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Researchers are beginning to uncover the neurogenetic

pathways that underlie our unparalleled capacity for spoken

language. Initial clues come from identification of genetic risk

factors implicated in developmental language disorders. The

underlying genetic architecture is complex, involving a range of

molecular mechanisms. For example, rare protein-coding

mutations of the FOXP2 transcription factor cause severe

problems with sequencing of speech sounds, while common

genetic risk variants of small effect size in genes like CNTNAP2,

ATP2C2 and CMIP are associated with typical forms of

language impairment. In this article, we describe how

investigations of these and other candidate genes, in humans,

animals and cellular models, are unravelling the connections

between genes and cognition. This depends on

interdisciplinary research at multiple levels, from determining

molecular interactions and functional roles in neural cell-

biology all the way through to effects on brain structure and

activity.
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Introduction
The emergence of spoken language is one of the most

prominent cognitive developments in the evolution of our

species. Without needing explicit instruction, human

children acquire large numbers of words, learn to assem-

ble them into complex sentences following sophisticated

sets of rules, and become adept in production and per-

ception of the sound streams that constitute speech.

Researchers have begun to decipher the molecular basis

of this remarkable suite of abilities, catalysed by success-

ful genomic studies of developmental speech and

language disorders. Not all children develop linguistic

skills at the same speed or to equivalent proficiency.

Sometimes an otherwise normally-developing child has

severe unexplained difficulties in language, speech or
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reading. Such disorders are heritable, presenting gate-

ways into the underlying genetic landscape (Table 1)

[1�,2�]. Their diagnosis, treatment, and study is compli-

cated by heterogeneity and co-morbidity [3]. Neverthe-

less, significant progress has been made in identifying and

studying risk genes, providing novel perspectives on the

biological bases of human spoken language [4�].

FOXP2 – first clues
The first gene implicated in speech and language was the

transcription factor FOXP2 [5]. It was discovered through

studies of a large pedigree, the KE family, in which fifteen

people had severe problems co-ordinating speech (devel-

opmental verbal dyspraxia, DVD, or childhood apraxia of

speech, CAS) accompanied by wide-ranging linguistic

deficits [6]. Linkage analysis of the family, and mapping

of a translocation breakpoint in an unrelated child with

similar problems, led to identification of FOXP2 [5,7]. All

affected KE members carry a heterozygous missense

mutation yielding an amino-acid substitution within the

DNA-binding domain of the FOXP2 protein, one that

interferes with transcription factor activity by preventing

recognition of target sites [8]. Based on subsequent reports

of additional cases and small families harbouring different

FOXP2 mutations (nonsense mutations, translocations and

deletions), disruption of one gene copy appears sufficient

to derail speech development [9–13]. No human has yet

been identified with homozygous FOXP2 loss. When mice

completely lack functional Foxp2 (the murine orthologue),

they display severe motor impairment, reduced growth and

delayed cerebellar development, dying 3–4 weeks after

birth [14–17,18�].

The FOXP2 protein is a direct regulator (primarily a

repressor) of transcription. Many potential targets have

been discovered via chromatin immunoprecipitation

(ChIP) screening using different cell types and organisms,

a subset of which have been confirmed by functional

assays [19–22,23��]. A recent study integrated ChIP data

with expression profiling in embryonic mouse brain,

revealing networks of neurite outgrowth genes that are

regulated, directly and indirectly, by Foxp2 [23��].
Focused functional investigations of cellular and mouse

models uncovered connections between this gene and

neurite growth and branching [23��].

Of birds, mice and men
Human FOXP2 is expressed in distributed circuits invol-

ving multiple brain areas, including deep cortical layers,

striatum, cerebellum, inferior olives and thalamus [24].

These neural expression patterns show intriguing over-

laps with regions of structural and functional anomaly in
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Table 1

Heritable developmental disorders affecting speech and language

Disorder Clinical observations Genetic studies

Developmental Dyslexia/Reading Disability A difficulty with reading and spelling that

cannot be explained by obvious causes

such as low IQ, physical impairment, or lack

of opportunity to learn. Affects 5–10% of

school-age children. Difficulties persist into

adulthood. Often involve subtle underlying

problems with language processing.

At least nine genomic loci (DYX1–9)

identified by genome-wide linkage analysis.

Candidate genes include DYX1C1 at DYX1,

KIAA0319 and DCDC2 at DYX2, and

ROBO1 at DYX5.

