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Abstract. Physics in curved spacetime describes a multitude of phenomena, ranging

from astrophysics to high energy physics. The last few years have witnessed

further progress on several fronts, including the accurate numerical evolution of the

gravitational field equations, which now allows highly nonlinear phenomena to be

tamed. Numerical relativity simulations, originally developed to understand strong

field astrophysical processes, could prove extremely useful to understand high-energy

physics processes like trans-Planckian scattering and gauge-gravity dualities. We

present a concise and comprehensive overview of the state-of-the-art and important

open problems in the field(s), along with guidelines for the next years. This writeup is

a summary of the “NR/HEP Workshop” held in Madeira, Portugal from August 31st

to September 3rd 2011.ar
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1. Introduction

Numerical relativity (NR), the gauge/gravity duality and trans-Planckian scattering,

as well as high-energy physics (HEP) in general, have been tremendously active and

successful research areas in recent years. Strong motivation for the combined study

of these fields has arisen from direct experimental connections: gravitational wave

detection, probing strong interactions at the LHC and RHIC and possibly black hole

production at LHC. Inspired in part by the fairly recent advent of techniques to evolve

BH spacetimes numerically and the unprecedented opportunities thus opened up to

expand and test our understanding of fundamental physics and the universe, a group of

leading experts in different fields (high energy physics, astrophysics, general relativity,

numerical relativity and phenomenology of gravitational effects on curved backgrounds)

got together from 29 August to 3 September 2011 in Madeira island (Portugal) to review

some of the most exciting recent results and to discuss important future directions. The

meeting was both an excuse and an opportunity to place at the same table colleagues

from formerly disjoint fields and to discuss the vast amount of possibilities that exist at

the interface.

This overview, written in a “white-paper” style, is a summary of the many

interesting discussions at the meeting. Online presentations can be found at the

meeting’s website http://blackholes.ist.utl.pt/nrhep/.

We have divided the meeting’s discussions into six (not-really-disjoint) parts, each

culminating in a round-table with all participants discussing the state of the field and

visions for the future. Each round table was coordinated by one participant who has also

been in charge of putting together a write-up for that particular section. The (somewhat

artificial) division, has resulted in the following topics (round table organizers’ names in

parentheses): numerical methods and results (Lehner), black hole solutions in generic

settings (Reall), trans-Planckian scattering (Park), gauge/gravity duality (Chesler),

alternative theories of gravity (Gualtieri) and approximation methods (Sopuerta). We

feel that the rich content of each of these sections alone is sufficient to impart to the

reader the exciting times that lie ahead.

Finally, we end this short Introduction by thanking the European Research Council,

Fundação Calouste Gulbenkian and FCT–Portugal for their generous support of this

workshop. Special thanks go to Ana Sousa and Rita Sousa whose help, talent and

patience was invaluable, and to Sérgio Almeida and Lúıs Ferreira for the great job done

providing technical and visual assistance.

Vitor Cardoso

Leonardo Gualtieri

Carlos Herdeiro

Ulrich Sperhake

http://blackholes.ist.utl.pt/nrhep/
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2. Strong gravity, High Energy Physics and Numerical Relativity

Coordinator: Luis Lehner

Extensive experimental and observational programs are underway to test our

understanding of gravity in “extreme” regimes. These extreme regimes are

naturally encountered in cosmology, violent astrophysical events and possibly at

high energy particle accelerators if nature is described by certain higher dimensional

scenarios. Furthermore, the gauge/gravity duality provides an intriguing opportunity

to understand various physical phenomena, naturally described by field theories, in

terms of gravity in Anti-de-Sitter (AdS) spacetime and vice-versa.

These possibilities imply the need to understand gravity in the relevant regimes,

in particular those where approximations (e.g. linearized studies) fail to describe the

behavior of the system.

Doing so requires the ability to obtain appropriate solutions from the underlying

gravitational theory which, in turn, often requires suitable numerical simulations.

