finally, for both p = 2 and p = 3, we have verified that there is a unique cohomology class

[αp] ∈ Resp(H
3(M24, U(1))) that satisfies (54) for all g in Sylp(M24). Thus, the unique class

[α] ∈ H3(M24, U(1)) that has the property that Resp([α]) = [αp] for all primes p, satisfies

(54) for all g ∈M24. This concludes the proof.

The above techniques are also useful in order to compute the obstructions and the multipliers

for a given twisted twining genus φg,h. To this end we note that it is sufficient to consider

the restriction of the cocycle α to the normaliser N(g, h) of 〈g, h〉. If this normaliser is

contained in some Sylow p-subgroup, one can simply use the cocycle αp determined above.

∗Note that this property is special for M24, and is not true for a generic permutation.
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Otherwise, one can use GAP to compute a basis for the cohomology of N(g, h) and check

which cohomology classes reproduce the correct multipliers for all genera of the form φe,k,

k ∈ N(g, h). In all cases we considered, there was only one cohomology class with this

property, which must therefore be the restriction of the class [α] ∈ H3(M24, U(1)) to the

cohomology of N(g, h).

Once the restriction of [α] to N(g, h) is determined, one can check the existence of obstruc-

tions for all 34 groups of table 1. The results are collected in table 3. For the unobstructed

twisted twining genera φg,h, one can compute the precise multiplier system. It turns out

that this information is sufficient to determine φg,h up to normalisation. Finally, the nor-

malisation can be fixed (up to a phase) by requiring that a decomposition (6) exists. An

example is worked out in section 3.4, and the other cases are considered in appendix A.

The GAP-files containing the computations described above are available online [42].

3.4. Computation of the twisted twining characters: an example. As we have

explained in section 2.5, the knowledge about the multiplier phases implies that most of

the twisted twining genera vanish. However, some of them are non-zero, and in this section

we illustrate how one of these non-zero twisted twining genera, namely the one associated

to g ∈ 2B and h ∈ 8A, can be determined explicitly; the other cases are dealt with in

appendix A. Let us work with the conventions that the three permutations

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)(24) ,

(3, 17, 10, 7, 9)(4, 13, 14, 19, 5)(8, 18, 11, 12, 23)(15, 20, 22, 21, 16)(1)(2)(6)(24) ,

(1, 24)(2, 23)(3, 12)(4, 16)(5, 18)(6, 10)(7, 20)(8, 14)(9, 21)(11, 17)(13, 22)(15, 19)

generate M24 ⊂ S24. As representative for g ∈ 2B we can then take

g = (1, 10)(2, 14)(3, 8)(4, 5)(6, 22)(7, 20)(9, 18)(11, 23)(12, 24)(13, 19)(15, 16)(17, 21) , (61)

while for h ∈ 8A we consider

h = (2, 14)(3, 9, 8, 18)(4, 6, 21, 19, 15, 24, 20, 11)(5, 22, 17, 13, 16, 12, 7, 23)(1)(10) . (62)

The elements g, h generate the abelian group Z2 × Z8 corresponding to case 1 of table 1.

There are two interesting conjugation relations, namely

(k−1gh4k , k−1h−1k) = (g, h) , (r−1gr , r−1ghr) = (g, h) , (63)
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where

k = (1, 10)(2, 14)(3, 18)(4, 11)(5, 13)(6, 20)(7, 12)(8, 9)(15, 19)(16, 23)(17, 22)(21, 24) ,

r = (1, 2)(3, 9)(6, 22)(8, 18)(10, 14)(11, 23)(12, 24)(13, 19)(4)(5)(7)(15)(16)(17)(20)(21) .

(64)

Thus, we can use the general formulae (41) and their inverses to deduce that†

φg,h(τ + 1) = cg(g, h)φg,gh(τ) = cg(g, h)
cg(gh, r)

cg(r, h)
φg,h(τ) = iφg,h(τ) , (65)

where we have used the explicit form of the multiplier factors from section 3.3. We also

have (recall that g = g−1)

φg,h(
τ

−4τ+1) =
φh,g(4− 1

τ )

ch(g, g)
=

∏3
i=1 ch(h, gh

i)

ch(g, g)
φh,gh4(− 1

τ ) =

∏3
i=1 ch(h, gh

i)

ch(g, g)cgh4(h, h−1)
φgh4,h−1(τ)

=

∏3
i=1 ch(h, gh

i)

ch(g, g)cgh4(h, h−1)

cg4h(h
−1, k)

cg4h(k, h)
φg,h(τ) = −φg,h(τ) . (66)

This implies that φg,h(τ, z) is a Jacobi form under the group Γ0(4) with the above multipli-

ers. Since the multiplier system is non-trivial, the constant φg,h(τ, 0) must vanish and by

φg,h(τ, z) = φg,h(τ,−z) it follows that φg,h has a double zero at z = 0. On the other hand,

the Jacobi form

ψ(τ, z) ≡ ϑ1(τ, z)
2

ϑ2(τ, 0)2
(67)

has weight 0 and index 1 under Γ0(4) (with trivial multiplier). Since it only has a double

zero at z = 0 (mod Z+ τZ), it follows that

F (τ) ≡ φg,h(τ, z)

ψ(τ, z)
(68)

is a modular function of weight 0 under Γ0(4) (with multiplier system (65)–(66)) that is

holomorphic in the interior of H+. Let us consider the asymptotic behaviour of F (τ) at the

boundary Γ0(4)\(Q ∪ {∞}) of the compactification Γ0(4)\H̄+. This boundary consists of

three points (cusps) of the form γc · ∞, where γ∞ = ( 1 0
0 1 ), γ0 =

(
0 −1
1 0

)
and γ1/2 = ( 1 0

2 1 ).

The twisted twining genus φg,h has the Fourier expansion at these cusps

φg,h(γ∞(τ, z)) = φg,h(τ, z) = A∞ q1/4(2− y − y−1) +O(q5/4) (69)

φg,h(γ0(τ, z)) ∼ φh,g(τ, z) = A0 q
1/8(2− y − y−1) +O(q3/8) (70)

φg,h(γ1/2(τ, z)) ∼ φgh2,h(τ, z) = A1/2 q
1/4(2− y − y−1) +O(q3/4) , (71)

†For brevity of presentation we omit the dependence of z, as well as the factors e2πi cz
2

cτ+d , in the following

formulae.
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where ∼ denotes equality up to a phase, and we have included the lowest non-negative

powers of qr that are compatible with the multiplier system. It follows from (6) that the

constants A∞, A0, A1/2 equal

A∞ = TrH
g,r=1

4

(ρg, 1
4
(h)) , A0 = TrH

h,r=1
8

(ρh, 1
8
(g)) , A1/2 = TrH

gh2,r=1
4

(ρgh2, 1
4
(h)) ,

(72)

and from the Fourier expansion of φh,e we know that dimHh,r= 1
8
= 1, so that |A0| = 1. On

the other hand, ψ(τ, z) satisfies at the cusps

ψ(γ∞(τ, z)) = ψ(γ1/2(τ, z)) =
ϑ1(τ, z)