Specific language impairment (SLI) Unexplained impairment in acquisition of

spoken language, affecting one or more of

morphology, syntax, semantics and

pragmatics. Can disturb expressive and/or

receptive language skills and also written

language. Up to 7% of 5–6 year-olds may

be affected. Language can improve but

persistent deficits (e.g. in non-word

repetition) are often detected in adulthood.

Genome-wide linkage analysis highlighted

three chromosomal loci: 16q24 (SLI1);

19q13 (SLI2); 13 (SLI3). Association

screening of SLI1 suggested ATP2C2 and

CMIP as candidates. Risk variants in a

FOXP2-regulated gene CNTNAP2 were

identified through functional analyses

followed by a targeted association study.

Developmental verbal dyspraxia

(DVD)/childhood apraxia of speech (CAS)

Problems with learning to make

coordinated movements needed for

speech, yielding inconsistent errors in

speech which increase with complexity of

utterance. Typically accompanied by

additional deficits in language function,

both oral and written.

FOXP2 mutations first identified by linkage

in a large family. Multiple additional reports

confirm role of FOXP2 mutations, but only a

small percentage of DVD/CAS cases are

accounted for by this gene.

Speech sound disorder (SSD) Difficulty with the production and proper

use of speech sounds, most commonly

omission or substitution of a small number

of specific sounds. Common in young

children, persists in 4% of 6-year-olds.

Diagnostic overlaps with SLI and DVD/CAS,

boundaries between conditions are

unclear.

Dyslexia-linked loci were examined for

linkage to SSD due to a possible shared

problem with phonological awareness;

most significant linkage is to chromosome 3

(DYX5).

Stuttering Involuntary repetitions, prolongations of

syllables, and pauses during speech.

Generally resolves with age, but persistent

in �20% of cases. Linguistic function is

usually normal.

Several genomic loci identified by genome-

wide linkage analysis in large

consanguineous pedigrees. Coding

variants observed in genes of the lysosomal

enzyme targeting pathway: GNPTAB,

GNPTG and NAGPA.

Diagnosis of speech and language disorders is made on the basis of clinical assessment of speech and language skills and exclusion of explanatory

medical conditions, generalised intellectual impairments or environmental factors. A child may fit the diagnostic criteria for more than one condition.

For a detailed discussion of genetic studies of all these disorders, see refs [1�] and [2�]. In the present review we focus on key genes implicated in

dyslexia, SLI and DVD/CAS, because these have been most informative for investigations of the neural basis of human language.
people with disruptions of the gene [24–27]. FoxP2 is

likely to be present in all vertebrates, and is highly

conserved in neural expression pattern and amino-acid

coding sequence [28,29]. Thus, ancestral versions con-

tributed to brain development long before language

appeared, lending validity to the study of its effects in

animal models.

A juvenile male zebra finch learns its song by imitating an

adult, a process which depends on Area X of the striatum

[see Scharff, this issue]. FoxP2 levels in Area X show

developmental increases during the vocal-learning

period, but are temporarily downregulated by singing,

except when directed to a female [30,31]. The gene may

act as a ‘plasticity gate’ in Area X, high levels yielding

song stability, low levels allowing vocal variability [30].

Expression profiling of Area X identified co-expressed
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gene networks correlated with singing, including a

FoxP2-related module that also contains multiple known

targets [32��]. FoxP2 knockdown in Area X by postnatal

RNA-interference (RNAi) disrupts imitation of tutor song

[33] and reduces dendritic spine density of Area X

neurons [34�].

The laboratory mouse shows limited vocal learning

[35,36,37�]. Potential links between mouse Foxp2 and

vocal behaviours remain poorly understood, with reports

thus far focusing on innately-specified (non-learned) cries

of young pups. Some authors argue that Foxp2 loss

specifically disrupts pup ultrasonic vocalizations [15,17];

others suggest this is secondary to other factors and not a

reliable parallel of human speech dysfunction [16,18].

Even pups with two disrupted copies of Foxp2 can still

produce their full repertoire of vocalizations [16].
www.sciencedirect.com
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Analyses of other behaviours in mouse models may yield

mechanistic accounts that are more relevant to human

disorder. For example, affected KE family members have

difficulty acquiring rapid complex motor programs under-

lying speech [6], along with structural and functional

abnormalities in the striatum [26,27], a FOXP2-expres-

sing structure involved in learning motor skills. Hetero-

zygous mice carrying the KE family mutation display

significant deficits in motor-skill learning on running

wheels and accelerating rotarods, and impaired long-term

depression (LTD) at glutamatergic inputs into the stria-

tum [16]. In vivo electrophysiology in awake-behaving

mice revealed abnormally high basal activity in striatal

medium spiny neurons (MSNs) of the heterozygous

mutants, with reduced firing during motor-skill learning,

contrasting with the positive modulation of MSN firing in

wild type littermates [38��]. Moreover, the temporal

coordination of MSN firing was disturbed in the mutants

[38��].

