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Abstract

Using the methods developed for the Bianchi I case we have shown that a boostrap argu-

ment is also suitable to treat the future non-linear stability for reflection symmetric solutions

of the Einstein-Vlasov system of Bianchi types II and VI0. These solutions are asymptotic

to the Collins-Stewart solution with dust and the Ellis-MacCallum solution respectively. We

have thus generalized the results obtained by Rendall and Uggla in the case of locally rota-

tionally symmetric Bianchi II spacetimes to the reflection symmetric case. However we needed

to assume small data. For Bianchi VI0 there is no analogous previous result.
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1 Introduction

A starting point to understand general cosmological models are the homogeneous models. There
are a lot of results concerning this subject and in particular two books [34], [39] which are an
excellent introduction and a great summary of many of the results obtained.

In general the focus has been on the fluid model since it appears (theoretically) relatively
natural when dealing with isotropic universes and from observations we also know that the Universe
is almost isotropic. However to have a deeper understanding of the dynamics one should go beyond
the study of isotropic universes. General statements may vary then depending on the choice of
the matter model. It is also important to note as is pointed out in [9] that a quasi-isotropic epoch
is compatible with all Bianchi models and thus it is interesting to study the dynamics of all the
different types.

We will deal with the future asymptotics of some homogeneous cosmological models within the
so called Bianchi class A and the matter is described via an ensemble of free falling particles also
called collisionless matter. For all the models treated here the fundamental questions are on a
firm ground, i.e. future geodesic completeness has been shown for these models [23], [24].

Concerning the late time behaviour of the Universe one believes in the cosmic no hair con-
jecture. This conjecture states roughly speaking that all expanding cosmological models with a
positive cosmological constant approach asymptotically the de Sitter solution. For the Einstein-
Vlasov system isotropization could be shown for all non-type IX Bianchi cosmologies [19].

In absence of a cosmological constant there are also different results concerning the future.
For the Einstein-non-linear scalar field system we refer to [31], [32], [1] and [7]. The late-time
behaviour of Bianchi spacetimes with a non-tilted fluid is well understood [38], [17]. In particular
all non-tilted perfect fluid orthogonal Bianchi models except IX with a linear equation of state
where 0 < γ < 2

3 are future asymptotic to the flat FL model [16]. For other values of γ one cannot
expect isotropization for most of the Bianchi models. However there is an important characteristic
of the future asymptotics for the Bianchi types I, II and VI0, namely that the spacetimes considered
tend to special (self-similar) solutions. For expanding models it is reasonable to expect that the
dispersion of the velocities of the particles will decay. The conjecture now is that for the Einstein-
Vlasov system the spacetimes of certain Bianchi type will tend to the same special solution as for
the corresponding Einstein-dust system.

This has been achieved already for locally rotationally symmetric (LRS) models in the cases
of Bianchi I, II, III, VIII and IX [29],[30],[26], [14], [3] and for reflection symmetric models in the
case of Bianchi I [25]. These results have been obtained using dynamical systems theory.

The Einstein-Vlasov system remains a system of partial differential equations (PDE’s) even if
one assumes spatial homogeneity. The reason is that although the distribution function written
in a suitable frame will not depend on the spatial point, the dependence with respect to the
momenta remains (since the Vlasov equation is defined on the mass shell). However in the results
mentioned a reduction to a system of ordinary differential equations was possible due to the
additional symmetry assumptions. This is no longer possible if one drops some of these additional
symmetries (see [20] for the reasons). Thus if one wants to generalize these results the theory of
finite dimensional dynamical systems is not enough.

Most of the results obtained until now rely on the theory of dynamical systems. Thus one
might be tempted to use techniques coming from the theory of infinite-dimensional dynamical
systems. The first important difficulty would be to choose the suitable (weighted) norm. Another
one is that important theorems which have been used for the finite-dimensional case cannot be
used here. All this may work, but this is not the approach taken here.

Here the main tool used is a bootstrap argument which is often used in non-linear PDE’s. We
will present results concerning the late-time behaviour of some expanding Bianchi A spacetimes
with collisionless matter where we have assumed small data. This assumption will be specified
later, but roughly it means that the universe is close to the special self-similar solution mentioned
earlier and that the velocity dispersion of the particles is small.

The results obtained are as follows. For reflection symmetric Bianchi II and reflection sym-
metric Bianchi VI0 we have been able to show that their late-time behaviour remains the same if
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the LRS condition is dropped. We will show that these spacetimes, reflection symmetric Bianchi
II and reflection symmetric Bianchi VI0, will tend to solutions which are even more symmetric.
In the case of Bianchi II we will show that it will become LRS, a Bianchi model whose isometry
group of the spatial metric is four-dimensional. In this case there exists a one-dimensional isotropy
group and one can show that a spacetime of Bianchi class A admits a four-dimensional isometry
group, if and only if two structure constants are equal and if the corresponding metric components
are equal as well. Bianchi VI0 cannot be LRS, however it is compatible with an additional discrete
symmetry (Appendix B.1 of [4]). The analysis of the asymptotics shows that the Bianchi VI0
spacetimes tend to this special class. Note that for VI0 there is no corresponding LRS/previous
result.

To be more precise we show that the reflection symmetric solutions of Bianchi type II and
VI0 are asymptotic to the Collins-Stewart solution with dust and the Ellis-MacCallum solution
respectively. The asymptotic behaviour of the metric and the energy-momentum tensor is studied
in detail.

All the results show that the dust model usually assumed in observational cosmology in the
’matter-dominated’ Era is robust. Another way of saying the same is that asymptotically colli-
sionless matter is well approximated by the dust system.

The paper is organized as follows. In the following section we will present the general basic
equations, namely the Einstein-Vlasov system. In sections three and four we explain the symmetry
assumptions and deduce the corresponding equations of the Einstein-Vlasov system which are then
summarized in section five. Afterwards we present some special solutions and their linear stability
as a pre-stage of our main argument in section eight: the bootstrap argument. This argument
is refined in section nine and leads to our main results. In our last section we have a discussion
about our results and present some possible future directions.

2 Relativistic kinetic theory

2.1 The Einstein-Vlasov system

A cosmological model represents a universe at a certain averaging scale. It is described via a
Lorentzian metric gαβ (we will use signature – + + +) on a manifold M and a family of fundamental
observers. The metric is assumed to be time-orientable, which means that at each point of M the
two halves of the light cone can be labelled past and future in a way which varies continuously
from point to point. This enables to distinguish between future-pointing and past-pointing timelike
vectors. This is a physically reasonable assumption from both a macroscopic point of view e.g. the
increase of entropy and also from a microscopic point of view e.g. the kaon decay. As we already
mentioned in the introduction one has also to specify the matter model and this we will do in this
section. The interaction between the geometry and the matter is described by the Einstein field
equations (we use geometrized units, i.e. the gravitational constant G and the speed of light in
vacuum c are set equal to one):

Gαβ = 8πTαβ

where Gαβ is the Einstein tensor and Tαβ is the energy-momentum tensor. For the matter model
we will take the point of view of kinetic theory [35]. The sign conventions of [28] are used. Also
the Einstein summation convention that repeated indices are to be summed over is used. Latin
indices run from one to three and Greek ones from zero to three.

