Multi-Component Dark Matter Systems and Their Observation Prospects

Mayumi Aoki,1,2 Michael Duerr,2 Jisuke Kubo,1 and Hiroshi Takano1,3

1Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan
2Max–Planck–Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Abstract

Conversions and semi-annihilations of dark matter (DM) particles in addition to the standard DM annihilations are considered in a three-component DM system. We find that the relic abundance of DM can be very sensitive to these non-standard DM annihilation processes, which has been recently found for two-component DM systems. To consider a concrete model of a three-component DM system, we extend the radiative seesaw model of Ma by adding a Majorana fermion \(\chi \) and a real scalar boson \(\phi \), to obtain a \(Z_2 \times Z'_2 \) DM stabilizing symmetry, where we assume that the DM particles are the inert Higgs boson, \(\chi \) and \(\phi \). It is shown how the allowed parameter space, obtained previously in the absence of \(\chi \) and \(\phi \), changes. The semi-annihilation process in this model produces monochromatic neutrinos. The observation rate of these monochromatic neutrinos from the Sun at IceCube is estimated. Observations of high energy monochromatic neutrinos from the Sun may indicate a multi-component DM system.

PACS numbers: 95.35.+d, 95.85.Ry, 11.30.Er

*Electronic address: mayumi@hep.s.kanazawa-u.ac.jp
†Electronic address: michael.duerr@mpi-hd.mpg.de
‡Electronic address: jik@hep.s.kanazawa-u.ac.jp
§Electronic address: takano@hep.s.kanazawa-u.ac.jp
I. INTRODUCTION

Recent astrophysical observations [1–3] have made it clear that most of the energy of the universe consists of dark energy and cold dark matter (DM), and their portions are very well fixed by these observations. While the origin of dark energy might be the cosmological constant of Einstein, the origin of cold DM cannot be found within the framework of the standard model (SM) of elementary particles. Moreover, we do not know very much about the detailed features of DM at present, even if the origin of DM should be elementary particles. Currently, many experiments are undertaken or planned, and it is widely believed that the existence of DM will be independently confirmed in the near future (see, for instance, [4–6]).

A particle DM candidate can be made stable by an unbroken symmetry. The simplest possibility of such a symmetry is a parity, \(Z_2 \). Whatever the origin of the \(Z_2 \) is, the lightest \(Z_2 \) odd particle can be a DM candidate if it is a neutral, weakly interacting and massive particle (WIMP) (see [5] for a review). There is a variety of origins of the \(Z_2 \). \(R \) parity in the minimal supersymmetric standard model (MSSM), which is introduced to forbid fast proton decay, is a well-known example (see [4] for a review). In this paper we consider a universe consisting of stable multi DM particles [7–28]. A multi-component DM system can be realized if the DM stabilizing symmetry is larger than \(Z_2 \): \(Z_N \) (\(N \geq 4 \)) or a product of two or more \(Z_2 \)'s can yield a multi-component DM system.\(^1\) In a supersymmetric extension of the radiative seesaw model of [31], for instance, a \(Z_2 \times Z'_2 \) symmetry appears, providing various concrete models of multi-component DM systems [24–28].

In a multi-component DM system, there can be various DM annihilation processes that are different from the standard DM annihilation process [32–37], DM DM \(\rightarrow \) XX, where X is a generic SM particle in thermal equilibrium. Even in one-component DM systems, the non-standard annihilation process, the co-annihilation of DM and a nearly degenerate unstable particle [38], can play a crucial role in the MSSM [39]. The importance of non-standard annihilation processes such as DM conversion [16, 21, 22] and semi-annihilation of DM [16, 22] in two-component DM systems for the temperature evolution of the number density of DM has been recently reported.

If \((Z_2)^\ell\) is unbroken, there can exist at least \(K = \ell \) stable DM particles. In a kinematically fortunate situation, \(2^\ell - 1 \) stable DM particles can exist; for \(\ell = 2 \) there can be maximally \(K = 3 \) stable DM particles. Any one-component DM model can easily be extended to a multi-component DM system. The allowed parameter space of a one-component DM model can considerably change, as it has been recently found in [28] (see also [9]), even using a crude approximation of a DM conversion process in a supersymmetric extension of the radiative seesaw model.

In Sect. II, after we will have outlined a derivation of the coupled Boltzmann equations

\(^1\) \(Z_3 \) allows only one-component DM systems. Refs. [29, 30] discuss models with \(Z_3 \).
that are appropriate for our purpose, we will consider fictive two- and three-component DM systems and analyze the effects of non-standard annihilation processes of DM. We will also address the question, within the framework of thermally produced DM \cite{32}, whether one can obtain a large boost factor in a three-component DM system that is needed to explain the positron excess observed by recent experiments \cite{41}–\cite{44}. We will find that in a fortunate situation a boost factor of $O(10)$ can be obtained, which can be combined with the known mechanisms \cite{45}–\cite{50}, to obtain a desired enhancement effect.

In Sect. III we will extend the radiative seesaw model of \cite{31} by adding an extra Majorana fermion χ and an extra real scalar boson ϕ so as to obtain $Z_2 \times Z_2'$ as a DM stabilizing symmetry. Apart from the presence of ϕ, the Higgs sector is identical to that of \cite{51–53}. This model shall show how the allowed parameter space, which is obtained in \cite{51–53} under the assumption that the lightest inert Higgs boson is DM, can change. Indirect detection of DM, in particular of neutrinos from the annihilation of the captured DM in the Sun \cite{54}–\cite{63} are also discussed. We will solve the coupled evolution equations of the DM numbers in the Sun, which describe approaching equilibrium between the capture and annihilation (including conversion and semi-annihilation) rates of DM, and estimate the observation rates of neutrinos. Due to semi-annihilations of DM, monochromatic neutrinos are radiated from the Sun. Our conclusions are given in Sect. IV.

II. BOLTZMANN EQUATION AND TWO- AND THREE-COMPONENT DM SYSTEMS

A. Boltzmann equation

Here we would like to outline a derivation of the Boltzmann equation that we are going to apply in the next section. We will do it for completeness, although the following discussion partially parallels that of \cite{16} (see also \cite{21}). We start by assuming the existence of K stable DM particles χ_i with mass m_i. None of the DM particles have the same quantum number with respect to the DM stabilizing symmetry. All the other particles are supposed to be in thermal equilibrium. Then we restrict ourselves to three types of processes which enter the Boltzmann equation:

\[\chi_i \leftrightarrow X_i, \quad (1) \]
\[\chi_i \leftrightarrow \chi_j \quad \text{(DM conversion)}, \quad (2) \]
\[\chi_i \leftrightarrow \chi_k X_{ijk} \quad \text{(DM semi-annihilation)}, \quad (3) \]

where the extension to include coannihilations and annihilation processes like $\chi_i + \chi_j \leftrightarrow \chi_k$ is straight forward. See Fig. \ref{fig:1} for a depiction of DM conversion and DM semi-annihilation. We denote the phase space density of χ_i by $f_i(E_i, t)$ and its number density by $n_i(t) = (g/(2\pi)^3) \int d^3 p_i f_i(E_i, t)$, where g stands for the internal degrees of freedom. Then
the density n_i satisfies the Boltzmann equation (see, e.g., [35]), which we will not spell out here. Instead, we make the replacement

$$ t = 0.301 g_*^{1/2} M_{\text{PL}} T^{-2} $$

(4)

during the radiation-dominated epoch, where t is the time of the comoving frame, g_* is the total number of effective degrees of freedom, T and M_{PL} are the temperature and the Planck mass, respectively. Further, we use the approximation

$$ \frac{f_i(E_i, t)}{\bar{f}_i(E_i, t)} \approx \frac{n_i(t)}{\bar{n}_i(t)}, $$

(5)

where $\bar{f}_i(E_i, t) \approx \exp(-E_i/T)$ and $\bar{n}_i = (g/(2\pi)^3) \int d^3p_i \bar{f}_i(E_i, t)$ are the values in equilibrium, and we ignore the chemical potential. Then the collision terms in the Boltzmann equation can be written as

$$ -(\text{PSI}) |M(ii; X_i X'_i)|^2 \frac{\bar{f}_i f_i}{\bar{n}_i n_i} (n_i n_i - \bar{n}_i \bar{n}_i) $$

$$ - \sum_{i>j} (\text{PSI}) |M(jj; ii)|^2 \frac{\bar{f}_j f_j}{\bar{n}_j n_j} (n_j n_j - \frac{n_i n_i}{\bar{n}_i \bar{n}_i} \bar{n}_j \bar{n}_j) $$

$$ + \sum_{j>i} (\text{PSI}) |M(jj; ii)|^2 \frac{\bar{f}_j f_j}{\bar{n}_j n_j} (n_j n_j - \frac{n_i n_i}{\bar{n}_i \bar{n}_i} \bar{n}_j \bar{n}_j) $$

$$ - \sum_{j,k} (\text{PSI}) |M(ik; jX_{ijk})|^2 \frac{\bar{f}_j f_j}{\bar{n}_j n_j} (n_j n_j - \frac{n_k}{\bar{n}_k} \bar{n}_j \bar{n}_j) $$

$$ + \sum_{j,k} (\text{PSI}) |M(ik; jX_{ijk})|^2 \frac{\bar{f}_j f_j}{\bar{n}_j n_j} (n_j n_j - \frac{n_k}{\bar{n}_k} \bar{n}_j \bar{n}_j), $$