Mouse Foxp2 may also affect processing and integration

of auditory information. Auditory stimulation has been

associated with increased Foxp2 expression in the

thalamus [39]. In addition, mice heterozygous for the

KE family mutation have subtly altered auditory brain-

stem responses to sound, although these effects were not

seen for another aetiological mutation – a truncation

mutation matching that of another family with speech

and language problems [40]. Mice carrying either aetio-

logical Foxp2 disruption are impaired in auditory-motor

association learning, with the truncation mutation produ-

cing more severe deficits [41].

Given its expression in multiple neural sites, along with

the observed phenotypic complexity, selective gene

disruption in particular circuits/structures, and at

specific developmental time points, is needed for prop-

erly mapping the connections between Foxp2 and

mouse behaviour [14]. Additional model systems being

used to study this gene include zebrafish [42] and fruit

fly [43].

Is human FOXP2 special?
Against a generally low background of FoxP2 protein

change during vertebrate evolution, two amino-acid sub-

stitutions occurred on the human lineage since splitting

from the chimpanzee [44,45�]. One of these substitutions

independently arose and became fixed on at least two

other mammalian lineages [45�]. The substitutions are

relatively conservative, outside known functional

domains, and do not affect protein dimerization or tran-

scriptional regulation from canonical binding sites. How-

ever, quantitative differences in target regulation were

reported for human cells transfected with human FOXP2,

compared to those receiving a chimpanzee version [22].

When the two substitutions were introduced into a mouse

model, increased dendritic length was observed in key
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neurons of the striatum, thalamus and cortex, contrasting

with reduced neurite outgrowth of mice lacking func-

tional Foxp2 [23,46,47]. The partially ‘humanized’ mice

also showed increased LTD at cortico-striatal synapses,

contrasting with the decreased LTD of mice heterozy-

gous for the KE family mutation [16,46,47]. Thus, intri-

guing data are emerging on potential in vivo functional

effects of these coding changes. However, their contri-

butions to evolution of human-specific traits remain

uncertain, since both changes are also present in Nean-

derthal DNA [48], and cannot explain a recent (<200 000

year old) selective sweep observed at the human FOXP2
locus [49,50]. Assuming that this selective sweep is not a

false-positive finding, it may have instead involved non-

coding functional changes at the locus (e.g. affecting

regulation of FOXP2 expression), a hypothesis that is

currently being tested [49]. Regardless, the evolution of

language is unlikely to be accounted for by only a single

gene [51].

Linking language disorders with functional
genomics
FOXP2 mutations are rare and do not explain common

language impairments [9,52]. Nevertheless, as a neurally-

expressed transcription factor gene, FOXP2 is likely to be

a hub in gene networks with relevance to speech and

language phenotypes, and its targets represent strong

candidates for involvement in related disorders. An

example is the discovery that the CNTNAP2 gene con-

tributes to typical forms of specific language impairment

(SLI) [21]. CNTNAP2 encodes a cell-surface neurexin

protein with crucial roles in brain development; homo-

zygous loss-of-function mutations cause infant-onset epi-

lepsy followed by mental retardation and language

regression [53]. FOXP2 binds the first intron of CNTNAP2
and downregulates transcription; expression levels of the

two genes are inversely correlated within fetal cortex [21].