2

ϑ2(τ, 0)2
=

1

4
(2− y − y−1) +O(q) (73)

ψ(γ0(τ, z)) =
ϑ1(τ, z)

2

ϑ4(τ, 0)2
= q1/4(2− y − y−1) +O(q3/4) , (74)

and we therefore obtain

F (γ∞ · τ) = 4A∞ q1/4 +O(q5/4) (75)

F (γ0 · τ) ∼ A0 q
−1/8 +O(q1/8) (76)

F (γ1/2 · τ) ∼ 4A1/2 q
1/4 +O(q3/4) . (77)

Up to a phase, there is a unique modular form with the correct modular properties and the

expected Fourier expansion at the cusps, namely

F (τ) = 8
η(2τ)6

η(τ)6
. (78)

Thus we conclude that up to an overall phase we have

φ2B,8A(τ, z) = 8
η(2τ)6

η(τ)6
ϑ1(τ, z)

2

ϑ2(τ, 0)2
= 2

η(2τ)2

η(τ)4
ϑ1(τ, z)

2 , (79)

where we used the identity ϑ2(τ, 0)
2 = 4η(2τ)4

η(τ)2 . The other non-trivial cases can be worked

out similarly, see appendix A for the details.

3.5. Projective representations. As we have argued above, see property (C) in section

2, the twisted sector Hg should carry a projective representation of the centraliser CM24(g),

whose 2-cocycle is given by cg as determined in (39). Given our explicit knowledge of all

twisted twining genera as well as cg, this can now be tested as in [8] (where the corresponding

analysis was performed for the case of the twining genera): if each Hg,r is a projective

representation of CM24(g), we can decompose it as

Hg,r =
⊕

j

h(j)g,r Rj , (80)
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where h
(j)
g,r is the multiplicity with which the projective representation Rj (whose projectivity

is characterised by cg) appears in Hg,r. On the other hand, using the orthogonality of group

characters (see appendix C), we can calculate h
(j)
g,r from the knowledge of the twisted twining

genera explicitly. The consistency condition is then that all h
(j)
g,r are indeed (non-negative)

integers. We have done this analysis for all twisted sectors and for the first 500 levels (i.e.

the first 500 values for r), and the multiplicities are indeed always non-negative integers.

The explicit results for the first 20 levels as well as the (projective) character tables of all

non-isomorphic centralisers CM24(g) are given in appendix D, but commented out in the

LATEX source code. The decompositions for all g and for the first 500 levels are available

online [42].

4. K3 Orbifolds

There are at least two further consistency checks on our proposal that can be fairly easily

analysed. Suppose we consider a K3 sigma-model C whose automorphism group contains

the cyclic subgroup generated by g. Then we can consider the orbifold of C by G = 〈g〉. A
priori, it is not guaranteed that this orbifold is consistent — indeed, since these symmetries

effectively act asymmetrically, they generically suffer from the level-matching problem, and

hence may be inconsistent [36]. However, as was already mentioned in [37], the level-

matching condition is satisfied provided that the twining genus φg has a trivial multiplier

system. This is in particular the case if g ∈M23. In that case, the resulting orbifold theory

Ĉ = C/G is again a K3 sigma model, as was also shown in [37].

Suppose then that the original C has, in addition to g ∈ M23, another commuting group

element h in its automorphism group. Then h also gives rise to a symmetry ĥ of the orbifold

theory Ĉ, and we can calculate the twining genus of ĥ by the usual orbifold formula

φe,ĥ =
1

o(g)

o(g)−1∑

i,j=0

φgi,hgj . (81)

This leads to a non-trivial consistency condition: given our explicit knowledge of all twisted

twining genera, we can calculate the right-hand-side explicitly, and this must agree, for

every h, with one of the twining genera of [8, 9]. We have checked that this is indeed true;

an example is illustrated in section 4.2.

Naively, one may have guessed that ĥ should simply agree with h, i.e. that the left-hand-side

of (81) is the twining genus associated to the same group element h ∈M24. However, this is

in general not the case, as will be explained in the following section 4.1, see also section 4.2
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for an explicit example. Whenever this happens we will say that the group element h has

been relabelled in the orbifold theory.

The other consistency check is even more obvious. As was mentioned at the beginning of

section 2, there exist K3 sigma-models with a commuting pair of automorphisms (g, h). For

them (2) can be calculated directly, and thus compared to our answers. We shall perform

this computation for some simple cases in section 4.3. In particular, we shall concentrate

on examples where our obstruction analysis predicts that the associated twisted twining

genus must vanish. The fact that we can reproduce this result using elementary methods

is a good consistency check on our analysis.

4.1. The relabelling phenomenon. Suppose that a K3 sigma-model C contains in its

automorphism group an element g such that the orbifold of C by g, Ĉ = C/〈g〉 is consis-

tent. In general, each gr-twisted sector carries a projective representation of H ≡ CM24(g).

Equivalently, we can think of the untwisted and twisted sectors as carrying genuine repre-

sentations of some central extension H̃ of H. In fact, the central extension can be chosen

to be of the form (see also appendix C.1 for more details)

1 → 〈Q̃〉 ∼= ZN → H̃
ρ→ H → 1 . (82)

Here ρ is the representation in the untwisted sector, i.e. on the spectrum of C, N is the

order o(g) of g and the generator Q̃ (that we call the quantum symmetry) of the central ZN

acts by e2πir/N on the gr-twisted sector. Note that there is always a lift g̃ ∈ H̃ of g that

acts by e2πik/N on the states of conformal weight h− 1/4 = k/N .

In the orbifold theory Ĉ, all states are invariant under the action of g̃— this is just the precise

way of imposing the usual requirement that the orbifold theory consists of ‘g-invariant’ states

only. Since g̃ is in the center of H̃, the spectrum of Ĉ carries a well-defined representation

ρ̂ of H̃, such that ρ̂(g̃) is the identity. In fact, it is easy to see that ker ρ̂ = 〈g̃〉, because Q̃
acts non-trivially on the twisted sectors, and each non-trivial element in H/〈g〉 lifts to an

element of H̃ that acts non-trivially on the g-invariant untwisted sector, which in turn is

part of the spectrum of Ĉ. Thus, we have an exact sequence

1 → 〈g̃〉 ∼= ZN → H̃
ρ̂→ Ĥ → 1 . (83)

The group Ĥ ≡ H̃/〈g̃〉 defines a fully fledged symmetry of the orbifold CFT Ĉ. For the

case at hand, both the original theory and the orbifold are K3 sigma models, and thus all
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of these symmetry groups should be subgroups of M24,
‡

Ĥ ⊆M24 . (84)