Fortunately, in the case of General Relativity in asymptotically flat, 4-dimensional

spacetimes, this task is largely under control [1, 2, 3] and will aid in future astrophysical

and cosmological observational prospects. Thus we here concentrate on summarizing

the status and open issues of efforts towards understanding gravity, at the classical level,

in energetic phenomena related to higher dimensional scenarios. In particular we focus

our attention on efforts to understand gravity –within holographic studies and TeV-

gravity scenarios–, and discuss some important issues, with the aim to report both on

the state-of-the-art and ongoing discussions on these topics. We restrict our discussion

to dynamical systems and issues related to their study mainly within General Relativity

(alternative gravity theories are discussed in section 6). As efforts in this front are just

beginning, our discussion cannot possibly be exhaustive and it is likely that new issues

will arise as progress is made. Indeed, drawing from the experience gained in the 4-

dimensional setting, it is safe to expect that the challenges and outcomes will be as, if

not more exciting, than what can be currently anticipated.

2.1. Framework

We concentrate on gravitational studies required in two main encompassing themes:

TeV-gravity and Holography. The former arises as a natural extension of gravity driven,

at a very basic level, by attempts to explain the hierarchy problem. As first noted in

[4, 5, 6, 7], this problem can be addressed by considering large volumes and/or warping

within higher dimensional scenarios [8, 9]. Brane world models achieve this goal in a

rather natural way; all fundamental interactions except gravity are confined to a 4-

dimensional brane while gravity permeates through a bulk - higher dimensional space.

Unification of energy scales can take place at ' TeV, a regime which can be probed at

the most powerful currently available accelerators which may thus open up a window to

new physics [9]. Furthermore, these TeV-scale gravity scenarios can be realized within
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String Theory and thus are tied to a strong prospective quantum theory of gravity.

Thus, we could be on the verge of detecting clues from quantum gravity behavior in the

near future.

Holography, and in particular AdS/CFT dualities [10], refer to a remarkable re-

lation between D dimensional Field Theories and gravity in AdS in D + 1 dimen-

sions [10, 11, 12]. It is conjectured that this relation can be exploited to understand

physics on either side of the relation with respect to the other. It provides ways to

understand, or re-interpret, the behavior of condensed matter, plasmas, etc. in terms of

AdS black holes interacting with particular fields. For the special case of D = 4 “regu-

lar physics”, the dual corresponds to AdS D = 5 gravity. Furthermore, it is commonly

believed that the dualities so far uncovered may be first examples of a much broader

class of gauge/gravity dualities.

Both themes thus involve understanding gravity in dimensions higher than 4, and

possibly additional higher curvature corrections depending on the specific regimes under

study. Unfortunately our understanding of gravity in 4 dimensions does not necessarily

help in providing a good intuition of the expected behavior in higher dimensional

settings. Indeed, the non-existence of stable circular orbits for point particles around

black holes‡, non-uniqueness of black hole solutions (e.g. see [13, 14, 15, 16]) and generic

violation of cosmic censorship [17] are just a few examples illustrating that gravitational

phenomena in higher dimensions are richer than in D = 4. Furthermore, just as in

D = 4, understanding generic behavior of solutions to Einstein equations represents

a formidable challenge requiring intense efforts. Coordinated studies are therefore

necessary to gain such intuition and make direct contact with possible observational

efforts. In the following we primarily concentrate on issues relevant to the numerical

construction of D > 4 spacetimes and highlight possible research directions. Whenever

possible we will make direct connection with the status of numerical relativity and

lessons learned from work in D = 4 asymptotically flat spacetimes relevant to these

goals.

2.2. Challenges ahead

In the past decade, the field of Numerical Relativity has made great strides in modeling

D = 4 asymptotically flat spacetimes and is now able to solve strongly gravitating/highly

dynamical scenarios. A considerable portion of this was driven by the goal of producing

answers to guide detection and analysis strategies for gravitational wave astronomy

(see [18] and references cited therein) although progress has been achieved on many

fronts: gravitational waves, cosmology, fundamental studies of gravity, astrophysics, etc.

For further details, we refer the reader to some reviews [19, 20, 21, 22, 23, 24, 25, 26]

and textbooks [27, 28, 29] on the subject.

This success has been achieved by the combination of several ingredients:

‡ The “centrifugal” potential barrier is inefficient beyond D = 4.
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(i) A good understanding on how to frame the problem in a manner that is both

physically complete and mathematically well posed.

(ii) The availability of well understood approximations to describe the state of the

solution for stages where the dynamics is relatively mild. This helps not only in

constructing physical initial stages but also in finding an (approximate) description

of systems where non-linear effects have little relevance (through e.g. Post-

Newtonian or Effective Field Theory approaches, see also Sec. 7).

(iii) The knowledge, or expectation, of the expected late-time behavior of the system.