(6)

where PSI stands for "phase space integral of $(2\pi)^4 \delta^4$(momenta) \times", M is the matrix element of the corresponding process, and we have assumed that

$$ m_i \geq m_j \text{ for } i > j \text{ and } m_{X_i}, m_{X'_i}, m_{X_{ijk}} << m_l \text{ for all } i, j, k, l. $$

(7)
Using the notion of the thermally-averaged cross section,
\[
< \sigma(ii; X_iX'_i)v > = \frac{1}{n_in_i} \text{PSI}|M(ii; X_iX'_i)|^2 \bar{f}_i \bar{f}_i ,
\]
and the dimensionless inverse temperature \(\frac{1}{\mu} = (2s_f)^{\frac{1}{2}}\), where \(s_f = (\sum_i m_i^{-1})\) is the reduced mass of the system. To arrive at Eq. (9) we have used: \(s = (2\pi^2/45)g_s T^3\), \(H = 1.66 \times g_s^{1/2} T^2 / M_{\text{Pl}}\), where \(s\) is the entropy density, and \(H\) is the Hubble constant.

We will integrate this system of coupled non-linear differential equations numerically.

Before we apply the Boltzmann equation (9) to a concrete DM model, we discuss below the cases of \(K = 2\) and \(3\) simply assuming fictitious values of the thermally-averaged cross sections and DM masses \(m_i\).

B. Two-component DM system

Before we come to one of our main interests, a three-component DM system, we first consider the \(K = 2\) case with a \(Z_2 \times Z'_2\) symmetry. In this case, there are three different thermally-averaged cross sections. No semi-annihilation is allowed due to CP invariance. We further assume that there are only \(s\)-wave contributions to \(<\sigma v>\) and \(X_i (i = 1, 2)\) are massless while \(m_1 \geq m_2\):

\[
<\sigma(11; X_1X'_1)v> = \sigma_{0,1} \times 10^{-9} \text{ GeV}^{-2}, \quad <\sigma(22; X_2X'_2)v> = \sigma_{0,2} \times 10^{-9} \text{ GeV}^{-2},
\]

\[
<\sigma(11; 22)v> = \sigma_{0,12} \times 10^{-9} \text{ GeV}^{-2}.
\]

Eq. (9) then becomes

\[
\frac{dY_i}{dx} = -0.264 \ g_s^{1/2} \left(\frac{\mu M_{\text{Pl}}}{x^2} \right) \left< \sigma(11; X_1X'_1)v> \right> \left(Y_i Y_1 - \bar{Y}_1 \bar{Y}_1 \right) \nonumber
\]

\[
+ <\sigma(11; 22)v> \left(Y_i Y_1 - \frac{Y_2 \bar{Y}_2}{Y_2} \bar{Y}_1 \bar{Y}_1 \right) ,
\]

(11)

\(^2\) In Refs. [16, 22], the \(Z_4\) case is discussed in detail. In this case there exist two independent DM particles, because due to CP invariance the anti-particle is not an independent degree of freedom in the Boltzmann equation. Semi-annihilation is allowed in this case.
With increasing value of \(\sigma \) at \(\sigma, g = 90 \), the density of \(\chi \) decreases, while \(\Omega \) increases. Around \(\sigma = 3.9 \), this order changes, i.e., \(\Omega_{\chi_1} \approx 1.99 \) while \(\Omega_{\chi_2} \approx 0.04 \). We consider the case in which the size of the DM conversion and the standard annihilation are of similar order (see also \cite{21}). In Fig. 2 (left) we show the evolution of the fraction of critical densities, \(\Omega_{\chi_1} h^2(x) \) (black) and \(\Omega_{\chi_2} h^2(x) \) (blue), contributed by \(\chi_1 \) and \(\chi_2 \), respectively, where we have used \(\sigma_{0.1} = 0.1 \), \(\sigma_{0.2} = 6 \), \(\sigma_{0.12} = 4.4(0) \), \(m_1 = 200 \) GeV, \(m_2 = 160 \) GeV and \(g_\ast = 90 \). Right: The total relic abundance \(\Omega_{\chi} h^2 \) as a function of \(\sigma_{0.12} \) which parametrizes the size of the DM conversion \(\chi_1 \chi_1 \rightarrow \chi_2 \chi_2 \).

\[
\frac{dY_2}{dx} = -0.264 \ g^2 \left[\frac{\mu M_{\text{Pl}}}{x^2} \right] \left\{ <\sigma(22; X_2 X_2^\prime) v> \left(Y_2 Y_2 - \bar{Y}_2 \bar{Y}_2 \right) \right. \\
\left. - <\sigma(11; 22) v> \left(Y_1 Y_1 - \frac{Y_2 Y_2}{2} \bar{Y}_1 \bar{Y}_1 \right) \right\} .
\] (12)

C. Three-component DM system

As we have noticed before, the \(K = 3 \) case is possible even for a \(Z_2 \times Z_2 \) symmetry if the decay of \(\chi_1 \) is kinematically forbidden. In this case there are nine different thermally-averaged cross sections, if we assume that \(m_1 \geq m_2 \geq m_3 \) and \(m_2 + m_3 > m_1 \):

\[
<\sigma(1i; X_i X_i^\prime) v> = \sigma_{0,i} \times 10^{-9} \text{ GeV}^{-2}, \quad <\sigma(11; 22) v> = \sigma_{0,12} \times 10^{-9} \text{ GeV}^{-2},
\]
\[<\sigma(11; 33)v> = \sigma_{0,13} \times 10^{-9} \text{ GeV}^{-2}, \quad <\sigma(22; 33)v> = \sigma_{0,23} \times 10^{-9} \text{ GeV}^{-2},\]
\[<\sigma(12; 3X_{123})v> = \sigma_{0,23} \times 10^{-9} \text{ GeV}^{-2}, \quad <\sigma(23; 1X_{231})v> = \sigma_{0,23} \times 10^{-9} \text{ GeV}^{-2},\]
\[<\sigma(31; 2X_{312})v> = \sigma_{0,312} \times 10^{-9} \text{ GeV}^{-2}.\] \hspace{1cm} (13)