This assumption allows us to determine Ĥ (at least as an abstract group). In fact, the order

of Ĥ is given by

|Ĥ| = |H̃|
N

= |H| = |CM24(g)| . (85)

The quantum symmetry Q ≡ ρ̂(Q̃) must be in the same M24-conjugacy class as g, since it

has the same eigenvalues on the 24-dimensional representation of RR ground states. Since

all elements of Ĥ commute with Q, we can conclude by (85) that

Ĥ = CM24(Q) ∼= CM24(g) = H . (86)

This construction allows us to give a precise interpretation of (81). For each symmetry

h ∈ H in the model C, one chooses a lift h̃ ∈ H̃, with ρ(h̃) = h (this amounts to choosing

the phases of the twisted twining genera φg,h). Then the formula for the twining genus of

the symmetry ρ̂(h̃) in the orbifold model Ĉ takes the form

φe,ρ̂(h̃) =
1

o(g)

o(g)−1∑

i,j=0

φgi,h̃g̃j . (87)

After these preparations we can now explain the relabelling phenomenon. While it follows

from (86) that Ĥ and H are isomorphic, they are not canonically isomorphic; in fact, we

only have a canonical isomorphism between

H/〈g〉 ∼= H̃/〈g̃, Q̃〉 ∼= Ĥ/〈Q〉 , (88)

but this does not necessarily lift to a canonical isomorphism Φ : Ĥ → H, with Φ(Q) = g.

Put differently, in general it is not possible to find an isomorphism Φ : Ĥ → H, with

Φ(Q) = g such that the following diagram commutes:

H̃

Ĥ H

H̃/〈g̃, Q̃〉

ρ̂ ρ

Φ

‡We are assuming here that the relevant K3 sigma model is ‘non-exceptional’ in the terminology of [37].
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For example, this will be the case if for any lift h̃ with ρ(h̃) = h, the corresponding symmetry

ρ̂(h̃) is not in the same M24 conjugacy class as h. In that case, the twining genus obtained

by formula (87) does not agree with φe,h. Whenever this is the case, we shall say that the

conjugacy class of h has been relabelled in the orbifold theory.

4.2. An example. As an explicit example of the relabelling phenomenon let us consider

the case where g is in the class 2A of M24 (so that N = o(g) = 2). Then the group H̃ is a

central extension of H by the Z2 group generated by Q̃. We denote by g̃ the lift of g in H̃,

such that g̃ and Q̃ have the following eigenvalues

Q̃ g̃ sector model

+1 +1 untwisted C, Ĉ
+1 −1 untwisted C
−1 +1 twisted, qZ Ĉ
−1 −1 twisted, qZ+

1
2 −

(89)

As expected from the discussion in the previous section, the group H̃/Q̃ is isomorphic to

the centraliser in M24 of an element of class 2A.

Now consider an element h ∈ H in class 8A, with h4 = g. The trace of h over the 24-

dimensional representation of ground states in the original model C is +2. Furthermore,

since hg is in the same class, also the trace over hg equals +2, from which we conclude that

on the ground states of C we have

TrH0
Q̃=1,g̃=1

(h) = +2 , TrH0
Q̃=1,g̃=−1

(h) = 0 , (90)

where H0
Q̃=±1,g̃=±1

are the eigenspaces of Q̃ and g̃ at conformal weight hL− 1
4 = 0. The lifts

h̃ and Q̃h̃ in H̃ are such that h̃4 = (Q̃h̃)4 = g̃. On dimensional grounds, the twisted sector

at hL − 1/4 = 0 must correspond to a certain 8-dimensional irreducible representation of

H̃, where the lifts h̃ and Q̃h̃ have trace ±2. We notice that, up to a sign, this trace is

independent of the choice of the central extension, and is in agreement with the expectation

from the twisted twining genus φg,h ≡ φh4,h. On the ground states in the orbifold theory Ĉ,
the trace of h̃ is now

TrH0
Q̃=1,g̃=1

(h̃) + TrH0
Q̃=−1,g̃=1

(h̃) = 2± 2 , (91)

and thus there is no choice for h̃ such that the trace is equal to +2, as required for an

element in class 8A. In fact, the images ĥ and Qĥ in Ĥ ∼= CM24(Q) have order 4 and belong
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to the classes 4A and 4B. In particular, while the pair of commuting elements g, h in the

original model generate the cyclic group

〈g, h〉 = 〈h〉 ∼= Z8 , (92)

both the groups 〈Q, ĥ〉 and 〈Q,Qĥ〉 correspond to group 16 in our general list. Thus, there

cannot exist an isomorphism Φ : Ĥ → H such that Φ(ρ̂(h̃)) = h or Φ(ρ̂(Q̃h̃)) = h.

Let us verify the consistency of eq. (87) for this case, see the comments at the beginning of

section 4. The twining genera φe,ρ̂(h̃) and φe,ρ̂(Q̃h̃) are given by

φe,ρ̂(h̃)(τ, z) =
1

2
(φe,h(τ, z) + φe,h5(τ, z) + φh4,h(τ, z) + φh4,h5(τ, z)) , (93)

φe,ρ̂(Q̃h̃)(τ, z) =
1

2
(φe,h(τ, z) + φe,h5(τ, z) − φh4,h(τ, z)− φh4,h5(τ, z)) . (94)

Using the identity

φe,8A(τ, z) =
1

2
(φe,4B(τ, z) + φe,4A(τ, z)) , (95)

it is easy to verify that

φe,ρ̂(h̃) = φe,4B, φe,ρ̂(Q̃h̃) = φe,4A , (96)

as expected. This example also shows that the consistency of eq. (87) gives, in general,

highly non-trivial conditions on the twisted twining genera.

We have verified explicitly that a similar phenomenon also occurs for the orbifold by an

element g in class 4B.

4.3. Computation of a twisted twining genus. In this section we shall calculate some

twisted twining genera directly. In particular, we shall concentrate on some simple cases

where our general analysis predicts that they must vanish (because of some obstruction).

As we shall see, we can reach the same conclusion from first principles.

Let us consider a K3 σ-model C whose automorphism group contains two commuting ele-

ments g, h of order m and n, respectively, generating the non-cyclic group G = 〈g, h〉. If

these symmetries have a geometric origin, i.e. if they are induced by automorphisms of the

K3 target space that fix the holomorphic 2-form, then the group G must be a subgroup

of M23 with at least five orbits over the 24-dimensional representation, as follows from the

Mukai theorem [43]. These conditions are satisfied by the groups 4 and 7 (Z2×Z2), groups

9 and 22 (Z2 ×Z4), group 18 (Z2 ×Z6), group 24 (Z4 ×Z4), and group 32 (Z3 ×Z3) of our

table 1. In all these cases, the twisted twining genus vanishes, φg,h = 0, see table 3. In the

following we want to verify this independently.
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In the general Zn×Zm case, the twisted twining genus φg,h is expected to be a weak Jacobi

form of weight 0 and index 1 under the congruence subgroup

Γm,n ≡ {
(
a b
c d

)
∈ SL(2,Z) | a ≡ 1, b ≡ 0 mod m, c ≡ 0, d ≡ 1 mod n} . (97)

Note that this group is in general smaller than the group Γg,h defined below (24), because

we are not using the identifications under conjugation (5). Since both g and h are elements

of M23, the multiplier system for φg,h must be trivial (since H3(M23, U(1)) ∼= 0).

