English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model

MPS-Authors
/persons/resource/persons38802

Direnberger,  Stephan
Research Group: Cellular Dynamics / Griesbeck, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39002

Mues,  Marsilius
Department: Neuroimmunology / Wekerle, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38946

Krishnamoorthy,  Gurumoorthy
Department: Neuroimmunology / Wekerle, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38863

Griesbeck,  Oliver
Research Group: Cellular Dynamics / Griesbeck, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Direnberger, S., Mues, M., Micale, V., Wotjak, C. T., Dietzel, S., Schubert, M., et al. (2012). Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. NATURE COMMUNICATIONS, 3: 1031. doi:10.1038/ncomms2035.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-1F96-9
Abstract
Engineering efforts of genetically encoded calcium indicators predominantly focused on enhancing fluorescence changes, but how indicator expression affects the physiology of host organisms is often overlooked. Here, we demonstrate biocompatibility and widespread functional expression of the genetically encoded calcium indicator TN-XXL in a transgenic mouse model. To validate the model and characterize potential effects of indicator expression we assessed both indicator function and a variety of host parameters, such as anatomy, physiology, behaviour and gene expression profiles in these mice. We also demonstrate the usefulness of primary cells and organ explants prepared from these mice for imaging applications. Although we find mild signatures of indicator expression that may be further reduced in future sensor generations, the 'green' indicator mice generated provide a well-characterized resource of primary cells and tissues for in vitro and in vivo calcium imaging applications.