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We study the integrability of gravity-matter systems in D = 2 spatial dimensions

with matter related to a symmetric space G/K using the well-known linear systems

of Belinski–Zakharov (BZ) and Breitenlohner–Maison (BM). The linear system of BM

makes the group structure of the Geroch group manifest and we analyse the relation

of this group structure to the inverse scattering method of the BZ approach in general.

Concrete solution generating methods are exhibited in the BM approach in the so-

called soliton transformation sector where the analysis becomes purely algebraic. As a

novel example we construct the Kerr–NUT solution by solving the appropriate purely

algebraic Riemann–Hilbert problem in the BM approach.
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1 Introduction

In late 1970s and early 1980s a large variety of solution generating techniques for the four-

dimensional vacuum Einstein equations and Einstein-Maxwell equations were explored, for an

overview see [1]. It was later realized in the case of two commuting and hypersurface orthogonal

Killing vectors that all these approaches are nothing but different manifestations of the integra-

bility of the corresponding effectively two-dimensional system that can be exhibited by means of

a linear system or Lax pair [2, 3, 4]. Several authors made efforts to find interrelations between

these different methods. Cosgrove [5] took a computational approach whereas Breitenlohner and

Maison [3] concentrated on unraveling the group theoretical structure behind these techniques,

taking up ideas of Geroch [6] and Julia [7]. Other relevant work includes [8, 9, 10, 11, 12, 13, 14].

In the present work, we revisit these studies to further elucidate the interrelation between the

various techniques.
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The best developed technique for generating solutions is that of Belinski and Zakharov [2, 4],

henceforth BZ for short and often called the inverse scattering method. It has been very suc-

cessful in constructing novel solutions in both four- and five-dimensional vacuum gravity. The

method involves some rather special adjustments to certain quantities before new physical so-

lutions can be obtained. However, there are problems when applying this method to different

gravity-matter systems like those of interest in supergravity where the implementation of the

same adjustments fails and it is not guaranteed that an inverse scattering transformation pre-

serves all features required of a solution to the gravity-matter equations [15]. In the group

theoretical framework of Breitenlohner and Maison (BM) [3] this problem does not arise since

the solution generating transformations form the so-called Geroch group (an affine group) and

by the group property any transformation will generate a new solution. The drawback of the

BM method is that it is not as easy to implement and does not always operate directly on the

physical quantities. Despite these shortcomings, the promise of the BM approach is that it can

be applied to various general settings of interest.

In order to illustrate this point, we consider for concreteness D = 4 gravity with a space-

like and a time-like Killing vector such that the system is effectively two-dimensional and we

are in the realm of so-called stationary axisymmetric solutions. The infinite-dimensional affine

symmetry group can be viewed as the closure of two finite-dimensional symmetry groups that

act on the space of solutions [6, 3]. The first one is typically called the Matzner–Misner group

SL(2,R)MM and consists of area preserving diffeomorphisms of the orbit space of the two Killing

vectors (the ‘torus’ that one reduced on, the Killing vector orbits are not necessarily compact).

The other group is called the Ehlers group SL(2,R)E and is a hidden symmetry already of the

three-dimensional model. The fields that it acts on are partly formed from dualising a Kaluza–

Klein vector field (in D = 3) to a scalar field; therefore it does not act directly on the metric

components. Combining SL(2,R)MM and SL(2,R)E yields the infinite-dimensional affine Geroch

group [6, 3].

The linear systems of BZ and BM display the integrability of the D = 2 theory in terms of

generating functions that depend on spectral parameters besides the dependence on the two-

dimensional space(-time) coordinates xm. There are in principle four choices for the linear

system and generating functions at this point that can be summarized in the following diagram:

Ehlers Matzner–Misner

BZ ΨE(λ, x) ←→ ΨMM(λ, x)

l l

BM VE(t, x) ←→ VMM(t, x)

The horizontal arrows in this diagram correspond to duality transformations between some of

the two-dimensional scalar fields. At the level of the Lie group this corresponds to the action

of an (outer) automorphism, now known as the Kramer–Neugebauer mapping [16, 3, 17]. The

vertical lines relate the two linear systems and are the main subject of the present work. Note

that the spectral parameters of the generating functions are different in the two rows. The
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traditional inverse scattering method of BZ operates on the physical variables and so is located

in the Matzner–Misner column of the diagram. In fact it uses a slight extension of the Matzner–

Misner variables in that it also treats the volume of the two-dimensional orbit space and so

corresponds to GL(2,R)MM rather than SL(2,R)MM. In our work, we will focus mainly on the

left column where the group theoretical structures are a bit nicer, e.g., empty Minkowski space

corresponds to the identity function. We will always display the subscripts E and MM to avoid

any confusion.

It follows from the work of BM that any gravity-coupled matter system in D = 3 with

symmetric space target GE/KE becomes integrable when an additional Killing symmetry is

present. Here, GE is the generalization of the Ehlers symmetry SL(2,R)E to other systems. The

group of symmetry transformations form the (non-twisted) affine extension of GE and we will

restrict to simple GE for simplicity. Beyond this general fact, it is quite hard to construct actual

solutions explicitly using this method since one has to solve a matrix valued Riemann–Hilbert

problem [1, 3, 18], sometimes also referred to as Birkhoff factorization. In the case analogous to

the soliton transformations of BZ, however, the problem reduces to a linear algebra system that

can be solved as shown in [19] which we will review below since the work is not published.

Our chief motivation to study the different formulations of integrability is to find their

interrelation and, by this, to make new methods available for generating solutions of (super-

)gravity beyond the cases that have been covered so far. Of particular interest are cases when

GE is an exceptional symmetry group and other cases that arise in string theory. There are

no known established systematic techniques for constructing non-supersymmetric solutions that

exploit the integrability structure of supergravity theories. With such techniques at hand one

can construct a variety of new solutions, in particular, new black hole solutions generalizing

[20, 21] and new fuzzball solutions generalizing [22, 23].

The structure of this article is as follows. In sections 2 and 3 we introduce the linear

systems of Breitenlohner–Maison and of Belinski–Zakharov in Ehlers form and elucidate their

interrelation. In section 4 we study meromorphic generating functions and solve the related

linear systems algebraically. Section 5 gives the explicit example of the Kerr–NUT solution in

both cases. We conclude in section 6. Certain technical computations have been relegated to

the appendices.

2 Breitenlohner–Maison linear system

In this section we review the linear system of Breitenlohner and Maison (BM) [3, 24, 25, 26].

This linear system arises from considering a D = 3 gravity-matter system with target being

a symmetric space GE/KE where GE is the global symmetry group that we refer to as Ehlers

symmetry. Our conventions are such that the three-dimensional space has signature + + +

and we consider the space of solutions admitting an additional (axial) symmetry so that the

theory becomes effectively two-dimensional. This two-dimensional system can be shown to be

integrable.
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2.1 D = 3 model with GE/KE matter

Consider a three-dimensional Euclidean gravity-matter system with action

SE =

∫

d3x
√−g

(

R− 1

2
〈PE,µ|PE,ν〉gµν

)

, (2.1)

where 〈·|·〉 is the symmetric invariant bilinear form on the Lie algebra gE of the real Lie group

GE. The group KE is a subgroup of GE with dimension equal to that of the maximal compact

subgroup and the coset space GE/KE is a (pseudo-)Riemannian symmetric space. The subgroup

KE is fixed by some involutive automorphism τ on GE [27]. This induces an involution θ on

the Lie algebra (equal to the Cartan involution when KE is maximally compact) which splits

gE = kE ⊕ pE. Let VE ∈ GE/KE be a coset representative (e.g. in Borel gauge according to the

Iwasawa theorem in a patch where it applies); then we decompose

∂µVEV
−1
E = PE,µ +QE,µ (2.2)

with

QE,µ =
1

2

(

∂µVEV
−1
E − (∂µVEV

−1
E )#

)

, (2.3a)

PE,µ =
1

2

(

∂µVEV
−1
E + (∂µVEV

−1
E )#

)

, (2.3b)

where we have defined the ‘generalized transpose’ x# = −θ(x) on the Lie algebra. (For sl(n,R)

it is the standard transpose when k = so(n).) The two components in the splitting (2.3) satisfy

Q#
E = −QE, P#

E = PE. (2.4)

The map # is an anti-involution and its group version will be denoted by the same symbol and

is also an anti-involution: For g, h ∈ GE one has g# = τ(g−1) = τ(g)−1 and (gh)# = h#g#.

