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Abstract
Conversions and semi-annihilations of dark matter (DM) particles in addition to the standard DM

annihilations are considered in a three-component DM system. We find that the relic abundance of

DM can be very sensitive to these non-standard DM annihilation processes, which has been recently

found for two-component DM systems. To consider a concrete model of a three-component DM

system, we extend the radiative seesaw model of Ma by adding a Majorana fermion χ and a

real scalar boson φ, to obtain a Z2 × Z ′
2 DM stabilizing symmetry, where we assume that the

DM particles are the inert Higgs boson, χ and φ. It is shown how the allowed parameter space,

obtained previously in the absence of χ and φ, changes. The semi-annihilation process in this model

produces monochromatic neutrinos. The observation rate of these monochromatic neutrinos from

the Sun at IceCube is estimated. Observations of high energy monochromatic neutrinos from the

Sun may indicate a multi-component DM system.
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I. INTRODUCTION

Recent astrophysical observations [1–3] have made it clear that most of the energy of the

universe consists of dark energy and cold dark matter (DM), and their portions are very

well fixed by these observations. While the origin of dark energy might be the cosmological

constant of Einstein, the origin of cold DM cannot be found within the framework of the

standard model (SM) of elementary particles. Moreover, we do not know very much about

the detailed features of DM at present, even if the origin of DM should be elementary

particles. Currently, many experiments are undertaken or planned, and it is widely believed

that the existence of DM will be independently confirmed in the near future (see, for instance,

[4–6]).

A particle DM candidate can be made stable by an unbroken symmetry. The simplest

possibility of such a symmetry is a parity, Z2. Whatever the origin of the Z2 is, the lightest

Z2 odd particle can be a DM candidate if it is a neutral, weakly interacting and massive

particle (WIMP) (see [5] for a review). There is a variety of origins of the Z2. R parity

in the minimal supersymmetric standard model (MSSM), which is introduced to forbid fast

proton decay, is a well-known example (see [4] for a review). In this paper we consider a

universe consisting of stable multi DM particles [7]–[28]. A multi-component DM system can

be realized if the DM stabilizing symmetry is larger than Z2: ZN (N ≥ 4) or a product of

two or more Z2’s can yield a multi-component DM system.1 In a supersymmetric extension

of the radiative seesaw model of [31], for instance, a Z2 × Z ′
2 symmetry appears, providing

various concrete models of multi-component DM systems [24]–[28].

In a multi-component DM system, there can be various DM annihilation processes that

are different from the standard DM annihilation process [32]–[37], DM DM → XX , where

X is a generic SM particle in thermal equilibrium. Even in one-component DM systems,

the non-standard annihilation process, the co-annihilation of DM and a nearly degenerate

unstable particle [38], can play a crucial role in the MSSM [39]. The importance of non-

standard annihilation processes such as DM conversion [16, 21, 22] and semi-annihilation of

DM [16, 22] in two-component DM systems for the temperature evolution of the number

density of DM has been recently reported.

If (Z2)
ℓ is unbroken, there can exist at least K = ℓ stable DM particles. In a kinematically

fortunate situation, 2ℓ − 1 stable DM particles can exist; for ℓ = 2 there can be maximally

K = 3 stable DM particles. Any one-component DM model can easily be extended to a

multi-component DM system. The allowed parameter space of a one-component DM model

can considerably change, as it has been recently found in [28] (see also [9]), even using

a crude approximation of a DM conversion process in a supersymmetric extension of the

radiative seesaw model.

In Sect. II, after we will have outlined a derivation of the coupled Boltzmann equations

1 Z3 allows only one-component DM systems. Refs. [29, 30] discuss models with Z3.
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that are appropriate for our purpose, we will consider fictive two- and three-component DM

systems and analyze the effects of non-standard annihilation processes of DM. We will also

address the question, within the framework of thermally produced DM [32], whether one

can obtain a large boost factor in a three-component DM system that is needed to explain

[40] the positron excess observed by recent experiments [41]–[44]. We will find that in a

fortunate situation a boost factor of O(10) can be obtained, which can be combined with

the known mechanisms [45]–[50], to obtain a desired enhancement effect.

In Sect. III we will extend the radiative seesaw model of [31] by adding an extra Majorana

fermion χ and an extra real scalar boson φ so as to obtain Z2 × Z ′
2 as a DM stabilizing

symmetry. Apart from the presence of φ, the Higgs sector is identical to that of [51–53].

This model shall show how the allowed parameter space, which is obtained in [51–53] under

the assumption that the lightest inert Higgs boson is DM, can change. Indirect detection of

DM, in particular of neutrinos from the annihilation of the captured DM in the Sun [54]–

[63] are also discussed. We will solve the coupled evolution equations of the DM numbers

in the Sun, which describe approaching equilibrium between the capture and annihilation

(including conversion and semi-annihilation) rates of DM, and estimate the observation rates

of neutrinos. Due to semi-annihilations of DM, monochromatic neutrinos are radiated from

the Sun. Our conclusions are given in Sect. IV.

II. BOLTZMANN EQUATION AND TWO- AND THREE-COMPONENT DM

SYSTEMS

A. Boltzmann equation

Here we would like to outline a derivation of the Boltzmann equation that we are going to

apply in the next section. We will do it for completeness, although the following discussion

partially parallels that of [16] (see also [21]). We start by assuming the existence of K stable

DM particles χi with mass mi. None of the DM particles have the same quantum number

with respect to the DM stabilizing symmetry. All the other particles are supposed to be in

thermal equilibrium. Then we restrict ourselves to three types of processes which enter the

Boltzmann equation:

χi χi ↔ Xi X
′
i , (1)

χi χi ↔ χj χj (DM conversion) , (2)

χi χj ↔ χk Xijk (DM semi-annihilation) , (3)

where the extension to include coannihilations and annihilation processes like χi + χj ↔
χk + χl is straight forward. See Fig. 1 for a depiction of DM conversion and DM semi-

annihilation. We denote the phase space density of χi by fi(Ei, t) and its number density by

ni(t) = (g/(2π)3)
∫

d3pifi(Ei, t), where g stands for the internal degrees of freedom. Then
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FIG. 1: Dark matter conversion (left) and semi-annihilation (right).