Understanding that ultimately a stable Kerr black hole would most likely describe

the asymptotic solution motivated coordinate and boundary conditions to aid

the numerical implementation. Furthermore, it allows one to devise an effective

perturbative description of the solution (through BH perturbation theory), which

in turn alleviates the computational cost to obtain a solution and improves our

ability to understand the expected generic behavior.

(iv) A well understood and robust set of numerical techniques to discretize Einstein

equations.

(v) Adequate computational resources to deploy the implementation, and obtain results

in a reasonable time for further tests as well as fine-tuning the implementation and

obtain relevant solutions.

The points above are generic requirements for any implementation, and as we argue

in the following discussions, the status of these points in D > 4 is less than what would

be desired –even with respect to point (i) above. We next discuss several relevant

questions related to the particular themes we have in mind. Some of these are common

to both broad problems, while others are tied to just one.

TeV-scale gravity. This putative description of nature does not have a unique

theoretical predictive formulation, rather it is a generic framework where different

theories can be formulated such that they naturally address the hierarchy problem

and possibly connect with TeV physics. While this facilitates the broad theoretical

discussion towards achieving a fundamental description of nature, at a practical level it

makes it difficult to choose which option to concentrate on. Furthermore, in many

cases the full problem can not be completely defined at a physical level, let alone

a mathematically rigorous one. Broadly speaking one has, in a sense, too many (!)

options: General Relativity, modifications of GR or alternative gravitational theories,

not to mention that, in addition, the treatment of some basic phenomena might

involve important quantum corrections. Among the set of possible theories, GR is

unambiguously defined, can be shown to define well posed problems and provides a

unique framework to work on. As far as alternatives to GR are concerned, it is unclear

which theory to pursue (some are incomplete: e.g. have higher curvature corrections

which have not been explicitly presented, others are either known to be ill-posed –but are

actively pursued nonetheless– or not yet fully understood regarding the extent to which
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they might be mathematically sound (e.g. [30, 31, 32]); see Section 6 for a discussion

on this subject. Naturally, well posedness is a necessary condition for a successful

numerical implementation. Several options remain valid, all with a high degree of

complexity and associated computational cost in practical applications. Therefore, the

particular physical situations considered and theory to describe them must be judiciously

chosen to maximize their practical impact. Even a rather coarse understanding of the

possible physics outcome will require time and concentrated efforts. An alternative,

complementary way could be envisioned taking a page out of the “parameterized post-

Newtonian” approach (PPN) [33, 34] developed within D = 4 gravitational theories,

see Section 7. An analog framework for higher dimensional gravitational studies would

be extremely beneficial. Our current focus is not to investigate this option, but rather

to discuss the role of numerical simulations can play in this problem. For concreteness,

we will concentrate on General Relativity and the main systems of interests are those

that could be realized in accelerators, (e.g. [35, 36, 37, 38, 39]). With a concrete theory

in mind, the next step is to define relevant physical scenarios. In particular, for large

enough black holes, one can expect that General Relativity does provide the generic

high-energy behavior as higher curvature corrections become sub-dominant. Of utmost

interest is the understanding of D > 4 collisions, with non-zero impact parameter, in

order to improve predictions relevant to TeV-scale scenarios. Note that these processes

are essentially local, and can therefore be studied with Λ = 0 (asymptotically flat

scenarios). There remain delicate questions, however, which need to be addressed in

order to define concrete target problems; e. g. “which is the dimensionality of the

process?”, “which other non-vacuum interactions need to be considered?”; “how to treat

interactions restricted to the 4D brane as well as possibly incorporate higher curvature

corrections?” From a physical point of view, one is interested in understanding high

speed collisions or scattering, as well as the behavior (stability, decay, etc) of black holes

possibly resulting from highly energetic collisions. The latter bears strong relevance to

the former problems, because understanding the stability of possible black holes cannot

only bring important clues about the physical behavior of the system, but also help in

achieving a stable implementation.