The symmetry transformations acting on VE are

VE(x)→ kE(x)VE(x)gE (2.5)

with constant gE ∈ GE (global transformations) and varying kE ∈ KE (gauge transformations).

Under these transformations, the Lie algebra valued quantities transform as

QE,µ → kEQE,µk
−1
E + ∂µkEk

−1
E , (2.6a)

PE,µ → kEQE,µk
−1
E , (2.6b)

i.e., QE as a KE-connection and PE transforms KE-covariantly.

A useful quantity associated with VE ∈ GE/KE is the ‘monodromy matrix’

ME = V #
E VE (2.7)

that transforms as ME → g#EMEgE under (2.5) since k#E kE = 11. It is hence insensitive to

the KE-gauge chosen for the coset representative VE and only transforms under the global GE

transformation.
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The D = 3 equations of motion derived from (2.1) are

Rµν −
1

2
〈PE,µ|PE,ν〉 = 0, (2.8a)

∂µ
(√−ggµνPE,ν

)

−√−ggµν [QE,µ, PE,ν ] = 0. (2.8b)

For convenience, we introduce the KE-covariant derivative

DE,µ = ∂µ − [QE,µ, ·] (2.9)

in terms of which (2.8b) becomes

DE,µ(
√−gPµE ) = 0. (2.10)

2.2 Reduction to D = 2

If the system admits an axial isometry ∂φ we reduce the metric according to

ds23 = f2Eds
2
2 + ρ2dφ2. (2.11)

The function fE will be referred to as the conformal factor of the effective two-dimensional

metric. We label the two-dimensional coordinates as xm. The two-dimensional metric ds22 is

assumed to be flat by appropriate choice of coordinates. Note that there is no Kaluza–Klein

vector Am of the type (dφ + Amdx
m)2 in (2.11) since it carries no degrees of freedom and can

be set to zero without loss of generality.

With this ansatz, the equations of motion (2.8) then imply

�ρ = 0, (2.12)

which we solve by choosing Weyl canonical coordinates xm = (ρ, z) on the flat two-dimensional

space so that ds22 = dρ2+dz2. We let z be the conjugate variable to ρ such that ∂ρ = ǫρz∂z = ⋆2∂z.

It is often useful to combine the two real variables into a single complex variable (and its complex

conjugate) which we denote by

x± =
1

2
(z ∓ iρ) (2.13)

in analogy with light-cone coordinates that would arise if the two-dimensional base was Minkowskian

as for colliding plane wave solutions. Note that (2.13) implies ∂±ρ = ±i and ⋆2∂± = ±i∂±.
With this choice the remaining equations are equivalent to

±if−1
E ∂±fE =

ρ

2
〈PE,±|PE,±〉, (2.14a)

Dm(ρP
m
E ) = 0. (2.14b)

The first equation is a constraint and yields the conformal factor by a single integration and is

therefore of secondary interest. The main equation of interest in this paper is the last equation

(2.14b). A key result of [3] is that this equation is integrable and has an underlying symmetry

structure associated with the affine extension of GE.
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2.3 BM linear system in general

Consider the generalization of VE ∈ GE/KE to also depend on some spectral parameter t (we

suppress the space-time dependence) VE −→ VE(t), where

VE(t) = V
(0)
E + tV

(1)
E +

1

2
t2V

(2)
E + . . . . (2.15)

importantly is regular in t around t = 0 and the limit t→ 0 gives back the original VE:

lim
t→0
VE(t) = VE(0) = V

(0)
E := VE. (2.16)

Consider the linear system [3, 26]

∂±VEV−1
E =

1∓ it
1± itPE,± +QE,±, (2.17)

where QE and PE are independent of the spectral parameter t and are defined in terms of the

t-independent VE as in (2.3).1 The integrability condition for (2.17) is equivalent to the equation

of motion (2.14b) if and only if the spectral parameter t satisfies the differential equation

t−1∂±t =
1∓ it
1± itρ

−1∂±ρ. (2.18)

This differential equation can be integrated [3] to an equation for t which we write in the more

conventional form in terms of the Weyl coordinates (ρ, z) (cf. (2.13))

t2 − 2t

ρ
(z − w)− 1 = 0, (2.19)

where w is an integration constant. This quadratic equation has two solution branches

t± =
1

ρ

[

(z − w)±
√

(z − w)2 + ρ2
]

. (2.20)

Equation (2.19) defines a two-sheeted Riemann surface over the two-dimensional flat base. We

take the solution with the + sign to be the physical sheet and when we write t we always mean

t+ unless indicated otherwise. We will refer to t as the space-time dependent spectral parameter

and to w as the constant spectral parameter.2

We will refer to (2.17) as the BM linear system (in Ehlers form) and we have just reviewed

how its integrability condition gives rise to the equations of motion of the D = 3 gravity-matter

1In a general coordinate system, the linear system takes the form

∂mVEV−1
E = QE,m +

1− t2

1 + t2
PE,m − 2t

1 + t2
ǫmnP

n
E .

2When written in terms of the ‘light-cone’ coordinates (2.13), equation (2.20) becomes

t± = −i
[
√
w − 2x+ ∓

√
w − 2x−

√
w − 2x+ ±

√
w − 2x−

]

.
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system (2.1) in the presence of a Killing isometry. This establishes the integrability of the

equation (2.14b); the conformal factor fE can then be obtained by integrating (2.14a) [3]. The

linear system (2.17) is vastly underdetermined since it represents two differential equations for

a function of three variables. There is an infinity of integration constants associated with this

system.

Besides giving the integrability of (2.14b) the BM linear system also serves to unveil the

group theory underlying the system. The original t-independent VE ∈ GE/KE transformed

under global Ehlers transformations gE ∈ GE as VE → kEVEgE (cf. (2.5)), where kE ∈ KE

is the usual local compensator required to restore a chosen gauge for the coset representative.

The presence of the spectral parameter now suggests to enlarge the set of global symmetry

transformations by allowing gE to depend on the constant spectral parameter w:

VE(t)→ kE(t)VE(t)gE(w). (2.21)

As indicated, the compensator is now also t-dependent as it has to be chosen such that the

transformed VE(t) is regular around t = 0 as in (2.15). This enlarged set of global transformations

consists therefore of functions gE(w), i.e., maps of the type C→ GE, where we impose that gE(w)

admits an expansion around w = ∞ in order to remain expandable as in (2.15). These maps

include transformations from S1 ⊂ C into GE and (under additional regularity assumptions)

will lead to the loop group ĜE associated with the Ehlers group GE. Therefore the group

underlying the integrability in D = 2 includes the infinite-dimensional loop group; in fact the

extension to the full affine group is active [7, 3] where the central extension acts on the conformal

factor fE (see below). We note that besides the affine group one can also define the action of

the (centerless) Virasoro algebra which arises from arbitrary reparametrisations of the constant

spectral parameter [28, 29, 24]. Together with the infinitesimal affine transformations one obtains

a semi-direct product in the standard way. We will not use the Virasoro symmetry in this paper.