the density ni satisfies the Boltzmann equation (see, e.g., [35]), which we will not spell out

here. Instead, we make the replacement

t = 0.301g−1/2
∗ MPLT

−2 (4)

during the radiation-dominated epoch, where t is the time of the comoving frame, g∗ is the

total number of effective degrees of freedom, T and MPL are the temperature and the Planck

mass, respectively. Further, we use the approximation

fi(Ei, t)

f̄i(Ei, t)
≃ ni(t)

n̄i(t)
, (5)

where f̄i(Ei, t) ≃ exp(−Ei/T ) and n̄i = (g/(2π)3)
∫

d3pif̄i(Ei, t) are the values in equilib-

rium, and we ignore the chemical potential. Then the collision terms in the Boltzmann

equation can be written as

−(PSI)|M(ii;XiX
′
i)|2

f̄if̄i
n̄in̄i

(nini − n̄in̄i)

−
∑

i>j

(PSI) |M(ii; jj)|2 f̄if̄i
n̄in̄i

(

nini −
njnj

n̄jn̄j

n̄in̄i

)

+
∑

j>i

(PSI) |M(jj; ii)|2 f̄j f̄j
n̄jn̄j

(

njnj −
nini

n̄in̄i
n̄jn̄j

)

−
∑

j,k

(PSI) |M(ij; kXijk)|2
f̄if̄j
n̄in̄j

(

ninj −
nk

n̄k
n̄in̄j

)

+
∑

j,k

(PSI) |M(jk; iXjki)|2
f̄j f̄k
n̄jn̄k

(

njnk −
ni

n̄i
n̄jn̄k

)

, (6)

where PSI stands for ”phase space integral of (2π)4δ4(momenta)×”, M is the matrix element

of the corresponding process, and we have assumed that

mi ≥ mj for i > j and mXi
, mX′

i
, mXijk

<< ml for all i, j, k, l . (7)
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Using the notion of the thermally-averaged cross section,

< σ(ii;XiX
′
i)v > =

1

n̄in̄i

PSI|M(ii;XiX
′
i)|2f̄if̄i , (8)

and the dimensionless inverse temperature x = µ/T , we obtain for the number per comoving

volume Yi = ni/s:

dYi

dx
= −0.264 g1/2∗

[

µMPL

x2

]

{

<σ(ii;XiX
′
i)v>

(

YiYi − ȲiȲi

)

+
∑

i>j

<σ(ii; jj)v>

(

YiYi −
YjYj

ȲjȲj
ȲiȲi

)

−
∑

j>i

<σ(jj; ii)v>
(

YjYj −
YiYi

ȲiȲi
ȲjȲj

)

+
∑

j,k

<σ(ij; kXijk)v>
(

YiYj −
Yk

Ȳk

ȲiȲj

)

−
∑

j,k

<σ(jk; iXjki)v>
(

YjYk −
Yi

Ȳi

ȲjȲk

)

}

, (9)

where 1/µ = (
∑

i m
−1
i ) is the reduced mass of the system. To arrive at Eq. (9) we have used:

s = (2π2/45)g∗T
3 , H = 1.66 × g

1/2
∗ T 2/MPL, where s is the entropy density, and H is the

Hubble constant.

We will integrate this system of coupled non-linear differential equations numerically.

Before we apply the Boltzmann equation (9) to a concrete DM model, we discuss below

the cases of K = 2 and 3 simply assuming fictitious values of the thermally-averaged cross

sections and DM masses mi.

B. Two-component DM system

Before we come to one of our main interests, a three-component DM system, we first

consider the K = 2 case with a Z2 × Z ′
2 symmetry. In this case, there are three different

thermally-averaged cross sections. No semi-annihilation (3) is allowed due to Z2 × Z ′
2.
2 We

further assume that there are only s-wave contributions to < σv > and Xi (i = 1, 2) are

massless while m1 ≥ m2:

<σ(11;X1X
′
1)v> = σ0,1 × 10−9 GeV−2 , <σ(22;X2X

′
2)v>= σ0,2 × 10−9 GeV−2 ,

<σ(11; 22)v> = σ0,12 × 10−9 GeV−2 . (10)

Eq. (9) then becomes

dY1

dx
= −0.264 g1/2∗

[

µMPL

x2

]

{

<σ(11;X1X
′
1)v>

(

Y1Y1 − Ȳ1Ȳ1

)

+ <σ(11; 22)v>
(

Y1Y1 −
Y2Y2

Ȳ2Ȳ2
Ȳ1Ȳ1

)}

, (11)

2 In Refs. [16, 22], the Z4 case is discussed in detail. In this case there exist two independent DM particles,

because due to CP invariance the anti-particle is not an independent degree of freedom in the Boltzmann

equation. Semi-annihilation is allowed in this case.

5



0 10 20 30 40 50 60 70 80
x

0.01

0.1

1

10

100

Ω
χ h

2

χ1

χ2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ0,12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ω
T
 h

2

FIG. 2: Left: The relic abundance Ωχ1
h2(x) (black) and Ωχ2

h2(x) (blue) as a function of x = µ/T =

[(m−1

1
+m−1

2
)T ]−1 with σ0,1 = 0.1 , σ0,2 = 6 , σ0,12 = 4.4(0) (solid (dashed)) , m1 = 200 GeV, m2 = 160

GeV and g∗ = 90. Right: The total relic abundance ΩTh
2 as a function of σ0,12 which parametrizes the size

of the conversion χ1χ1 → χ2χ2.

dY2

dx
= −0.264 g1/2∗

[

µMPL

x2

]

{

<σ(22;X2X
′
2)v>

(

Y2Y2 − Ȳ2Ȳ2

)

− <σ(11; 22)v>
(

Y1Y1 −
Y2Y2

Ȳ2Ȳ2

Ȳ1Ȳ1

)}

. (12)

We consider the case in which the size of the DM conversion and the standard annihila-

tion are of similar order (see also [21]). In Fig. 2 (left) we show the evolution of the fraction

of critical densities, Ωχ1
h2(x) (black) and Ωχ2

h2(x) (blue), contributed by χ1 and χ2, respec-

tively, where we have used σ0,1 = 0.1 , σ0,2 = 6 , σ0,12 = 4.4(0) (solid (dashed)) , m1 = 200

GeV, m2 = 160 GeV and g∗ = 90, and x = µ/T = [(m−1
1 +m−1

2 )T ]−1. As we see from Fig. 2

(left), at σ0,12 = 0 (i.e., no DM conversion (2)), the density of χ1 decouples from the equi-

librium value for smaller x than the density of χ2. This is because we have chosen a small

value for σ0,1 and a large value for σ0,2. At σ0,12 = 0, Ωχ1
h2 ≈ 1.99, while Ωχ2

h2 ≈ 0.04.