Consider a particle with non-zero rest mass which moves under the influence of the gravitational
field. The mean field will be described now by the metric and the components of the metric
connection. The wordline xα of a particle is a timelike curve in spacetime. The unit future-
pointing tangent vector to this curve is the 4-velocity vα and pα = mvα is the 4-momentum of the
particle. Let Tx be the tangent space at a point xα in the spacetime M , then we define the phase
space for particles of arbitrary rest masses P to be the following set:

P = {(xα, pα) : xα ∈ M, pα ∈ Tx, pαp
α ≤ 0, p0 > 0}
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which is a subset of the tangent bundle TM = {(xα, pα) : xα ∈ M, pα ∈ Tx}. For particles of the
same type and with the same rest mass m which is given by the mass shell relation:

pαp
α = −m2

we have the phase space Pm for particles of mass m:

Pm = {(xα, pα) : xα ∈ M, pα ∈ Tx, pαp
α = −m2, p0 > 0}

We will consider from now on that all the particles have equal mass m. For how this relates to the
general case of different masses see [3]. We will choose units such that m = 1 which means that
a distinction between velocities and momenta is not necessary. We have then that the possible
values for the 4-momenta are all future pointing unit timelike vectors. These values form the
hypersurface:

P1 = {(xα, pα) : xα ∈ M, pα ∈ Tx, pαp
α = −1, p0 > 0}

which we will call the mass shell. The collection of particles (galaxies or clusters of galaxies)
will be described (statistically) by a non-negative real valued distribution function f(xα, pα) on
P1. This function represents the density of particles at a given spacetime point with given four-
momentum. A free particle travels along a geodesic. Consider now a future-directed timelike
geodesic parametrized by proper time s. The tangent vector is then at any time future-pointing
unit timelike. Thus the geodesic has a natural lift to a curve on P1 by taking its position and
tangent vector. The equations of motion thus define a flow on P1 which is generated by a vector
field L which is called geodesic spray or Liouville operator. The geodesic equations are:

dxα

ds
= pα;

dpα

ds
= −Γα

βγp
βpγ

where the components of the metric connection, i.e. Γαβγ = g(eα,∇γeβ) = gαδΓ
δ
βγ can be ex-

pressed in the vector basis eα as [(1.10.3) of [36]]:

Γαβγ =
1

2
[eβ(gαγ) + eγ(gβα) + eα(gγβ) + ηδγβgαδ + ηδαγgβδ − ηδβαgγδ] (1)

The commutator of the vectors eα can be expressed with the following formula:

[eα, eβ] = ηγαβeγ

where ηγαβ are called commutation functions.
The restriction of the Liouville operator to the mass shell is defined as:

L =
dxα

ds

∂

∂xα
+

dpa

ds

∂

∂pa
.

Using the geodesic equations it has the following form

L = pα
∂

∂xα
− Γa

βγp
βpγ

∂

∂pa

This operator is sometimes also called geodesic spray. If we denote now the phase space density
of collisions by C(f), then the Boltzmann equation in curved spacetime in our notation looks as
follows:

L(f) = C(f)

describes the evolution of the distribution function. Between collisions the particles follow geodesics.
We will consider the collisionless case which is described via the Vlasov equation:

L(f) = 0
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2.2 Energy momentum tensor and characteristics

The unknowns of our system are a 4-manifold M , a Lorentz metric gαβ on this manifold and the
distribution function f on the mass shell P1 defined by the metric. We have the Vlasov equation
defined by the metric for the distribution function and the Einstein equations. It remains to define
the energy-momentum tensor Tαβ in terms of the distribution and the metric. Before that we need
a Lorentz invariant volume element on the mass shell. A point of a the tangent space has the
volume element |g(4)| 12 dp0dp1dp2dp3 (g(4) is the determinant of the spacetime metric) which is
Lorentz invariant. Now considering p0 as a dependent variable the induced (Riemannian) volume
of the mass shell considered as a hypersurface in the tangent space at that point is

̟ = 2H(pα)δ(pαp
α +m2)|g(4)| 12 dp0dp1dp2dp3

where δ is the Dirac distribution function and H(pα) is defined to be one if pα is future directed
and zero otherwise. We can write this explicitly as:

̟ = |p0|−1|g(4)| 12 dp1dp2dp3

Now we define the energy momentum tensor as follows:

Tαβ =

∫
f(xα, pa)pαpβ̟

One can show that Tαβ is divergence-free and thus it is compatible with the Einstein equations.
For collisionless matter all the energy conditions hold (for details we refer to [27]). In particular
the dominant energy condition is equivalent to the statement that in any orthonormal basis the
energy density dominates the other components of Tαβ , i.e. Tαβ ≤ T00 for each α, β (P. 91 of [12]).
Using the mass shell relation one can see that this holds for collisionless matter. The non-negative
sum pressures condition is in our case equivalent to gabT

ab ≥ 0.
The Vlasov equation in a fixed spacetime can be solved by the method of characteristics:

dXa

ds
= P a;

dP a

ds
= −Γa

βγP
βP γ

Let Xa(s, xα, pa), P a(s, xα, pa) be the unique solution of that equation with initial conditions
Xa(t, xα, pa) = xa and P a(t, xα, pa) = pa. Then the solution of the Vlasov equation can be
written as:

f(xα, pa) = f0(X
a(0, xα, pa), P a(0, xα, pa))

where f0 is the restriction of f to the hypersurface t = 0. It follows that if f0 is bounded the same
is true for f . We will assume that f has compact support in momentum space for each fixed t.
This property holds if the initial datum f0 has compact support and if each hypersurface t = t0
is a Cauchy hypersurface. Note that there is no obvious reason why a solution of the Boltzmann
equation with compactly supported initial data should have compact support [27].

2.3 The initial value problem

Before coming to our symmetry assumption we want to briefly introduce the initial value problem
for the Einstein-Vlasov system. For a general introduction to the initial value problem in general
relativity we refer to [33] and for the Einstein-Vlasov system in particular we refer to [27]. In
general the initial data for the Einstein-matter equations consist of a metric gab on the initial
hypersurface, the second fundamental form kab on that hypersurface and some matter data. Thus
we have a Riemannian metric gab, a symmetric tensor kab and some matter fields defined on an
abstract 3-dimensional manifold S.

Solving the initial value problem means embedding S into a 4-dimensional M on which are
defined a Lorentzian metric gαβ and matter fields such that gab and kab are the pullbacks to S of
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the induced metric and second fundamental form of the image of the embedding of S while f is
the pullback of the matter fields. Finally gαβ and f have to satisfy the Einstein-matter equations.

For the Einstein-Vlasov system it has been shown [5] that given an initial data set there exists
a corresponding solution of the Einstein-Vlasov system and that this solution is locally unique up
to diffeomorphism (see also theorem 1.1 of [27]). The extension to a global theorem has not been
achieved yet. However if one assumes that the initial data have certain symmetry, this symmetry
is inherited by the corresponding solutions (see 5.6 of [10] for a discussion). In particular for the
case we will deal with, i.e. expanding Bianchi models (except type IX) coupled to dust or to
collisionless matter the spacetime is future complete (theorem 2.1 of [24]).

3 Bianchi spacetimes

3.1 Definition of Bianchi spacetimes

We start with the definition of homogeneity of spacetimes taken from chapter 5.1 of [40].

Definition 1. A spacetime (M, gαβ) is said to be (spatially) homogeneous if there exists a one-
parameter family of spacelike hypersurfaces St foliating the spacetime such that for each t and for
any points P,Q ∈ St there exists an isometry of the spacetime metric, gαβ, which takes P into Q.

The basis for the classification of homogeneous spacetimes is the work of Bianchi [2] which was
introduced to cosmology by Taub [37]. Here we will use the modern terminology and we define
Bianchi spacetimes as follows:

Definition 2. A Bianchi spacetime is defined to be a spatially homogeneous spacetime whose isom-
etry group possesses a three-dimensional subgroup G that acts simply transitively on the spacelike
orbits.

Not all homogeneous spacetimes are Bianchi spacetimes. But the only case where G does not
act simply transitively or does not possess a subgroup with simply transitive action are the so
called Kantowski-Sachs models. The Bianchi models can be subclassified into two classes [8]: class
A and B. Later we will only deal with Bianchi class A, however all the equations in this s are valid
for Bianchi spacetimes in general.

The only Bianchi spacetimes which admit a compact Cauchy hypersurface are Bianchi I and
IX. In order to be not that restrictive we will consider locally spatially homogeneous spacetimes.
They are defined as follows. Consider an initial data set on a three-dimensional manifold S. Then
this initial data set is called locally spatially homogeneous if the naturally associated data set on
the universal covering S̃ is homogeneous. For Bianchi models the universal covering space S̃ can
be identified with its Lie group G (see [23], [24] for details).