The involution # extends to functions VE(t) by

(VE(t))# = V#E
(

−1

t

)

. (2.22)

One can use # to split the loop algebra into an invariant and an anti-invariant part (generalizing

pE and kE above). Now, it is important that the right hand side of (2.17) is anti-invariant under

(the Lie algebra version of) # and therefore belongs to the ‘compact’ subalgebra of the affine

algebra based on gE. This anti-invariance implies that ((VE(t))#)−1 is a solution to the linear

system if VE(t) is a solution. In general, the two solutions related by this involutive mapping

will be different. The mapping implies that the monodromy matrix

ME =ME(w) = (VE(t))# VE(t) = V#E
(

−1

t

)

VE(t) (2.23)

is independent of the space-time coordinates xm and therefore a function of w alone. The matrix

ME(w) is invariant under the application of # and simultaneously exchanging t → −1/t. We

note that this is evident from (2.19) which implies that w(t, x) is invariant under t→ −1/t.
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Constructing new solutions of the linear system by means of the Geroch symmetry proceeds

along the following chain of steps3

VE → VE(t)→ME(w)→Mg
E(w)→ V

g
E(t)→ V g

E , (2.24)

where we introduced the notation

ME(w)→Mg
E(w) := g#E (w)ME(w)gE(w) (2.25)

for the transformed solution. The individual steps in (2.24) starting from a given seed solution

VE are: (i) find a corresponding generating function VE(t) that solves the linear system (2.17),

(ii) compute the associated monodromy, (iii) transform the monodromy under a global trans-

formation g(w) as in (2.25), (iv) factorize the new monodromy into a new generating function

VgE(t) and (v) take the limit t→ 0 to find the new solution.

For practical purposes, the main difficulty resides in step (iv) in factorizing the transformed

Mg
E(w) as

Mg
E(w) = (VgE(t))#V

g
E(t) (2.26)

with the new VgE(t) having an expansion as in (2.15). This is a Riemann–Hilbert problem [3]

whose solution is in general hard to obtain. In the particular case of meromorphicMg
E(w) with

single poles in w of certain simple type one can reduce the problem to a set of linear algebraic

equations. This is the case of soliton charging transformations that will be discussed further in

section 4. Once the new VgE(t) has been obtained, one can recover the solution to the gravity-

matter system (2.14) by taking the limit t→ 0 and obtain V g
E ∈ GE/KE that characterises the

physical fields.

Besides the knowledge of the coset ‘scalars’ V g
E ∈ GE/KE one also requires the new conformal

factor f gE in (2.14). This can be obtained from a simple integration of (2.14a) but it also follows

from group theoretic properties using the central extension. This is discussed in detail in [3] to

which we refer for the general expression. In section 4 we will present the formula in the case of

soliton transformations.

We note that a trivial solution of the equations (2.17) and (2.14a) is given by

VE(t) = 11 and fE = 1. (2.27)

This solution will be referred to as flat space as it corresponds to the Minkowski vacuum in the

four-dimensional case.

3 Belinski–Zakharov linear system

In this section we present the linear system used by Belinski and Zakharov (BZ) [2, 4]. We will

not present it in the standard form which uses what was called the Matzner–Misner formulation

3We present here the solution generating method based on the monodromy matrix ME(w). Alternatively,

one could work at the level of the generating function VE(t) and the transformation (2.21); however, the step of

finding the compensator kE(t) in (2.21) is typically very hard.
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in the introduction. Rather, we will use the Ehlers description to make contact with the discus-

sion in the preceding section. (The Matzner–Misner version and its relation to BM is discussed

in appendix B.)

3.1 BZ Ehlers linear system

Equation (2.14b) for the GE/KE coset fields admits an alternative Lax pair that can be written

as

D1ΨE =
ρV − λU
λ2 + ρ2

ΨE, D2ΨE =
ρU + λV

λ2 + ρ2
ΨE, (3.1)

where λ is the (space-time independent) spectral parameter of BZ and ΨE(λ, ρ, z) is the gener-

ating function such that the matrix ME = V #
E VE of (2.7) is recovered for λ = 0:

ME(ρ, z) = ΨE(0, ρ, z). (3.2)

The matrices U, V are defined as U = ρ∂ρMEM
−1
E , V = ρ∂zMEM

−1
E , and the differential

operators D1,D2 are

D1 = ∂z −
2λ2

λ2 + ρ2
∂λ, D2 = ∂ρ +

2λρ

λ2 + ρ2
∂λ. (3.3)

The operators D1 and D2 commute and the associated integrability condition of the linear

system (3.1) is equivalent to the desired non-linear equation (2.14b).

Solutions of the BZ linear system (3.1) are constructed using the inverse scattering method [2].

One starts from a ‘seed’ ΨE,0, that is ‘dressed’ to obtain a new solution ΨE through

ΨE(λ) = χ(λ)ΨE,0(λ) (3.4)

where χ is called the dressing matrix and it depends on the spectral parameter λ. The seed ΨE,0

corresponds to a solution of (3.1) for a seed solution ME,0. We can take it to be the identity

matrix ΨE,0 = 11, which corresponds to taking the seed solution to be flat space4. In order for

the ‘dressed’ ΨE to also solve the linear system (3.1) the dressing matrix has to satisfy its own

linear system

D1χ =
ρV − λU
λ2 + ρ2

χ− χρV0 − λU0

λ2 + ρ2
, D2χ =

ρU + λV

λ2 + ρ2
χ− χρU0 + λV0

λ2 + ρ2
. (3.5)

In addition, the matrix χ must satisfy further constraints in order to ensure that the new

solution ME(ρ, z) = Ψ(0, ρ, z) is real, satisfies M#
E = ME and is a representative of the coset

GE/KE [2, 15, 30].

4Note that this differs from the more common (and complicated) expression for flat space in the Matzner–

Misner form [2, 4].
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3.2 Relation between the two linear systems

Compared to the discussion of the BM linear system, the differential operators D1 and D2 of

(3.3) can be demystified by thinking of λ as space-time dependent, so that [3]

D1 = ∂z = ∂z|λ fixed + ∂zλ∂λ, D2 = ∂ρ = ∂ρ|λ fixed + ∂ρλ∂λ. (3.6)

If the spacetime dependence of the spectral parameter λ is given by

∂zλ = − 2λ2

λ2 + ρ2
, ∂ρλ =

2λρ

λ2 + ρ2
(3.7)

one recovers (3.3). The solution to (3.7) is given by

λ(ρ, z) = (w − z)∓
√

(z − w)2 + ρ2, (3.8)

where w is an integration constant. Comparing to (2.20), it follows that from this viewpoint the

relation of the BZ spectral parameter λ to t in the BM approach [3, 15] is5

λ(ρ, z) = −ρt(ρ, z). (3.9)

The relation between the two generating functions VE of (2.17) and ΨE of (3.1) is given by

ΨE(λ, x) = V #
E (x)VE(t, x) (3.10)

where one also has to use (3.9). Note that on the right-hand side we have once the spectral

parameter independent VE(x) = VE(0, x) and once the full VE(t, x). This obscures the action

(2.21) of the full affine Geroch group since the transformation of VE(x) under affine elements is

complicated.

In the following we restrict to GE = SL(n,R) for concreteness. In that case ME has to be a

symmetric matrix. For other groups, there will be different conditions on some of the quantities

introduced below.

If the matrices ME and ME,0 obtained by the λ → 0 limits of ΨE and ΨE,0 are symmetric,

then

χ′(λ) =MEχ
T−1

(

−ρ
2

λ

)

M−1
E,0, (3.11)

solves exactly the same linear system (3.5) as χ [2]. Given this observation, one has that χ′(λ)

is related to χ(λ) through some arbitrary matrix C(w) via

χ′(λ)ΨE,0 = χ(λ)ΨE,0C(w). (3.12)

This reflects the fact that the linear system (3.5) is underdetermined and C(w) corresponds to

a gauge freedom of (3.1). However, Belinski and Zakharov demand

χ′(λ) = χ(λ), (3.13)

5The sign in this relation in [3] appears incorrect.
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which corresponds to fixing the gauge freedom of (3.12). In addition, they do not require χ(λ)

to satisfy the coset constraint detχ(λ) = 1. Since detχ 6= 1 one has that the new matrix ME

does not have unit determinant and so does not represent a physical configuration. To obtain

the ‘physical’ matrix M
(phys)
E that fullfills the determinant condition, one rescales the matrix

ME appropriately.

