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We examine the conditions under which the thermodynamic behaviour of gravity can be explained
within an emergent gravity scenario, where the metric is defined as a composite operator. We show
that due to the availability of a boundary of a boundary principle for the quantum effective action,
Clausius-like relations can always be constructed. Hence, any true explanation of the thermodynamic
nature of the metric tensor has to be referred to an equilibration process, associated to the presence
of an H-theorem, possibly driven by decoherence induced by the pregeometric degrees of freedom,
and their entanglement with the geometric ones.

I. INTRODUCTION

In this work we explicitly examine the origin of thermodynamical behavior of horizons, starting from a microscopic
theory and deducing from it a form of emergent gravitational theory. For this we will use a toy model, but only to
fix the ideas with explicit calculations. We will show that a key and often overlooked ingredient is the process of
equilibration of the microscopic degrees of freedom leading to decoherence of the degrees of freedom encoded into the
metric tensor. Whether this process takes place or not is ultimately a property of the dynamics of the microscopic
theory, and we argue that it is only within a microscopic theory addressing this specific point that the clarification of
the relationship between gravitational theories and thermodynamics can be fully understood.
The possibility that the gravitational interaction, as described by classical general relativity (GR), might be after

all of thermodynamic/hydrodynamic nature is by now supported by a large amount of evidences (for a discussion see,
for instance, [1, 2] and references therein). One of the most striking results is that Einstein’s equations can in fact be
derived starting from a thermodynamic standpoint: once the equivalence principle is advocated (in the form of the
existence of a Lorentzian metric to which matter fields are universally coupled), in each sufficiently small neighborhood
of the spacetime manifold one can construct local acceleration horizons (basically local Rindler horizons, null orbits of
approximate Killing vector fields), whose dynamics is then assumed to be governed, at equilibrium, by a Clausius-like
relation δQ = TdS [3]. This result has been generalized in a number of ways to a number of different situations, see
for instance [4–7] and references therein.
In these derivations, after a suitable identification of the entropy functional associated to the local Rindler horizon

(e.g. the area of its spatial cross section), the temperature as the Unruh temperature of a uniformly accelerated
observer (associated to the given null surface) and the heat flow δQ as the flux of the conserved stress energy tensor
across the horizon, one can obtain Einstein’s equations as equations of state. In fact, a more careful analysis [6] shows
that it is necessary to extend the treatment to the case of nonequilibrium thermodynamics (introducing appropriate
internal entropy production terms) in order to properly take into account all the contributions appearing into the
Clausius-like relation.
Despite the proposal to use concepts like entanglement entropy of the vacuum to explain the appearance of such

a behavior (see [8] for a very recent discussion), it is not yet clear whether this is the actual explanation of the
correspondence with thermodynamics, and whether this correspondence is accidental or substantial. Indeed, from a
pregeometric point of view, it is not obvious why the notion of causality (which is at the basis of the entanglement
entropy arguments) should in any way inform the emergent dynamics, but, most importantly, the thermodynamics
emerging from the microscopic degrees of freedom. Of course entanglement entropy is an important piece of the
puzzle, and it is certainly correlated with it, but since it pertains to the semiclassical limit of the theory it is not
completely obvious that it is ultimately the origin of the peculiar thermodynamic behavior of gravity.
To settle this issue, however, it is unavoidable to have at least a qualitative picture of what could be the layer below

GR: if we want to explain GR as thermodynamics (and perhaps get some glimpses of a more “fundamental” level) we
really need to have a picture of it in terms of the statistical mechanics of some (yet unknown) fundamental degrees of
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freedom. This is a necessary step if we want to give further support to results on the counting of microscopic d.o.f.,
especially when stated in the form of equipartition conditions [9–11].
The objective of this contribution is to discuss, at least in a special case, the way in which this thermodynamical

behavior arises, limiting the analysis to a class of models proposed to include the gravitational field as a composite
field of some other microscopic degrees of freedom. Then, we will try to elucidate what are the necessary ingredients
needed to establish the macroscopic thermodynamical behavior from this specific microscopic system. While some
ideas are certainly not new, the objective is to make the results as explicit as possible in a concrete case. The aim
is understand what are the key points that have to be clarified in a scenario in which gravity is seen as an emergent
phenomenon [12], irrespective of the particular microscopic model adopted.
While the class of models that we will be using does not have a rigorous implementation (essentially for a nonrenor-