Eq. (12) then becomes
\[
\frac{dY_1}{dx} = -0.264 \, g^1_{x^2} \left[\frac{\mu_{MPL}}{x^2} \right] \left\{ <\sigma(11; X_1X_1')v> \left(Y_1 Y_1 - \bar{Y}_1 \bar{Y}_1 \right) \right. \\
\quad + <\sigma(11; 22)v> \left(Y_1 Y_1 - \frac{Y_2 Y_2}{Y_3 Y_3} \bar{Y}_1 \bar{Y}_2 \right) + <\sigma(11; 33)v> \left(Y_1 Y_1 - \frac{Y_3 Y_3}{Y_1 Y_1} \bar{Y}_1 \bar{Y}_3 \right) \\
\quad + <\sigma(12; 3X_{123})v> \left(Y_1 Y_2 - \frac{Y_2 Y_2}{Y_3 Y_3} \bar{Y}_1 \bar{Y}_2 \right) + <\sigma(31; 2X_{312})v> \left(Y_1 Y_3 - \frac{Y_2 Y_2}{Y_3 Y_3} \bar{Y}_1 \bar{Y}_3 \right) \\
\quad - <\sigma(23; 1X_{231})v> \left(Y_3 Y_2 - \frac{Y_2 Y_2}{Y_3 Y_3} \bar{Y}_1 \bar{Y}_2 \right) \bigg\} , \hspace{1cm} (14)
\]
\[
\frac{dY_2}{dx} = -0.264 \, g^2_{x^2} \left[\frac{\mu_{MPL}}{x^2} \right] \left\{ <\sigma(22; X_2X_2')v> \left(Y_2 Y_2 - \bar{Y}_2 \bar{Y}_2 \right) \\
\quad + <\sigma(22; 33)v> \left(Y_2 Y_2 - \frac{Y_3 Y_3}{Y_1 Y_1} \bar{Y}_2 \bar{Y}_3 \right) + <\sigma(23; 1X_{231})v> \left(Y_2 Y_3 - \frac{Y_1 Y_1}{Y_3 Y_3} \bar{Y}_2 \bar{Y}_3 \right) \\
\quad + <\sigma(12; 3X_{123})v> \left(Y_1 Y_2 - \frac{Y_2 Y_2}{Y_3 Y_3} \bar{Y}_1 \bar{Y}_2 \right) - <\sigma(31; 2X_{312})v> \left(Y_1 Y_3 - \frac{Y_2 Y_2}{Y_3 Y_3} \bar{Y}_1 \bar{Y}_3 \right) \\
\quad - <\sigma(11; 22)v> \left(Y_1 Y_1 - \frac{Y_2 Y_2}{Y_3 Y_3} \bar{Y}_1 \bar{Y}_2 \right) \bigg\} , \hspace{1cm} (15)
\]
\[
\frac{dY_3}{dx} = -0.264 \, g^3_{x^2} \left[\frac{\mu_{MPL}}{x^2} \right] \left\{ <\sigma(33; X_3X_3')v> \left(Y_3 Y_3 - \bar{Y}_3 \bar{Y}_3 \right) \\
\quad + <\sigma(23; 1X_{231})v> \left(Y_2 Y_3 - \frac{Y_1 Y_1}{Y_3 Y_3} \bar{Y}_2 \bar{Y}_3 \right) + <\sigma(31; 2X_{312})v> \left(Y_1 Y_3 - \frac{Y_2 Y_2}{Y_3 Y_3} \bar{Y}_1 \bar{Y}_3 \right) \\
\quad - <\sigma(12; 3X_{123})v> \left(Y_1 Y_2 - \frac{Y_2 Y_2}{Y_3 Y_3} \bar{Y}_1 \bar{Y}_2 \right) - <\sigma(11; 33)v> \left(Y_1 Y_1 - \frac{Y_3 Y_3}{Y_1 Y_1} \bar{Y}_1 \bar{Y}_3 \right) \\
\quad - <\sigma(22; 33)v> \left(Y_2 Y_2 - \frac{Y_3 Y_3}{Y_1 Y_1} \bar{Y}_2 \bar{Y}_3 \right) \bigg\} , \hspace{1cm} (16)
\]

where \(1/\mu = 1/m_1 + 1/m_2 + 1/m_3\).

As a representative example we consider the following set of input values of the parameters:

\[
m_1 = 200 \text{ GeV}, \quad m_2 = 160 \text{ GeV}, \quad m_3 = 140 \text{ GeV},
\]
\[
\sigma_{0,1} = 0.1, \quad \sigma_{0,2} = 2, \quad \sigma_{0,3} = 6. \hspace{1cm} (17)
\]

First we show the evolution of \(\Omega_{\chi_i} h^2(x)\) in Fig. 3 (left) for \(\sigma_{0,12} = \sigma_{0,13} = \sigma_{0,23} = \sigma_{0,123} = \sigma_{0,312} = \sigma_{0,313} = 0\), which corresponds to the situation without the non-standard annihilation processes. Since \(m_1 > m_2, m_3\) and the cross section \(\sigma(11; X_1X_1)\) is small in this example, the relic abundance of \(\chi_1\) is large compared with that of \(\chi_2\) and \(\chi_3\). This changes if we switch on the non-standard annihilation processes. This is shown in Fig. 3 (right), where we have used \(\sigma_{0,12} = \sigma_{0,13} = \sigma_{0,23} = 5.2\), while \(\sigma_{0,123} = \sigma_{0,312} = \sigma_{0,231} = 0\) to see the effects.
FIG. 3: The relic abundance $\Omega_{\chi_1} h^2(x)$ (black), $\Omega_{\chi_2} h^2(x)$ (blue) and $\Omega_{\chi_3} h^2(x)$ (red) as a function of $x = \mu/T = [(m_1^{-1} + m_2^{-1} + m_3^{-1})T]^{-1}$, where the input parameters are given in Eq. (17). Left: Without the non-standard annihilation processes (2) and (3). Right: $\sigma_{0,12} = \sigma_{0,13} = \sigma_{0,23} = 5.2$, while $\sigma_{0,123} = \sigma_{0,312} = \sigma_{0,231} = 0$ to see the effects of $\chi_i \chi_i \leftrightarrow \chi_j \chi_j$ type processes (DM conversion). As expected, the relic abundances of χ_1 and χ_2 decrease and drop below 0.1, while that of χ_3 does not change very much.

Fig. 4 shows the evolution of $\Omega_{\chi_i} h^2(x)$ for $\sigma_{0,12} = \sigma_{0,13} = \sigma_{0,23} = 0$, while $\sigma_{0,123} = \sigma_{0,312} = \sigma_{0,231} = 5.1$ to see the effects of $\chi_i \chi_i \leftrightarrow \chi_k X_{ijk}$ type processes (semi-annihilation). It is interesting to observe that the order of the relic abundances changes and $\Omega_{\chi_1} h^2(x)$ first decreases as usual, but then starts to increase towards the freeze-out value. So, the effects of $\chi_i \chi_i \leftrightarrow \chi_j \chi_j$ type and $\chi_i \chi_i \leftrightarrow \chi_k X_{ijk}$ type processes are different. In the examples above, $\sigma_{0,ij}$ and $\sigma_{0,ijk}$ are chosen such that the total abundance $\Omega_T h^2$ becomes about the realistic value 0.112. In Fig. 5 we show the total abundance $\Omega_T h^2$ as a function of $\sigma_{0,ij}$ (solid) and $\sigma_{0,ijk}$ (dashed), where $\sigma_{0,ij}$ parameterizes the size of the DM conversion (2) and $\sigma_{0,ijk}$ parameterizes the size of the semi-annihilation (3). As we can see from Fig. 5 only for small values of $\sigma_{0,ij}$ and $\sigma_{0,ijk}$ the effects on $\Omega_T h^2$ are different.

Next we would like to address the question whether one can obtain a boost factor in the case of $K = 3$ within the framework of thermally produced DM, where as before we assume that $m_1 \geq m_2 \geq m_3$ and $m_2 + m_3 > m_1$. Here we are interested in the situation that the scales that enter into the Boltzmann equations are not extremely different, because this situation can easily be realized in many phenomenologically viable models. The parameter space for the case $K = 3$ is large, and therefore, to simplify the situation, we assume that only semi-annihilations (3) are present. We further assume that all the semi-annihilation processes (3) produce the same SM model particle X, whose mass can be neglected. Then the differential energy flux Φ_X of X produced from the DM semi-annihilations can be written

\[\Phi_X = \frac{1}{3} \left(\sigma v \right) \frac{m_X^2}{\sqrt{2} \pi^3} \frac{\rho_{\chi_i} h^2}{T^2} \frac{1}{x} \frac{dN}{dx} \]
FIG. 4: The relic abundance $\Omega_{\chi_1} h^2(x)$ (black), $\Omega_{\chi_2} h^2(x)$ (blue) and $\Omega_{\chi_3} h^2(x)$ (red) as a function of x with $\sigma_{0,12} = \sigma_{0,13} = \sigma_{0,23} = 0$, while $\sigma_{0,123} = \sigma_{0,312} = \sigma_{0,213} = 5.1$ to see the effects of $\chi_i \chi_j \leftrightarrow \chi_k X_{ijk}$ type processes.