Condition (3.13) automatically ensures that the final ME is symmetric, but it is a rather

strong assumption. Relation (3.13) is a central equation in the BZ inverse scattering framework

and it fixes an infinite ambiguity in the dressing matrix that corresponds roughly to the Borel

part of the Geroch group. In other words, demanding (3.13) in the BM framework amounts to

choosing finely tuned integration constants for all the dual potentials V
(n)
E with n ≥ 1 introduced

through (2.15). The transformation (3.11) is similar to the one discussed below (2.22) in the

BM framework. There one normally does not fix this freedom and so there is no direct analogue

of (3.13) in the BM approach.

Due to the complications of detχ 6= 1 and the issues mentioned around (3.10), it is imprac-

tical to find a satisfactory embedding of the full BZ solution generating technique in the Geroch

group6. The best one can do is to find a representative relation between the BZ-generating

function ΨE(λ) and the group-theoretic BM generating function VE(t). This relation is precisely

equation (3.10) for the Ehlers coset and is obtained in Appendix B for the Matzner–Misner

coset, see (B.13).

3.3 Solitonic solutions

So-called solitonic solutions for the matrixME correspond to a dressing matrix χ(λ) with simple

poles in the complex λ-plane. The general N -soliton solution is obtained by dressing the seed

solution with a matrix χ of the form

χ = 11 +

N
∑

k=1

Rk
λ− µk

. (3.14)

The matrices Rk and the pole trajectories µk are functions of ρ, z only. For each soliton, there

exist two possible solutions for the pole trajectory µk

µk = − (z − wk)±
√

(z − wk)2 + ρ2, (3.15)

where the parameters wk may generally be complex but for the examples considered here we

will take them to be real. The pole trajectories with a “+” sign are referred to as solitons and

the ones with a “−” sign as antisolitons.

6Naively one might conclude from (3.12)–(3.13) that it simply corresponds to taking C(w) = 11 from the

Geroch group point of view. However, this interpretation is not correct. This is because the dressed BZ matrix

ΨE(λ) = χ(λ)ΨE,0 does not directly give the physical matrix M
(phys)
E . In order to have an interpretation of C(w)

in the Geroch group, one first needs to construct χ(phys)(λ). A procedure to do this was suggested in [5]. Requiring

something like χ(phys)′(λ) = χ(phys)(λ) will indeed be more amenable to the group theoretic interpretation, but it

is not the BZ technique.
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In order to construct the N -soliton dressing matrix, one needs to parametrise the residue

matrices Rk. Here, one has the freedom of introducing certain arbitrary constant parameters

m
(k)
0b (with b = 1, . . . , n when Ψ is represented as an n×n-matrix) for each soliton µk as follows

7.

Defining

m(k)
a = m

(k)
0b

[

Ψ−1
E,0(µk, ρ, z)

]

ba
, (3.16)

and the symmetric matrix ΓBZ as

(ΓBZ)kl =
m

(k)
a (ME,0)abm

(l)
b

ρ2 + µkµl
, (3.17)

the elements of the residue matrices Rk are given by

(Rk)ab = m(k)
a

N
∑

l=1

(

Γ−1
BZ

)

lk
m

(l)
c (ME,0)cb
µl

. (3.18)

The new matrix ME(ρ, z) = χ(0, ρ, z)ΨE,0(0, ρ, z) now reads

(ME)ab = (ME,0)ab −
N
∑

k,l=1

(ME,0)acm
(k)
c

(

Γ−1
BZ

)

kl
m

(l)
d (ME,0)db

µkµl
. (3.19)

The symmetry of this expression is ensured by (3.13). A problem that arises at this stage is

that possibly the new matrix ME does not satisfy the coset constraint detME = 1, i.e. is not

an element of the group SL(n,R)E. In fact the determinant of the new matrix is given by

detME = (−1)Nρ2N
(

N
∏

k=1

µ−2
k

)

detME,0. (3.20)

In order to obtain an N -soliton solution that remains in the group SL(n,R)E, the new matrix

ME must be multiplied by an overall factor8

M
(phys)
E = ±

(

1

±detME

) 1
n

ME. (3.21)

The overall sign in this expression should be chosen in order to ensure the right metric signature.

Thus obtained M
(phys)
E fulfils the constraint detM

(phys)
E = 1. Finally, following the discussion in

[2], the conformal factor for the dressed solution can also be obtained. We find for SL(2,R)E

(f
(phys)
E )2 = kBZ · ρN−

N2

2 ·
(

N
∏

k=1

µk

)N

·





N
∏

k,l=1, k>l

(µk − µl)2




−1

· detΓBZ · f2E,0, (3.22)

where kBZ is an arbitrary numerical constant. For SL(n,R)E a similar but more complicated

expression can also be written [4]. However, note that for n > 2 the rescaling (3.21) introduces

fractional powers of ρ from (3.20) that typically lead to singular solutions. For this reason it is

more useful to employ the so-called Pomeransky trick [31] for n > 2. In this approach one can

write a general expression for the conformal factor valid for n ≥ 2 [31, 15].

7The normalization of each of the vectors m
(k)
0b is arbitrary. Rescaling them by arbitrary constants does not

change any of the final expressions.
8This formula differs slightly from the standard expression in [2] since we are working in the Ehlers description.
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4 BM Soliton transformations

In this section we present an algebraic method of generating new solutions of the BM linear

system (2.17) from a given seed solution. Our discussion closely follows that of [19], see also [32].

The method makes use of the constant group element gE(w) of the Geroch group. We take the

seed solution to be flat space (2.27) since it is believed that the Geroch group action is transitive

on the space of solutions and all solutions are related to flat space [18, 3, 13]. As mentioned

around (2.26), the action of the Geroch group generally leads to a matrix valued Riemann–

Hilbert problem. In the case when the matrix functions to be factorized are meromorphic in the

spectral parameter w, the problem can be solved algebraically. This is the case that we focus

on and we term it the solitonic case. There are a number of (formal) similarities and at the

same time a number of differences (in details) with the procedure of Belinski and Zakharov [2]

that we briefly reviewed in section 3.3. In this section we also restrict ourselves to the Ehlers

SL(n,R)E of D = 2 + n vacuum gravity. In this case the generalized transpose # (at the group

level) simply becomes the usual matrix transpose.

4.1 Riemann–Hilbert problem

In section 2 we presented the construction ofME(w) starting with VE(x). We start with VE(x),

solve the linear system (2.17) to find VE(t, x), and then constructME(w). We now ask, following

the steps of (2.24), if we can reverse the process and reconstruct VE(x) from ME(w), i.e., we

solve the Riemann–Hilbert problem to factorize ME(w) as in (2.23). It is not guaranteed that

for a general ME(w) such a factorization exists. In fact, one can construct explicit examples

where it does not exist. This is however a technical problem that will not concern us here.

Certain aspects of this have been studied in the literature, see e.g. [18]. We only work with

those matricesME(w) for which the Riemann–Hilbert problem admits a solution.