With increasing value of σ0,12 (which parametrizes the size of the DM conversion (2)), Ωχ1
h2

decreases, while Ωχ2
h2 increases. Around σ0,12 = 3.9, this order changes, i.e., Ωχ1

< Ωχ2
. At

σ0,12 = 4.4, we obtain the total relic abundance ΩTh
2 = Ωχ1

h2 + Ωχ2
h2 = 0.112, in accord

with the WMAP observation ΩTh
2 = 0.1126± 0.0036 [3]. In Fig. 2 (right) we plot ΩTh

2 as

a function of σ0,12. We see that the DM conversion process plays an important role, as it

has been also found in [11, 16, 21, 22].

C. Three-component DM system

As we have noticed before, the K = 3 case is possible even for a Z2 × Z ′
2 symmetry if

the decay of χi is kinematically forbidden. In this case there are nine different thermally-

averaged cross sections, if we assume that m1 ≥ m2 ≥ m3 and m2 +m3 > m1:

<σ(ii;XiX
′
i)v> = σ0,i × 10−9 GeV−2 , <σ(11; 22)v>= σ0,12 × 10−9 GeV−2 ,

6



<σ(11; 33)v> = σ0,13 × 10−9 GeV−2 , <σ(22; 33)v>= σ0,23 × 10−9 GeV−2 ,

<σ(12; 3X123)v> = σ0,123 × 10−9 GeV−2 , <σ(23; 1X231)v>= σ0,231 × 10−9 GeV−2 ,

<σ(31; 2X312)v> = σ0,312 × 10−9 GeV−2 . (13)

Eq. (9) then becomes

dY1

dx
= −0.264 g1/2∗

[

µMPL

x2

]

{

<σ(11;X1X
′
1)v>

(

Y1Y1 − Ȳ1Ȳ1

)

+ <σ(11; 22)v>
(

Y1Y1 −
Y2Y2

Ȳ2Ȳ2

Ȳ1Ȳ1

)

+ <σ(11; 33)v>
(

Y1Y1 −
Y3Y3

Ȳ3Ȳ3

Ȳ1Ȳ1

)

+ <σ(12; 3X123)v>
(

Y1Y2 −
Y3

Ȳ3

Ȳ1Ȳ2

)

+ <σ(31; 2X312)v>
(

Y1Y3 −
Y2

Ȳ2

Ȳ1Ȳ3

)

− <σ(23; 1X231)v>
(

Y3Y2 −
Y1

Ȳ1

Ȳ3Ȳ2

)}

, (14)

dY2

dx
= −0.264 g1/2∗

[

µMPL

x2

]

{

<σ(22;X2X
′
2)v>

(

Y2Y2 − Ȳ2Ȳ2

)

+ <σ(22; 33)v>
(

Y2Y2 −
Y3Y3

Ȳ3Ȳ3
Ȳ2Ȳ2

)

+ <σ(23; 1X231)v>
(

Y2Y3 −
Y1

Ȳ1
Ȳ2Ȳ3

)

+ <σ(12; 3X123)v>
(

Y1Y2 −
Y3

Ȳ3
Ȳ1Ȳ2

)

− <σ(31; 2X312)v>
(

Y1Y3 −
Y2

Ȳ2
Ȳ1Ȳ3

)

− <σ(11; 22)v>
(

Y1Y1 −
Y2Y2

Ȳ2Ȳ2
Ȳ1Ȳ1

)}

, (15)

dY3

dx
= −0.264 g1/2∗

[

µMPL

x2

]

{

<σ(33;X3X
′
3)v>

(

Y3Y3 − Ȳ3Ȳ3

)

+ <σ(23; 1X231)v>
(

Y2Y3 −
Y1

Ȳ1

Ȳ2Ȳ3

)

+ <σ(31; 2X312)v>
(

Y1Y3 −
Y2

Ȳ2

Ȳ1Ȳ3

)

− <σ(12; 3X123)v>
(

Y1Y2 −
Y3

Ȳ3

Ȳ1Ȳ2

)

− <σ(11; 33)v>
(

Y1Y1 −
Y3Y3

Ȳ3Ȳ3

Ȳ1Ȳ1

)

− <σ(22; 33)v>
(

Y2Y2 −
Y3Y3

Ȳ3Ȳ3
Ȳ2Ȳ2

) }

, (16)

where 1/µ = 1/m1 + 1/m2 + 1/m3.

As a representative example we consider the following set of input values of the parame-

ters:

m1 = 200 GeV , m2 = 160 GeV , m3 = 140 GeV ,

σ0,1 = 0.1 , σ0,2 = 2 , σ0,3 = 6 . (17)

First we show the evolution of Ωχi
h2(x) in Fig. 3 (left) for σ0,12 = σ0,13 = σ0,23 = σ0,123 =

σ0,312 = σ0,231 = 0, which corresponds to the situation without the non-standard annihilation

processes. Since m1 > m2, m3 and the cross section σ(11;X1X1) is small in this example,

the relic abundance of χ1 is large compared with that of χ2 and χ3. This changes if we

switch on the non-standard annihilation processes. This is shown in Fig. 3 (right), where

we have used σ0,12 = σ0,13 = σ0,23 = 5.2, while σ0,123 = σ0,312 = σ0,231 = 0 to see the effects

7
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FIG. 3: The relic abundance Ωχ1
h2(x) (black), Ωχ2

h2(x) (blue) and Ωχ3
h2(x) (red) as a function of

x = µ/T = [(m−1

1
+m−1

2
+m−1

3
)T ]−1, where the input parameters are given in Eq. (17). Left: Without the

non-standard annihilation processes (2) and (3). Right: σ0,12 = σ0,13 = σ0,23 = 5.2, while σ0,123 = σ0,312 =

σ0,231 = 0 to see the effects of χiχi ↔ χjχj type processes (3).

of χiχi ↔ χjχj type processes (DM conversion). As expected, the relic abundances of χ1

and χ2 decrease and drop below 0.1, while that of χ3 does not change very much.