FIG. 5: The total relic abundance $\Omega_T h^2$ as a function of $\sigma_{0,12}$ (solid) and $\sigma_{0,123}$ (dashed). Except $\sigma_{0,12}$ (DM conversion) and $\sigma_{0,123}$ (semi-annihilation) the input parameters are given in Eq. (17).

\[\frac{d\Phi_X}{dE_X} \propto \sum_{i<j} N_{ij}^{r,\infty} n_{i,\infty} n_{j,\infty} < \sigma(ij;kX) v > , \quad (18) \]

where $n_{i,\infty}$ is the freeze-out value of n_i, and $N_{ij}^{r,\infty}$ and E_X stand for the number and the energy of X in the process $\chi_i \chi_j \rightarrow \chi_k X$, respectively. Eq. (18) suggests the following definition of the effective boost factor:

\[BF_X = \frac{\sum_{i<j} Y_{i,\infty} Y_{j,\infty} < \sigma(ij;kX) v >}{Y_{2,\infty}^{0} Y_{2,\infty}^{0} < \sigma(22;X) v >^0} , \quad (19) \]

where $Y_{i,\infty}$ is the freeze-out value of Y_i. The quantities with the superscript 0 in the denominator are the reference quantities. Here we use as reference the one-component DM case with only the standard annihilation process $\chi_2 \chi_2 \rightarrow XX$, which means $Y_{2,\infty}^{0} \simeq
TABLE I: The effective boost factor BF_X for the symmetric case, i.e., $\sigma_{0,123} = \sigma_{0,231} = \sigma_{0,312}$, with $m_1 = 1000$ GeV.

<table>
<thead>
<tr>
<th>m_2</th>
<th>m_3</th>
<th>$\sigma_{0,123}$</th>
<th>$\Omega_{\chi_1} h^2$</th>
<th>$\Omega_{\chi_2} h^2$</th>
<th>$\Omega_{\chi_3} h^2$</th>
<th>BF_X</th>
</tr>
</thead>
<tbody>
<tr>
<td>720</td>
<td>700</td>
<td>12.6</td>
<td>0.0433</td>
<td>0.0319</td>
<td>0.0372</td>
<td>1.6</td>
</tr>
<tr>
<td>940</td>
<td>700</td>
<td>417.0</td>
<td>0.0007</td>
<td>0.0007</td>
<td>0.1109</td>
<td>3.4</td>
</tr>
<tr>
<td>600</td>
<td>550</td>
<td>42.3</td>
<td>0.0431</td>
<td>0.0259</td>
<td>0.0439</td>
<td>5.1</td>
</tr>
<tr>
<td>840</td>
<td>550</td>
<td>7900</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.1117</td>
<td>5.7</td>
</tr>
</tbody>
</table>

(0.11/2.82 × 10^8)(GeV/m_2).\(^4\) If one neglects the p-wave contributions to $< \sigma v >$, one finds $\sigma^0_{0,2} = 2.03, 2.06, 2.09$ for $m_2 = 500, 700, 900$ GeV, respectively, where $\sigma^0_{0,2}$ is defined as $< \sigma(22; X)v >^0 = \sigma^0_{0,2} \times 10^{-9}$ GeV$^{-2} \approx 1.16 \sigma^0_{0,2} \times 10^{-26}$ cm3/s (see Eq. (13)).

A large effective boost factor means large σ_{ijk}. Since each semi-annihilation (3) produces a DM particle, the cross section for the semi-annihilation can be larger than that for the standard annihilation process (1). To get an idea on the size of $< \sigma(ij;kX)v >$, we first consider the symmetric case, i.e., $\sigma_{0,123} = \sigma_{0,231} = \sigma_{0,312}$. In Table I we give the effective boost factor BF_X for various values of $\sigma_{0,123}, m_2$ and m_3 with the value of m_1 fixed at 1000 GeV. These values are chosen such that the sum of the individual relic abundances is consistent with $\Omega T h^2 = 0.1126 \pm 0.0036$. As we see from Table I, the effective boost factor BF_X becomes large if the mass difference $m_1 - m_3$ is large and m_2 is close to m_1. But BF_X is at most of O(few), which would not be sufficient to explain the observed positron excess.

Next we consider the asymmetric case, i.e., $\sigma_{0,123} \neq \sigma_{0,231} \neq \sigma_{0,312}$. The reason why we can not obtain a large boost factor in the symmetric case is that, as we see from Table I, $Y_{i,\infty} \times Y_{j,\infty}$ for $i \neq j$ are small. Therefore, to suppress $\Omega_{\chi_i} h^2$ and the same time to increase $\Omega_{\chi_j} h^2$, we consider the situation $\sigma_{0,123} < \sigma_{0,231}, \sigma_{0,312}$. In Table II we give some examples of the asymmetric case, which show that it is in fact possible to obtain a boost factor BF_X of $O(10)$.

III. A MODEL WITH THREE DARK MATTER PARTICLES

We extend the original radiative seesaw model of [31] so as to have an additional discrete symmetry Z_2. This can be done by introducing a SM singlet Majorana fermion χ and a SM singlet real inert scalar ϕ in addition to the inert Higgs doublet η which is present in the original model. The matter content of the model with the corresponding quantum numbers is given in Table III.

\(^4\) We use $Y_2^0(x_\infty = 170)$ as Y_2^0.

10
TABLE II: The effective boost factor BF_X for the asymmetric case, i.e., $\sigma_{0,123} \neq \sigma_{0,231} \neq \sigma_{0,312}$, with $m_1 = 1000$ GeV, $m_2 = 900$ GeV and $m_3 = 550$ GeV.

<table>
<thead>
<tr>
<th>$\sigma_{0,123}$</th>
<th>$\sigma_{0,231}$</th>
<th>$\sigma_{0,312}$</th>
<th>$\Omega_{\chi_1} h^2$</th>
<th>$\Omega_{\chi_2} h^2$</th>
<th>$\Omega_{\chi_3} h^2$</th>
<th>BF_X</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.0</td>
<td>2000.0</td>
<td>48.4</td>
<td>0.0325</td>
<td>0.0007</td>
<td>0.0793</td>
<td>14.5</td>
</tr>
<tr>
<td>55.5</td>
<td>65.0</td>
<td>2000.0</td>
<td>0.0003</td>
<td>0.1118</td>
<td>0.0002</td>
<td>13.6</td>
</tr>
<tr>
<td>90.0</td>
<td>1000.0</td>
<td>100.3</td>
<td>0.0121</td>
<td>0.0011</td>
<td>0.0988</td>
<td>13.6</td>
</tr>
<tr>
<td>110.0</td>
<td>1000.0</td>
<td>125.3</td>
<td>0.0091</td>
<td>0.0010</td>
<td>0.1022</td>
<td>13.0</td>
</tr>
<tr>
<td>110.0</td>
<td>800.0</td>
<td>133.0</td>
<td>0.0080</td>
<td>0.0012</td>
<td>0.1032</td>
<td>12.3</td>
</tr>
<tr>
<td>110.0</td>
<td>600.0</td>
<td>145.2</td>
<td>0.0067</td>
<td>0.0015</td>
<td>0.1039</td>
<td>11.3</td>
</tr>
</tbody>
</table>

TABLE III: The matter content of the model and the corresponding quantum numbers. $Z_2 \times Z'_2$ is the unbroken discrete symmetry. The quarks are suppressed in the Table.