Let us start with a real symmetric unit determinant matrixME(w) assuming suitable ana-

lyticity properties. In particular we assumeME(∞) = 11. We wish to factorize it as

ME(w) = AT−(t, x)ME(x)A+(t, x), (4.1)

with A−(t, x) = A+

(

−1
t
, x
)

and ME(x) symmetric and real. Moreover, we require

detA±(t, x) = 1. (4.2)

Next, we factorize ME(x) as ME(x) = V T
E (x)VE(x) with a triangular matrix VE(x) to obtain

VE(t, x) = VE(x)A+(t, x). (4.3)

The factorization problem (4.1) can be viewed in two different ways. (i) We start with an

appropriate ME(w) and solve for VE(t, x), (ii) we start with a seed VE(t, x) and act with an

element gE(w) and attempt to determine the transformed VgE(t, x). We take the first viewpoint

in what follows.9 It is, however, convenient to have the second viewpoint in the back of one’s

9The second viewpoint was taken in [19], however, some of their assumptions about pole structures seem too

restrictive to make that method directly applicable to interesting solutions.
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mind and relate it to the first one by taking the seed to be flat space. At the level of equations

this means

VgE(t, x) = Zg+(t, x)VE(t, x) = Zg+(t, x) · 11 = Zg+(t, x), (4.4)

where Zg+(t, x) is a triangular ‘dressing’ matrix in the sense of (2.15) that is determined by the

Geroch group element gE(w). In terms of the monodromy matrix one similarly has

Mg
E(w) = VTE

(

−1

t
, x

)[

Zg+

(

−1

t
, x

)]T

Zg+(t, x)VE(t, x). (4.5)

Introducing

Zg(t, x) =
[

Zg+

(

−1

t
, x

)]T

Zg+(t, x), (4.6)

one also has

Zg(t, x) =
[

VTE
(

−1

t
, x

)]−1

Mg
E(w) [VE(t, x)]−1 (4.7)

= 11 ·Mg
E(w) · 11 =Mg(w). (4.8)

When VE(t, x) 6= 11 one should take Zg(t, x) in (4.7) to be the left hand side of equation (4.1)

and solve the corresponding factorization problem. In this paper we always work with flat space

(2.27) as seed solution. Consequently, for notational simplicity we drop the superscript g from

now on and just think of being given a monodromy ME(w) that needs to be factorized as

in (4.1).

4.2 Multisoliton solutions

The factorization problem can be solved algebraically when the matrix functions to be factorized

are meromorphic. We now present this factorization explicitly by adapting [19]. We assume that

ME(w) has simple poles with residues of rank one. Since detME(w) = 1 andME(∞) = 11 the

inverse matrixM−1
E (w) also has poles at the same points with residues of rank one. If we have

N poles at points wk with k = 1, 2, . . . , N we can expressME(w) andM−1
E (w) in the form

ME(w) = 11 +
N
∑

k=1

Ak
w − wk

, (4.9a)

M−1
E (w) = 11−

N
∑

k=1

Bk
w − wk

, (4.9b)

with symmetric (sinceME is symmetric) and constant residue matrices Ak and Bk of rank one.

This means that we can factorize these matrices as the outer product of vectors

Ak = akαka
T
k , Bk = bkβkb

T
k . (4.10)
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One could absorb αk and βk in the definition of the constant vectors ak and bk respectively but

we leave them explicit on purpose. They play a very important role: for a given set of ak and bk
we can tune the αk and βk appropriately to ensure that the matricesME(w) andM−1

E (w) have

unit determinant. Despite this, there is an ambiguity in the factorization (4.10) related to the

normalization of the vectors ak and bk. Nothing must depend on this choice of normalization.

This will indeed be the case as will be apparent shortly. At this stage we just remark that the

constant vectors ak are the analog of the constant vectors m
(k)
0 of (3.16) in the BZ method. The

ambiguity related to the factorization of rank one matrices in vectors is directly related to the

ambiguity in the normalization of the vectors m
(k)
0 in the BZ method (cf. footnote 7). As is well

known in the BZ method, nothing depends on the overall normalization of those vectors.

In order to factorize ME(w) as in (4.1) we have to change from the constant spectral pa-

rameter w to the space-time dependent parameter t through (2.20), which implies

1

w − wk
= νk

(

tk
t− tk

+
1

1 + ttk

)

, (4.11)

where the moving poles tk are determined by (2.20) evaluated at wk with the plus sign and

νk = −
2tk

ρ
(

1 + t2k
) . (4.12)

As a function of t,ME(t, x) has a total of 2N poles: N poles at t = tk and N poles at t = −1/tk.
These have to be distributed among the factors A+ and A− in (4.1). The analytic properties of

the Riemann–Hilbert problem are such that the poles at t = −1/tk come from A+(t) and those

at t = tk from A−. One therefore makes the ansätze [19]

A+(t) = 11−
N
∑

k=1

ckta
T
k

1 + ttk
, (4.13a)

A−1
+ (t) = 11 +

N
∑

k=1

bktd
T
k

1 + ttk
, (4.13b)

where the second equation arises in the factorization ofM−1
E (w). These two equations introduce

two new sets of vectors that we call ck and dk.

The vectors ak, bk, ck and dk are not all independent and determining their relation amounts

to solving the Riemann–Hilbert problem. We first note that the constant matrices Ak and Bk
are not independent since the two matrices ME(w) and M−1

E (w) are inverses of each other.

This determines the vectors bk from the ak up to scaling, a freedom that is reflected in the βk
in (4.9b).

We can use the pole structure of ME(t, x)M−1
E (t, x) to deduce some properties of the ak

and bk. To start with, the absence of double poles at t = −1/tk in the product implies that the

vectors ak and bk are orthogonal:

aTk bk = 0 for each k. (4.14)
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From the absence of single poles at t = −1/tk in the product ME(t, x)M−1
E (t, x) one deduces

the relations

akαka
T
kAk = AkbkβkbTk , (4.15)

with the definitions

Ak =
[

M−1
E (t, x) +

bkνkβkb
T
k

1 + ttk

]

t=−
1
tk

, Ak =
[

ME(t, x)−
akνkαka

T
k

1 + ttk

]

t=−
1
tk

. (4.16)

Equation (4.15) is satisfied if there exist γk such that

aTkAk = γkνkβkb
T
k and Akbk = γkαkνkak. (4.17)

Then both sides of (4.15) are equal to αkνkβkγk(akb
T
k ). We note that the γk defined uniquely

by (4.17) depend on space-time.

The next non-trivial step is to determine the vectors ck. With the ansatz (4.13a) for A+(t),

the requirement that A+(t)M−1
E (t, x) have no poles at t = −1/tk gives the vector equation

ckΓkl = bl, (4.18)

where Γkl is an N ×N matrix with elements

Γkl =

{

γk
tk

for k = l
1

tk−tl
aTk bl for k 6= l.

(4.19)

Solving equation (4.18) for the ck we obtain the matrix A+(t). A similar argument is used to

construct A−1
+ (t) in (4.13b). One finds the equation for the vectors dk to be Γkldl = ak. Solving

this equation for the dk we can readily construct the monodromy matrixME by taking the limit

t→∞ in (4.1) and using thatME(∞) = A+(∞) = 11. The result is

ME = A−1
+ (∞) = 11 +

N
∑

k,l=1

bkt
−1
k (Γ−1)kla

T
l . (4.20)

Finally we factorize ME = V T
E VE and obtain the space-time fields. If needed, we can also

construct explicitly the generating function VE(t, x) from equation (4.3).

At this stage it is instructive to investigate how the final answers (4.13a) (in conjunction

with (4.18)) and (4.20) are insensitive to the ambiguity related to the rescaling of the vectors.

Note that if we rescale the vectors ak to rkak and bk to skbk, then we must rescale αk and βk
as r−2

k αk and s−2
k βk respectively in order to preserve the products (4.10). This then means that

the γk scale as rkskγk. It then immediately follows that the matrix Γkl scales as rkslΓkl. The

inverse matrix (Γ−1)kl naturally scales with the inverse factor r−1
k s−1

l and hence we see that the

final answers (4.13a) (in conjunction with (4.18)) and (4.20) are insensitive to such rescalings.
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4.3 Conformal factor

For solitonic solutions of the previous subsection the conformal factor fE can also be obtained

in a closed form. The final result is

f2E = kBM ·
N
∏

k=1

(tkνk) · det Γ, (4.21)

where kBM is an arbitrary numerical constant. This constant needs to be chosen appropriately

in order to ensure certain physical properties (say, asymptotic flatness) of the final space-time.

A derivation of expression (4.21) is given in appendix A.

5 Example: Kerr–NUT solution

In this section we present a concrete implementation of the method of section 4 by constructing

the Kerr–NUT metric. The construction illustrates all the steps of the BM solitonic method.