Fig. 4 shows the evolution of Ωχi
h2(x) for σ0,12 = σ0,13 = σ0,23 = 0, while σ0,123 = σ0,312 =

σ0,231 = 5.1 to see the effects of χiχj ↔ χkXijk type processes (semi-annihilation). It is

interesting to observe that the order of the relic abundances changes and Ωχ1
h2(x) first

decreases as usual, but then starts to increase towards the freeze-out value. So, the effects

of χiχi ↔ χjχj type and χiχj ↔ χkXijk type processes are different. In the examples

above, σ0,ij and σ0,ijk are chosen such that the total abundance ΩTh
2 becomes about the

realistic value 0.112. In Fig. 5 we show the total abundance ΩTh
2 as a function of σ0,ij

(solid) and σ0,ijk (dashed), where σ0,ij parameterizes the size of the DM conversion (2) and

σ0,ijk parameterizes the size of the semi-annihilation (3). As we can see from Fig. 5, only

for small values of σ0,ij and σ0,ijk the effects on ΩTh
2 are different.

Next we would like to address the question whether one can obtain a boost factor in the

case of K = 3 within the framework of thermally produced DM,3 where as before we assume

that m1 ≥ m2 ≥ m3 and m2 +m3 > m1. Here we are interested in the situation that the

scales that enter into the Boltzmann equations (9) are not extremely different, because this

situation can easily be realized in many phenomenologically viable models. The parameter

space for the case K = 3 is large, and therefore, to simplify the situation, we assume that

only semi-annihilations (3) are present. We further assume that all the semi-annihilation

processes (3) produce the same SM model particle X , whose mass can be neglected. Then

the differential energy flux ΦX ofX produced from the DM semi-annihilations can be written

3 Non-standard freeze-out history of DM in the K = 2 component DM system has been considered in

[13, 19] and a large boost factor of O(1000) has been found.
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FIG. 4: The relic abundance Ωχ1
h2(x) (black), Ωχ2

h2(x) (blue) and Ωχ3
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σ0,12 = σ0,13 = σ0,23 = 0, while σ0,123 = σ0,312 = σ0,231 = 5.1 to see the effects of χiχj ↔ χkXijk type

processes (3).
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FIG. 5: The total relic abundance ΩTh
2 as a function of σ0,12 (solid) and σ0,123 (dashed). Except σ0,12

(DM conversion) and σ0,123 (semi-annihilation) the input parameters are given in Eq. (17).

as

dΦX

dEX
∝
∑

i<j

N ij
X ni,∞nj,∞ < σ(ij; kX)v > , (18)

where ni,∞ is the freeze-out value of ni, and N ij
X and EX stand for the number and the energy

of X in the process χiχj → χkX , respectively. Eq. (18) suggests the following definition of

the effective boost factor:

BFX =

∑

i<j Yi,∞Yj,∞ < σ(ij; kX)v >

Y 0
2,∞Y 0

2,∞ < σ(22;X)v >0
, (19)

where Yi,∞ is the freeze-out value of Yi. The quantities with the superscript 0 in the

denominator are the reference quantities. Here we use as reference the one-component

DM case with only the standard annihilation process χ2χ2 → XX , which means Y 0
2,∞ ≃

9



TABLE I: The effective boost factor BFX (19) for the symmetric case, i.e., σ0,123 = σ0,231 = σ0,312, with

m1 = 1000 GeV.

m2 m3 σ0,123 Ωχ1
h2 Ωχ2

h2 Ωχ3
h2 BFX

720 700 12.6 0.0433 0.0319 0.0372 1.6

940 700 417.0 0.0007 0.0007 0.1109 3.4

600 550 42.3 0.0431 0.0259 0.0439 5.1

840 550 7900 0.0001 0.0001 0.1117 5.7

(0.11/2.82× 108)(GeV/m2).
4 If one neglects the p-wave contributions to < σv >, one finds

σ0
0,2 = 2.03, 2.06, 2.09 for m2 = 500, 700, 900 GeV, respectively, where σ0

0,2 is defined as

< σ(22;X)v >0= σ0
0,2 × 10−9 GeV−2 ≃ 1.16 σ0

0,2 × 10−26 cm3/s (see Eq. (13)).

A large effective boost factor means large σ0,ijk. Since each semi-annihilation (3) produces

a DM particle, the cross section for the semi-annihilation can be larger than that for the

standard annihilation process (1). To get an idea on the size of < σ(ij; kX)v >, we first

consider the symmetric case, i.e., σ0,123 = σ0,231 = σ0,312. In Table I we give the effective

boost factor BFX for various values of σ0,123, m2 and m3 with the value of m1 fixed at

1000 GeV. These values are chosen such that the sum of the individual relic abundances is

consistent with ΩTh
2 = 0.1126± 0.0036. As we see from Table I, the effective boost factor

BFX becomes large if the mass difference m1−m3 is large and m2 is close to m1. But BFX

is at most of O(few), which would not be sufficient to explain the observed positron excess.

Next we consider the asymmetric case, i.e., σ0,123 6= σ0,231 6= σ0,312. The reason why we

can not obtain a large boost factor in the symmetric case is that, as we see from Table I,

Yi,∞ × Yj,∞ for i 6= j are small. Therefore, to suppress Ωχ3
h2 and the same time to increase

Ωχ1,2
h2, we consider the situation σ0,123 < σ0,231, σ0,312. In Table II we give some examples

of the asymmetric case, which show that it is in fact possible to obtain a boost factor BFX

of O(10).

III. A MODEL WITH THREE DARK MATTER PARTICLES

We extend the original radiative seesaw model of [31] so as to have an additional discrete

symmetry Z ′
2. This can be done by introducing a SM singlet Majorana fermion χ and a SM

singlet real inert scalar φ in addition to the inert Higgs doublet η which is present in the

original model. The matter content of the model with the corresponding quantum numbers

is given in Table III.

4 We use Y 0
2 (x∞ = 170) as Y 0

2,∞.
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TABLE II: The effective boost factor BFX (19) for the asymmetric case, i.e., σ0,123 6= σ0,231 6= σ0,312, with

m1 = 1000 GeV, m2 = 900 GeV and m3 = 550 GeV.