<table>
<thead>
<tr>
<th>field</th>
<th>$SU(2)_L$</th>
<th>$U(1)_Y$</th>
<th>Z_2</th>
<th>Z'_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ν_L^i, l_i)</td>
<td>2</td>
<td>$-1/2$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>l_c^i</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N_i^c</td>
<td>1</td>
<td>0</td>
<td>$-$</td>
<td>+</td>
</tr>
<tr>
<td>$H = (H^+, H^0)$</td>
<td>2</td>
<td>$1/2$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>$\eta = (\eta^+, \eta^0)$</td>
<td>2</td>
<td>$1/2$</td>
<td>$-$</td>
<td>+</td>
</tr>
<tr>
<td>χ</td>
<td>1</td>
<td>0</td>
<td>+</td>
<td>$-$</td>
</tr>
<tr>
<td>ϕ</td>
<td>1</td>
<td>0</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

The $Z_2 \times Z'_2$ invariant Yukawa couplings of the lepton sector are given by

$$\mathcal{L}_Y = Y_{ij}^e H^L_i l_j^c + Y_{ik}^\nu L_i \epsilon \eta N_k^c + Y_k^\chi \chi N_k^c \phi + h.c.$$ \hspace{1cm} (20)

and the Majorana mass terms of the right-handed neutrinos N^c_k ($k = 1, 2, 3$) and the singlet fermion χ are\(^5\)

$$\mathcal{L}_{\text{Maj}} = \frac{1}{2} M_k N^c_k N^c_k + \frac{1}{2} M_\chi \chi^2 + h.c.$$ \hspace{1cm} (21)

We may assume without loss of generality that the right handed neutrino mass matrix is diagonal and real. As far as the light neutrino masses, which are generated radiatively, are concerned, the last additional interaction term in Eq. (20) has no influence. So the neutrino phenomenology is the same as in the original model. The most general form of the $Z_2 \times Z'_2$

\(^5\) A similar model is considered in [11].
invariant scalar potential can be written as

\[V = m_1^2 H^\dagger H + m_2^2 \eta^\dagger \eta + \frac{1}{2} m_3^2 \phi^2 \]

\[+ \frac{1}{2} \lambda_1 (H^\dagger H)^2 + \frac{1}{2} \lambda_2 (\eta^\dagger \eta)^2 + \lambda_3 (H^\dagger H)(\eta^\dagger \eta) + \lambda_4 (H^\dagger \eta)(\eta^\dagger H) \]

\[+ \frac{1}{2} \lambda_5 [(H^\dagger \eta)^2 + h.c.] + \frac{1}{4!} \lambda_6 \phi^4 + \frac{1}{2} \lambda_7 (H^\dagger H)\phi^2 + \frac{1}{2} \lambda_8 (\eta^\dagger \eta)\phi^2 , \]

(22)

from which we obtain the masses of the inert Higgs fields:

\[m_{\eta^\pm}^2 = m_2^2 + \lambda_3 v^2 \]

(23)

\[m_{\eta^R}^2 = m_2^2 + (\lambda_3 + \lambda_4 + \lambda_5) v^2 / 2 = m_2^2 + \lambda_L v^2 / 2 \]

(24)

\[m_{\eta^I}^2 = m_2^2 + (\lambda_3 + \lambda_4 - \lambda_5) v^2 / 2 \]

(25)

\[m_{\phi}^2 = m_3^2 + \lambda_7 v^2 / 2 . \]

(26)

Here, \(\langle H \rangle = v/\sqrt{2} \) is the Higgs VEV, and \(\eta^0 = (\eta^0_R + i \eta^0_I) / \sqrt{2} \). At this stage we have assumed that

\[\langle H \rangle = v/\sqrt{2}, \langle \eta \rangle = \langle \phi \rangle = 0 \]

(27)

correspond to the absolute minimum. (The sufficient condition for the absolute minimum of Eq. (22) is given below.) As we can see from Table III, the cold DM candidates are \(N_c, \eta^0_R, \eta^0_I, \chi \) and \(\phi \), where \(\eta^0_R \) as dark matter in the original model has been discussed in detail in [51–53]. To proceed, we assume that the mass relations

\[M_k >> m_{\eta^\pm}, m_{\eta^R} > m_{\eta^I}, m_\chi \text{ and } m_{\eta^R} < m_\phi + m_\chi \]

(28)

are satisfied. These relations are chosen because we would like to meet the following requirements:

1. \(\mu \rightarrow e \gamma \)

The constraint coming from \(\mu \rightarrow e \gamma \) is given by [64]

\[B(\mu \rightarrow e\gamma) = \frac{3\alpha}{64\pi (G_F m_{\eta^\pm}^2)^2} \left| \sum_k Y_{\mu k}^\nu Y_{\nu k}^\nu F_2 \left(\frac{M_k^2}{m_{\eta^\pm}^2} \right) \right|^2 \lesssim 2.4 \times 10^{-12} , \]

(29)

\[F_2(x) = \frac{1}{6(1 - x)^4} (1 - 6x + 3x^2 + 2x^3 - 6x^2 \ln x) , \]

where the upper bound is taken from [65]. A similar, but slightly weaker bound for \(\tau \rightarrow \mu(e)\gamma \) given in [65] has to be satisfied, too. Since \(F_2(x) \sim 1/3x \) for \(x >> 1 \), while \(1/12 < F_2(x) < 1/6 \) for \(0 < x < 1 \), the constraint can be readily satisfied if \(M_k << m_{\eta^\pm} \) or \(M_k >> m_{\eta^\pm} \).

\[m_{\eta^R}^0 < m_{\eta^I}^0 \text{ does not give any new feature of the model.} \]
2. $g_\mu - 2$

The extra contribution to the anomalous magnetic moment of the muon, $a_\mu = (g_\mu - 2)/2$, is given by [64]

$$\delta a_\mu = \frac{m_\mu^2}{16\pi^2 m_{\eta_{1,2}}^2} \sum_k Y_{\mu k}^\nu Y_{\mu k}^\nu F_2 \left(\frac{M_k^2}{m_{\eta_{1,2}}^2} \right).$$ \hspace{1cm} (30)

If we assume that $|\sum_k Y_{\mu k}^\nu Y_{\mu k}^\nu F_2 \left(\frac{M_k^2}{m_{\eta_{1,2}}^2} \right)| \simeq |\sum_k Y_{\mu k}^\nu Y_{\nu k}^\nu F_2 \left(\frac{M_k^2}{m_{\eta_{1,2}}^2} \right)|$, then we obtain

$$|\delta a_\mu| \simeq 2.2 \times 10^{-5} B(\mu \to e\gamma) \lesssim 3.4 \times 10^{-11}$$ \hspace{1cm} (31)

if Eq. (29) is satisfied, where the upper bound is taken from [66]. So, the constraint from a_μ has no significant influence.

3. Stable and global minimum

The DM stabilizing symmetry Z_2 remains unbroken if

$$m_1^2 < 0, \ m_2^2 > 0, \ m_3^2 > 0, \ m_4^2 > 0,$$

$$\lambda_1, \ \lambda_2, \ \lambda_6 > 0, \ \lambda_3 + \lambda_4 - |\lambda_5|, \ \lambda_3 > -\frac{1}{2}(\lambda_1\lambda_2)^{1/2}, \ \lambda_7 > -\frac{1}{2}(\lambda_1\lambda_6/3)^{1/2}, \ \lambda_8 > -\frac{1}{2}(\lambda_2\lambda_6/3)^{1/2}$$ \hspace{1cm} (32)

are satisfied. These conditions are sufficient for Eq. (27) to correspond to the absolute minimum. Since $m_{\eta_{1,2}}^2 - m_{\eta_3}^2 = \lambda_5 v^2$, a negative λ_5 is consistent with Eq. (28).

4. Electroweak precision

The electroweak precision measurement requires [51, 66]

$$\Delta T \simeq 0.54 \left(\frac{m_{\eta_1} - m_{\eta_2}}{v} \right) \left(\frac{m_{\eta_1} - m_{\eta_3}}{v} \right) = 0.02^{+0.11}_{-0.12}$$ \hspace{1cm} (33)

for $m_h = 115 - 127$ GeV. Therefore, $|m_{\eta_1} - m_{\eta_2}|$, $|m_{\eta_1} - m_{\eta_3}| \lesssim 100$ GeV is sufficient to meet the requirement.

Then, with the assumption of the above mass relations, we look at the radiative neutrino mass matrix [31]

$$(\mathcal{M}_\nu)_{ij} = \sum_k \frac{Y_{\nu k}^i Y_{\nu k}^j M_k}{16\pi^2} \left[\frac{m_{\eta_{1,2}}^2}{m_{\eta_{1,2}}^2 - M_k^2} \ln \left(\frac{m_{\eta_{1,2}}^2}{M_k^2} \right)^2 - \frac{m_{\eta_3}^2}{m_{\eta_3}^2 - M_k^2} \ln \left(\frac{m_{\eta_3}^2}{M_k^2} \right)^2 \right]$$ \hspace{1cm} (34)

$$\simeq -\sum_k \frac{Y_{\nu k}^i Y_{\nu k}^j}{16\pi^2} \left[\frac{m_{\eta_{1,2}}^2}{M_k} \ln \left(\frac{m_{\eta_{1,2}}^2}{M_k} \right)^2 - \frac{m_{\eta_3}^2}{M_k} \ln \left(\frac{m_{\eta_3}^2}{M_k} \right)^2 \right]$$

for $m_{\eta_1}, m_{\eta_2} << M_k$.