Because of the triviality of the multiplier system, it follows that any modular image φg′,h′

of φg,h, where (g
′, h′) = (g, h) ·γ for some γ ∈ SL(2,Z), has a Fourier expansion of the form

φg′,h′(τ, z) =

∞∑

n=0

∑

ℓ

cg′,h′(n, ℓ) q
n

o(g′) yℓ , (98)

where o(g′) is the order of g′. Let us assume

cg′,h′(0, ℓ) = 0 ∀ℓ ∈ Z , (99)

for any modular image (g′, h′) = (g, h) · γ; we will prove this below. Then it follows that

φg,h(τ, 0) =
∑

ℓ

cg,h(0, ℓ) = 0 . (100)

Because of (13), φg,h(τ, z) = φg,h(τ,−z), and we can conclude that φg,h has a double zero

at z = 0. Next we recall that ϑ1(τ, z)
2/η(τ)2 is a Jacobi form of weight 0 and index 1 under

SL(2,Z) (with a non-trivial multiplier). It has a double zero at z = 0 (mod Z + τZ), and

is non-vanishing elsewhere, so that

Fg,h(τ) =
η(τ)2φg,h(τ, z)

ϑ1(τ, z)2
(101)

is a modular function of weight 0 under Γm,n (with non-trivial multiplier), which is holo-

morphic in the interior of the upper-half plane H+. Let us consider the asymptotics of

Fg,h at the boundary Γm,n\(Q ∪ ∞) of the compactification Γm,n\H̄+. The boundary is

the union of points (cusps) of the form γ(∞), where γ runs through the representatives of

the double cosets Γm,n\SL(2,Z)/Γ∞. Here, Γ∞ is the parabolic subgroup of SL(2,Z) that

fixes ∞ ∈ H̄+ and is generated by ( 1 1
0 1 ). The Jacobi form ϑ1(τ, z)

2/η(τ)2 has the same

asymptotic behaviour at each cusp, namely

ϑ1(γ · (τ, z))2
η(γ · τ)2

τ→∞∼ q1/6(2− y − y−1) +O(q7/6) , (102)

up to a constant coefficient. By (98) and (99), it then follows that

Fg,h(γ · τ) ∼ η(τ)2φg′,h′(τ, z)

ϑ1(τ, z)2
τ→∞∼ O(q

1
o(g′)

− 1
6 ) , (103)
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where (g′, h′) = (g, h)γ and o(g′) is the order of g′. For all the groups we are interested in,

we have o(g′) ≤ 6, and the inequality is strict for at least one g′. It follows that Fg,h has

no poles and at least one zero at the boundary of Γm,n\H̄+. Since it is holomorphic in the

interior, it must therefore vanish identically, and we conclude that

φg,h(τ, z) = 0 , (104)

as predicted by our results.

It therefore only remains to prove (99). The coefficient cg,h(0, ℓ) corresponds to the trace

of h (or, more generally, of the lift h̃ to a central extension of the group 〈g, h〉) on the

RR g-twisted states with conformal weight hL = hR = 1/4 and weight ℓ under the su(2)L

subalgebra of the left-moving N = 4 algebra. The g-twisted ground states are g-invariant

(the conformal weight satisfies hL−1/4 ∈ Z), so they belong to the spectrum of the orbifold

theory C/〈g〉.
Any sigma-model whose target space is a K3 manifold X contains 24 RR ground states

corresponding to the harmonic forms on X. Thus, the real vector space spanned by these

states can be identified with the real cohomology H∗(X,R) on X. The orbifold model

Ĉ = C/〈g〉 corresponds to a non-linear sigma-model on the geometric orbifold X̂ = X/〈g〉,
which is a singular K3 surface. In particular, for each point of X that is fixed by some

non-trivial subgroup 〈gr〉 ⊆ 〈g〉, the orbifold X̂ has a singularity of type An−1, where n

is the order of gr. By blowing up all these singularities, one obtains again a smooth K3

manifold.

The RR ground states in the untwisted sector of Ĉ are obtained by projecting onto the

g-invariant subspace of H∗(X,R), while the ground states in the twisted sectors are the

Poincaré duals of the cycles corresponding to the exceptional divisors in the blow-up of X̂.

More precisely, the resolution of each An−1 singularity of Ĉ gives rise to n−1 rational curves

P1, representing elements in the homology of the blow-up. The cohomology classes dual to

these cycles span an (n−1)-dimensional subspace of RR ground states for Ĉ, one in each gir

twisted sector, for i = 1, . . . , n− 1. Thus, we arrive at the usual statement that the ground

states of the gk-twisted sector are in one to one correspondence with the gk-fixed points of

the target space.

Any other symplectic automorphism h of X that commutes with g acts as a permutation

on the gr-fixed points. This action induces a permutation on the singularities of X̂ , and
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therefore on the twisted RR ground states dual to the exceptional cycles.§ Therefore, the

trace of h over the g-twisted sector only gets a non-zero contribution from the singularities

of X̂ that are fixed by h, i.e. only from the points of X that are fixed by both g and

h. It is known (see, for example Proposition 1.5 of [43]) that a finite group of symplectic

automorphisms of a K3 manifold X that fixes at least one point must be a subgroup of

SL(2,C). On the other hand, all finite abelian subgroups of SL(2,C) are cyclic. Thus we

conclude that if 〈g, h〉 is abelian but not cyclic, the trace of h over the g-twisted ground

fields is 0 and (99) follows.

Our results also agree with the analysis of [44], where it was shown that the twisted twining

genus φg,h for a pair of commuting symplectic automorphisms g, h of a K3 manifold X is

given by a sum of contributions corresponding to the points fixed by both g and h. If the

abelian group 〈g, h〉 is not cyclic, then there are no fixed points and φg,h = 0.

5. Conclusions

5.1. Summary. Inspired by the generalised Monstrous Moonshine idea of Norton [14] we

have in this paper established ‘generalised Mathieu Moonshine’ for the elliptic genus of K3.

More specifically, we have found, for each commuting pair (g, h) ∈M24, explicit expressions

for the twisted twining genera φg,h : H+×C → C, and we have verified that these functions

satisfy conditions (A)–(D) of section 2.1. In particular, the twisted twining genera φg,h(τ, z)

are weak Jacobi forms of weight 0 and index 1 for certain subgroups Γg,h ⊂ SL(2,Z) with

a multiplier system χg,h : Γg,h → U(1).