σ0,123 σ0,231 σ0,312 Ωχ1
h2 Ωχ2

h2 Ωχ3
h2 BFX

48.0 2000.0 48.4 0.0325 0.0007 0.0793 14.5

55.5 65.0 2000.0 0.0003 0.1118 0.0002 13.6

90.0 1000.0 100.3 0.0121 0.0011 0.0988 13.6

110.0 1000.0 125.3 0.0091 0.0010 0.1022 13.0

110.0 800.0 133.0 0.0080 0.0012 0.1032 12.3

110.0 600.0 145.2 0.0067 0.0015 0.1039 11.3

TABLE III: The matter content of the model and the corresponding quantum numbers. Z2 × Z ′
2
is the

unbroken discrete symmetry. The quarks are suppressed in the Table.

field SU(2)L U(1)Y Z2 Z ′
2

(νLi, li) 2 −1/2 + +

lci 1 1 + +

N c
i 1 0 − +

H = (H+,H0) 2 1/2 + +

η = (η+, η0) 2 1/2 − +

χ 1 0 + −
φ 1 0 − −

The Z2 × Z ′
2 invariant Yukawa couplings of the lepton sector are given by

LY = Y e
ijH

†Lil
c
j + Y ν

ikLiǫηN
c
k + Y χ

k χN
c
kφ+ h.c. , (20)

and the Majorana mass terms of the right-handed neutrinos N c
k (k = 1, 2, 3) and the singlet

fermion χ are5

LMaj =
1

2
MkN

c
kN

c
k +

1

2
Mχχ

2 + h.c. (21)

We may assume without loss of generality that the right handed neutrino mass matrix is

diagonal and real. As far as the light neutrino masses, which are generated radiatively, are

concerned, the last additional interaction term in Eq. (20) has no influence. So the neutrino

phenomenology is the same as in the original model. The most general form of the Z2 × Z ′
2

5 A similar model is considered in [11].
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invariant scalar potential can be written as

V = m2
1H

†H +m2
2η

†η +
1

2
m2

3φ
2

+
1

2
λ1(H

†H)2 +
1

2
λ2(η

†η)2 + λ3(H
†H)(η†η) + λ4(H

†η)(η†H)

+
1

2
λ5[(H

†η)2 + h.c.] +
1

4!
λ6φ

4 +
1

2
λ7(H

†H)φ2 +
1

2
λ8(η

†η)φ2 , (22)

from which we obtain the masses of the inert Higgs fields:

m2
η± = m2

2 + λ3v
2/2 (23)

m2
η0
R

= m2
2 + (λ3 + λ4 + λ5)v

2/2 = m2
2 + λLv

2/2 (24)

m2
η0
I
= m2

2 + (λ3 + λ4 − λ5)v
2/2 , (25)

m2
φ = m2

3 + λ7v
2/2 . (26)

Here, 〈H〉 = v/
√
2 is the Higgs VEV, and η0 = (η0R + iη0I )/

√
2. At this stage we have

assumed that

〈H〉 = v/
√
2, 〈η〉 = 〈φ〉 = 0 (27)

correspond to the absolute minimum. (The sufficient condition for the absolute minimum

of Eq. (22) is given below.) As we can see from Table III, the cold DM candidates are

N c
k , η

0
R, η

0
I , χ and φ, where η0R as dark matter in the original model has been discussed in

detail in [51–53]. To proceed, we assume that the mass relations

Mk >> mη± , mη0
I
> mη0

R
> mφ, mχ and mη0

R
< mφ +mχ (28)

are satisfied.6 These relations are chosen because we would like to meet the following

requirements:

1. µ → e γ

The constraint coming from µ → eγ is given by [64]

B(µ → eγ) =
3α

64π(GFm2
η±)

2

∣

∣

∣

∣

∣

∑

k

Y ν
µkY

ν
ekF2

(

M2
k

m2
η±

)∣

∣

∣

∣

∣

2

<∼ 2.4× 10−12 , (29)

F2(x) =
1

6(1− x)4
(1− 6x+ 3x2 + 2x3 − 6x2 ln x) ,

where the upper bound is taken from [65]. A similar, but slightly weaker bound for

τ → µ(e)γ given in [65] has to be satisfied, too. Since F2(x) ∼ 1/3x for x >> 1, while

1/12 < F2(x) < 1/6 for 0 < x < 1, the constraint can be readily satisfied if Mk << mη± or

Mk >> mη± .

6 The possibility mη0

I

< mη0

R

does not give any new feature of the model.
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2. gµ − 2

The extra contribution to the anomalous magnetic moment of the muon, aµ = (gµ − 2)/2,

is given by [64]

δaµ =
m2

µ

16π2m2
η±

∑

k

Y ν
µkY

ν
µkF2

(

M2
k

m2
η±

)

. (30)

If we assume that |∑k Y
ν
µkY

ν
µkF2

(

M2

k

m2

η±

)

| ≃ |∑k Y
ν
µkY

ν
ekF2

(

M2

k

m2

η±

)

|, then we obtain

|δaµ| ≃ 2.2× 10−5B(µ → eγ) <∼ 3.4× 10−11 (31)

if Eq. (29) is satisfied, where the upper bound is taken from [66]. So, the constraint from

aµ has no significant influence.

3. Stable and global minimum

The DM stabilizing symmetry Z2 remains unbroken if

m2
1 < 0 , m2

2 > 0 , m2
3 > 0 ,

λ1 , λ2 , λ6 > 0 , λ3 + λ4 − |λ5|, λ3 > −1

2
(λ1λ2)

1/2 ,

λ7 > −1

2
(λ1λ6/3)

1/2 , λ8 > −1

2
(λ2λ6/3)

1/2 (32)

are satisfied. These conditions are sufficient for Eq. (27) to correspond to the absolute

minimum. Since m2
η0
R
−m2

η0
I
= λ5v

2, a negative λ5 is consistent with Eq. (28).

4. Electroweak precision

The electroweak precision measurement requires [51, 66]

∆T ≃ 0.54

(

mη± −mη0
R

v

)(

mη± −mη0
I

v

)

= 0.02+0.11
−0.12 (33)

for mh = 115− 127 GeV. Therefore, |mη± −mη0
R
| , |mη± −mη0

I
| <∼ 100 GeV is sufficient to

meet the requirement.