More complicated examples are certainly doable; we leave such a line of investigation for the

future.

5.1 Construction of general 2-soliton solution

The main difficulty in constructing the general multi-soliton solutions using the BM group the-

oretic approach lies in finding meromorphic matricesME(w) that satisfy the coset constraints.

The analog of this problem does not arise in the approach of BZ because they relax this con-

straint and consequently have to renormalize the resulting matrices. This works well for SL(2,R)

but already for SL(3,R) it gives spacetimes that do not represent black holes. A clever solu-

tion of this problem in the BZ approach was found by Pomeransky [31]. In this respect the

BZ method supplemented with the Pomeransky trick remains the most effective and powerful

method for constructing solutions of vacuum four- and five-dimensional gravity. For a concise

review and further references see [33]. The Pomeransky trick works well for SL(n,R) but has

no known analog for other coset models. As mentioned in the introduction, despite the initial

complications, the promise of the BM method lies in its generality; it can be taken over to other

coset models.

It turns out that for SL(n,R)E monodromy matrices with a maximum of two poles, it is

rather straightforward to take into account the coset constraints explicitly. When more poles

are present one can perhaps set up a recursive algorithm for finding the appropriate meromorphic

matrices. We have not attempted this and leave this line of investigation for the future. Here

we present a discussion of a two soliton SL(2,R)E matrix. The most general such configuration

describes the Kerr-NUT solution as we show now.

We start with the general form ofME(w) (compare (4.9a)),

ME(w) = 11 +
a1α1a

T
1

w − c +
a2α2a

T
2

w + c
, (5.1)
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where a1 and a2 are two-dimensional column vectors. The poles can be chosen in this way by

a shift of axis, see (2.19). Given the constant 2 × 2 matrix a = (a1, a2) and the 2 × 2 matrix

ξ = aTa we must choose

α =
2c

det ξ

(

ξ22 0

0 −ξ11

)

, α = diag{α1, α2}, (5.2)

in order to satisfy the constraint detME(w) = 1. The matrix ME(w) is symmetric and is of

determinant one, hence it is in the coset SL(2,R)E/SO(2)E. For the parametrization of the

inverseME(w)
−1 we can choose b = aξ−1ǫ and β = −α det ξ with

ǫ =

(

0 −1
1 0

)

. (5.3)

Due to the scaling freedom for the vectors, we can choose without any loss of generality

a1 =

(

1

ζ1

)

, a2 =

(

ζ2
1

)

. (5.4)

Thus

ξ =

(

1 + ζ21 ζ1 + ζ2
ζ1 + ζ2 1 + ζ22

)

, (5.5)

and

α1 =
2c(1 + ζ22 )

(1− ζ1ζ2)2
α2 = −

2c(1 + ζ21 )

(1− ζ1ζ2)2
. (5.6)

For the bk vectors we have

b1 =
1

1− ζ1ζ2

(

−ζ1
1

)

, b2 =
1

1− ζ1ζ2

(

−1
ζ2

)

, (5.7)

and for βk

β1 = −2c(1 + ζ22 ), β2 = 2c(1 + ζ21 ). (5.8)

From the above expressions we see that aT1 b1 = 0 = aT2 b2, as expected. Furthermore we have

aT2 b1 = −aT1 b2 = 1. With the above choices we find

Γ =
1

t2 − t1





ξ12
ξ22

t2(t1+t
−1
1 )

1+t1t2
1

1 ξ12
ξ11

t1(t2+t
−1
2 )

1+t1t2



 . (5.9)

From Γ we obtain the ck vectors by (4.18) and from there by looking at the limiting value of

the A−1
+ (t) at t =∞, cf. equation (4.20), we obtain ME(x). We find

ME(x) = 11 + a(ΓTǫ−1ξ)−1aT , where T = diag {t1, t2}. (5.10)
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We also observe that

ΓTǫ−1ξ = (αν)−1 − t1t2
1 + t1t2

ξ, where (αν) = diag {α1ν1, α2ν2}. (5.11)

From ME(x) one can read off the physical fields. The conformal factor, given by (4.21), is

f2E = kBM
t1ν1t2ν2
(t2 − t1)2

[

ξ212
ξ11ξ22

(1 + t21)(1 + t22)

(1 + t1t2)2
− 1

]

. (5.12)

5.2 Interpretation as Kerr–NUT metric

For four-dimensional vacuum gravity with SL(2,R)E symmetry we can parametrise the mon-

odromy ME as [3]

ME = V T
E VE =

(

∆+∆−1ψ̃2 ∆−1ψ̃

∆−1ψ̃ ∆−1

)

. (5.13)

Here, ψ̃ is dual to the metric function ψ by the duality relation10

⋆2dψ̃ = −∆2

ρ
dψ. (5.14)

The D = 4 metric is given by

ds24 = −∆(dt+ ψdφ)2 +∆−1(f2E
(

dρ2 + dz2
)

+ ρ2dφ2). (5.15)

(The form of the conformal factor is due to the change from Ehlers to Matzner–Misner variables

to describe the physical space-time.)

To write explicit expressions for the scalars it is convenient to introduce prolate spheroidal

coordinates (u, v)

z = uv, ρ =
√

(u2 − c2)(1− v2), c ≤ u <∞, −1 ≤ v ≤ 1. (5.16)

These coordinates allow us to write the pole trajectories t1 and t2 as

t1 =
(u− c)(1 + v)

√

(u2 − c2)(1− v2)
, t2 =

(u+ c)(1 + v)
√

(u2 − c2)(1 − v2)
. (5.17)

The inverse relations are

t1
t2

=
u− c
u+ c

, t1t2 =
1 + v

1− v . (5.18)

In these new coordinates we have

∆ =
1

D

[

v2c2(ζ1 + ζ2)
2 + u2(1− ζ1ζ2)2 − c2(1 + ζ21 )(1 + ζ22 )

]

(5.19)

10From the point of view of the Geroch group, this duality with its non-linear prefactor is at the heart of the

infinite-dimensional symmetry and integrability of the system: ψ̃ is the first in an infinite set of so-called dual

potentials on which the infinite symmetry acts.
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and

ψ̃ =
1

D

[

2cu(ζ2 − ζ1)(1− ζ1ζ2)− 2c2v(ζ1 + ζ2)(1 + ζ1ζ2)
]

, (5.20)

where the common denominator of these expressions is

D = v2c2(ζ1 + ζ2)
2 + 2vc2(ζ22 − ζ21 ) + u2(1− ζ1ζ2)2 + c2(1 + ζ21)(1 + ζ22 ) + 2cu(1 − ζ21ζ22 ).

(5.21)

By applying the duality relation (5.14) one can write an expression for ψ.11 It is slightly more

complicated

ψ =
Nψ

(1− ζ1ζ2)Dψ
, (5.22a)

Dψ = u2(1− ζ1ζ2)2 − c2(1 + ζ21 )(1 + ζ22 )− c2v2(ζ1 + ζ2)
2, (5.22b)

Nψ = −4c3ζ1(1 + ζ21 )(1 + ζ22 )− 2c2(ζ1 + ζ2)(1 − ζ21ζ22 )u+ 2c(ζ1 − ζ2)(1− ζ1ζ2)2u2

− 2c3(ζ1 − ζ2)(1− ζ1ζ2)2v + 2c(ζ1 − ζ2)(1 − ζ1ζ2)2u2v
+ 2c3(ζ1 + ζ2)(1 + 2ζ21 + ζ21ζ

2
2 )v

2 + 2c2(ζ1 + ζ2)(1− ζ21ζ22 )uv2. (5.22c)