Since $(\mathcal{M}_\nu)_{ij}$ are of order 10^{-1} eV and $m_{\eta_{1,2}}^2 - m_{\eta_3}^2 = \lambda_5 v^2$, we need $\sum_k Y_{\nu k}^i Y_{\nu k}^j \lesssim O(10^{-9})$ for $|\lambda_5| \gtrsim O(0.1)$. Note, however, that this does not automatically imply that $\sum_{i,k} |Y_{\nu k}^i|^2 \lesssim O(10^{-9})$, and in fact it could be much larger if we assume a specific flavor structure of $Y_{\nu k}^i$. If there exists another source for the neutrino mass matrix, we have to add it to (34).
A. Relic abundance of dark matter

Now we come to the relic abundance of DM. Under the assumption about the mass relations (28) we have to consider the following annihilation processes:

\[\eta^0_R \eta^0_R \leftrightarrow \text{SMs} , \quad \phi \phi \leftrightarrow \text{SMs} \quad (\text{Standard annihilation}) \quad (35) \]

\[\eta^0_R \eta^0_R \leftrightarrow \phi \phi , \quad \chi \chi \leftrightarrow \phi \phi \quad (\text{Conversion}) \quad (36) \]

\[\eta^0_R \chi \leftrightarrow \phi \nu_L , \quad \chi \phi \leftrightarrow \eta^0_R \nu_L , \quad \phi \eta^0_R \leftrightarrow \chi \nu_L \quad (\text{Semi-annihilation}) \quad (37) \]

\[\eta^0_R \eta^0_R \chi \leftrightarrow \phi \nu_L , \quad \chi \phi \leftrightarrow \eta^0_R \nu_L , \quad \phi \eta^0_R \leftrightarrow \chi \nu_L \quad (\text{Semi-annihilation}) \quad (38) \]

\[\lambda_3 = -0.065 , \quad \lambda_7 = 0.1 , \quad \lambda_8 = 0.1 , \quad \lambda_L = -0.2 , \quad \lambda_L = -0.2 \]

\[\sum_{i,k=1}^{3} |Y^\chi_k|^2 = 3(0.7)^2 , \quad \sum_{i,k=1}^{3} |Y^\nu_k|^2 = 9(0.01)^2 . \]

With this choice of the parameter values we obtain

\[< \sigma(\eta^0_R \eta^0_R; \text{SMs})v > = 45.66 - 38.21/x , \quad < \sigma(\phi \phi; \text{SMs})v > = 5.93 - 1.92/x , \]

\[< \sigma(\eta^0_R \eta^0_R; \phi \phi)v > = 0.46 + 0.29/x , \quad < \sigma(\chi \chi; \phi \phi)v > = 0 + 77.18/x , \quad (39) \]

\[< \sigma(\chi \eta^0_R; \phi \nu_L)v > = 0.02 + 0.01/x , \quad < \sigma(\eta^0_R \phi; \chi \nu_L)v > = 0.07 + 0.02/x , \]

\[< \sigma(\chi \phi; \eta^0_R \nu_L)v > = 0.07 + 0.04/x \]

We have yet not specified the relative size of \(m_\chi \) and \(m_\phi \). If \(\chi \) is lighter than \(\phi \), the conversion of \(\chi \) into \(\phi \) is kinematically forbidden and the semi-annihilation in Fig. 6 is the only kinematically allowed annihilation for \(\chi \). So, we will consider below only the case \(m_\chi > m_\phi \). First we consider a benchmark set of the input parameter values:

\[m_{\eta^0_R} = 200 \text{ GeV} , \quad m_\chi = 190 \text{ GeV} , \quad m_\phi = 180 \text{ GeV} , \]

\[m_{\eta^0_R} = m_\eta = 210 \text{ GeV} , \quad m_h = 125 \text{ GeV} , \quad M_1 = M_2 = M_3 = 1000 \text{ GeV} , \]

\[\lambda_3 = -0.065 , \quad \lambda_7 = 0.1 , \quad \lambda_8 = 0.1 , \quad \lambda_L = -0.2 \]

\[\sum_{k=1}^{3} |Y^\chi_k|^2 = 3(0.7)^2 , \quad \sum_{i,k=1}^{3} |Y^\nu_k|^2 = 9(0.01)^2 . \]

We neglect the coannihilations such as that of \(\eta^0_R \) with \(\eta^0_I \) and \(\eta^\pm \) below.
FIG. 7: Y^χ dependence of the relic abundances, $\Omega_T h^2$ (dashed), $\Omega_\eta h^2$ (black), $\Omega_\chi h^2$ (blue), $\Omega_\phi h^2$ (red), where Y^χ controls the size of the semi-annihilation and conversion shown in Fig. 6. The input parameter values are given in Eq. (38).

in units of 10^{-9} GeV$^{-2}$, and

$$\Omega_T h^2 = 0.1094, \quad \Omega_\eta h^2 = 0.0062, \quad \Omega_\chi h^2 = 0.0511, \quad \Omega_\phi h^2 = 0.0521,$$

(40)

where $x = (1/m_\eta R + 1/m_\chi + 1/m_\phi)^{-1}/T = \mu/T$. As we see from Fig. 6, the size of the semi-annihilation and conversion is controlled by Y^χ_k. In Fig. 7 we show the Y^χ dependence of the individual abundances, where we have varied $\sum_k |Y^\chi_k|^2$, and $Y^\chi/Y^\chi_{\text{ref}}$ stands for $(\sum_k |Y^\chi_k|^2/3(0.7))^{1/2}$. If $Y^\chi/Y^\chi_{\text{ref}} << 1$, the conversion of χ and the semi-annihilations $\chi \phi \rightarrow \eta_R \nu_L$, $\chi \eta_R \rightarrow \phi \nu_L$ become small, such that $\Omega_\chi h^2$ in particular increases.

FIG. 8: Tree (left) and one-loop (right) level interactions with the quarks.

B. Imposing constraints

To be more realistic, we have to impose constraints from direct detection, collider experiments, and perturbativity, $|\lambda_i|, |Y^\nu_{ij}|, |Y^\chi| < 1$, in addition to Eqs. (29)–(33), which we shall
FIG. 9: The allowed regime in the $\lambda_L(\lambda_T)-m_{\eta^0_R}$ plane for $(\delta_1 = 10, \delta_2 = 10)$ GeV with $m_\chi = m_{\eta^0_R} - 10$ GeV, $m_\phi = m_{\eta^0_R} - 20$ GeV and $M_k = 1000$ GeV. The green and red points are for λ_L and λ_T, respectively.

do next. ϕ and η^0_R have tree-level interactions to the quarks which are shown in Fig. 8. In the following discussions we ignore the one-loop contributions such as the right diagram in Fig. 8. The spin-independent elastic cross section off the nucleon $\sigma(\phi(\eta^0_R))$ is given by

$$
\sigma(\phi(\eta^0_R)) = \frac{1}{4\pi} \left(\frac{\lambda_T}{m_{\phi(\eta^0_R)}m_N^2} \right)^2 \left(\frac{m_Nm_{\phi(\eta^0_R)}}{m_N + m_{\phi(\eta^0_R)}} \right)^2,
$$

(41)

where m_N is the nucleon mass, and $\hat{f} \sim 0.3$ stems from the nucleonic matrix element. The cross sections have to satisfy

$$
\left(\frac{\sigma(\phi)}{\sigma_{UB}(m_\phi)} \right) \frac{\Omega h^2}{0.112} + \left(\frac{\sigma(\eta^0_R)}{\sigma_{UB}(m_{\eta^0_R})} \right) \frac{\Omega_{\eta^0_R} h^2}{0.112} \lesssim 1,
$$

(42)

where $\sigma_{UB}(m)$ is the current experimental limit on the cross section for the DM mass m.