Then, with the assumption of the above mass relations, we look at the radiative neutrino

mass matrix [31]

(Mν)ij =
∑

k

Y ν
ikY

ν
jkMk

16π2





m2
η0
R

m2
η0
R

−M2
k

ln
(mη0

R

Mk

)2

−
m2

η0
I

m2
η0
I

−M2
k

ln
(mη0

I

Mk

)2


 (34)

≃ −
∑

k

Y ν
ikY

ν
jk

16π2





m2
η0
R

Mk
ln
(mη0

R

Mk

)2

−
m2

η0
I

Mk
ln
(mη0

I

Mk

)2


 for mη0
R
, mη0

I
<< Mk .

Since (Mν)ij are of order 10−1 eV and m2
η0
R

− m2
η0
I

= λ5v
2, we need

∑

k Y
ν
ikY

ν
jk

<∼ O(10−9)

for |λ5| >∼ O(0.1). Note, however, that this does not automatically imply that
∑3

i,k |Y ν
ik|2 <∼

O(10−9), and in fact it could be much larger if we assume a specific flavor structure of Y ν
jk.

If there exists another source for the neutrino mass matrix, we have to add it to (34).
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A. Relic abundance of dark matter

Now we come to the relic abundance of DM. Under the assumption about the mass

relations (28) we have to consider the following annihilation processes:7

•η0R η0R ↔ SMs , • φ φ ↔ SMs (Standard annihilation) (35)

•η0R η0R ↔ φ φ , • χ χ ↔ φ φ (Conversion) (36)

•η0R χ ↔ φ νL , • χ φ ↔ η0R νL , • φ η0R ↔ χ νL (Semi-annihilation) (37)

N

Y χ Y ν

φ

χ

η0R

νL

N

Y χ

Y χ

χ

χ

φ

φ

FIG. 6: Semi-annihilation diagram (left) and conversion (right).

We have yet not specified the relative size of mχ and mφ. If χ is lighter than φ, the

conversion of χ into φ is kinematically forbidden and the semi-annihilation in Fig. 6 is the

only kinematically allowed annihilation for χ. So, we will consider below only the case

mχ > mφ. First we consider a benchmark set of the input parameter values:

mη0
R

= 200 GeV , mχ = 190 GeV , mφ = 180 GeV ,

mη± = mη0
I
= 210 GeV ,

mh = 125 GeV , M1 = M2 = M3 = 1000 GeV , (38)

λ3 = −0.065 , λ7 = 0.1 , λ8 = 0.1 , λL = −0.2 ,
3
∑

k=1

|Y χ
k |2 = 3(0.7)2 ,

3
∑

i,k=1

|Y ν
ik|2 = 9(0.01)2 .

With this choice of the parameter values we obtain

< σ(η0Rη
0
R; SMs)v > = 45.66− 38.21/x , < σ(φφ; SMs)v >= 5.93− 1.92/x ,

< σ(η0Rη
0
R;φφ)v > = 0.46 + 0.29/x , < σ(χχ;φφ)v >= 0 + 77.18/x , (39)

< σ(χη0R;φνL)v > = 0.02 + 0.01/x , < σ(η0Rφ;χνL)v >= 0.07 + 0.02/x ,

< σ(χφ; η0RνL)v > = 0.07 + 0.04/x

7 We neglect the coannihilations such as that of η0R with η0I and η± below.
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FIG. 7: Y χ dependence of the relic abundances, ΩTh
2 (dashed), Ωηh

2 (black), Ωχh
2 (blue), Ωφh

2 (red),

where Y χ controls the size of the semi-annihilation and conversion shown in Fig. 6. The input parameter

values are given in Eq. (38).

in units of 10−9 GeV−2, and

ΩTh
2 = 0.1094 , Ωηh

2 = 0.0062 , Ωχh
2 = 0.0511 , Ωφh

2 = 0.0521 , (40)

where x = (1/mη0
R
+ 1/mχ + 1/mφ)

−1/T = µ/T . As we see from Fig. 6, the size of the

semi-annihilation and conversion is controlled by Y χ
k . In Fig. 7 we show the Y χ depen-

dence of the individual abundances, where we have varied
∑

k |Y χ
k |2, and Y χ/Y χ

ref stands

for (
∑

k |Y χ
k |2/3(0.7))

1/2
. If Y χ/Y χ

ref << 1, the conversion of χ and the semi-annihilations

χ φ → η0R νL , χ η0R → φ νL become small, such that Ωχh
2 in particular increases.

h
λ7(λL)

φ(η0R)

φ(η0R)

q

q

h
φN

χ

χ

q

q

FIG. 8: Tree (left) and one-loop (right) level interactions with the quarks.

B. Imposing constraints

To be more realistic, we have to impose constraints from direct detection, collider exper-

iments, and perturbativity, |λi|, |Y ν
ij |, |Y χ

i | < 1, in addition to Eqs. (29)–(33), which we shall

15



0 100 200 300 400 500
mη0

R 
[GeV]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

λ L
 , 

λ 7

FIG. 9: The allowed regime in the λL(λ7)−mη0

R

plane for (δ1 = 10 , δ2 = 10) GeV withmχ = mη0

R

−10 GeV,

mφ = mη0

R

− 20 GeV and Mk = 1000 GeV. The green and red points are for λL and λ7, respectively.

do next. φ and η0R have tree-level interactions to the quarks which are shown in Fig. 8.8 In

the following discussions we ignore the one-loop contributions such as the right diagram in

Fig. 8.9 The spin-independent elastic cross section off the nucleon σ(φ(η0R)) is given by [51]

σ(φ(η0R)) =
1

4π





λ7(L)f̂mN

mφ(η0
R
)m

2
h





2



mNmφ(η0
R
)

mN +mφ(η0
R
)





2

, (41)

where mN is the nucleon mass, and f̂ ∼ 0.3 stems from the nucleonic matrix element [72].

The cross sections have to satisfy
(

σ(φ)

σUB(mφ)

)(

Ωφh
2

0.112

)

+





σ(η0R)

σUB(mη0
R
)





(

Ωηh
2

0.112

)

<∼ 1 , (42)

where σUB(m) is the current experimental limit on the cross section for the DM mass m.

In the absence of χ and φ, the lower mass region 60 GeV <∼ mη0
R

<∼ 80 GeV is

consistent with all the experimental constraints [53].10 But the elastic cross section

σ(η0R) ≃ 7.9 × 10−45(λL/0.05)
2(60 GeV/mη0

R
)2 cm2 with λL

>∼ 0.05 in this mass range

may exceed the upper bound of the XENON100 result [73],11 7.0 × 10−45 cm2 for the

DM mass 50 GeV at 90 C.L. The higher mass region, i.e., mη0
R

>∼ 500 GeV with

σ(η0R) ≃ 4.6 × 10−46(λL/0.1)
2(500 GeV/mη0

R
)2 cm2, will be significant for next generation

experiments such as SuperCDMS [80], XENON1T [81] or XMASS [82].