malizability problem), we might still try to use it as a sort of paradigm, a toy model from which to extract lessons
that might be applicable in a more general context, possibly including a definitive (still unknown in its final form)
theory for quantum or emergent gravity. The great advantage of doing so is that we will be able to derive explicit
results using standard techniques of quantum field theories.
The result is that the quantum effective action for the composite metric exhibits thermodynamical aspects even

in the “deep quantum regime” where the metric fluctuations can be large, but most importantly where the metric
does not exhaust the specification of the macroscopic state. The aspect that is overlooked, indeed, is the problem of
equilibration of the microscopic degrees of freedom.
The concepts of decoherence have been already related to the problems of the semiclassical limit of gravity (see,

for instance, [13–18]), and in particular the role of unobserved modes in producing an effective decoherence of the
wavefunction for geometry. However, a genuinely pregeometric scenario is not explored, so far. We try to go beyond
this state of affairs, including in the game truly microscopic modes that are, in a sense, “atoms” of spacetime and
matter fields and show that these microscopic states are really necessary to show that the thermodynamic behavior
of geometrodynamics is not an accident.
Equilibration, in the picture that we are going to examine, turns out to be the relevant ingredient that might lead

to the explanation of the various thermodynamical reasonings attached to gravity, as the generalized second law [19].
(For a related discussion, but with a different perspective on the role of microscopic degrees of freedom, equilibrium
and entropic properties of gravity see also [20, 21].) In extreme summary, the metric will acquire a thermodynamical
interpretation only when it can be treated as a thermodynamic state function, i.e. in an equilibrium configuration,
by definition, and this in turns implies the existence of constraints on the microscopic dynamics that has to lead to
equilibration with respect to metric variables.
The plan of the paper is as follows. In the next section we describe in details the model, the effective action for the

composite metric and show how it supports naturally a thermodynamic interpretation even without a restriction to
a semiclassical or equilibrium configurations. In section III we will then discuss in detail the role of decoherence in
the appearance of an equilibrium configuration at the macroscopic level, highlighting the role of entanglement with
the microscopic degrees of freedom that are integrated away. Finally, in the concluding section, we summarize the
results and connect them with other approaches to quantum gravity that try to address the emergence of a continuum
semiclassical spacetime.

II. FROM PREGEOMETRY TO THERMODYNAMICS

The models that we are considering have been called “pregeometry” [22–28], even though they are not as prege-
ometric as they pretend to be. We briefly sketch the idea underlying the models, referring to the literature for a
detailed discussion (see also [29–36] for very recent developments). Reduced to the bone, they are the quantization
of the Polyakov action of a bosonic or fermionic membrane of assigned dimension (for us it will be four) embedded in
a flat (pseudo-)Riemannian manifold of equal or higher dimension. The general idea is that the metric tensor as we
know it is just a sort of meson field, i.e. a composite operator. We will work within a field theory model, and we will

denote as ψ̂A (A = 1, ...N) the field operators associated to the microscopic degrees of freedom, where A is a label
denoting collectively possible further fine grained details of the field (internal symmetries)
In the bosonic case (the Fermionic one leading essentially to the same conclusions, within a first order formalism),
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the classical metric will be given, formally1, by the expectation value

gµν(Ψ) = 〈Ψ|Ôµν(ψ̂)|Ψ〉 = 〈Ψ|ηAB∂µψ̂A∂νψ̂B)|Ψ〉. (1)

It is clear, from this very definition, that several distinct microscopic configurations might lead to the same macroscopic
metric, given the presence of a global SO(N − 1, 1) invariance. Indeed, if we consider a field configuration φA,

gµν(Λφ) = ηABΛC
AΛ

D
B∂µψC∂νψD = gµν(φ). (2)

This is of course a special case of a possibly more general situation. The partition function for the system is (rather
formally) defined to be

Z =

∫

DφDγDψ exp

(

−
∫

d4x
{

(detφµν)
1/2 +

√
γγµν(φµν − ηAB∂µψA∂νψB)

}

)

, (3)

where φµν is an auxiliary field encoding the composite metric, ηAB is the (inverse) metric tensor of the embedding
flat space (or spacetime in case of Lorentzian signature), and γµν are Lagrange multipliers to enforce the constraint:

φµν = ηAB∂µψA∂νψB. (4)