In a cohort of >180 SLI families from the UK, a cluster of

single nucleotide polymorphisms (SNPs) in CNTNAP2
showed association with language deficits, in particular

with reduced performance on non-word repetition

(NWR), a task in which subjects repeat pronounceable

but meaningless words [21]. NWR deficits have high

heritability and are resistant to environmental factors,

persisting in people who compensate for language diffi-

culties, and so have been proposed as an important

endophenotype [54]. Association of CNTNAP2 variation

with NWR deficits was replicated in an independent

study of developmental dyslexia (specific reading disabil-

ity) [55]. The same SNP cluster was associated with age-

at-first-word in children with autism spectrum disorder

(ASD) [56], and with an early measure of language

acquisition (assessed at 2 years of age) in a large Australian

population sample [57�]. Thus, effects of these CNTNAP2
variants extend between different neurodevelopmental

disorders [58], and also beyond, into the normal range of

variation.
Current Opinion in Neurobiology 2013, 23:43–51
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A functional magnetic resonance imaging (fMRI) study of

children with and without ASD described effects of

CNTNAP2 risk alleles on connectivity during an implicit

learning task, independent of whether the children were

diagnosed with ASD [59]. The group of children with

non-risk alleles displayed a discrete left-lateralised fron-

totemporal network, overlapping with language-related

regions, including left inferior front gyrus (IFG) and left

superior temporal gyrus, while the group of risk carriers

showed a more diffuse bilateral network [59]. In a sub-

sequent fMRI study of normal adults performing a

language task, people carrying CNTNAP2 risk alleles

exhibited increased activation of language homologues

in the right hemisphere (including right IFG and lateral

temporal cortex), although task performance was normal

[60�]. Further supporting the view that these variants

have an impact beyond any disorder, investigations of

healthy adults have suggested altered structural connec-

tivity associated with CNTNAP2 risk alleles, determined

by whole-brain fiber tractography [61]. The molecular

basis of these CNTNAP2 effects on linguistic, cognitive

and neuroimaging phenotypes remains unknown. The

investigated risk alleles are likely to be in linkage dis-

equilibrium with the true functional variants, which are

predicted to impact on some undetermined aspect of

CNTNAP2 regulation.

Multiple additional FOXP2 targets have been implicated

in disorders involving language dysfunction, including

the receptor tyrosine kinase MET in ASD [62], the

schizophrenia candidate gene DISC1 [63], and the

SRPX2-uPAR complex, involved in epilepsy of

speech-related brain areas and DVD/CAS [64]. Similar

connections may apply for key interacting proteins, as

illustrated by the recent finding that FOXP1 (which

heterodimerizes with FOXP2) is involved in ASD and

intellectual disabilities (ID) with severe language

impairments [65,66��].

Complex genetic architecture supporting
language
Genome-wide linkage screens in cohorts of families

affected by dyslexia or SLI have identified several loci

that may harbour susceptibility variants, and suggested

multiple candidate genes [1�,2�]. Although the primary

symptoms of dyslexia are problems learning to read and

spell, many researchers view it as a language-related

disorder. People with dyslexia may not show overt

problems with expression or comprehension of

language, but typically manifest underlying deficits in

relevant aspects of cognitive processing, such as the

manipulation of phonemes. Dyslexia and SLI often

co-occur and may share genetic aetiology [3]. Therefore,

studies may evaluate candidate genes from both con-

ditions against reading-related and language-related

measures, within these disorders and in general popu-

lation samples.
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Following a genome-wide linkage screen of SLI families

from the UK, targeted association analyses of the most

strongly linked region identified the chromosome 16

genes ATP2C2 and CMIP as susceptibility candidates

[67]. ATP2C2 encodes a calcium-ATPase regulating cel-

lular calcium and manganese levels, while CMIP encodes

an adaptor protein which may be a cytoskeletal com-

ponent. SNPs within both genes were quantitatively

associated with NWR performance. Two recent studies

evaluated these candidates and found association be-

tween CMIP variants and reading-related measures in

SLI and population samples, but no additional support

for ATP2C2 [68,69�]. Interestingly, independent genome-

wide association screening for normal variation in hearing

thresholds identified CMIP as one of the most signifi-

cantly associated genes [70]. Moreover, a case study of a

child with de novo deletion of the gene suggests CMIP

haploinsufficiency may be implicated in ASD, pointing

again to shared mechanisms across different disorders

[71].

Chromosomal regions that have been repeatedly linked to

dyslexia include 3p12-q13, 6p22.3-p21.3, and 15q15.1-

q21.3. DYX1C1, in 15q21.3, was the first candidate gene

proposed, based on its disruption by a translocation in one

small Finnish family, and putative risk polymorphisms

associated with dyslexia in additional Finnish cases [72].