One of the key insights of our work is that these multiplier phases are all determined in

terms of a class [α] ∈ H3(M24, U(1)) via a formula (see eq. (39)) that was first derived by

Dijkgraaf and Witten in the context of holomorphic orbifolds [22]. We have also shown

that the twisted twining genera φg,h are compatible with a decomposition of the g-twisted

sector into (projective) representations of the centraliser CM24(g). The particular central

extension of CM24(g) associated with this projective representation is also determined by

the cohomology class [α] ∈ H3(M24, U(1)).

As it turned out, many of the twisted twining genera vanish, and in most cases this follows

from the structure of the class [α] ∈ H3(M24, U(1)). While these sorts of cohomological

obstructions should also arise in the context of other holomorphic orbifolds (in particular

§More precisely, one should choose a lift h̃ of h to a central extension of the group of symmetries of C;

then, h̃ acts on the g-twisted sector by a permutation times an overall phase that depends on the particular

lift. Since the phase is not important for our argument, we will neglect this subtlety.
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in Monstrous Moonshine), our results provide, to our knowledege, the first example where

they have been explicitly verified. We have also confirmed the vanishing of some of these

twisted twining genera independently, using geometrical arguments.

5.2. Open problems and future work. The elliptic genus of K3 is closely related to

the physics of 1/4 BPS-dyons in N = 4 string theory. The generating function of elliptic

genera of symmetric products of K3’s is the famous Igusa cusp form Φ10, whose inverse is

the partition function of N = 4 dyons [45, 46]. This fact lies at the heart of the recent

progress in understanding wall-crossing of multi-centered BPS-states in N = 4 string theory

using mock modular forms [47]. It is therefore natural to wonder about the corresponding

physical interpretation of the twisted twining genera φg,h. In the special case of a trivial

twist g = e, it has been shown that for some elements h the twining genera φe,h correspond

to BPS-indices in CHL-orbifolds [6, 48, 49, 50]. We may therefore expect that the twisted

twining genera φg,h should be related to the counting of ‘twisted dyons’ in CHL-models.

Indeed for some pairs (g, h) we have verified this by showing that the twisted CHL-indices of

Sen [44] are compatible with our φg,h. It would be interesting to determine more generally

whether φg,h have a physical interpretation in terms of CHL-models or some generalisation

thereof.

In Borcherds’ proof of the Monstrous Moonshine conjecture he introduced a new class of

infinite-dimensional (super-)Lie algebras that he called generalised Kac-Moody algebras

(GKM) [3]. The key idea was that the multiplicative lift of the modular J-function could

be interpreted as the denominator formula for a specific GKM, now commonly called the

Monster Lie algebra, whose root system carries an action of the Monster group M. The

generalised moonshine ideas of Norton [14] suggest that similar GKMs should exist for each

class [g] ∈ M [17, 18, 51]. In the context of Mathieu Moonshine the role of generalised

Kac-Moody algebras has so far not been understood. Although there is a GKM associated

with the elliptic genus of K3 [52], this algebra does not seem to carry any natural action of

M24 due to the fact that its denominator formula is 1/
√
Φ10 rather than 1/Φ10. For some

conjugacy classes [g] ∈ M24 the associated second-quantised twining genera Φg also give

rise to denominator formulas of GKMs [53], which should presumably be identified with the

wall-crossing algebras found in CHL-models [54, 55, 56, 57, 48]. Although these observations

are very suggestive, the precise role of the GKMs for Mathieu Moonshine remains to be

understood.
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A crucial point in our analysis was that the multiplier phases are controlled by a class

[α] ∈ H3(M24, U(1)), from which also the various obstructions could be read off. It follows

from the work of [22, 34] that similarly a cohomology class in H3(M, U(1)) should underly

generalised Monstrous Moonshine, and it would be very interesting to see whether this point

of view may lead to new insights. In particular, some of Norton’s generalised Moonshine

functions f(g, h; τ) are known to vanish, and it would be natural to expect that this is due

to some cohomological obstructions similar to those we have found in this paper.¶ Some

related ideas were already put forward some time ago by Mason [24], but very little has been

done explicitly, mainly because the group H3(M, U(1)) seems to be poorly understood.

In a similar vein, it would also be interesting to investigate the generalised versions of the

recently discovered Umbral Moonshine observations [58], of which the M24/K3-moonshine

is a special case. In particular, one might expect that there is a relation between the

Rademacher summability condition of [12] and the cohomological obstructions we have

described here.

The fact that there is a class in H3(M24, U(1)) determining the properties of the twisted

twining genera φg,h represents strong evidence for the idea that a holomorphic VOA H
underlies Mathieu Moonshine. Indeed, the original motivation for suspecting the relevance

of the cohomology group H3(M24, U(1)) was based on the formal analogy with holomorphic

orbifolds [22, 34]. In a sense we are therefore in a similar situation now as for Monstrous

Moonshine before the discovery of the Monster VOA V ♮ [2]. However, the story appears

to be more subtle since the natural expectation that H would arise as a superconformal

σ-model on K3 does not hold [13]. On the other hand, this is perhaps not too surprising,

given the fact that the modular J-function corresponds to the full partition function of a

CFT, while the elliptic genus of K3 only receives contribution from a subset of the physical

states of the N = (4, 4) superconformal theory on K3. Hence it is tempting to speculate

that H should correspond to something like the algebra of BPS-states of string theory on

K3 (in the sense of Harvey and Moore [59, 60]). In particular, one might therefore hope that

H can be constructed using some kind of topological sigma model, e.g. the ‘half-twisted’

topological σ-model on K3 [61]. Mathematically, this sigma model (or rather its large radius

limit) can be viewed as a bundle of VOAs known as the chiral de Rham complex, Ωch
X [62],

and in [63] it was shown that the elliptic genus of K3 can be obtained by taking the graded

trace over the corresponding cohomology H∗(Ωch
X ). It is therefore tempting to speculate

¶We thank Terry Gannon for suggestions along these lines, see also [10].
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that one may be able to construct an action of M24 on the cohomology of Ωch
X , at least for

some choice of K3 surface X.

We hope to return to these and related issues in future work.
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Appendix A. Details on the unobstructed twisted twining genera

In this appendix, following the example of section 3.4, we will determine the twisted twining

genera φg,h for the groups 13, 27, 28, 31 and 32 in Table 1. The genus φ2B,8A for group 1 was

obtained in section 3.4, while for all the other groups φg,h vanishes due to some obstruction.