Matter fields (singlets with respect to the global SO(N − 1, 1) symmetry) can be introduced, and coupled to the
composite metric without difficulty, technically. From a conceptual point of view, however, a question naturally
arises: why matter fields should be coupled to one or another choice of possible metric tensors? One possibility is that
matter fields are excitations of the underlying microscopic theory, and the coupling is unavoidable. Using an analogy,
one might argue that, similarly to what happens in condensed matter analogues with the coupling of phonons to the
acoustic metric [37], matter fields are excitations over (or of) the background, which is determining the metric at the
same time. In this case, the coupling to the metric is essentially forced to be the one we are used to.
We can introduce a generating functional for the metric as a composite operator:

Z[Kµν ] =

∫

DφDγDψ
∫

d4x
{

(detφµν)
1/2 +

√
γγµν(φµν − ηAB∂µψA∂νψB) +KµνηAB∂µψA∂νψB

}

, (5)

such that:

gµν =
1

Z

δZ[K]

δKµν

∣

∣

∣

∣

K=0

. (6)

Actually, in order to deal with physical questions, one can evaluate transition amplitudes with assigned values of the
fields ψA at the two boundaries. The treatment does not change much, and the resulting effective action depends also
on the choice of boundary states, as expected.
Using standard techniques [38], we can define a quantum effective action for this composite operator, Γvac[gµν ],

which is a functional for a classical field that encodes all the quantum effects. Indeed, we are going to use this object
and we will manipulate the metric tensor as a classical field, even without asking for the semiclassical limit to be
enforced, i.e. without requiring that the quantum fluctuations around the classical field are small (to do this we would
need to analyze the quantum effective action for the composite operator associated to the fluctuations of the metric,
e.g. for a correlator like 〈gµν(x)gρσ(y)〉 = Dµνρσ(x, y)).
Given the quadratic dependence of the bare action of the fields ψ, we can easily integrate them out to get an explicit

effective action for the composite metric tensor. Standard calculations of quantum field theory in curved backgrounds
show that the effective action for the composite metric will indeed be given in terms of the divergent contributions
(which are cutoff regulated) of the heat kernel expansion of the one loop effective action, and will have the form of
integrals of curvature invariants determined by the HaMiDeW coefficients. As it has been noticed very soon, these
models do not offer a satisfactory realization of Sakharov’s idea of induced gravity [39, 40] as the dependence on
the cutoff needed for the regularization of the partition function cannot be hidden via a renormalization procedure,
leading to a non-renormalizability problem.

1 The metric tensor is not a gauge invariant quantity, under the action of diffeomorphisms. Hence, we should refer to appropriate gauge
invariant quantities, i.e. proper observables. With this caveat in mind, we will keep using the metric tensor as the vacuum expectation
value of an operator.
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By construction, in such a model we obtain for the composite metric2 equations of motion having the general form

Gµν(gαβ) = κTµν , (7)

with a conserved stress energy tensor Tµν for the matter fields, κ a coupling constant, and G a covariantly conserved
rank two tensor obtained from the effective action of the composite field gµν . As said, this tensor will depend on
the boundary conditions imposed on the functional integral (or, better, the boundary states). We will denote this
dependence with a (collective) label k, reminiscent of a renormalization group flow parameter.
The thermodynamical behavior of such models can be easily inferred directly by the Noether charge method [41–43].

However, here we will follow a connected but slightly different approach which will in turn lead to a more transparent
explanation of some of the terms that will appear, interpreted as non-equilibrium internal entropy production terms,
as well as the general structures at work, in order to be able to treat more general models.
Assuming that the metric is at least of class C3, we construct the vector valued 3-forms:

G
(k)µ

ν eµ ∗ dxν , T µ
ν eµ ∗ dxν , (8)

where ∗ is the Hodge star associated to the metric gµν . With these objects, the quantum equations of motion can be
put in a form that satisfies Wheeler’s boundary of a boundary principle [44–46]. Given that we are dealing with a
(pseudo-)Riemannian manifold, around each point P one can construct an approximate Killing vector field ξµ,

£ξgµν = lµν , |lµν | ≪ ℓ−1, (9)

which is generating what appear to be, locally, a piece of a Rindler horizon (here ℓ is the typical scale we are interested
in, possibly related to the curvature). Thanks to these structures, one can easily look at the equations integrated on
a portion H of this Rindler horizon between an initial and a final slice, σinitial and σfinal (no other boundaries are
considered). First, one has to project the vector valued forms onto the generator of the null surface:

G
(k)µ

ν ξµ ∗ dxν , T µ
ν ξµ ∗ dxν , (10)

and then one can work with an integrated version of the equations of motion over three dimensional submanifolds.
This construction emphasizes the possibility of writing gravitational equations in an integral form, rather than in
a differential way. Also, it allows a more clear treatment of the physical processes, since it does not require any
expansion in small parameters to highlight the relevant features.
In particular, one can consider these forms integrated on null surfaces

∫

H

G
(k)µ

ν ξµ ∗ dxν = κ

∫

H

T µ
ν ξµ ∗ dxν . (11)

The RHS is just proportional to the heat flow that enters the thermodynamic reasoning of [3]. The analysis of the
LHS should lead to the identification of the entropy function, if any, as it is coming from the microscopic theory.
First, let us notice that (provided that k can be considered constant on H) it is the integral of a 3-form, and as such
it can be decomposed (via the Hodge decomposition theorem) into an exact, coexact and harmonic components

G(k)(ξ) = G
(k)µ

ν ξµ ∗ dxν = dextα+ δβ + γ, (12)

where δ is the codifferential, α is a two form, β a 4-form, and γ a harmonic 3-form (associated to global properties
of the manifold). Second, due to the covariant conservation of the tensor G µν , the coexact part of this form is zero
whenever the vector field ξµ is a Killing vector field, and the heat flow is exactly measured in terms of the variation
of certain quantities evaluated at the initial and final slices of the local horizon (if the harmonic component vanishes,
otherwise an additional non-equilibrium term has to be included).
The entropy function to be inserted into a Clausius-like equation, then, comes from the exact part of the 3-form

G(k)(ξ).

∫

∂H

αk(ξ) +

∫

H

(δβ(k)(ξ) + γ(k)(ξ)) = κδQ, (13)

2 We stress it again, it is a classical field, associated to a quantum state.
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where ∂H = σ1 ∪ σ2 (with the appropriate orientations) is the boundary of the portion of horizon chosen (which
we are implicitly assuming to have the topology of a cylinder, without loss of generality). The Clausius-like relation
suggests to identify the equilibrium entropy terms as

Sk(σi; ξ) ∝
∫

σi

α(k)(ξ), (14)

the proportionality factor to be determined once the temperature is identified.
This derivation shows that these models easily support a (non-equilibrium) thermodynamical interpretation and

predict (within the limits of their domain of definition) the various terms appearing in a Clausius-like relation,
including the internal entropy production terms, which are related to the coexact part of G(k)(ξ) (associated to the
fact that ξ, the generator of the null surface, is not a Killing vector field) and to the harmonic component of the
curvature’s flux 3-form.
This construction has the nice feature of explicitly showing how the equilibrium entropy term arises, and that it is

accompanied by nonequilibrium terms associated not to the failure of the effective action to have a certain functional
form, but rather to the failure of the local horizon to be a Killing horizon. This whole construction, we stress it again,
is ultimately possible because the effective equations for the metric can be put in a form that naturally follows from
Wheeler’s boundary of a boundary principle. In fact, if we work in d spacetime dimensions, the generalized Cartan
moment of rotation G will be a d − 1 form, and hence the equations of motion can be naturally expressed in terms
of relations between fluxes (of tensors, suitably projected) across the boundaries of d dimensional domains of the
spacetime manifold, in particular across causal boundaries given by horizons.
Nonetheless, it is clear that this relation between the effective dynamics of the composite metric tensor and non-

equilibrium thermodynamics is rather formal, at least at this stage. Indeed, the effective action for the metric crucially
depends on the assigned boundary data, that are typically given in terms of the microscopic field configurations, which
are unobservable by matter fields coupled only to the metric tensor. Also, it is a property that follows immediately
from the shape of the equations of motion for the classical metric tensor (essentially, diffeomorphism invariance),
whether the physical state is a semiclassical one or not, i.e. whether the quantum fluctuations of the metric tensor
are small or not.
In fact, the expectation value of the (spatial part of the) metric tensor (or the extrinsic curvature, if we use it

instead of the metric) at the initial and final slices is not the only quantity that is fixed with the specification of the
boundary data via the ψA fields, but also the fluctuations and all the possible composite fields that is possible to
construct from the microscopic degrees of freedom. Even though not all of them will turn out to be independent, at
the macroscopic level the state is specified by more than the metric tensor on the boundary, and this will become
manifest from the fact that states with the same boundary metric data will evolve differently since the (expectation
value of the) boundary metric does not exhaust the information encoded in the label k introduced before to collectively
denote all the microscopic data.
An easy way to see this is the following. Consider the transition amplitude of the fundamental theory between two

field configurations defined on the two disconnected boundaries, as depicted in Fig. 1. The transition amplitude and
the metric tensor in the bulk are functionals of the initial and final microscopic data,