In the absence of χ and ϕ, the lower mass region 60 GeV $\lesssim m_{\eta^0_R} \lesssim 80$ GeV is consistent with all the experimental constraints. But the elastic cross section $\sigma(\eta^0_R) \simeq 7.9 \times 10^{-45}(\lambda_L/0.05)^2(60$ GeV$/m_{\eta^0_R})^2$ cm2 with $\lambda_L \gtrsim 0.05$ in this mass range may exceed the upper bound of the XENON100 result $73, 11 7.0 \times 10^{-45}$ cm2 for the DM mass 50 GeV at 90 C.L. The higher mass region, i.e., $m_{\eta^0_R}$ $\gtrsim 500$ GeV with $\sigma(\eta^0_R) \simeq 4.6 \times 10^{-46}(\lambda_L/0.1)^2(500$ GeV$/m_{\eta^0_R})^2$ cm2 will be significant for next generation experiments such as SuperCDMS [80], XENON1T [81] or XMASS [82].

The presence of χ and ϕ changes the situation. Firstly, the separation of two allowed regions of $m_{\eta^0_R}$ disappears: As far as the relic abundance is concerned, $m_{\eta^0_R}$ is allowed

8 Direct detection of two DM particles has been discussed for instance in [8, 17, 18, 21]. LHC signals of η dark matter have been discussed in [51, 67, 68]. See also [11, 18].

9 There exist also one-loop corrections to $\eta^0_R \eta^0_R \rightarrow \eta^0_R q q$. See also [70].

10 There exists a marginal possibility to expend slightly this upper bound [71].

11 See also [74, 75].
between 80 and 500 GeV, too, as we have seen, because χ and φ also contribute to the relic abundance. Secondly, the parameter space becomes considerably larger. To see how the allowed parameter space of the model without χ and φ changes, we consider a set of \((δ_1 = m_{η^+} - m_{η_R^0}, \ δ_2 = m_{η^0} - m_{η_R^0})\), for which the allowed parameter space without χ and φ is very small. For \((δ_1 = 10, \ δ_2 = 10)\) GeV, for instance, there is no allowed range of \(m_{η^0_R} < \sim 500\) GeV [53]; the low mass range of \(m_{η^0_R}\), for which the relic abundance \(Ω_{η}h^2\) is consistent, does not satisfy the LEP constraint. Below we show how this situation changes in the presence of χ and φ. The LEP constraint implies that the region satisfying \(m_{η^0_R} < \sim 80\) GeV and \(m_{η^0} < 100\) GeV with \(δ_2 > 8\) GeV is excluded [53]. Therefore, for \((δ_1 = 10, \ δ_2 = 10)\) GeV we have to consider only \(m_{η^0_R} > 80\) GeV. Further, to suppress the parameter space we assume that \(m_{χ} = m_{η^0_R} - 10\) GeV, \(m_{φ} = m_{η^0_R} - 20\) GeV and \(M_k = 1000\) GeV, and we scan \(m_{η^0_R}\) from 80 to 500 GeV.

Fig. 9 shows the allowed area in the \(λ_L(λ_7) - m_{η^0_R}\) plane, where all the constraints are taken into account. The allowed mass range for \(m_{η^0_R}\) is extended as expected. The reason why there are no allowed points around \(m_{η^0_R} \sim 100\) GeV is the following. Since we keep the mass difference fixed, we have \(m_{φ} = m_{η^0_R} - 20 \sim 80\) GeV there. This is the threshold regime for the process \(φφ \rightarrow W^+W^-\). So, for \(m_{η^0_R}\) just below 100 GeV, the annihilation cross section for φ is small because of small \(λ_7\) in this range of \(m_{φ}\), and therefore the relic abundance \(Ω_{φ}h^2\) exceeds 0.12. We see that \(m_{η^0_R} = 80\) GeV is allowed on the other hand. This allowed area exists, though \(λ_7\) is small, because around \(m_{η^0_R} = 62\) GeV the s-channel annihilation of φ becomes resonant due to \(m_h = 125\) GeV. For \(m_{η^0_R}\) just above 100 GeV, the annihilation cross section for φ is large because the channel to \(W^+W^-\) is now open, so that \(Ω_{φ}h^2\) can not supplement the anyhow small \(Ω_{η}h^2\).

If we suppress the constraint from the direct detection, we have a prediction on the direct detection. Fig. 10 shows the spin-independent cross section off the nucleon versus the DM mass; the green area for the η DM and the violet area for the φ DM. We see that the spin-independent cross sections are not only consistent with the current bound of XENON100 [73], but also are within the accessible range of future experiments.

C. Indirect detection

If DM annihilates sufficiently into SM particles, the resulting cosmic rays may be observable. These are indirect signals of DM, and in fact excesses in \(e^+\) [41 - 44] and in \(γ\) [83 - 86] have been recently reported. Indirect detection of DM has been studied within the framework of a two component DM system in [7, 9, 12, 14, 17, 23, 26], and also of the inert Higgs model in [52, 57, 89]. As we see from the semi-annihilation diagram in Fig. 6 the process produces only a left-handed neutrino as the SM particle. Therefore, the boost factor to enhance the annihilation cross section to obtain an excess in \(e^+\) is not available in this model. So, we are particularly interested in the neutrinos from the annihilation of captured DM in
FIG. 10: The spin-independent cross section off the nucleon is plotted as a function of the DM mass. The green and violet areas are for η and φ DM’s, respectively, where we have used (δ1 = 10, δ2 = 10) GeV with mχ = mηR − 10 GeV, mφ = mηR − 20 GeV and Mk = 1000 GeV.

the Sun [54–63] (see [4, 5] for a review, and [89] for the case of the inert Higgs model), because (i) the semi-annihilation produces a monochromatic neutrino (Eν ≃ mηR + mφ − mχ for instance) in addition to those with Eν ≃ mηR along with the continuum spectrum, (ii) these neutrinos can be observed at neutrino telescopes [90–92], and (iii) the evolution equations of the DM numbers in the Sun, which describe approaching equilibrium between the capture and annihilation (including conversion and semi-annihilation) rates of DM, are coupled now.

We denote the number of DM particles η, χ and φ in the Sun by Ni with i = η, χ and φ, respectively. Then the change of Ni with respect to time t is given by

\[\dot{N}_\eta = C_\eta - C_A(\eta \leftrightarrow \text{SM}) N_\eta^2 - C_A(\eta \leftrightarrow \phi) N_\eta^2 - C_A(\eta \leftrightarrow \phi \nu_L) N_\eta N_\chi + C_A(\eta \phi \leftrightarrow \chi \nu_L) N_\eta N_\phi, \]

\[\dot{N}_\chi = C_\chi - C_A(\chi \leftrightarrow \text{SM}) N_\chi^2 + C_A(\eta \leftrightarrow \phi \nu_L) N_\eta N_\chi - C_A(\phi \chi \leftrightarrow \eta \nu_L) N_\phi N_\chi, \]

\[\dot{N}_\phi = C_\phi - C_A(\phi \leftrightarrow \text{SM}) N_\phi^2 + C_A(\eta \leftrightarrow \phi) N_\eta^2 + C_A(\chi \leftrightarrow \phi) N_\chi^2 + C_A(\eta \chi \leftrightarrow \phi \nu_L) N_\eta N_\chi N_\phi - C_A(\phi \chi \leftrightarrow \eta \nu_L) N_\phi N_\chi N_\phi, \]

where the Ci’s are the capture rates in the Sun and the CA’s are proportional to the annihilation cross sections times the relative DM velocity per volume in the limit v → 0:

\[C_{\phi(\eta)} \approx 1.4 \times 10^{20} f(m_{\phi(\eta)}^{1/2}) \left(\frac{\hat{f}}{0.3} \right)^2 \left(\frac{\lambda_\ell}{0.1} \right)^2 \left(\frac{m_h}{125 \text{ GeV}} \right)^{-4} \times \left(\frac{200 \text{ GeV}}{m_{\phi(\eta)}^{1/2}} \right)^2 \left(\frac{\Omega_{\phi(\eta)} h^2}{0.112} \right) \text{s}^{-1}, \]

\[C_\chi = 0, \]

where the function \(f(m_{\phi(\eta)}^{1/2}) \) depends on the form factor of the nucleus, elemental abundance, kinematic suppression of the capture rate, etc, varying from \(O(1) \) to \(O(0.01) \) depend-
For the monochromatic neutrinos, i.e., $\Gamma(\nu_{\alpha})$ (38). In Fig. 11 we show the time evolution of ν_{α} scaled to 10^{20}, as function of t_\odot.