3.2 Description of Bianchi spacetimes via the metric approach

A Bianchi spacetime admits a Lie algebra of Killing vector fields with basis k1, k2, k3 and structure
constants Cc

ab, such that:

[ka,kb] = −Cc
abkc.

The Killing vector fields ka are tangent to the group orbits which are called surfaces of homogeneity.
If one chooses a unit vector field n normal to the group orbits we have a natural choice for the time
coordinate t such that the group orbits are given by a constant t. This unit normal is invariant
under the group, i.e:

[n,ka] = 0

One can now choose a triad of spacelike vectors ea that are tangent to the group orbits:

g(n, ea) = 0

5



and that commute with the Killing vector fields:

[ea,kb] = 0

A frame {n, ea} chosen in this way is called a left invariant frame and it is generated by the right
invariant Killing vector fields. Since n is hypersurface orthogonal the vector fields ea generate a
Lie algebra with structure constants ηcab. It can be shown that this Lie algebra is in fact equivalent
to the Lie algebra of the Killing vector fields. Thus one can classify the Bianchi spacetimes using
either the structure constants or the spatial commutation functions of the basis vectors. The
remaining freedom in the choice of the frame is a time-dependent linear transformation, which can
be used to introduce a set of time-independent spatial vectors Ea:

[Ea,n] = 0.

The corresponding commutation functions are then constant in time and one can make them equal
to the structure constants:

[Ea,Eb] = Cc
abEc

This is our choice which is sometimes called the metric approach. If Wa denote the 1-forms dual
to the frame vectors Ea the metric of a Bianchi spacetime takes the form:

4g = −dt2 + gab(t)W
a
W

b (2)

where gab (and all other tensors) on G will be described in terms of the frame components of the
left invariant frame which has been introduced. A dot above a letter will denote a derivative with
respect to the cosmological time t.

3.3 3+1 Decomposition of the Einstein equations

We will use the 3+1 decomposition of the Einstein equations as made in [28]. Comparing our
metric (2) with (2.28) of [28] we have that α = 1 and βa = 0 which means that the lapse function
is the identity and the shift vector vanishes. There the abstract index notation is used. We can
interpret the quantities as being frame components. For details we refer to chapter 2.3 of [28].
There are different projections of the energy momentum tensor which are important

ρ = T 00

ja = T 0
a

Sab = Tab

where ρ is the energy density and ja is the matter current.
The second fundamental form kab can be expressed as:

ġab = −2kab. (3)

The Einstein equations:

k̇ab = Rab + k kab − 2kack
c
b − 8π(Sab −

1

2
gabS)− 4πρgab (4)

where we have used the notations S = gabSab, k = gabkab, and Rab is the Ricci tensor of the three-
dimensional metric. The evolution equation for the mixed version of the second fundamental form
is (2.35) of [28]:

k̇ab = Ra
b + k kab − 8πSa

b + 4πδab (S − ρ) (5)

6



From the constraint equations since k only depends on the time variable we have that:

R− kabk
ab + k2 = 16πρ (6)

∇akab = 8πjb (7)

where R is the Ricci scalar curvature.
Another useful relation concerns the determinant g of the induced metric ((2.30) of [28]):

d

dt
(log g) = −2k (8)

Taking the trace of (5):

k̇ = R+ k2 + 4πS − 12πρ (9)

With (6) one can eliminate the energy density and (9) reads:

k̇ =
1

4
(k2 +R+ 3kabk

ab) + 4πS (10)

Finally if one substitutes for the Ricci scalar with (6):

k̇ = kabk
ab + 4π(S + ρ) (11)

3.4 Time origin choice and new variables

Now with the 3+1 formulation our initial data are (gij(t0), kij(t0), f(t0)), i.e. a Riemannian metric,
a second fundamental form and the distribution function of the Vlasov equation, respectively, on
a three-dimensional manifold S(t0). This is the initial data set at t = t0 for the Einstein-Vlasov
system.

We assume that k < 0 for all time following [23] (see comments below lemma 2.2 of [23]).
This enables us given k(t0) to set without loss of generality t0 = −2/k(t0), since future geodesic
completeness is known and one can always add an arbitrary constant to the time origin. The
reason for this choice will become clear later and is of technical nature.

We will now introduce several new variables in order to use the ones which are common in
Bianchi cosmologies and to be able to compare results. We can decompose the second fundamental
form introducing σab as the trace-free part:

kab = σab −Hgab (12)

kabk
ab = σabσ

ab + 3H2 (13)

Using the Hubble parameter:

H = −1

3
k

we define:

Σb
a =

σb
a

H
(14)

and

Σ+ = −1

2
(Σ2

2 +Σ3
3) (15)

Σ− = − 1

2
√
3
(Σ2

2 − Σ3
3) (16)
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Define also:

Ω = 8πρ/3H2 (17)

q = −1− Ḣ

H2
(18)

dτ

dt
= H (19)

The time variable τ is dimensionless and sometimes very useful. From (6) we obtain the constraint
equation:

1

6H2
(R− σabσ

ab) = Ω− 1

and from (10) the evolution equation for the Hubble variable:

∂t(H
−1) =

3

2
+

1

12
(
R

H2
+

3

H2
σabσ

ab) +
4πS

3H2
(20)

Combining the last two equations with (5) we obtain the evolution equations for Σ− and Σ+:

Σ̇+ = H [
2R− 3(R2

2 +R3
3)

6H2
− Σ+(3 +

Ḣ

H2
) +

4π

3H2
(3S2

2 + 3S3
3 − 2S)] (21)

Σ̇− = H [
R3

3 −R2
2

2
√
3H2

− (3 +
Ḣ

H2
)Σ− +

4π(S2
2 − S3

3)√
3H2

] (22)

3.5 Vlasov equation with Bianchi symmetry

Since we use a left-invariant frame f will not depend on xa and the Vlasov equation takes the
form:

p0
∂f

∂t
− Γa

βγp
βpγ

∂f

∂pa
= 0

It turns out that the equation simplifies if we express f in terms of pi instead of pi what we can
do due to the mass shell relation:

p0
∂f

∂t
− Γaβγp

βpγ
∂f

∂pa
= 0

Because of our special choice of frame the metric has the simple form (2). This has the consequence
that only the spatial components of the metric connection remain and that the first three terms
of (1) vanish. Due to the fact that we are contracting and the antisymmetry of the structure
constant we finally arrive at:

∂f

∂t
+ (p0)−1Cd

bap
bpd

∂f

∂pa
= 0 (23)

From (23) it is also possible to define the characteristic curve Va:

dVa

dt
= (V 0)−1Cd

baV
bVd (24)

for each Vi(t̄) = v̄i given t̄. Note that if we define:

V = gijViVj (25)

due to the antisymmetry of the structure constants we have with (24):

dV

dt
=

d

dt
(gij)ViVj (26)
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Let us also write down the components of the energy momentum tensor in our frame:

T00 =

∫
f(t, pa)p0

√
gdp1dp2dp3 (27)

T0j = −
∫

f(t, pa)pj
√
gdp1dp2dp3 (28)

Tij =

∫
f(t, pa)pipj(p

0)−1√gdp1dp2dp3 (29)

4 Bianchi A spacetimes

4.1 Definition and classification of Bianchi A spacetimes

In the last chapter we have presented the Einstein-Vlasov system with Bianchi symmetry. However
our results concern only a special class of the Bianchi spacetimes, namely that of class A.

Definition 3. A Bianchi A spacetime is a Bianchi spacetime whose three-dimensional Lie algebra
has traceless structure constants, i.e. Ca

ba = 0.