A[ψinitial, ψfinal], gµν [ψinitial, ψfinal]. (15)

According to the definition (1), specialized to the 3D components, the metric tensors of a given configuration ψfinal

and of a modified one Λψfinal do coincide, but the amplitude, in principle, is changed, given that the symmetry
SO(N − 1, 1) that we are using is global, and not local. This happens unless the SO(N − 1, 1) symmetry from global
becomes local, at least approximately, at the dynamical level.
An extreme case of this complication can be seen easily from the following argument. Due to the presence of a global

symmetry, the associated superselection rule will tell us that configurations with different charges, albeit possessing
the same boundary metrics, will lead to zero amplitudes. Of course, a model that is invariant under local SO(N−1, 1)
at the level of the fundamental action would never have this problem. However, that class of models would require at
least a connection structure to be introduced from the very beginning, a thing that is clearly against the rules of the
game, since it would be a specification of a background geometric structure.
Of course, in the original proposal for the model, this puzzling connection with thermodynamics is related to the fact

that the metric, as treated here, is not really a thermodynamical variable, ideally uniquely specifying the macroscopic
state of the full set of invisible microscopic degrees of freedom: a microscopic equilibrium regime has to be established,
so that the specification of the spatial metric (and/or the extrinsic curvature) on the boundaries uniquely determines
the (possibly mixed) macroscopic state of the system, in such a way that the equations of motion for the metric tensor
can really be interpreted as a form of thermodynamics.
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φiinitial → (3)gab(initial)

φifinal → (3)gab(final)

〈gµν〉 = gµν [φinitial, φfinal]M

Σf

Σi

FIG. 1: A pictorial representation of the data assignment for the transition amplitudes.

III. EQUILIBRATION

The notion of equilibrium is deeply related to a notion of time, and hence it is a delicate subject to be discussed in
theories with reparametrization invariance, such as general gravitational theories and the class of models that we are
playing with. Therefore, a deparametrization of the theory in terms of a suitable definition of clock variable has to be
performed. We will assume that it is possible to single out a clock, such that it is possible to define the condition of
equilibrium as a condition of stationarity of macroscopic variables under the evolution of a proper Hamiltonian. We
will then assume that, instead of working with a Wheeler–De Witt equation, we will work with a proper Schrödinger
equation for the full density matrix of the deparametrized system,

i~
∂

∂t
ρ̂ = [ρ̂, Ĥ ], (16)

where t is the time associated to the clock and Ĥ is the resulting Hamiltonian.
The key to equilibration will be some form of effective decoherence of the reduced density matrix associated to the

system containing the composite metric tensor and the matter fields. The ideas that we are going to discuss here go
along the line of the attempts made to establish thermalization and the rise of the canonical ensemble from a detailed
derivation from the principles of quantum mechanics [47–49].
In order to highlight the line of reasoning in a clear way, we will use tensorial notation. To fix the notation, given a

basis of a Hilbert space labeled by a certain set of indices i, instead of working with the density matrix as an operator,
we will use its matrix coefficients as follows:

ρ̂ =
∑

i,j

ρij |i〉〈j|; ρij = 〈i|ρ̂|j〉. (17)

The full Hilbert space will be decomposed in the tensor product of three Hilbert spaces,

Htot = Hmicro ⊗ Hgrav ⊗ Hmatter, (18)

where Hmicro is associated to the invisible microscopic configurations (for which we will use upper case latin indices
A,B,C), Hgrav is associated to the degrees of freedom giving the metric (for which we will use greek indices α, β, γ),
and, finally, Hmatter is associated to the matter degrees of freedom used to probe geometry (for which we will use
latin indices i, j, ...). 3 We now proceed and trace away the microscopic degrees of freedom of our system:

ρ̃αiβj = ρAαi
Bβjδ

B
A . (21)

3 Given the full density matrix for the full tensor product of the two systems, A and B, the reduced density matrices are:

ρab (A) = ρaibjδ
j
i ; ρij(B) = ρaibjδ

b
a. (19)

We then parametrize the full density matrix as follows:

ρaibj = ρab (A)ρij (B) + ρaibj(ent), (20)
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The equation of motion for the reduced density matrix is easily obtained from the fundamental Schrödinger equation4:

i~
∂

∂t
ρ̃αiβj = [Heff , ρ̃]