These expressions look somewhat cumbersome. To compare them with the corresponding ex-

pressions for the Kerr–NUT metric in the standard Boyer-Lindquist coordinates, let us recall

that the latter takes the form (see e.g. [4])

ds2 = − 1

Σ

(

Ξ− a2 sin2 θ
)

dt2 +
Σ

Ξ
dr2 +Σdθ2 +

1

Σ

(

(Σ + aχ)2 sin2 θ − χ2Ξ
)

dφ2

+
2

Σ

(

χΞ− a(Σ + aχ) sin2 θ
)

dtdφ, (5.23)

with

Σ = r2 + (n+ a cos θ)2 (5.24a)

Ξ = r2 − 2mr − n2 + a2 (5.24b)

χ = a sin2 θ − 2n(1 + cos θ). (5.24c)

The Boyer-Lindquist coordinates (r, θ) are related to the prolate spheroidal coordinates (see e.g.

appendix G of [34]) simply as,

u = r −m, v = cos θ. (5.25)

We find that with the identifications

ζ1 =
c−m
a+ n

, ζ2 = −
a+ n

c+m
, c =

√

m2 + n2 − a2, (5.26)

11Alternatively, one could construct the generating function VE(t) and apply the algebraic Kramer–Neugebauer

transformation (relating the Ehlers and Matzner–Misner description) to obtain VMM(t) that directly contains

ψ [3].
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the tt, tφ, and φφ part of the metric matches with corresponding expressions obtained through

(5.19), (5.20) and (5.22). Relations (5.26) can be inverted to read

a = −m ζ1 + ζ2
1 + ζ1ζ2

, n = m
ζ1 − ζ2
1 + ζ1ζ2

, m = c
1 + ζ1ζ2
1− ζ1ζ2

. (5.27)

When ζ1 = ζ2 we obtain the Kerr solution and the corresponding expressions match those of

[25] and [19] (when certain minor typos and misprints are fixed in those references). When

ζ1 = ζ2 = 0 we obtain the Schwarzschild solution as in [25, 32].

The conformal factor can also be easily computed using the formula (4.21). We find

f2E = −kBM
u2 −m2 − n2 + a2v2

4(m2 + n2)(u2 − c2v2) . (5.28)

Choosing the constant kBM to be −4(m2 + n2) so that fE → 1 as r →∞, we have

f2E =
u2 −m2 − n2 + a2v2

(u2 − c2v2) , (5.29)

which in the MM coset allows us to match directly with the metric (5.23)

∆−1f2E =
(m+ u)2 + (n+ av)2

u2 − c2v2 . (5.30)

For completeness, we record the form of the (Ehlers) monodromy matrixME(w) expressed

in terms of the physical quantities

ME(w) =
1

w2 − c2

(

(m+ w)2 + (n+ a)2 2(am− nw)
2(am− nw) (w −m)2 + (a− n)2

)

(5.31)

with c as in (5.26).

5.3 BZ Ehlers Construction

The Kerr–NUT metric has been reconstructed by several authors in the context of the standard

BZ method, see e.g. [4, 33]. In this section we revisit this computation and perform it using the

Ehlers generating function ΨE(λ). To the best of our knowledge this has not been presented

before.

The Killing part of the metric of flat space translates into ME being the identity matrix.

This implies that the seed ΨE(λ, x) is also identity. Now we add solitons at λ = µ1 with BZ

vectors m
(1)
0 = (A1, A2) and at λ = µ2 with BZ vectors m

(2)
0 = (B1, B2). The ΓBZ matrix is

found to be

ΓBZ =





A2
1+A

2
2

µ21+ρ
2

A1B1+A2B2
ρ2+µ1µ2

A1B1+A2B2
ρ2+µ1µ2

B2
1+B

2
2

µ22+ρ
2



 (5.32)

and we need to rescale the resulting ME by −µ1µ2
ρ2

[2, 4] to ensure the determinant condition.

With the choice of parameters w1 = −c and w2 = +c for the pole locations µ1 and µ2 in (3.15),
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and (A1, A2) = (−ζ1, 1) and (B1, B2) = (1,−ζ2) for the BZ vectors, the final expression for the

rescaled ME matches precisely with the ME obtained from the BM method in section 5. The

conformal factor obtained via equation (3.22) also matches with the one obtained in section 5,

with the constant kBZ in (3.22) being kBZ = 4(m+ c)2. It is intriguing to note that up to overall

normalizations the BZ vectors are precisely the vectors b1 and b2 of the BM construction above.

6 Conclusions

In this paper we studied the integrability of two-dimensional gravity-matter systems with matter

related to a symmetric space GE/KE. The integrability of these set-ups can be exhibited either

using the Belinski–Zakharov (BZ) linear system or through the Breitenlohner–Maison (BM)

linear system. As emphasized, the approach of Breitenlohner–Maison makes the group structure

of the Geroch group manifest. We analysed the relation between the BZ and the BM linear

systems and presented explicit relations between the generating functions appearing in these

two linear systems.

An embedding of the Belinski–Zakharov solution generating technique in the Geroch group

was also studied in general. We pointed out that it is impractical to find a satisfactory general

embedding of the full BZ solution generating technique in the Geroch group. Relation (3.10)

provides in principle the link between the generating functions. However, one must keep in

mind that the left hand side of (3.10) must be a ‘physical’ generating function ΨE(λ). Here,

by a ‘physical’ generating function we mean a generating function that gives a representative of

the coset GE/KE upon taking the limit λ → 0. This does not happen automatically in the BZ

technique where the dressing matrix χ(λ) is considered in a more general context.

On the other hand, following the unpublished work of Breitenlohner and Maison [19], we

exhibited a novel solution generating method where the group theoretical interpretation is clear

from the beginning to the end. In our approach we solve the requisite Riemann–Hilbert problem

algebraically. Since only algebraic manipulations are involved, our technique is akin to the BZ

technique. As a novel example, we constructed the Kerr-NUT solution in this approach.

Our main interest in performing the analysis of integrability in these gravity-matter systems

is to make the means for constructing new solutions available in situations where the standard

inverse scattering method of BZ is not applicable. This is typically the case for extended

supergravity theories that have a string theory origin. For minimal D = 5 supergravity with

exceptional Ehlers symmetry GE = G2(2) this problem was pointed out in [15] and also arises

for the STU model [35] with GE = SO(4, 4) or maximal supergravity with GE = E8(8) [36]. The

method explained in section 4 is still applicable in those cases as long as one finds a way to

parametrise the GE valued monodromy ME(w) in a way similar to (5.1) and (5.2). There are

several ways in which this could be achieved: (i) One could use global elements k ∈ KE ⊂ GE ⊂
(Geroch group) to rotate the vectors inM(w) in (5.1) into canonical positions. In the example

of section 5 this would correspond to setting ζ1 = ζ2. The solution for canonical vectors can

then be generalised by applying conventional KE charging transformations. These charging

transformations use only a very small subset of the full power of the Geroch group. (ii) One

could embed GE in GL(n,R) for n large enough and then solve the constraints on the vectors
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for the embedding explicitly. We expect a combination of these two techniques to be the most

promising line of attack. Alternatively to (i) and (ii), one could perhaps hope to develop

some general algorithms to find the appropriate monodromy matrices by combining ideas from

uniqueness proofs for black holes, see e.g. [37], and the fact that the monodromy matrices are

closely related to the behavior of solutions on the z-axis, see e.g. section 4 of [3]. In future work

we plan to explore these sets of ideas. See also [30] for a slightly different but related viewpoint

on this problem. It will be very interesting to see if the algebraic Riemann–Hilbert factorization

approach can be used to construct new black hole solutions generalizing [20, 21] and new fuzzball

solutions generalizing [22, 23].