In that case there is a unique symmetric matrix, called commutator matrix with components
νij such that the structure constants can be written as follows (lemma 19.3 of [33]):

Ca
bc = εbcdν

da (30)

The transformation rule of the commutator matrix under a change of basis of the Lie algebra
can be used to classify the Bianchi class A Lie algebras. It is possible to diagonalize ν and the
diagonal elements ν1, ν2 and ν3 can be used to classify the different Bianchi types of class A (for
details see chapter 19.1 of [33]). We will study Bianchi II and VI0. For Bianchi II we have that
the only non-vanishing element of ν is ν1 = 1, thus from (30) we see that for Bianchi II the only
non-vanishing structure constants are:

C1
23 = 1 = −C1

32 (31)

In the case of Bianchi VI0 the only non-vanishing elements of ν are ν2 = 1 and ν3 = −1 thus the
only non-vanishing structure constants are:

C2
31 = 1 = −C2

13, C3
21 = 1 = −C3

12 (32)

4.2 Reflection symmetry and vanishing tilt

We will assume an additional symmetry namely the reflection symmetry such that the matter
current vanishes. This will be a restriction to the diagonal case. The reflection symmetry has
been defined in (2.10) of [25] for the case of Bianchi I, but one can define this for other Bianchi
types as well with the difference that the distribution function now will depend in general on the
time variable:

f(t, p1, p2, p3) = f(t,−p1,−p2, p3) = f(t, p1,−p2,−p3)

Suppose that the distribution function is initially reflection symmetric and the metric and the
second fundamental form are initially diagonal. Then from (28)-(29) we see that the energy-
momentum tensor is diagonal as well. From (3) and (5) we can see that the metric and the second
fundamental will remain diagonal. This symmetry implies in particular that there is no matter
current, which means that there is no ’tilt’. Initial data with symmetry lead to solutions of the
Einstein-Vlasov equations with symmetry, for a proof of this fact we refer to 9.2-9.3 of [28].
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4.3 Some formulas for the diagonal case

Now we will introduce formulas which are valid in the diagonal case. There (ijk) denotes a
cyclic permutation of (123) and the Einstein summation convention is suspended for the first two
formulas. Let us define:

ni = νi

√
gii

gjjgkk

The Ricci tensor is given by (11a) of [4]:

Ri
i =

1

2
[n2

i − (nj − nk)
2]

We define:

Ni =
ni

H

In the diagonal case we have:

Σ2
+ +Σ2

− =
1

6

σabσ
ab

H2

from which follows that the constraint equation can be written in the following way:

Σ2
+ +Σ2

− = Ω− 1− 1

6H2
R (33)

Now we proceed to use them for the cases of Bianchi II and VI0.

4.3.1 Expressions for diagonal Bianchi II

For Bianchi II we have then:

R1
1 = −R2

2 = −R3
3 = −R =

1

2
n2
1

From the constraint equation (33) we obtain:

Σ2
+ +Σ2

− = 1− Ω− 1

12
N2

1

and from (20) we obtain the equation for the evolution of H :

∂t(H
−1) =

3

2
− N2

1

24
+

3

2
(Σ2

+ +Σ2
−) +

4πS

3H2
(34)

and the evolution equation for Σ+ and Σ−:

Σ̇+ = H [
1

3
N2

1 − (3 +
Ḣ

H2
)Σ+ +

4π

3H2
(S2

2 + S3
3 − 2S1

1)] (35)

Σ̇− = H [−(3 +
Ḣ

H2
)Σ− +

4π√
3H2

(S2
2 − S3

3)] (36)

From the definition (3) for the second fundamental form the evolution equation for n2
1 follows:

d

dt
(n2

1) = 2(−4σ+ −H)n2
1

In terms of N2
1 :

d

dt
(N2

1 ) = −2N2
1H(4Σ+ + 1 +

Ḣ

H2
)
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or

Ṅ1 = −N1H(4Σ+ + 1 +
Ḣ

H2
) (37)

Let us write the equations (35)-(37) with τ and q:

Σ′
+ =

1

3
N2

1 − (2− q)Σ+ +
4π

3H2
(S2

2 + S3
3 − 2S1

1) (38)

Σ′
− = −(2− q)Σ− +

4π√
3H2

(S2
2 − S3

3) (39)

N ′
1 = N1(q − 4Σ+) (40)

Note that these equations are the same as (6.21) of [38] with γ = 1 if one sets S = 0 in
(38)-(40).

4.3.2 Expressions for diagonal Bianchi VI0

For Bianchi VI0 we have then:

R1
1 = R = −1

2
(n2 − n3)

2

R2
2 = −R3

3 =
1

2
(n2

2 − n2
3)

The constraint equation (33) is:

Σ2
+ +Σ2

− = 1− Ω− 1

12
(N2 −N3)

2

and the evolution equations

∂t(H
−1) =

3

2
− 1

24
(N2 −N3)

2 +
3

2
(Σ2

+ +Σ2
−) +

4πS

3H2

Σ̇+ = H [−1

6
(N2 −N3)

2 − Σ+(3 +
Ḣ

H2
) +

4π

3H2
(S2

2 + S3
3 − 2S1

1)]

Σ̇− = H [
N2

3 −N2
2

2
√
3

− (3 +
Ḣ

H2
)Σ− +

4π(S2
2 − S3

3)√
3H2

]

Ṅ2 = −N2H(−2Σ+ − 2
√
3Σ− + 1 +

Ḣ

H2
)

Ṅ3 = −N3H(−2Σ+ + 2
√
3Σ− + 1 +

Ḣ

H2
)

In analogy to Bianchi II these equations can be compared to (6.9)-(6.10) of [38] setting N1 to
zero and using the definition of q (18).

5 Special solutions

In this section we present some special solutions which will be important, since we will show that
the late time asymptotics of the Bianchi types considered behave like them in a sense which will be
specified later. We start with the Kasner solution which is the general Bianchi I vacuum solution
to motivate also the concept of generalized Kasner exponents.
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5.1 The Kasner solution and generalized Kasner exponents

The Kasner solution [18] is the general Bianchi I vacuum solution, thus all components of the
energy-momentum tensor and the scalar curvature R vanish. From the constraint equation one
obtains:

Σ2
+ +Σ2

− = 1

which is known as the Kasner circle. The metric components are:

gij = diag(t2p1 , t2p2 , t2p3)

where p1, p2 and p3 satisfy:

p1 + p2 + p3 = 1

p21 + p22 + p23 = 1

One can easily compute that the Hubble variable is H = 1
3 t

−1.
For more general spacetimes let λi be the eigenvalues of kij with respect to gij , i.e., the solutions

of:

det(kij − λδij) = 0 (41)

We define

pi =
λi

k

as the generalized Kasner exponents. They satisfy the first but in general not the second Kasner
relation.

5.2 The Collins-Stewart solution

Another special solution which will play an important role is the Collins-Stewart solution ([6], p.
430) with dust (γ = 1) which has Bianchi II symmetry:

gCS = diag(2t, (2t)3/2, (2t)3/2)

The Hubble parameter is H = 2
3 t

−1 and the energy density 8πρCS = 5
4 t

−2. The values of the
variables which have been introduced previously are:

Σ+ =
1

8
; Σ− = 0; Ω =

15

16
; N1 =

3

4

5.3 The Ellis-MacCallum solution

In the case of Bianchi VI0 there is a dust solution with diagonal metric discovered by Ellis and
MacCallum ([8], pp. 124-125):

gEM = diag(t2, t1, t1)

The Hubble parameter is H = 2
3 t

−1 as in the Collins-Stewart solution, but the energy density
8πρEM = t−2 is different. Here the values of the introduced variables are:

Σ+ = −1

4
; Σ− = 0; N1 = 0; N2 = −N3 =

3

4
; Ω =

3

4

The generalization of this solution to different values of γ is called Collins solution.
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6 Einstein-dust with small data

6.1 Einstein-dust system

Let us present briefly the Einstein-Euler system. We will consider the isentropic case where the
matter fields are the energy density ρ and the four-velocity uα which is a unit timelike vector. The
equation of state P = f(ρ) relates the pressure P with the energy density. The energy-momentum
tensor is:

Tαβ = (ρ+ P )uαuβ + Pgαβ

and the equations of motion are equivalent to the condition that the energy-momentum tensor is
divergence-free. The Einstein-dust system is then obtained via the condition P = 0. It can be seen
as a very singular solution of the Einstein-Vlasov system. Formally the system can be obtained
from the Einstein-Vlasov system choosing f to be of the form:

f(t, xa, pa) = |u0||g(4)|−
1

2 ρ(t, xa)δ(pa − ua)

where u0 is obtained via the mass shell relation. The relation of the Einstein-dust system to the
Einstein-Vlasov system is in general subtle and we refer to [22] for more information on that. Here
we will look at the special solutions of the corresponding Einstein-dust systems in order to obtain
some intuition about the Einstein-Vlasov system. It is easy to see that the special solutions are
equilibrium points. The stability of these equilibrium points has already been studied (see for
instance [38]). For the case of Bianchi I there even exist a general expression [(11-1.12) of [13]],
where one can see that isotropization occurs. Actually for all the Bianchi cases we study here,
Liapunov functions have been found, such that besides the stability also the global behaviour is
known. In this section we will start dealing with estimates. C will denote an arbitrary constant
and ǫ a small and strictly positive constant. They both may appear several times in different
equations or inequalities without being the same constant.