A.1. The character φ2B,4A (group 13) φ4B,4A (groups 27 and 28). In this section we

will consider the twisted twining genera φg,h for groups 13, 27 and 28; as we will see, it

turns out that these three characters have exactly the same modular properties. For group

13 g is in class 2B and h in class 4A, and we can choose

g = (1, 10)(2, 14)(3, 8)(4, 16)(5, 15)(6, 12)(7, 21)(9, 18)(11, 13)(17, 20)(19, 23)(22, 24) ,

h = (1, 2)(3, 18)(4, 7, 15, 17)(5, 20, 16, 21)(6, 19, 24, 11)(8, 9)(10, 14)(12, 23, 22, 13) . (105)

For the groups 27 and 28, g is in class 4B and h in class 4A and we can choose

g = (3, 8)(4, 21, 15, 20)(5, 17, 16, 7)(6, 19, 24, 11)(9, 18)(12, 23, 22, 13) , (106)

for both groups (from now on, we drop the trivial cycles). For group 27 we can take

h = (1, 2, 10, 14)(3, 9, 8, 18)(4, 5, 15, 16)(6, 13)(7, 21, 17, 20)(11, 22)(12, 19)(23, 24) , (107)
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and for group 28

h = (1, 10)(2, 14)(3, 9)(4, 11, 5, 13)(6, 17, 12, 21)(7, 22, 20, 24)(8, 18)(15, 19, 16, 23) . (108)

In all the three cases we have the relations

(k−1gk, k−1ghk) = (g, h) , (r−1gh−2r, r−1hr) = (g, h) , (109)

where, for group 13

k = (1, 9, 2, 3)(6, 13, 22, 19)(7, 21)(8, 10, 18, 14)(11, 24, 23, 12)(17, 20) , (110)

r = (3, 8)(4, 11, 5, 13)(6, 20, 12, 7)(9, 18)(15, 19, 16, 23)(17, 24, 21, 22) . (111)

for group 27

k = (3, 9)(4, 12, 5, 6)(7, 11, 20, 13)(8, 18)(15, 22, 16, 24)(17, 19, 21, 23) , (112)

r = (1, 3)(2, 9)(4, 20)(5, 7)(8, 10)(14, 18)(15, 21)(16, 17) . (113)

and for group 28

k = (1, 2, 10, 14)(3, 9, 8, 18)(5, 16)(6, 11, 24, 19)(7, 17)(12, 23, 22, 13) , (114)

r = (1, 2)(3, 8)(6, 12)(7, 20)(9, 18)(10, 14)(17, 21)(22, 24) . (115)

Using the explicit knowledge of the 3-cocycle α we can derive the modular properties of the

twisted twining genus φg,h, including the multiplier system. It turns out that in all these

three cases φg,h is invariant under Γ0(2) with the same multiplier

φg,h(τ + 1) = cg(g, h)
cg(gh, k)

cg(k, h)
φg,h(τ) = iφg,h(τ) , (116)

φg,h(
τ

2τ + 1
) =

1

ch(h, h−1g)ch(h, h−2g)

ch(h
−2g, r)

ch(r, g)
φg,h(τ)

= −iφg,h(τ) . (117)

This implies that φg,h can be expressed as

φg,h(τ, z) =
ϑ1(τ, z)

2

ϑ2(τ, 0)2
F (τ) , (118)

for some Γ0(2)-invariant function F (τ). The group Γ0(2) has two cusps at ∞ and 0. To

proceed we study the asymptotic behavior at infinity

φg,h(τ, z) = A∞ q1/4(2− y − y−1) + · · · (119)

ϑ1(τ, z)
2

ϑ2(τ, 0)2
=

1

4
(2− y − y−1) + · · · , (120)
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which implies that F (τ) ∼ 4A∞ q1/4 + · · · has a zero at τ → ∞. The behavior at τ = 0 is

φg,h(γ0(τ, z)) ∼ φh,g−1(τ, z) = A0 q
1/8 (2− y − y−1) + · · · (121)

ϑ1(τ, z)
2

ϑ4(τ, 0)2
= q1/4 (2− y − y−1) + · · · , (122)

implying that F (γ0 ·τ) ∼ A0 q
−1/8+· · · has a pole at 0. A function with the correct modular

properties and behaviour at the cusps is

F (τ) = 4A∞
η(2τ)6

η(τ)6
, (123)

so that

φg,h(τ, z) = 4A∞
η(2τ)6

η(τ)6
ϑ1(τ, z)

2

ϑ2(τ, z)2
= A∞

η(2τ)2

η(τ)4
ϑ1(τ, z)

2 . (124)

The constants A∞ for the three cases are determined (up to the phase) by ensuring a

decomposition into projective characters of CM24(g). In particular, A∞ = 4 for group 13

and A∞ = 2
√
2 for groups 27 and 28.

A.2. The cases φ3A,3B (group 31) and φ3A,3A (group 32). In this section we show

that the unobstructed twisted twining genera φ3A,3A and φ3A,3B must vanish by modular

arguments.

The group 〈g, h〉 = 〈3A, 3B〉 (type 31) is generated by

g = (2, 23, 11)(3, 20, 10)(5, 14, 9)(6, 16, 13)(7, 19, 22)(12, 24, 18) (125)

in class 3A and

h = (1, 15, 17)(2, 19, 16)(3, 18, 5)(4, 21, 8)(6, 11, 7)(9, 10, 24)(12, 14, 20)(13, 23, 22) (126)

in class 3B. The following conjugation relation holds

(k−1gk, k−1ghk) = (g, h) , (127)

where

k = (2, 7, 16)(3, 20, 10)(4, 21, 8)(5, 9, 14)(6, 11, 22)(13, 23, 19) . (128)

The modular properties of the associated twisted twining genus are

φg,h(τ + 1) = cg(g, h)
cg(gh, k)

cg(k, h)
φg,h(τ) = e

4πi
3 φg,h(τ) , (129)

and

φg,h(
τ

−3τ + 1
) =

2∏

i=0

ch(h, h
ig−1)φg,h(τ) = e

4πi
3 φg,h(τ) , (130)
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where we have used the explicit form for the multiplier phases as determined in terms of

the 3-cocycle α ∈ H3(M24, U(1)). We conclude that, up to the multiplier, φg,h is invariant

under Γ0(3) and hence can be written as

φg,h(τ, z) =
ϑ1(τ, z)

2

η(τ)2
Fg,h(τ) (131)

for some Γ0(3)-invariant function Fg,h(τ). The asymptotics for τ → ∞ is

φg,h(τ, z) ∼ A∞ q
2
3 + · · · , (132)

for some (possibly vanishing) constant A∞, while the asymptotic behavior at 0 is given by

φh,g(τ, z) ∼ A0 q
2
9 + · · · . (133)

Since both at ∞ and 0 we have

ϑ1(τ, z)
2

η(τ)2
∼ q1/6(2− y − y−1) + · · · , (134)

we deduce that Fg,h has a zero at both 0 and ∞ and no poles; hence it must vanish. We

therefore conclude

φ3A,3B(τ, z) = 0 , (135)

as claimed.