Another interesting aspect of the integrable structure in two-dimensional models is their pos-

sible relation to the recently studied infinite-dimensional symmetries of string and M-theory [38,

39]. These symmetry groups are extensions of the Geroch group and are conjectured to be

symmetries of the unreduced theory. First steps in investigating this relation were undertaken

in [40] in the restricted case of polarized Gowdy space-times. The relation (2.18) between a spec-

tral parameter and a space-time coordinate suggests that a mapping between Lie algebraic and

geometric data might be possible. If taken seriously, this approach would allow the treatment

of space-time as a concept that fully emerges from symmetry considerations.
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A Computation of the BM conformal factor

In this appendix we present a derivation of equation (4.21) for meromorphic monodromy matrices

following [19]. Using the light cone coordinates (2.13) with the property ⋆2∂± = ±i∂± we can

write the differential equations for the conformal factor fE as

∂± ln ρ ∂± ln fE =
1

2
Tr(PE,±PE,±). (A.1)

Next we wish to write Tr(PE,±PE,±) in terms of the matrix A+(t) introduced in (4.3) in section

4. To this end we evaluate the residue of the poles at t = ±i in the Lax equation (2.17). For

evaluating the residue on the l.h.s. of (2.17) we use the relation

∂±VE(t, x) = ∂±VE(t, x)|t + (∂±t)V̇E(t, x), (A.2)

where V̇E(t, x) = ∂VE(t,x)
∂t

. These relations together with (2.18) give

±i∂± ln ρ V̇E(±i) = PE,±VE(±i). (A.3)
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Now replacing (4.3) in (A.3) we obtain an expression for PE,± in terms of A+(±i) and Ȧ+(±i).
Substituting that expression in (A.1) we obtain

∂± ln fE = −1

2
(∂± ln ρ)Tr

(

A−1
+ (±i)Ȧ+(±i)

)2
. (A.4)

Using the explicit form of A+(t) from equation (4.13a) together with (4.18) and the identity

aTk bk = Γkl(tk − tl) we get,

A−1
+ (t)Ȧ+(t) = −b

11

11 + tT
Γ−1 11

11 + tT
aT . (A.5)

In writing this equation we have used a convenient matrix notation, where T is a diagonal matrix

with entries tk. Differentiating for k 6= l the identity (cf. (4.19))

aTk bl = Γkl(tk − tl), (A.6)

with respect to the light cone coordinates we obtain the components with k 6= l of the equation

∂±Γ = −(∂± ln ρ)
11

11± iT [Γ∓ iTΓ∓ iΓT + TΓT ]
11

11± iT . (A.7)

Looking at the definition of the diagonal components Γkk in (4.19), we note that we need ∂±γk
in order to obtain the corresponding expression for the diagonal components of Γ. We hence

differentiate the relation Akbk = γkαkνkak from (4.17). An important intermediate result for

this is that Akbk is constant. From this it is easy to deduce that (A.7) holds as well for the

diagonal components.

Using these formulas, we first substitute (A.5) into (A.4) and then manipulate the new r.h.s.

to bring out terms that are total derivatives using (A.7). As a result, we can rewrite equation

(A.4) in the form

∂± ln fE =
1

2
Tr
(

Γ−1∂±Γ
)

+
1

2
Tr
(

(Tν)−1∂±(Tν)
)

, (A.8)

where (Tν) is the diagonal matrix with entries tkνk. Equation (A.8) can now be readily inte-

grated to give the final result (4.21)

f2E = kBM ·
N
∏

k=1

(tkνk) · det Γ, (A.9)

with kBM an integration constant. (More generally, the conformal factor is related to a cocycle

calculation in the affine group [3].)

B BZ Matzner–Misner

The Belinski–Zakharov (BZ) approach is a well established solution generating technique for

vacuum gravity. The method is applicable in any dimension, though only in four and five

dimensions can the generated solutions be asymptotically flat [33]. In this appendix we focus
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on D = 4. We assume that the space-time admits two commuting Killing vectors, one spacelike

(angular) and one timelike. In this case the four-dimensional metric admits the following form

in the Weyl canonical coordinates (cf. (5.15))

ds2 = e2ν
(

dρ2 + dz2
)

+ gabdx
adxb, (B.1)

where the indices a, b run over the Killing coordinates φ and t. The vacuum Einstein equations

can be used to choose without any loss of generality the coordinates such that [34]

det g = −ρ2. (B.2)

For this class of metrics, the Einstein equations divide in two groups: one for the Killing

part g of the metric

∂ρU + ∂zV = 0, with U = ρ(∂ρg)g
−1 and V = ρ(∂zg)g

−1 (B.3)

and the second group for the conformal factor ν. From the discussion in the main text of the

paper it is clear that equation (B.3) are the equations for a GL(2,R) integrable sigma model.

The equations for the conformal factor ν read

∂ρν = − 1

2ρ
+

1

8ρ
Tr(U2 − V 2), ∂zν =

1

4ρ
Tr(UV ). (B.4)

Note that the equations for g do not contain the function ν. Once one obtains a solution of

(B.3), ν can be obtained by a line integral.

The Belinski–Zakharov spectral equations for the above GL(2,R) model (B.3) are [2]12

D1Ψ =
ρV − λU
λ2 + ρ2

Ψ, D2Ψ =
ρU + λV

λ2 + ρ2
Ψ, (B.5)

where λ is the spectral parameter and D1 and D2 are the two commuting differential operators

of (3.3).13 The generating matrix Ψ(λ, ρ, z) is such that in the limit λ→ 0 it gives the volumeful

metric g. Using the above linear system (B.5) one can construct an infinite class of new solutions

by dressing seed solutions. This procedure has been reviewed at several places, see e.g. [4, 33].

The matrix g can also be written in terms of the SL(2,R)MM unimodular matrix MMM

g = ρMMM, (B.6)

where the subscripts MM stand for Matzner–Misner. In terms of the coset variables it takes the

formMMM = V T
MMηVMM, where VMM is the Matzner–Misner coset representative of the quotient

12Note that there is neither an Ehlers nor a Matzner–Misner subscript on this generating function Ψ since it

agrees with neither. It is, however, closely related to the Matzner–Misner version as will become clear in the

sequel.
13In ‘light-cone’ coordinates the spectral equations read

D±Ψ =
±iρ (∂±g) g−1

λ± iρ
Ψ, with D± = ∂± − 2λ

λ± iρ
∂λ.
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SL(2,R)MM/SO(1, 1)MM and η is the SO(1, 1)MM invariant metric η = diag{1,−1}. Following

[3] we take the parameterization for MMM to be

MMM = V T
MMηVMM =

(

ρ
∆ − ∆

ρ
ψ2 −∆

ρ
ψ

−∆
ρ
ψ −∆

ρ

)

with η =

(

1 0

0 −1

)

, (B.7)

where we emphasize that in our conventions the second index denotes the time component. We

use this (non-standard) convention to facilitate comparison with [3].

Equations (B.3) and (B.4) can now be brought to the form

∂m
(

ρM−1
MM∂

mMMM

)

= 0, (B.8)

and

ξ−1∂ρξ =
ρ

8

(

Tr
(

M−1
MM∂ρMMM

)2 − Tr
(

M−1
MM∂zMMM

)2
)

, (B.9)

ξ−1∂zξ =
ρ

4
Tr
(

M−1
MM∂ρMMMM

−1
MM∂zMMM

)

, (B.10)

where we have used �ρ = 0 and ξ(ρ, z) is defined as ξ = eνρ
1
4 . Defining as before

PMM,m =
1

2

(

∂mVMMV
−1
MM +

(

∂mVMMV
−1
MM

)T
)

, (B.11)

we can rewrite the above equations in the coordinates x± of (2.13) as

±iξ−1∂±ξ =
ρ

2
Tr (PMM,±PMM,±) , (B.12a)

Dm(ρP
m
MM) = 0. (B.12b)

Equations (B.12a) and (B.12b) are formally identical to equations (2.14a) and (2.14b). The BZ

Lax pair can be written for these equations [15] as well.

If one wants to relate the BZ-generating function Ψ(λ) to the group-theoretic BM-generating

function VMM(t) additional care has to be taken because of the factor of ρ in (B.6). A convenient

choice is

Ψ(λ, x) =
√

2ρtwV T
MM(x)ηVMM(t, x). (B.13)

(Note that this differs from what was given in [3]; their choice does not map the linear systems

into each other away from t = λ = 0.)
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