6.2 Linearization of Einstein-dust around Collins-Stewart

Let us look at the stability of the Collins-Stewart solution with dust. For the Collins-Stewart
solution we have (Σ+ = 1

8 ,Σ− = 0, N1 = 3
4 ) which is an equilibrium point of the system (38)-(40)

with S = 0. Let us translate the equilibrium point to the origin by introducing the variables
Σ̃+ = Σ+ − 1

8 , Σ̃− = Σ− and Ñ1 = N1 − 3
4 . The linearization is:



Σ̃+

Σ̃−

Ñ1




′

=



− 93

64 0 63
128

0 − 3
2 0

− 87
32 0 − 3

64






Σ̃+

Σ̃−

Ñ1




The variable Σ− decouples and we obtain:

Σ− = Σ−(τ0)e
− 3

2
(τ−τ0)

The rest of the system:

(
Σ̃+

Ñ1

)′

=

(
−93/64 63/128
−87/32 −3/64

)(
Σ̃+

Ñ1

)
(42)

has eigenvalues

λ1/2 = −3

4
(1∓ i

√
3

2
)
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Translated to our time variable means that the expected estimates for the Vlasov case are:

Σ+ − 1

8
= O(t−

1

2 )

N1 −
3

4
= O(t−

1

2 )

Σ− = O(t−1)

Whether this is true we do not know at this point. We will start proving estimates in the next
chapter. Here we have obtained these estimates just in order to get a hint about the non-linear
behaviour. For instance it could be the case that the variable Σ− has the same decay as the other
variables. However these estimate will turn out to be not sufficient. In addition to assume that we
are close to the special solutions, we will have to assume that we are close to the dust case. This
is done via a momentum bound. We have a number (different from zero) of particles at possibly
different momenta and we define P as the supremum of the absolute value of these momenta at a
given time t:

P (t) = sup{|p| = (gabpapb)
1

2 |f(t, p) 6= 0}
A bound on that quantity can be used for estimates on S/H2 as we show now. Consider an
orthonormal frame and denote the components of the spatial part of the energy-momentum tensor
in this frame by Ŝab. The components can be bounded by

Ŝab ≤ P 2(t)ρ

so we have that

Ŝ

ρ
≤ 3P 2 (43)

Since the Ricci scalar is non-positive it follows from (6) using the trace-free part of the second
fundamental form that:

16πρ = 6H2 +R− σabσ
ab

Thus we obtain:

16πρ ≤ 6H2

Thus from 43 we obtain that:

4πS

3H2
≤ 3

2
P 2.

For V due to (25) and introducing the Collins-Stewart solution we have:

V̇ = −t−1g11V 2
1 − 3

2
t−1(g22V 2

2 + g33V 2
3 )

We see that V̇ ≤ −t−1V which implies that the following holds:

P = O(t−
1

2 )

6.3 Linearization of Einstein-dust around Ellis-MacCallum

For S = 0 we have:

Σ′
+ = −1

6
(N2 −N3)

2 − Σ+(2 − q) (44)

Σ′
− =

N2
3 −N2

2

2
√
3

− (2− q)Σ− (45)

N ′
2 = N2(2Σ+ + 2

√
3Σ− + q) (46)

N ′
3 = N3(2Σ+ − 2

√
3Σ− + q) (47)
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with q = 1
2 − 1

24 (N2 −N3)
2 + 3

2 (Σ
2
+ +Σ2

−).
For the Ellis-MacCallum solution we have (Σ+ = − 1

4 ,Σ− = 0, N2 = −N3 = 3
4 ) which is an

equilibrium point of the system (44)-(47). Introducing Σ̃+ = Σ+ + 1
4 , Σ̃− = Σ−, Ñ2 = N2 − 3

4

and Ñ3 = N3 +
3
4 . The linearization is:




Σ̃+

Σ̃−

Ñ2

Ñ3




′

=




− 21
16 0 − 15

32
15
32

0 − 3
2 −

√
3
4 −

√
3
4

15
16

3
2

√
3 − 3

32
3
32

− 15
16

3
2

√
3 3

32 − 3
32







Σ̃+

Σ̃−

Ñ2

Ñ3


 (48)

The eigenvalues are:

λ1/2 = −3

4
(1± i

√
3)

λ3/4 = −3

4
(1± i)

Translated to our time variable the expected estimates for the Vlasov case are:

Σ+ +
1

4
= O(t−

1

2 )

Σ− = O(t−
1

2 )

N2 −
3

4
= O(t−

1

2 )

N3 +
3

4
= O(t−

1

2 )

With the same procedure as in the Bianchi II case, using now the Ellis-MacCallum solution we
arrive at:

P = O(t−
1

2 )

7 The bootstrap argument

The argument which will lead us to our main conclusions is a bootstrap argument, a kind of
continuous induction argument. The argument will work as follows (see 10.3 of [28] for a detailed
discussion). One has a solution of the evolution equations and assumes that the norm of that
function depends continuously on the time variable. Assuming that one has small data initially at
t0, i.e. the norm of our function is small, one has to improve the decay rate of the norm such that
the assumption that [t0, T ) with T < ∞ is the maximal interval on which a solution with bounded
norm corresponding to the prescribed initial data exists would lead to a contradiction. This is a
way to obtain global existence for small data. In our case global existence is already clear but if
the argument works we also obtain information about how the solution behaves asymptotically
which is our goal. The interval we look at is [t0, t1) and we will present the estimates assumed
in the following for the different cases. All prefactors on the right hand side are positive and as
small as we want.

7.1 Bootstrap assumptions

A first task is to find the suitable bootstrap assumptions. We choose a slightly slower decay for the
anisotropy and the curvature variables than in the linearized cases with the hope that using the
central equations, we are able to obtain the same decay as in the linearized case. For the estimate
of P we start with a slower decay than the ones obtained in section 6 as well. The assumption
of small data here is in the sense that our solutions are not “far away” from our special solutions.
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In general to improve an estimate the corresponding evolution equation will be integrated. The
assumptions made for the different Bianchi cases exclude the vacuum case, since the values of Ω
due to the constraint equation are near the corresponding values of Ω of the special solutions, thus
far from being zero.