The annihilation rates C_A can be calculated from

$$C_A(ij \leftrightarrow \bullet) = \frac{\langle \sigma(ij; \bullet) v \rangle}{V_{ij}}, \quad V_{ij} = 5.7 \times 10^{27} \left(\frac{100 \text{ GeV}}{\mu_{ij}} \right)^{3/2} \text{ cm}^3,$$ \hspace{1cm} (47)

with $\mu_{ij} = 2m_im_j/(m_i + m_j)$ in the limit $v \rightarrow 0$.

There are fixed points of the evolution equations, which correspond to equilibrium. Since at the time of birth of the Sun the numbers N_i were zero, the N_i increase with time and approach the fixed point values, i.e., equilibrium at which N_i assumes its maximal value. So, the question is whether the age of the Sun, $t_\odot \simeq 4.5 \times 10^9$ years, is old enough for N_i to reach equilibrium. We see from the evolution equations that the fixed point values are roughly proportional to $(C_i/C_A)^{1/2}$, implying that we need large capture rates C_i to obtain large $N_i(t_\odot)$. The annihilation, conversion and semi-annihilation rates at $t = t_\odot$ are given by

$$\Gamma(ij; \bullet) = d_{ij}C_A(ij \leftrightarrow \bullet)N_i(t_\odot)N_j(t_\odot),$$ \hspace{1cm} (48)

where $d_{ii} = 1/2$ and $d_{ij} = 1$ for $i \neq j$. The observation rate of the neutrinos Γ_{detect} is proportional to $\Gamma(ij; \bullet)$. As a benchmark we use the same set of the input parameter values as (38). In Fig. 11 we show the time evolution of 12

$$\Gamma(\text{SM}) = C_A(\eta \eta \leftrightarrow \text{SM})N_\eta^2/2 + C_A(\phi \phi \leftrightarrow \text{SM})N_\phi^2/2,$$ \hspace{1cm} (49)

$$\Gamma(\nu) = C_A(\eta \phi \leftrightarrow \chi \nu)N_\eta N_\phi + C_A(\eta \chi \leftrightarrow \phi \nu)N_\eta N_\chi + C_A(\chi \phi \leftrightarrow \eta \nu)N_\chi N_\phi,$$ \hspace{1cm} (50)

$$\Gamma(\nu \nu) = C_A(\eta \eta \leftrightarrow \nu \nu)N_\eta^2/2,$$ \hspace{1cm} (51)

scaled to 10^{20} s$^{-1}$, as function of $\tau = t/t_\odot$. As we see from Fig. 11, the rates seem to be saturated: $\Gamma(\text{SM})$ is in fact saturated, but $\Gamma(\nu)$ does not reach its fixed-point value 0.002×10^{20} s$^{-1}$ at $\tau = t/t_\odot = 1$. The saturated value of $\Gamma(\text{SM})$ is 0.28×10^{20} s$^{-1}$ for the input parameters (38), which is consistent with the upper limit $\sim 2.73 \times 10^{21}$ s$^{-1}$ for $m_{DM} = 250$ GeV of the AMANDA-II / IceCube neutrino telescope [90]. As for the monochromatic neutrinos we obtain $\Gamma(\nu) = 1.1 \times 10^{-3} \times 10^{20}$ s$^{-1}$ and $\Gamma(\nu \nu) = 1.3 \times 10^{-7} \times 10^{20}$ s$^{-1}$. To estimate the detection rate Γ_{detect} we use the formula [93]

$$\Gamma_{\text{detect}} = AP(E_\nu)\Gamma_{\text{inc}},$$ \hspace{1cm} (52)

where A is the detector area facing the incident beam, $P(E_\nu)$ is the probability for detection as a function of the neutrino energy $P(E_\nu)$, and $\Gamma_{\text{inc}} = \Gamma/4\pi R_\odot^2$ is the incoming neutrino flux, i.e., the number of neutrinos per unit area per second on the Earth (R_\odot is the distance

\hspace{1cm} 12For the monochromatic neutrinos, i.e., $\Gamma(\nu)$, we have added all the semi-annihilations, because for the mass values given in (38) the neutrino energies are all closed to 200 GeV. Moreover, the first term in the r.h.s. of Eq. (51) (which counts neutrinos of $m_\eta + m_\phi - m_\chi = 190$ GeV) is a dominant contribution with about 95%.
to the Sun $\simeq 1.5 \times 10^8$ km.\footnote{A sophisticated method to compute the observation rates at IceCube was recently developed in \cite{94}.} The probability $P(E_{\nu})$ may be approximated as the ratio of the effective detector length L to the mean free path of the neutrinos in the detector. For the neutrinos (anti-neutrinos) one finds: $P(E_{\nu(\bar{\nu})}) \simeq 2.0(1.0) \times 10^{-11}(L / \text{km})(E_{\nu(\bar{\nu})} / \text{GeV})$, arriving at

$$\Gamma_{\text{detect}} \simeq 2.2(1.1) \times 10^{-21} \left(\frac{A}{\text{km}^2} \right) \left(\frac{L}{\text{km}} \right) \left(\frac{E_{\nu(\bar{\nu})}}{\text{GeV}} \right) \left(\frac{\Gamma}{\text{s}^{-1}} \right) \text{yr}^{-1},$$

which implies that, for the input parameters of \cite{38}, 0.05 events of monochromatic neutrinos with ~ 200 GeV per year may be detected at IceCube \cite{90}, we have used: $A = 1\text{km}^2$, $L = 1\text{km}$.

0.05 events per year may be too small to be realistic. However, we would like to note that we have studied only one point in the whole parameter space. It will be our future program to implement the sophisticated method of \cite{94} and to survey the whole parameter space. We also would like to note that if at least one of the fermionic DM in a multi-component DM system has odd parity of the discrete lepton number, a monochromatic left-handed neutrino, which is also odd, can be produced together with this fermionic DM in a semi-annihilation of DM’s.

\section{IV. CONCLUSION}

We have considered the conversion and semi-annihilation of DM in a multi-component DM system. We have found that these non-standard DM annihilation processes can influence the relic abundance of DM a lot, which has been recently found for two-component DM systems in \cite{16, 21, 22}. The question of whether a large boost factor can be obtained within the
framework of thermally produced DM in a three-component DM system has been addressed. It has turned out that a boost factor of at most $O(10)$ can be obtained.

As a concrete three-component DM system we have considered a radiative seesaw model of [31], which is extended to include an extra Majorana fermion χ and an extra real scaler boson ϕ. The DM stabilizing symmetry is promoted to $Z_2 \times Z'_2$, and we have assumed that η_{R}^0 (the CP even neutral component of the inert Higgs $SU(2)_L$ doublet), χ and ϕ are DM. We have shown that the previously found separation [51–53] of the allowed parameter space in the low and high mass regions for η_{R}^0 disappears in the presence of χ and ϕ.

Finally, we have discussed neutrinos coming from the annihilations of the captured DM in the Sun. The evolution equations of the DM numbers in the Sun, which describe approaching equilibrium between the capture and annihilation (including conversion and semi-annihilation) rates of DM, are coupled in multi-component DM system. Due to the semi-annihilations of DM, monochromatic neutrinos are radiated, and the observation rates of neutrinos have been estimated. Observations of high energy monochromatic neutrinos from the Sun may indicate a multi-component DM system.

The work of M. D. is supported by the International Max Planck Research School for Precision Tests of Fundamental Symmetries. The work of M. A. is supported in part by Grant-in-Aid for Scientific Research for Young Scientists (B) (No.22740137), and J. K. is partially supported by Grant-in-Aid for Scientific Research (C) from Japan Society for Promotion of Science (No.22540271). M. D. thanks the Institute for Theoretical Physics at Kanazawa University for very kind hospitality.