The presence of χ and φ changes the situation. Firstly, the separation of two allowed

regions of mη0
R

disappears: As far as the relic abundance is concerned, mη0
R

is allowed

8 Direct detection of two DM particles has been discussed for instance in [8, 17, 18, 21]. LHC signals of η

dark matter have been discussed in [51, 67, 68]. See also [11, 18].
9 There exist also one-loop corrections to η0Rq → η0Rq [69]. See also [70].

10 There exists a marginal possibility to expend slightly this upper bound [71].
11 See also [74]–[79].
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between 80 and 500 GeV, too, as we have seen, because χ and φ also contribute to the

relic abundance. Secondly, the parameter space becomes considerably larger. To see how

the allowed parameter space of the model without χ and φ changes, we consider a set of

(δ1 = mη± − mη0
R
, δ2 = mη0

I
− mη0

R
), for which the allowed parameter space without χ

and φ is very small. For (δ1 = 10 , δ2 = 10) GeV, for instance, there is no allowed range

of mη0
R

<∼ 500 GeV [53]; the low mass range of mη0
R
, for which the relic abundance Ωηh

2 is

consistent, does not satisfy the LEP constraint. Below we show how this situation changes

in the presence of χ and φ. The LEP constraint implies that the region satisfying mη0
R

<∼ 80

GeV andmη0
I

<∼ 100 GeV with δ2 >∼ 8 GeV is excluded [53]. Therefore, for (δ1 = 10 , δ2 = 10)

GeV we have to consider only mη0
R
> 80 GeV. Further, to suppress the parameter space we

assume that mχ = mη0
R
− 10 GeV, mφ = mη0

R
− 20 GeV and Mk = 1000 GeV, and we scan

mη0
R
from 80 to 500 GeV.

Fig. 9 shows the allowed area in the λL(λ7) − mη0
R
plane, where all the constraints are

taken into account. The allowed mass range for mη0
R
is extended as expected. The reason

why there are no allowed points around mη0
R
≃ 100 GeV is the following. Since we keep

the mass difference fixed, we have mφ = mη0
R
− 20 ≃ 80 GeV there. This is the threshold

regime for the process φφ → W+W−. So, for mη0
R
just below 100 GeV, the annihilation

cross section for φ is small because of small λ7 in this range of mφ, and therefore the relic

abundance Ωφh
2 exceeds 0.12. We see that mη0

R
= 80 GeV is allowed on the other hand.

This allowed area exists, though λ7 is small, because around mφ = 62 GeV the s-channel

annihilation of φ becomes resonant due to mh = 125 GeV. For mη0
R
just above 100 GeV, the

annihilation cross section for φ is large because the channel to W+W− is now open, so that

Ωφh
2 can not supplement the anyhow small Ωηh

2.

If we suppress the constraint from the direct detection, we have a prediction on the

direct detection. Fig. 10 shows the spin-independent cross section off the nucleon versus

the DM mass; the green area for the η DM and the violet area for the φ DM. We see that

the the spin-independent cross sections are not only consistent with the current bound of

XENON100 [73], but also are within the accessible range of future experiments.

C. Indirect detection

If DM annihilates sufficiently into SM particles, the resulting cosmic rays may be observ-

able. These are indirect signals of DM, and in fact excesses in e+ [41]–[44] and in γ [83]–[86]

have been recently reported. Indirect detection of DM has been studied within the frame-

work of a two component DM system in [7, 9, 12–14, 17, 25, 26], and also of the inert Higgs

model in [52, 87–89]. As we see from the semi-annihilation diagram in Fig. 6, the process

produces only a left-handed neutrino as the SM particle. Therefore, the boost factor to en-

hance the annihilation cross section to obtain an excess in e+ is not available in this model.

So, we are particularly interested in the neutrinos from the annihilation of captured DM in
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FIG. 10: The spin-independent cross section off the nucleon is plotted as a function of the DM mass. The

green and violet areas are for η and φ DM’s, respectively, where we have used (δ1 = 10 , δ2 = 10) GeV with

mχ = mη0

R

− 10 GeV, mφ = mη0

R

− 20 GeV and Mk = 1000 GeV.

the Sun [54]–[63] (see [4, 5] for a review, and [89] for the case of the inert Higgs model), be-

cause (i) the semi-annihilation produces a monochromatic neutrino (Eν ≃ mη0
R
+mφ−mχ for

instance) in addition to those with Eν ≃ mη0
R
along with the continuum spectrum, (ii) these

neutrinos can be observed at neutrino telescopes [90–92], and (iii) the evolution equations of

the DM numbers in the Sun, which describe approaching equilibrium between the capture

and annihilation (including conversion and semi-annihilation) rates of DM, are coupled now.

We denote the number of DM particles η, χ and φ in the Sun by Ni with i = η, χ and φ,

respectively. Then the change of Ni with respect to time t is given by

Ṅη = Cη − CA(ηη ↔ SM)N2
η − CA(ηη ↔ φφ)N2

η − CA(ηχ ↔ φνL)NηNχ

−CA(ηφ ↔ χνL)NηNφ + CA(φχ ↔ ηνL)NχNφ , (43)

Ṅχ = Cχ − CA(χχ ↔ φφ)N2
χ − CA(ηχ ↔ φνL)NηNχ

+CA(ηφ ↔ χνL)NηNφ − CA(φχ ↔ ηνL)NχNφ , (44)

Ṅφ = Cφ − CA(φφ ↔ SM)N2
φ + CA(ηη ↔ φφ)N2

η + CA(χχ ↔ φφ)N2
χ

+CA(ηχ ↔ φνL)NηNχ − CA(ηφ ↔ χνL)NηNφ − CA(φχ ↔ ηνL)NχNφ , (45)

where the Ci’s are the capture rates in the Sun and the CA’s are proportional to the anni-

hilation cross sections times the relative DM velocity per volume in the limit v → 0:

Cφ(η) ≃ 1.4× 1020f(mφ(η0
R
))

(

f̂

0.3

)2 (
λ7(L)

0.1

)2 [
mh

125 GeV

]−4

×




200 GeV

mφ(η0
R
)





2 (
Ωφ(η)h

2

0.112

)

s−1 , Cχ = 0 , (46)

where the function f(mφ(η0
R
)) depends on the form factor of the nucleus, elemental abun-

dance, kinematic suppression of the capture rate, etc, varying from O(1) to O(0.01) depend-
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ing on the DM mass [60, 61]. The annihilation rates CA can be calculated from [58]

CA(ij ↔ •) =
< σ(ij; •)v >

Vij
, Vij = 5.7× 1027

(

100 GeV

µij

)3/2

cm3 , (47)

with µij = 2mimj/(mi +mj) in the limit v → 0.