The (3A, 3A)-case (group 32) is analogous. Here, the group is generated by

g = (2, 23, 11)(3, 20, 10)(5, 14, 9)(6, 16, 13)(7, 19, 22)(12, 24, 18) (136)

and

h = (2, 22, 13)(4, 21, 8)(5, 14, 9)(6, 23, 7)(11, 19, 16)(12, 18, 24) , (137)

and we have the relations

(k−1gk, k−1ghk) = (g, h) , (r−1hr, r−1g−1r) = (g, h) (138)

where

k = (1, 17, 15)(3, 9, 24)(5, 18, 20)(6, 16, 13)(7, 22, 19)(10, 14, 12) , (139)

r = (3, 4, 10, 21)(5, 18)(6, 16, 19, 7)(8, 20)(9, 24, 14, 12)(11, 22, 23, 13) . (140)

The modular properties of φg,h are

φg,h(τ + 1) = cg(g, h)
cg(gh, k)

cg(k, h)
φg,h(τ) = e

4πi
3 φg,h(τ) , (141)

φg,h(−1/τ) =
1

ch(g, g−1)

ch(g
−1, r)

ch(r, h)
φg,h(τ) = φg,h(τ) . (142)
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Thus φg,h is invariant (up to a multiplier) under SL(2,Z), and φg,h ∼ Aq2/3 at ∞, so that

F3A,3A(τ) ≡ φg,h(τ, z)
η(τ)2

ϑ1(τ, z)2
∼ Aq1/2 + · · · . (143)

Thus, F3A,3A has a zero and no poles and therefore must vanish, thus leading to

φ3A,3A(τ, z) = 0 . (144)

Appendix B. Some group cohomology

In this section, we will review the basic definitions and properties of group cohomology, see

for example [40] for an introduction to the subject.

In general, group cohomology is defined in terms of a finite group G and a G-module A, i.e.

an abelian group with an action of G satisfying certain compatibility properties. For our

purposes, it is sufficient to consider A = U(1) with the trivial action of G. An n-cochain ψ

(with n ≥ 0) for G with values in U(1) is simply a function from G× . . . ×G (n times) to

U(1); a 0-cochain is just an element of U(1). On the space Cn(G,U(1)) of n-cochains one

can define a coboundary operator ∂n : Cn(G,U(1)) → Cn+1(G,U(1)) by

∂nψ (g1, . . . , gn+1) = ψ(g2, . . . , gn+1)

×
n∏

i=1

ψ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)
(−1)iψ(g1, . . . , gn)

(−1)n+1
. (145)

The cochains in the kernel of ∂n are called n-cocycles (or co-closed n-cochains), while the

cochains in the image of ∂n−1 are called n-coboundaries. The coboundary operator satisfies

∂n+1 ◦∂n = 1 (the trivial element of U(1))), so that we can define the cohomology, as usual,

as the quotient of the space of cocycles modulo coboundaries

Hn(G,U(1)) =
ker ∂n
Im∂n−1

, (146)

where n > 0, and we use the convention that H0(G,U(1)) = U(1), and that every 0-cochain

is coclosed, ie. ∂0 = 1.

In particular, for a 1-cochain γ, the condition ∂1γ = 1 is simply γ(g)γ(h) = γ(gh) for all

g, h ∈ G, so that H1(G,U(1)) is just the group of homomorphism from G to U(1). A

2-cochain β : G×G → U(1) is co-closed (and hence defines a cocycle) provided it satisfies

β(g1, g2g3)β(g2, g3) = β(g1g2, g3)β(g1, g2) (147)
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for g1, g2, g3 ∈ G. The second cohomology H2(G,U(1)) then consists of the co-closed 2-

cochains, modulo the ambiguity

β(g1, g2) → β(g1, g2)
γ(g1)γ(g2)

γ(g1g2)
, (148)

where γ is an arbitrary 1-cochain, i.e. an arbitrary function γ : G → U(1). The second

cohomology of a group G classifies the inequivalent projective representations of G, see

appendix C. A 3-cochain α,

α : G×G×G → U(1) (149)

is closed provided it satisfies

α(g1, g2, g3)α(g1, g2g3, g4)α(g2, g3, g4) = α(g1g2, g3, g4)α(g1, g2, g3g4) . (150)

In the cohomology group H3(G,U(1)) the 3-cocycles are then identified modulo

α(g1, g2, g3) → α(g1, g2, g3)
β(g1, g2g3)β(g2, g3)

β(g1g2, g3)β(g1, g2)
. (151)

Note that the multiplying factor is trivial if β is closed, i.e. if it satisfies the 2-cocycle

condition (147). We shall always work with normalised cocycles, i.e. we shall assume that

α(e, g1, g2) = α(g1, e, g2) = α(g1, g2, e) = 1 (152)

for all g1, g2 ∈ G, where e denotes the identity element of G.

Given a 3-cocycle α, we can define, for any h ∈ G, a 2-cochain ch : G×G→ U(1) via

ch(g1, g2) =
α(h, g1, g2)α(g1, g2, (g1g2)

−1h(g1g2))

α(g1, g
−1
1 hg1, g2)

. (153)

It is shown in [22] that ch defines a 2-cocycle of the centraliser CG(h) ⊂ G (i.e. the subgroup

of all elements g1, g2 which commute with h). When g1, g2 ∈ CG(h), we have the simplified

expression

ch(g1, g2) =
α(h, g1, g2)α(g1, g2, h)

α(g1, h, g2)
, g1, g2 ∈ CG(h) . (154)

Under the ‘gauge transformation’ (151), ch transforms as

ch(g1, g2) → ch(g1, g2)
γh(g1)γh(g2)

γh(g1g2)
, g1, g2 ∈ CG(h) , (155)

where we defined the 1-cochain γh by

γh(g) ≡
β(g, h)

β(h, g)
. (156)

This is indeed of the form (148), and hence, for all h ∈ G, ch defines a map

ch : H3(G,U(1)) → H2(CG(h), U(1)) . (157)
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Appendix C. Projective representations of finite groups

This section follows [34, 64]. A projective representation is a map ρ : G → End(V ) from a

group G to the endomorphism group of some complex vector space V satisfying

ρ(g) ρ(h) = β(g, h) ρ(gh) , β(g, h) ∈ U(1) . (158)

It follows from the associativity of the group multiplication that the phase β(g, h) satisfies

the 2-cocycle condition

β(g, h)β(gh, k) = β(h, k)β(g, hk) . (159)

There is the freedom of rescaling the maps ρ(g) as

ρ(g) 7→ γ(g)ρ(g) , γ(g) ∈ U(1) . (160)

For the 2-cocylce β this leads to the rescaling by a coboundary

β(g, h) → β(g, h) γ(gh) γ(g)−1 γ(h)−1 . (161)

In particular, one can always choose a rescaling such that ρ(e) is the identity matrix in

End(V ); with this choice, the cocycle β is normalised. Two projective representations

whose 2-cocycles differ only by a coboundary are called projectively equivalent, since their

representation matrices are related by a rescaling. Therefore, the inequivalent projective

representations of G are captured by the second group cohomology H2(G,U(1)).