7.1.1 Bootstrap assumptions for Bianchi II

|Σ+ − 1

8
| ≤ A+(1 + t)−

3

8

|Σ−| ≤ A−(1 + t)−
3

4

|N1 −
3

4
| ≤ Ac(1 + t)−

3

8

P ≤ Am(1 + t)−
1

3

7.1.2 Bootstrap assumptions for Bianchi VI0

|Σ+ +
1

4
| ≤ A+(1 + t)−

3

8

|Σ−| ≤ A−(1 + t)−
3

8

|N2 −
3

4
| ≤ Ac1(1 + t)−

3

8

|N3 +
3

4
| ≤ Ac2(1 + t)−

3

8

P ≤ Am(1 + t)−
1

3

7.2 Estimate of the mean curvature

The first variable we estimate is the trace of the second fundamental form or equivalently the
Hubble variable. Let us rewrite (20):

∂t(H
−1) =

3

2
+D (49)

with

D =
1

12
(
R

H2
+

3

H2
σabσ

ab) +
4πS

3H2

Integrating (20) and since t0 = 2
3H

−1(t0) (this choice was made in section (3.4)):

H(t) =
1

3
2 t+ I

=
2

3
t−1 1

1 + 2
3It

−1

with

I =

∫ t

t0

D(s)ds

Now for Bianchi II:

DII =
3

2
(Σ2

+ +Σ2
−) +

4πS

3H2
− N2

1

24

and for Bianchi VI0:
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DV I0 =
3

2
(Σ2

+ +Σ2
−) +

4πS

3H2
− 1

24
(N2 −N3)

2

It turns out that in all cases D is small, in particular from the different bootstrap assumptions we
obtain for for Bianchi II and VI0 respectively:

|D| ≤ ǫ2/3(1 + t)−
3

8 (50)

with

ǫ2 = C(A+ +A2
− +Ac +A2

m)

ǫ3 = C(A+ +A2
− +Ac1 +Ac2 +A2

m)

We arrive at:

2

3
t−1I = O(ǫ2/3t

− 3

8 )

The results for the Hubble variable is

H =
2

3
t−1(1 +O(ǫ2/3t

− 3

8 )) (51)

We also obtain an estimate for the determinant using the estimate of H and integrating (8) in
both directions.

C(t0)t
4−ǫ ≤ g(t) ≤ C(t0)t

4+ǫ (52)

7.3 Estimate of the metric

Consider the following equation in the sense of components :

ḡab = t
p

q gab

In particular we will consider the components g22 and g33, which means that for Bianchi II p
q = 3

2

and for Bianchi VI0
p
q = 1. We will show that:

d

dt
(t−γ ḡab) = t−γ−1ḡab(−γ +

p

q
+

ġab

gab
t) ≤ −ηt−γ−1ḡab

with η positive with the help of the bootstrap assumptions and choosing γ in a suitable way. This
means then that:

d

dt
(t−γ ḡab) ≤ 0

which implies what we wanted to show:

gab(t) ≤ t
−γ+p

q

0 gab(t0)t
− p

q
+γ . (53)

For the covariant components one can do the same by defining ḡab = t−
p

q gab. One obtains:
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d

dt
(tγ ḡab) = tγ−1ḡab(γ − p

q
+

ġab
gab

t) ≥ ηtγ−1ḡab

For the last step one can actually use the same γ as for the contravariant components since
ġabg

ab = −gabġ
ab. In other words once (53) is shown, we also have:

gab(t) ≤ t
γ−p

q

0 gab(t0)t
p

q
−γ

From the definitions made one can obtain:

ġ11 = 2g11H(−1 + 2Σ+) (54)

ġ22 = 2g22H(−1− Σ+ −
√
3Σ−) (55)

ġ33 = 2g33H(−1− Σ+ +
√
3Σ−) (56)

Then we have with (51) for the components g22 and g33:

η = γ + 2Ht(1 + Σ+ ±
√
3Σ−)−

p

q

= γ +
4

3
(1 +O(ǫ2/3t

− 3

8 ))(1 + Σ+ ±
√
3Σ−)−

p

q

In both Bianchi II and VI0:

4

3
(1 + Σ+)−

p

q
= O(A+(1 + t)−

3

8 )

which enables us to choose γ in such a way that η is positive. Different values of Σ+ correspond to
different exponents in the components of the metric. Using the estimates of g22 and g33 we obtain
then the estimate for the other component of the metric g11 via the estimate of the determinant.
We could also proceed directly from (54).

Summarizing this means that asymptotically up to a positive constant which depends only
on t0 the components (and their inverses) of the metrics gII for Bianchi II and gV I0 for Bianchi
VI0 have the same decay up to an ǫ as the corresponding components of the Collins-Stewart and
Ellis-MacCallum solution respectively:

C(t0)t
−ǫ ≤ gII

gCS
≤ C(t0)t

+ǫ

C(t0)t
−ǫ ≤ gV I0

gEM
≤ C(t0)t

+ǫ

7.4 Estimate of P

We can express the derivative of the metric as follows:

ġbf = 2H(Σb
a − δba)g

af

It follows from (24) and using (26):

V̇ = ġbfVbVf = 2H(Σb
a − δba)g

afVbVf = 2H(Σ1
1g

11V 2
1 +Σ2

2g
22V 2

2 +Σ3
3g

33V 2
3 )− 2HV
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The maximum of Σ1
1, Σ

2
2 and Σ3

3 is for Bianchi II and VI0 equal to 1
4 +O(t−

3

8 ). Thus:

V̇ ≤ 2HV (−3

4
+ ǫt−

3

8 )

Using now the estimate of H and integrating :

V ≤ V (t0)(t/t0)
−1+ǫ

from which follows:

P ≤ P (t0)(t/t0)
− 1

2
+ǫ

Choosing P (t0) ≤ Amt
1

2
−ǫ

0 we arrive at:

P ≤ Amt−
1

2
+ǫ

which is an improvement of the bootstrap assumption and which has the consequence that:

S

H2
≤ Ct−1+ǫ (57)

7.5 Closing Bianchi II

Until now we have estimates for H and for P in the interval [t0, t1). We need to improve the other
variables. Although Bianchi II and Bianchi VI0 are more complicated, the main argument will be
the same as in Bianchi I [21].

7.5.1 Estimate for Σ−

Case I If |Σ−| ≤ A−(1 + t)−1+ǫ holds there nothing more to do, since this is a better estimate
then the one assumed.

Case IIa Assume now Σ− > A−(1 + t)−1+ǫ. Define t2 as the smallest number not smaller than
t0 with the property Σ− ≥ A−(1 + t)−1+ǫ. Since we are assuming that Σ− > 0 we can divide (36)
by Σ−:

Σ̇−

Σ−
= H [−(3 + Ḣ

H2 ) + Σ−1
−

8π
2
√
3H2

(S2
2 − S3

3)]

With (50),(51), the fact that S2
2 − S3

3 ≤ S, (57) and our assumption:

Σ̇−

Σ−
≤ −t−1(1− ξ) (58)

where ξ is as small as we want. This variable ξ contains a term of type A−1
− A2

m, but A− and Am

can be chosen independently as small as needed. Also the ǫ coming from S has to be chosen bigger
than the ǫ coming from Σ−. Note that it becomes clear here why we had to improve P to arrive
at (57). Integrating (58) between t1 and t2:

Σ−(t1) ≤ Σ−(t2)t
1−ξ
2 t−1+ξ

1

Assume t2 = t0 then:

Σ−(t1) ≤ Σ−(t0)t
1−ξ
0 t−1+ξ

1 ≤ A−t
−1+ξ
1

since Σ−(t0) can be chosen in such a way that the last inequality holds.
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Case IIb If t2 > t0 then by continuity Σ−(t2) ≤ A−(1 + t)−1+ǫ which means that:

Σ−(t1) ≤ A−(1 + t)ǫ−ξt−1+ξ
1 ≤ A−t

−1+ξ
1

if ǫ is chosen to be smaller than ξ. The argument for the case that Σ− is negative is the same,
just define Σ̄− = −Σ− and use S3

3 − S2
2 ≤ S. This means that we could improve our bootstrap

assumption to:

|Σ−(t1)| ≤ A−t
−1+ξ
1

7.5.2 Bootstrap assumptions for the other time variable

We have found that for the estimates in the following section it was useful, although not essential,
to use the other time variable τ . Using the estimate of the Hubble variable (51) in the definition
of τ (19) we have:

τ − τ0 =

∫ t

t0

2

3
t−1(1 +O(ǫt−

3

8 ))dt

After integrating and observing that τ0 and t0 are constants we arrive at:

t−
2

3 = t
− 2

3

0 e−τ+τ0+ξ

where ξ is small: ξ = O(ǫ(t−
3

8 + t
− 3

8

0 )). So the bootstrap assumptions can be translated to the
time variable τ . We obtain:

|Σ̃+| < CA+e
− 9

16
τ

|Σ̃−| < CA−e
− 9

8
τ

|Ñ1| < CAce
− 9

16
τ

P < CAme−
1

2
τ

Since we have an estimate of H in both directions one can go also back from an estimate in terms
of τ to an estimate of t just by a multiplication by a constant which will not be relevant.