There are fixed points of the evolution equations, which correspond to equilibrium. Since

at the time of birth of the Sun the numbers Ni were zero, the Ni increase with time and

approach the fixed point values, i.e., equilibrium at which Ni assumes its maximal value.

So, the question is whether the age of the Sun, t⊙ ≃ 4.5 × 109 years, is old enough for Ni

to reach equilibrium. We see from the evolution equations that the fixed point values are

roughly proportional to (Ci/CA)
1/2, implying that we need large capture rates Ci to obtain

large Ni(t⊙). The annihilation, conversion and semi-annihilation rates at t = t⊙ are given

by

Γ(ij; •) = dijCA(ij ↔ •)Ni(t⊙)Nj(t⊙) , (48)

where dii = 1/2 and dij = 1 for i 6= j. The observation rate of the neutrinos Γdetect is

proportional to Γ(ij; •). As a benchmark we use the same set of the input parameter values

as (38). In Fig. 11 we show the time evolution of12

Γ(SM) = CA(ηη ↔ SM)N2
η/2 + CA(φφ ↔ SM)N2

φ/2 , (49)

Γ(ν) = CA(ηφ ↔ χν)NηNφ + CA(ηχ ↔ φν)NηNχ + CA(χφ ↔ ην)NχNφ , (50)

Γ(νν) = CA(ηη ↔ νν)N2
η /2 , (51)

scaled to 1020 s−1, as function of τ = t/t⊙. As we see from Fig. 11, the rates seem to

be saturated: Γ(SM) is in fact saturated, but Γ(ν) does not reach its fixed-point value

0.002 × 1020 s−1 at τ = t/t⊙ = 1. The saturated value of Γ(SM) is 0.28 × 1020 s−1 for the

input parameters (38), which is consistent with the upper limit ∼ 2.73×1021 s−1 for mDM =

250 GeV of the AMANDA-II / IceCube neutrino telescope [90]. As for the monochromatic

neutrinos we obtain Γ(ν) = 1.1 × 10−3 × 1020 s−1 and Γ(νν) = 1.3 × 10−7 × 1020 s−1. To

estimate the detection rate Γdetect we use the formula [93]

Γdetect = AP (Eν)Γinc , (52)

where A is the detector area facing the incident beam, P (Eν) is the probability for detection

as a function of the neutrino energy P (Eν), and Γinc = Γ/4πR2
⊙ is the incoming neutrino

flux, i.e., the number of neutrinos per unit area per second on the Earth (R⊙ is the distance

12 For the monochromatic neutrinos, i.e. Γ(ν), we have added all the semi-annihilations, because for the

mass values given in (38) the neutrino energies are all closed to 200 GeV. Moreover, the first term in the

r.h.s. of Eq. (50) (which counts neutrinos of mη0

R

+mφ−mχ = 190 GeV) is a dominant contribution with

about 95%.
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FIG. 11: The time evolution of the annihilation rates Γ(SM) and Γ(ν), where τ = t/t⊙, and the input

parameter values are given in (38).

to the Sun ≃ 1.5× 108 km).13 The probability P (Eν) may be approximated as the ratio of

the effective detector length L to the mean free path of the neutrinos in the detector. For

the neutrinos (anti-neutrinos) one finds: P (Eν(ν̄)) ≃ 2.0(1.0) × 10−11(L/km)(Eν(ν̄)/GeV),

arriving at

Γdetect ≃ 2.2(1.1)× 10−21
(

A

km2

)(

L

km

)

(

Eν(ν̄)

GeV

)

(

Γ

s−1

)

yr−1 , (53)

which implies that, for the input parameters of (38), 0.05 events of monochromatic neutrinos

with ∼ 200 GeV per year may be detected at IceCube [90], we have used: A = 1km2,

L = 1km.

0.05 events per year may be too small to be realistic. However, we would like to note that

we have studied only one point in the whole parameter space. It will be our future program

to implement the sophisticated method of [94] and to survey the whole parameter space. We

also would like to note that if at least one of the fermionic DM in a multi-component DM

system has odd parity of the discrete lepton number, a monochromatic left-handed neutrino,

which is also odd, can be produced together with this fermionic DM in a semi-annihilation

of DM’s.

IV. CONCLUSION

We have considered the conversion and semi-annihilation of DM in a multi-component DM

system. We have found that these non-standard DM annihilation processes can influence the

relic abundance of DM a lot, which has been recently found for two-component DM systems

in [16, 21, 22]. The question of whether a large boost factor can be obtained within the

13 A sophisticated method to compute the observation rates at IceCube was recently developed in [94].
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framework of thermally produced DM in a three-component DM system has been addressed.

It has turned out that a boost factor of at most O(10) can be obtained.

As a concrete three-component DM system we have considered a radiative seesaw model

of [31], which is extended to include an extra Majorana fermion χ and an extra real scaler

boson φ. The DM stabilizing symmetry is promoted to Z2 ×Z ′
2, and we have assumed that

η0R (the CP even neutral component of the inert Higgs SU(2)L doublet), χ and φ are DM.

We have shown that the previously found separation [51–53] of the allowed parameter space

in the low and high mass regions for η0R disappears in the presence of χ and φ.

Finally, we have discussed neutrinos coming from the annihilations of the captured DM

in the Sun. The evolution equations of the DM numbers in the Sun, which describe ap-

proaching equilibrium between the capture and annihilation (including conversion and semi-

annihilation) rates of DM, are coupled in multi-component DM system. Due to the semi-

annihilations of DM, monochromatic neutrinos are radiated, and the observation rates of

neutrinos have been estimated. Observations of high energy monochromatic neutrinos from

the Sun may indicate a multi-component DM system.
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