As for genuine linear representations, one may define the character of a projective repre-

sentation as the trace

χ(g) = Tr V (ρ(g)) . (162)

Due to the modified composition law, projective characters are in general not class functions,

but differ by a phase on different representatives of one conjugacy class. However, it is

always possible to choose a cocycle representative such that the characters are indeed class

functions.

Assuming that gh = hg, we have, using the projective composition law,

χ(g) = χ(h−1gh) =
β(gh, h−1)

β(h−1, gh)
χ(g) . (163)

Using the cocycle condition, it is easy to see that this condition on the characters is equiv-

alent to the obstuction of the first kind (14). Also, the obstruction does not depend on the

specific cocycle representative β(g, h) or the class representative g. Classes whose projective

characters vanish are called β-irregular. It may be shown that to each cocycle β(g, h), there
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exist exactly as many linearly inequivalent irreducible projective representations as there

are β-regular conjugacy classes.

Two irreducible characters belonging to representations with the same cocycle β(g, h) satisfy

an orthogonality relation of the form

∑

[g]

|Kg|−1 χ(g)∗ χ̃(g) =




1 χ = χ̃

0 otherwise,
(164)

where the sum is taken over a set of (β-regular) class representatives of G, and |Kg| is the
size of the conjugacy class of g.

There is a natural connection between projective representations and central extensions

of a group G. We say that G̃ is a central extention of G if there is an abelian subgroup

A ⊂ Z(G̃) of the center Z(G̃) of G̃ such that the short sequence

0 → A→ G̃→ G→ 0 (165)

is exact, or equivalently that G = G̃/A. The simplest central extension is of course

G̃ = A × G, but this is in general not the only possibility. It can be shown that the

non-isomorphic central extensions of G by A are also classified by H2(G,A). Each set of

projectively inequivalent projective representations of G corresponds to a set of genuine

representations of some extension G̃.

In some sense there exists a maximal central extension S for each G, the Schur cover or

‘Darstellungsgruppe’. It is characterised by the property that any projective representation

of G corresponds to a genuine representation of S. The Schur cover is, in general, not unique,

unless G is a perfect group, i.e. it coincides with the commutator subgroup. Otherwise, the

Schur covers are related by isoclinism.

C.1. Central extension and orbifolds. Let C be a K3 sigma-model and suppose that

its automorphism group contains an element g such that the orbifold of C by g, Ĉ = C/〈g〉
is consistent. In this subsection, we will show that all projective representations of H ≡
CM24(g) on the gr-twisted sectors are equivalent to genuine representations of a central

extension H̃ of the form described in section 4.1, eq. (82).

By (52) and (59), the level-matching condition is satisfied if and only if the restriction of the

class [α] ∈ H3(M24, U(1)) to H3(〈g〉, U(1)) is trivial. Each gr-twisted sector carries a, in

general projective, representation ρgr of H ≡ CM24(g), with underlying 2-cocycle cgr given
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by (39). The various cocycles cgr are related to one another by the identity

cgr(h, k) =
fg,r(h)fg,r(k)

fg,r(hk)
cg(h, k)

r , h, k ∈ C(g) , (166)

where

fg,r(h) =

r−1∏

i=1

ch(g, g
i) . (167)

Here we have used the definition (39) of cg and applied repeatedly the condition that the 3-

cocycle α is closed. Thanks to the level-matching condition, we can choose the representative

cocycle α to be identically 1 when restricted to 〈g〉, so that fg,r(gi) = 1 for all i. Furthermore,

by changing α by a coboundary ∂β as in (151), the functions fg,r(h) transform as

fg,r(h) → fg,r(h)
β(gr, h)β(h, g)r

β(h, gr)β(g, h)r
. (168)

Thus, we can choose β in such a way that fg,r(h) = 1 for all h ∈ C(g), so that

cgr(h, k) = cg(h, k)
r , h, k ∈ C(g) . (169)

In particular, since ce(h, k) = 1, cg(h, k) is always an N -th root of unity, where N = o(g).

Appendix D. Character Tables for CM24(g) and decompositions

This section describes the projective character tables of the centraliser H ≡ CM24(g) for

each conjugacy class of M24, corresponding to the projective equivalence class determined

by the 2-cocycle cg. The procedure to compute these tables is as follows.

Let Schur(H) denote a Schur cover of H, i.e. a central extension of H fitting into the exact

sequence

1 →M(H) → Schur(H) → H → 1 , (170)

where M(H) = H2(H,Z) = (H2(H,U(1)))∗ is the Schur multiplier. The Schur cover

Schur(H) and its character table can be easily computed (we used GAP [38] for this). Any

irreducible projective representation ρ of H is equivalent to a genuine irreducible represen-

tation ρ̃ of Schur(H) and vice versa. Thus, one can associate a class of H2(H,U(1)) to each

irreducible representation of Schur(H). The projective character table we are interested in

is obtained from the one of Schur(H) by keeping only the representations associated to the

class [cg], and by choosing a lift in Schur(H) of each conjugacy class of H (different choices

of the lifts lead to projectively equivalent representations).
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It only remains to determine which irreducible representations of Schur(H) correspond to

the class [cg]. Consider an irreducible projective representation ρ of H associated with the

2-cocycle cg. For any commuting pair h, k ∈ H, hk = kh, we have

ρ(h)ρ(k)ρ(h)−1ρ(k)−1 =
cg(h, k)

cg(k, h)
. (171)

(Note that
cg(h,k)
cg(k,h)

only depends on the class [cg] and not on the representative cocycle cg.)

Thus, any representation σ of Schur(H) in the class [cg] must satisfy

σ(h̃k̃h̃−1k̃−1) =
cg(h, k)

cg(k, h)
, (172)

where h̃, k̃ are some lifts of h, k in Schur(H). It is easy to see that the commutator h̃k̃h̃−1k̃−1

is an element of M(H), and that it does not depend of the choice of the lifts. In fact, the

commutators of this form generate M(H), and if a representation σ satisfies (172) for a set

of generators of M(H) = (H2(H,U(1)))∗, then it must be associated with the class [cg].

This condition can be easily tested for each irreducible representation of Schur(H), given

our explicit knowledge of the cocycle cg.

Since the actual tables take up a lot of space, we have commented them out in the LATEX-

source file that is stored on the arXiv repository.

Appendix E. Decompositions of twisted sectors

In this section we give the decomposition of the first 20 representation spaces Hn
g for all

non-isomorphic twisted sectors. In each table, the integer in the i’th row and the column

labelled r is the multiplicity hi,r of the irreducible representation χi (numbered as in the

corresponding character table) in the representation ρg,r of eq. (6).

Again, the tables are rather lengthy, and we have therefore commented them out in the

LATEX-source file that is available from the arXiv repository.
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