In the majority of follow-up studies with dyslexia samples

from other parts of the world, these initial SNP associ-

ations failed to replicate [2�,73]. However, recent reports

describe associations between other DYX1C1 SNPs and

reading or spelling abilities in population samples [74–
76]. In utero RNAi knockdown of rat Dyx1c1 in developing

neocortex has been reported to disrupt neuronal

migration [77]. Earlier studies of a small number of

human postmortem brains from dyslexic people

described subtle malformations involving displaced

neurons and glia, mainly localised to left-hemisphere

regions of the cortex [78]. Rats that underwent in utero
Dyx1c1 RNAi are reported to show impairments in rapid

auditory processing and spatial working memory [79].

Most recently, transcriptomic and proteomic analyses

suggested that DYX1C1 connects with molecular factors

involved in neuronal migration and cytoskeletal function,

as well as estrogen receptor signalling pathways [80].

The 6p22 region contains two neighbouring dyslexia

candidate genes which, despite lying close together,

are not in significant linkage disequilibrium: KIAA0319
and DCDC2. TheKIAA0319 gene encodes a plasma-mem-

brane protein with a large extracellular domain, which

undergoes ectodomain shedding and intramembrane

cleavage, and may be important for neuronal adhesion/

attachment [81]. DCDC2 encodes a doublecortin-domain

protein that may be involved in regulating cytoskeletal

dynamics, and has suggested roles in the structure

and function of primary cilia [82]. Each gene has been
www.sciencedirect.com
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associated with language and reading phenotypes in

multiple reports, and each is suggested to have effects

extending into the normal range of language ability

[2�,68,69�,83,84]. Recent neuroimaging genetics studies

explored the relationships between SNPs in these genes

and functional/structural brain phenotypes [85–87]. For

example, an fMRI study assessed healthy subjects per-

forming a reading task, looking for correlations with

common KIAA0319 gene variants. Putative risk alleles

were associated with reduced asymmetry of activation of

the superior temporal sulcus, an area previously suggested

to harbour anatomical and functional anomalies in dys-

lexics [88��]. (Interestingly, in these same subjects, com-

mon variants of FOXP2 were associated with variability in

activation of left frontal cortex regions during the task

[88��].) Dyslexia-associated variants in KIAA0319 and

DCDC2 have been linked to reduced expression of the

respective candidate gene in cell-based studies [89–91].

As for DYX1C1, in-utero RNAi of either Kiaa0319 or Dcdc2
in rats has been reported to disturb neuronal migration,

with subsequent associated deficits in behaviour [92,93].

However, constitutive loss of Dcdc2 in mouse models

yields impaired visuo-spatial memory, visual discrimi-

nation and long-term memory, but with no evidence of

neuronal migration abnormalities [94�]. Given the emer-

ging discrepancies between different functional models,

the links between dyslexia candidate genes, neuronal

migration pathways and behavioural/cognitive outcomes

require further clarification.

The 3p12-q13 region was initially linked to dyslexia in a

large Finnish pedigree [95] and in quantitative-trait link-

age scans of UK and US families [96]. Subsequently, the

ROBO1 gene in 3p12 was found to be disrupted by a

translocation breakpoint in an independent dyslexia case

[95,97]. Analyses of ROBO1 markers in the original Fin-

nish family identified a putative risk haplotype, correlated

with variable reduction in gene expression in a sample of

four affected individuals [97]. Since ROBO1 encodes a

guidance receptor for midline-crossing axons [98], a

defect in inter-hemisphere connections may contribute

to the associated phenotype. Consistent with reduced

hemispheric connectivity, affected members of the Fin-

nish family did not display normal suppression of mag-

neto encephalography (MEG) response during binaural

compared to monaural listening [99��]. Associations be-

tween ROBO1 SNPs and NWR, but not reading and

spelling measures, have been reported in a population

sample [100].

The above represent the best studied candidates, but

others have received less attention, or were described

only recently, including several alternatives in 15q

[2�,101–104]. Moreover, it is clear that the known candi-

date risk variants can still explain only a tiny proportion of

the total variance in reading-related and language-related

traits. Thus, this remains an active field of investigation.
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The future
When it comes to the intricate networks of molecular

interactions which underlie the neural circuitry mediating

language, researchers are just scratching the surface.

Based on findings thus far, genetic contributions to typical

language disorders and normal variation are likely to

involve common variants with small effect sizes, requiring

genome-wide association in very large samples, whereas

rare and de novo variants underlying high-penetrance

disorders may be revealed by new DNA sequencing

technologies. Decoding the genetics of language dis-

orders and the relation to normal variation promises not

only to aid diagnosis and inform educational method-

ology, but also to shed light on the molecular under-

pinnings of a central yet enigmatic aspect of being human.
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