αi
βj + i~Ξαi

βj, (22)

where

(Heff)
αi
βj = HAαi

Cβjρ
C
A(micro) (23)

is a (time dependent) effective Hamiltonian including the direct effects of the microscopic degrees of freedom on the dy-
namics (the one appearing in a renormalization group transformation of the Hamiltonian after a block transformation,
for instance), and

i~Ξαi
βj = [H, ρ(ent)]Aαi

Aβj (24)

is a (time dependent) term that describes the loss of coherence due to the tracing over the microscopic degrees of
freedom.
One can further decompose ρ̃ into the gravity and matter subspaces, working along the same lines. Let us use

the simplifying assumption that matter fields represent small disturbances on the system, and that the entanglement
between gravitational degrees of freedom and matter degrees of freedom is negligible. The effective equation for
gravitational the degrees of freedom is, of course,

i~
∂

∂t
ραβ(grav) = [Heff(grav), ρ(grav)]

α
β + i~Ξα

β (grav), (25)

while the one for matter fields is:

i~
∂

∂t
ρij(matter) = [Heff(matter), ρ(grav)]ij + i~Ξi

j(matter). (26)

As expected, decoherence is appearing in both gravity and matter sectors. However, the strength of the decoherence
effects might be different in the two cases, since it ultimately depends on the coupling with the microscopic degrees
of freedom, to which matter degrees of freedom are decoupled, as we have assumed5.
In particular, in order to promote the metric degrees of freedom to thermodynamic degrees of freedom, even in

a regime where semiclassical gravity applies (and decoherence in quantum matter fields is negligible), we need that
Ξ(grav) has a large effect on the matrix ρ(grav), while decoherence on the matter sector should act more weakly. This
is reasonable in a scenario like pregeometry.
All this derivation is totally general, and it is at this point that we need to discuss equilibration. Equation (25) has

not exactly the form of a Liouville equation, given the presence of the term generated from the entanglement with
the microscopic degrees of freedom. If we move to an interaction representation

ρ̂int(grav) = Û
†
eff ρ̂(grav)Ûeff , Ûeff = Texp

(

− i

~

∫

dtĤeff(grav)

)

, (27)

the equation of motion reads:

∂

∂t
ρ̂int(grav) = Ξ̂int(grav), (28)

and its solution is evident, at least formally (given that the source term is actually not independent from the reduced

density matrix). Just to fix the ideas, if we can consider Ξ̂int(grav) essentially as a random noise in a sort of
Markovian approximation of the full dynamics, we might expect that the latter approaches an asymptotic equilibrium
configuration, ρ̂0(grav):

ρ̂int(grav) = ρ̂int(grav)(t = 0) +

∫ t

dt′Ξ̂int(grav) → ρ̂0(grav)(t), (29)

where ρ(ent) encodes the entanglement between the two subsystems. It follows immediately that this matrix is traceless in both pairs
of indices.

4 We do not write it in the form of a Lindblad equation [50] in order to make more evident the contributions coming from the entanglement
terms with the microscopic degrees of freedom.

5 Obviously, decoupling does not imply absence of entanglement.



8

where this last equation has to be intended in a coarse grained sense, i.e. that the late time evolution of the density
matrix mimics the equilibrium one only for a certain subclass of observables. In order to be specific about the time
scales and the kind of observables that have to be considered, a detailed analysis of the dynamics is unavoidable. It
is not unreasonable to expect that the equilibration time has to be of the order of the Planck time, for gravity.
Whether equilibration takes place or not strongly depends on the underlying dynamics, which influences also the

kind of information about the initial state that is lost and the one that is preserved. Most significantly, if we want
that the equilibration preserves the initial assignment of the spatial metric tensor (and, analogously, for the extrinsic
curvature), we need

∆gij = ∆teq
∂gij

∂t
=

∂

∂t
Tr (ρ̂(grav)ĝij) = ∆teq

[

Tr
(

Ξ̂(grav)ĝij

)

+Tr

(

ρ̂(grav)
∂

∂t
ĝij

)]