7.5.3 Estimate for Σ+ and N1

Define

(
Σ̂+

N̂1

)
= M

−1

II

(
Σ̃+

Ñ1

)

where MII is the matrix of eigenvectors of the linearized system (42). Then we have:

(
Σ̂+

N̂1

)′

= −3

4


 1

√
3
2

−
√

3
2 1




(
Σ̂+

N̂1

)
+O(A2

me−τ )

(
1
1

)

since O(Σ̃2
+ + Ñ2

1 + Σ̃2
− + P 2) = O(A2

me−τ ). Multiplying the first equation by Σ̂+ and the second

by N̂1 and adding both we obtain:

d

dt
(Σ̂2

+ + N̂2
1 ) = −3

2
(Σ̂2

+ + N̂2
1 ) + (Σ̃+ + Ñ1)O(A2

me−τ )
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d

dt
[log(Σ̂2

+ + N̂2
1 )] = −3

2
+ (Σ̃+ + Ñ1)(Σ̂

2
+ + N̂2

1 )
−1O(A2

me−τ )

Let us assume now that:

Σ̃2
+ + Ñ2

1 > (A2
+ +A2

c)e
(− 3

2
+ξ)τ

This implies:

Σ̂2
+ + N̂2

1 > C(A2
+ +A2

c)e
(− 3

2
+ξ)τ

d

dτ
[log(Σ̂2

+ + N̂2
1 )] ≤ −3

2
+ ǫe(−

1

16
−ξ)τ

From which follows that:

Σ̂2
+ + N̂2

1 ≤ (Σ̂2
+(τ0) + N̂2

1 (τ0))e
(− 3

2
+ǫ)(τ−τ0)

≤ C(Σ̂2
+(t0) + N̂2

1 (t0))(
t

t0
)−1+ǫ

or:

Σ̃2
+ + Ñ2

1 ≤ C(Σ̃2
+(t0) + Ñ2

1 (t0))(
t

t0
)−1+ǫ

Making now the same argument as in the end of the estimate of Σ− we arrive at improved estimates
for Σ̃+ and Ñ1:

|Σ̃+| ≤ Σ̃+(t0)t
− 1

2
+ǫ

|Ñ1| ≤ Ñ1(t0)t
− 1

2
+ǫ

i.e. for Σ+ and N1:

|Σ+ − 1

8
| ≤ A+(1 + t)−

1

2
+ǫ

|N1 −
3

4
| ≤ Ac(1 + t)−

1

2
+ǫ

We have closed now the bootstrap argument. Note that for this last improvement of the estimates
Σ+ and N1 we did not use the improved estimates for Σ− and P .

7.6 Closing Bianchi VI0

This case is analogous to Bianchi II. The bootstrap assumptions with the variable τ read:

|Σ̃+| < CA+e
− 9

16
τ

|Σ̃−| < CA−e
− 9

16
τ

|Ñ2| < CAc1e
− 9

16
τ

|Ñ3| < CAc2e
− 9

16
τ

P < CAme−
1

2
τ

In this case what remains are the estimates for Σ+, Σ−, N2 and N3. In terms of the transformed
linearization




Σ̂+

Σ̂−

N̂2

N̂3


 = M

−1

VI0




Σ̃+

Σ̃−

Ñ2

Ñ3



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where MVI0 is the matrix of eigenvectors of the linearized system (48) we have:




Σ̂+

Σ̂−

N̂2

N̂3




′

= −3

4




1 −
√
3 0 0√

3 1 0 0
0 0 1 −1
0 0 1 1







Σ̂+

Σ̂−

N̂2

N̂3


+O(A2

me−τ )




1
1
1
1




since O(Σ̃2
+ + Ñ2

2 + Ñ2
3 + Σ̃2

− + P 2) = O(A2
me−τ ). As in the Bianchi II case, we arrive with the

same procedure at

d

dt
[log(Σ̂2

+ + Σ̂2
−)] = −3

2
+ (Σ̃+ + Σ̃−)(Σ̂

2
+ + Σ̂2

−)
−1O(A2

me−τ )

d

dt
[log(N̂2

2 + N̂2
3 )] = −3

2
+ (Ñ2 + Ñ3)(N̂

2
2 + N̂2

3 )
−1O(A2

me−τ )

and this means that:

d

dτ
[log(Σ̂2

+ + Σ̂2
−)] ≤ −3

2
+ ǫe(−

1

16
−ξ)τ

and a similar expression for N2 and N3 such that in the end we arrive at the estimates we wanted
to obtain. In this case as well it was not necessary to use the improved estimate of P .

7.7 Results of the bootstrap argument

Since we have improved all estimates we have closed the bootstrap argument. Let us summarize
the results obtained in this chapter in the following propositions:

Proposition 1. Consider any C∞ solution of the Einstein-Vlasov system with reflection and
Bianchi II symmetry and with C∞ initial data. Assume that |Σ+(t0)− 1

8 |, |Σ−(t0)|, |N1(t0)− 3
4 |

and P (t0) are sufficiently small. Then at late times the following estimates hold:

H(t) =
2

3
t−1(1 +O(t−

1

2
+ǫ))

Σ+ − 1

8
= O(t−

1

2
+ǫ)

Σ− = O(t−1+ǫ)

N1 −
3

4
= O(t−

1

2
+ǫ)

P (t) = O(t−
1

2
+ǫ)

Proposition 2. Consider any C∞ solution of the Einstein-Vlasov system with reflection Bianchi
VI0 symmetry and with C∞ initial data. Assume that |Σ+(t0)+

1
4 |, |Σ−(t0)|, |N2(t0)− 3

4 |, |N3(t0)+
3
4 | and P (t0) are sufficiently small. Then at late times the following estimates hold:

H(t) =
2

3
t−1(1 +O(t−

1

2
+ǫ))

Σ+ +
1

4
= O(t−

1

2
+ǫ)

Σ− = O(t−
1

2
+ǫ)

N2 −
3

4
= O(t−

1

2
+ǫ)

N3 +
3

4
= O(t−

1

2
+ǫ)

P (t) = O(t−
1

2
+ǫ)

In the next chapter we will improve the estimates such that we can get rid of the ǫ. However
the results stated here in this section represent in fact the core of our results.
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8 Main results

8.1 Arzela Ascoli

Until now we have obtained estimates which show that the decay rates of the different variables
are up to an ǫ the decay rates one obtains from the linearization. We want to use the Arzela-
Ascoli theorem. We will show the boundedness of the relevant variables and their derivatives.
The variables Σ−, Σ+, N1, N2 and N3 corresponding to the different Bianchi cases are bounded
uniformly due to the constraint equation. In particular:

Σ2
+ +Σ2

− ≤ 1

N2
1 ≤ 12

(N2 −N3)
2 ≤ 12

Note that N3 is negative. The Hubble variable H and its derivative is bounded as one can see
from the estimates and 20. We have also obtained with the bootstrap argument that P , which
is non-negative, decays which means that S/H2 is bounded. From the estimates obtained it is
clear that gab and its derivative are bounded. Now having a look at the central equations we see
that the derivatives of Σ−, Σ+, N1, N2 and N3 are also bounded uniformly. If we can bound the
derivative of S also the second derivatives of Σ−, Σ+, N1, N2, N3 and H are bounded. For this
purpose it is convenient to express the components of the energy momentum tensor in terms of
integrals of the covariant momenta:

Sabg
ab =

∫
f(t, p)papbg

ab(1 + gcdpcpd)
− 1

2 g−
1

2 dp1dp2dp3

=

∫
f(t, p)V (1 + V )−

1

2 g−
1

2 dp1dp2dp3

The only term of the time derivative of S which could cause problems is the time derivative of the
distribution function, since V̇ and ġab can be bounded by V and gab respectively and we know that
S itself is bounded since S/H2 is. The term with the time derivative of the distribution function
can be handled with the Vlasov equation:

∫
ḟ(t, p)V (1 + V )−

1

2 g−
1

2 dp1dp2dp3

= −
∫
(p0)−1Cd

bap
bpd

∂f

∂pa
V (1 + V )−

1

2 g−
1

2 dp1dp2dp3

Integrating by parts we obtain a term which can be bounded by S. Note that the momenta
grow in the worst case with tγ and that p0 is also bounded from below since the particles are
assumed to have mass. Now all the relevant quantities are bounded. Let {tn} be a sequence
tending to infinity and let (Σ−)n(t) = Σ−(t+ tn), (Σ+)n(t) = Σ+(t+ tn), (N1)n(t) = N1(t+ tn),
(N2)n(t) = N2(t + tn), (N3)n(t) = N3(t + tn), Hn(t) = H(t + tn) and Sn(t) = S(t + tn). Using
the bounds already listed, the Arzela-Ascoli theorem can be applied. This implies that, after
passing to a subsequence, (Σ−)n, (Σ+)n (N1)n, (N2)n, (N3)n, Hn and Sn converge uniformly on
compact sets to a limit (Σ−)∞, (Σ+)∞ (N1)∞, (N2)∞, (N3)∞, H∞ and S∞ respectively. The first
derivative of these variables converges to the corresponding derivative of the limits since we have
been able to bound the derivative of S in the last section. Going to this limit it is easy to see that
the variable D of equation (49) is zero and consequently:

H∞ =
2

3
t−1

From (54)-(56) we see that for Bianchi II and VI0 we obtain the optimal decay rates for the metric
and for its derivative. This implies that we obtain the optimal decay rates for P . Since S/H2 is
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zero asymptotically we obtain the same estimates for Σ−, Σ+, N1, N2 and N3 as in the Einstein-
dust case. Introducing this estimates in (49), we also obtain the optimal estimate for H . Let us
summarize the estimates.

8.2 Optimal estimates

Theorem 1. Consider any C∞ solution of the Einstein-Vlasov system with reflection and Bianchi
II symmetry and with C∞ initial data. Assume that |Σ+(t0)− 1

8 |, |Σ−(t0)|, |N1(t0)− 3
4 | and P (t0)

are sufficiently small. Then at late times the following estimates hold:

H(t) =
2

3
t−1(1 +O(t−

1

2 ))

Σ+ − 1

8
= O(t−

1

2 )

Σ− = O(t−1)

N1 −
3

4
= O(t−

1

2 )

P (t) = O(t−
1

2 )

Theorem 2. Consider any C∞ solution of the Einstein-Vlasov system with reflection Bianchi VI0
symmetry and with C∞ initial data. Assume that |Σ+(t0)+

1
4 |, |Σ−(t0)|, |N2(t0)− 3

4 |, |N3(t0)+
3
4 |

and P (t0) are sufficiently small. Then at late times the following estimates hold:

H(t) =
2

3
t−1(1 +O(t−

1

2 ))

Σ+ +
1

4
= O(t−

1

2 )

Σ− = O(t−
1

2 )

N2 −
3

4
= O(t−

1

2 )

N3 +
3

4
= O(t−

1

2 )

P (t) = O(t−
1

2 )

For the cases Bianchi II and VI0 we are also able to obtain the optimal estimate for the metrics:

Corollary 1. Consider the same assumptions as in the previous theorem concerning Bianchi II
and VI0 respectively. Then

gII = t diag(K1, t
1/2K2, t

1/2K3)

gV I0 = t diag(tK4,K5,K6)

with Kn = Cn + O(t−
1

2 ) and where C1-C6 are independent of time. The corresponding result for
the inverse metric also holds.

We see that the error in the metrics comes from the error in Σ+.

8.3 Kasner exponents

From (12) we see that the eigenvalues (41) of the second fundamental form with respect to the
induced metric are also the solutions of:

det(σi
j − [λ− 1

3
k]δij) = 0
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Let us define the eigenvalues of σij with respect to gij by λ̂i, we have that:

λ̂i = λi −
1

3
k

Note that Σi(λ̂i)
2 = σabσ

ab. In the cases Bianchi II and VI0 since everything is diagonal the
Kasner exponents are easy to calculate. Using the optimal estimates for Σ+, Σ− and H and the
fact that the sum of the generalized Kasner exponents is equal to one, we finally arrive at the
generalized Kasner exponents for Bianchi II which are (14 ,

3
8 ,

3
8 ) and for Bianchi VI0 (12 ,

1
4 ,

1
4 ) in

both cases up to an error of order O(t−
1

2 ). Let us summarize these result:

Corollary 2. Consider the same assumptions as in the previous theorem concerning Bianchi II
and VI0 respectively. Then:

pII = pCS +O(t−
1

2 )

pV I0 = pEM +O(t−
1

2 )

We see that the error in the Kasner exponents comes from the error in H .

8.4 Estimates of the energy momentum tensor

Before coming to the estimates of the energy momentum tensor we show that for Bianchi II V2 and
V3 become constants, something similar can be done for Bianchi VI0. Define E = g22V 2

2 + g33V 2
3 ,

then:

Ė = ġ22V 2
2 + ġ33V 2

3 ≤ 2H(−1− Σ+ +
√
3|Σ−|)E

Integrating

log[E/E(t0)] = −3

2
log t/t0 +O(ǫ(t−

1

2 + t
− 1

2

0 ))

We have the following inequality for E:

E ≤ Ct−
3

2

Since the components of the metric g22 and g33 tend to the corresponding components of the
Collins-Stewart solution we see that V2 and V3 become constant asymptotically. The same is true
in the case of the Ellis-MacCallum solution. Now since f(t0, p) has compact support on p, we
obtain that there exists a constant C such that:

f(t, p) = 0 |pi| ≥ C

Let us denote by p̂ the momenta in an orthonormal frame. Since f(t, p̂) is constant along the
characteristics we have:

|f(t, p̂)| ≤ ‖f0‖ = sup{|f(t0, p̂)|}

Putting these facts together we arrive at the estimates which we summarize in the following:

Corollary 3. Consider the same assumptions as in the previous theorem concerning Bianchi II.
Then

ρ = ρCS(1 +O(t−
1

2 ))

Sij ≤ C|f0|t−3
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Corollary 4. Consider the same assumptions as in the previous theorem concerning Bianchi VI0
respectively. Then

ρ = ρEM (1 +O(t−
1

2 ))

Sij ≤ C|f0|t−3

The error in the energy density comes from the error in H .
Remark From the corollaries one can estimate the quotient Sij/ρ which is O(t−1). That

this quotient vanishes asymptotically means that the matter behaves as dust asymptotically as
expected.

9 Conclusions and Outlook

The results concerning Bianchi II generalize the results obtained in [30]. For Bianchi VI0 even
for the reflection symmetric case there is no analogous previous result. The reason is that it is
not compatible with the LRS-symmetry. Thus our result concerning Bianchi VI0 shows clearly
that the methods developed are powerful in the sense that one can obtain results which where
out of reach with the techniques developed until now. However in contrast to [30] our results are
restricted to the case of small data. In order to remove this assumption the Liapunov functions
discovered for the fluid model could be helpful. In the case of Bianchi II the future asymptotics
are known globally even in the tilted case [15].

We also hope to extend these results to the case without reflection symmetry in a future
publication.

In our argument we have used the Arzela-Ascoli theorem, but only at the end. Thus there
exist a lot of estimates where one has control over the constants involved. Probably this could
help for a numerical analysis of the Einstein-Vlasov equation which is quite difficult.

Another path of generalizing our results could be the extension to higher dimensions. For the
vacuum case geodesic completeness was shown for some homogeneous models in higher dimensions
[11]. The work on homogeneous spacetimes in higher dimensions may also shed some light on the
inhomogeneous case in four spacetime dimensions.
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