≈ 0, (30)

a first family of constraints imposed upon the microscopic dynamics, ensuring that the evolution of the metric tensor
is significant only for macroscopic processes, seen as a sequence of infinitesimal transformations between equilibrium
states, as it should be. It is only when this condition is met that the metric can be treated as a true thermodynamic
variable, given that it would (at least partially) specify the equilibrium density matrix at fixed macroscopic conditions.
To complete the plan, one has to show how many fields, besides the metric (and the extrinsic curvature), are needed
to completely specify the equilibrium state.
It is interesting to remark that decoherence is advocated, here, not necessarily to obtain a semiclassical limit,

but rather an equilibrium configuration, and in this we slightly depart from previous considerations [13–18]: the
semiclassical limit might require an additional step. Notice also that deviations from equilibrium thermodynamics
(i.e. the balance between the various terms entering a Clausius-like relation) originated by incomplete equilibration
are different, in principle, from the non equilibrium term associated to the lack of Killing vector fields as discussed at
the beginning, and might be thought as a significant running of the collective index k in the regions of integration for
(11).
This very general discussion already shows that, in order to provide a convincing explanation of the thermodynamic

behavior of gravity in a scenario where gravity is emergent, we have to compute much more than the effective action
of the metric as a composite operator. In fact, one should prove a form of H-theorem, which would select a preferred
class of density matrices as equilibrium states, parametrized by the metric and derived quantities. This is far from
obvious and exceeds the limits of the present discussion.
Establishing such a theorem might be crucial in the completion of the program as it should also provide a microscopic

interpretation of the generalized second law. Let us consider the von Neumann entropy of the ρ̃ density matrix,
neglecting possible matter/gravity entanglement terms6. If we define the von Neumann entropy of the macroscopic
modes (metric and matter fields) as

Stot = S(ρ̃) = −Tr
[

log(ˆ̃ρ)ˆ̃ρ
]

= S(ρ̂(grav)) + S(ρ̂(matter)), (31)

then its time derivative

∂

∂t
Stot = −Tr

(

[log ρ̃+ 1]
∂

∂t
(ρ̂(grav)⊗ ρ̂(matter))

)

= −Tr
(

(log ρ̃)Ξ̂
)

(32)

involves explicitly the entanglement operator Ξ̂ (introduced in (24)) encoding the effect of the microscopic degrees of
freedom that have been traced away. An H-theorem can be established if it is possible to argue that the RHS of the
last equation is non-negative, leading then to

∂

∂t
(S(ρ̂(grav)) + S(ρ̂(matter))) ≥ 0. (33)

This is not yet the generalized second law, because while we might have argued that the metric controls directly
ρ̂(grav) and hence Sgrav, we have not proven that a local version of the von Neumann entropy density flow is given
by the integrated version of the equations of motion of the metric coupled to the conserved stress energy tensor, and
so that the sum of entropy associated to event horizons and the entropy of matter field in the exterior region is a
nondecreasing function of time. This is another step that requires further work, but these preliminary considerations
are encouraging.

6 These can be included, but do not change the discussion, if not for the addition of more terms.
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Consider now the case in which the metric is perturbed by the presence of some sources (see also [51] for a similar
analysis). The system responds by its density matrix, and hence the metric gets perturbed gij → gij + hij . Then, at
first order in δρ

δS = −δTr (ρ log ρ) = −Tr (log(ρ0)δρ) . (34)

Without loss of generality,

ρ0 = exp(−O0), (35)

where O0 is a suitable operator. Then

δρ0 = −ρ0
∫

d3x
δO0

δgij(x)
δgij(x); δS =

∫

d3x

〈

O0
δO0

δgij(x)

〉

δgij(x). (36)

The tensor density

S
ij =

〈

O0
δO0

δgij(x)

〉

(37)

plays the role of thermodynamically conjugate variable to the metric tensor, and contains, indeed, the information
about the macroscopic statistical state, as it is specified in ρ0 (or O0). The condition of equilibrium coming from a
maximum entropy principle is

S
ij = 0, (38)

which should imply, for self-consistency, that along a physical trajectory the equations of motion of gravity are satisfied
as a consequence of equilibrium/maximization of an entropy function, with the appropriate boundary conditions. The
second variation of the operator O,

T
ijhk(x, y) =

δSij(x)

δghk(y)
, (39)

is a bi-tensor that will determine the amplitudes of fluctuations of the metric tensor, and will be useful to discover
further details of the microscopic theory, once a framework to include fluctuations is consistently developed (see, for
instance, [52]).

IV. DISCUSSION AND CONCLUSIONS

Equilibration and thermalization are concepts that are witnessing a revived interest, in recent years. In particular,
the assumptions and requirements at their foundations are reconsidered in light of the necessity of solid foundations
for statistical mechanics and thermodynamics, particularly for quantum systems. The transition from quantum to
classical gravity is just another example to which these investigations might be applied.
In extreme summary, the lesson that we can get from the example discussed in this paper is the following. Assume

that we have a microscopic model for gravity, such that the metric tensor can be seen as a composite operator. Assume
also that it is possible to prove that the metric tensor possesses a diffeo-invariant quantum effective action. Then it
is possible to rewrite the quantum equations of motion in thermodynamical terms, possibly including nonequilibrium
terms. However, this is possible even without explicitly requiring anything about a semiclassical limit: the quantum
fluctuations of the metric might still be large (however, there might be conditions on the size of the curvature).
Notice that the construction makes reference only to the possibility to write the equations of motion in terms

of relations among vector valued differential forms, naturally adapted to describe the flux of energy and curvature
across boundaries of domains of spacetime. Furthermore, we need that diffeo-invariance is preserved, so that Bianchi
identities apply to the various tensors needed. In particular, it is interesting to understand whether a discrete setting
like quantum Regge calculus (or spinfoams, coming from a different perspective) reproduces, in a coarse grained
sense, the same property for the quantum effective action. Recent discussions [53, 54] provide encouraging hints in
this direction, even though one should not be too surprised that discretized versions of gravitational theories might
already be informed of the boundary of a boundary principle, at the heart of the thermodynamic reasoning that is
commonly considered.
In one way or another, however, this shows that the crucial ingredient in understanding gravity is not just the

computation of an appropriate effective action, but also the understanding of the onset of the semiclassical limit in
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terms of an equilibration process, in which the metric tensor essentially becomes the only macroscopic parameter
controlling the full density matrix of the microscopic degrees of freedom, i.e. a thermodynamic state function in the
technical sense. In order to do that one has to prove an H-theorem, in some form, which would lead to a class of
distinguished equilibrium density matrices. Alternatively, if the construction holds also for discrete models, at least
in a coarse grained sense, then the continuum limit might already be associated to an equilibration of the density
matrix, which would be controlled just by the universality class of the phase transition associated to the continuum
limit.
This procedure is also strongly related to the interpretation of the entropy associated to the gravitational field, as

it emerges in these models. This entropy, provided that the equilibration is reached, is associated to the microscopic
degrees of freedom which are leading to the macroscopic metric tensor. It would be a form of entanglement entropy,
but it will not be obviously related to the operation of tracing over degrees of freedom which are associated to causally
disconnected regions of spacetime, as it has often been advocated in the past (see [8] for a very recent discussion).
Rather, it is associated to space itself (or spacetime in a covariant formalism) when it is seen as a subsystem, a natural
perspective in an emergent gravity scenario.
In concluding this brief discussion on the problem of gravity and thermodynamics, it is interesting to confront

these ideas to a different point of view which is arising in a different proposal for the realization of gravity as an
emergent collective phenomenon. In particular, we want to argue that equilibration is not necessarily the only path
to be followed.
Group field theories and tensor models [55, 56] are a class of models designed to generate combinatorially the

path integral for the gravitational field in terms of the Feynman expansion of the generating functional of certain
quantum/statistical systems. In these models, each Feynman diagram can be associated to a (simplicial) complex,
i.e. a piecewise flat manifold of given dimension, eventually with further data associated to the various structures
characterizing it. Ideally, the amplitude of each of these Feynman diagrams has to be associated to the exponential of
the corresponding classical gravitational action appropriately discretized on the given complex with the given data.
These models start from discrete building blocks. Hence, to recover GR the continuum and semiclassical limit has

to be properly discussed. The continuum limit has been identified with phase transition in the GFT/tensor model
partition function. However, no conclusive result on the appearance of a meaningful semiclassical limit is available.
A partial analysis, presented in [57] suggests that, if we consider only global information as the total volume of

a compact spacelike slice (e.g. a scale factor), its expectation value, its dynamics and the associated density matrix
(even though the latter was represented by a distribution function on the space of graphs, rather than a proper density
matrix) for the microscopic and macroscopic degrees of freedom should depend only on the way in which the phase
transition is approached, i.e. on its universality class. While this is certainly an attractive alternative to equilibration
as it is considered here, research in this direction is still in progress, in particular in order to establish a connection
with horizon thermodynamics, that requires a local reasoning that is so far not understood. Nonetheless we can say
that the analysis of the fluctuations of the metric tensor around its expectation value, and their dynamics, can shed
new light on the problem of emergent gravity and might be used to discriminate between microscopic models, even
in a cosmological setting [58].
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