Holography. Here the situation is more concrete. The theoretical framework is most

commonly defined with AdS5×S5 (though other scenarios including asymptotically flat

spacetimes are under study [40]). The presence of the S5 symmetry helps in reducing

the practical dimensionality of the problem. It is crucial to understand the limiting

cases of the correspondence where the gravitational side is captured by classical GR

in AdS (possibly coupled to gauge fields) and identify what states on the CFT side

they correspond to. Interestingly, most questions of interest in the CFT side, involve

understanding black hole solutions in AdS. Rigorous results about the stability of

generic black holes are lacking with the exception of Schwarzschild AdS black holes

interacting with a scalar field in spherical symmetry [41]. The presence of the AdS

time-like boundary allows for fields to propagate away from the central region, bounce
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off the boundary and return to interact. As a result, asymptotically flat intuition does not

translate to the Λ < 0 case. Indeed, as recently shown in [42] and further argued in [43],

a complex “turbulent-like” phenomenology arises which renders pure AdS nonlinearly

unstable to black hole formation regardless of how weak the initial perturbation is.

This is in stark contrast to the known stability of Minkowski in asymptotically flat

scenarios [44] (see also, [45]). This illustrates how richer phenomenology can be

expected, and might carry with it interesting ties to diverse CFT behavior. Indeed,

since the proposal of this duality, a plethora of work has been presented indicating

connections across many areas of physics: fluids, plasmas, condensed matter theory,

etc. (see e.g. [12, 46, 47, 48, 11, 49, 50, 51] for some recent discussions). Thus, it is

safe to expect no shortage of interesting connections.

With such a large number of exciting physical arenas involved, it would be useful to

understand where numerical studies can make the highest impact. In order to address

this question, it is important to comprehend which “real world” applications (e.g.

quark-gluon plasmas [52, 53], superconductors [54, 55]) or generic physical behavior

(e.g. turbulence [42]) can be accurately captured through a CFT model so as to study

essential physical features of the system one is trying to model and identify those that

can be studied within a reduced dimensionality (see section 2.3).

A particularly delicate issue for a numerical implementation concerns the AdS

boundary. Indeed, as opposed to the asymptotically flat case where numerical

implementations typically deal with boundaries with a combination of techniques to

ensure they do not play a role in the dynamics, here the situation is markedly different.

Not only would the boundary be in causal contact with the interior domain, but

also the field behavior in its vicinity is of special interest. Indeed, one goal required

from a numerical implementation is to allow for extracting the asymptotic behavior

and connecting with the boundary theory. As we discuss later the mathematical

understanding of how to pose correct boundary conditions is lacking. Further details

can also be found in Section 5.

2.3. Understanding strongly gravitating, dynamical systems in D > 4

The problems of interest concern energetic events involving black hole formation, black

hole interactions and/or highly perturbed black holes. For specific limits, e.g. ultra-

high-speed collisions, particular approximations have proved quite useful in exploring

the phenomenology of the system [56]. Here fields of particles can be described by the

Aichelburg-Sexl solution and show black holes form for a range of impact parameters.

For more general scenarios, perturbative studies might be unable to capture the sought

after behavior correctly, especially during highly nonlinear stages. Solutions are thus to

be sought within the full theory which requires numerical relativity.

Obviously, the study of general scenarios in higher dimensions are computationally

more demanding. At a rough level, the computational cost scales as CD for general

situations in D dimensions. Putting the requirements into perspective, fairly generic
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D = 4 scenarios are currently routinely studied and typical vacuum (binary black

hole) simulations demand a few weeks of continued run on several dozen processors§.
Extrapolating from this observation, one can argue that general scenarios could be

studied in D = 5 with current and near future resources. However, this will come at a

significant cost, especially when progress in this front might require, as has been the case

in D = 4, some experimentation to achieve a robust code. Thus, higher dimensional

cases in generic settings, will in practice be out of the question for a long time. Therefore,

it is safe to expect that Numerical Relativity will have its highest impact in studying

scenarios where certain symmetries can be adopted, thus reducing its dimensionality to

more tractable 2 and 3 spatial dimensions. Particularly relevant cases are those in which

SO(D − 2) and/or (D − 2) planar symmetries can be assumed such that the dynamics

of interest takes place in a dimensionally reduced setting [13].

To date, a small number of numerical relativity efforts have been carried out

beyond spherically symmetric scenarios to study specific questions in higher dimensional

spacetimes. Within large extra dimension scenarios, these have concentrated on

examining black hole instabilities [57, 58, 59] and high speed collisions [60, 61, 62, 63, 64].

These implementations have mostly followed the two successful approaches within the

Cauchy formulation of Einstein equations used in D = 4: the generalized harmonic

and BSSN formulations together with gauge conditions that are direct extensions of

those employed there. They have further taken advantage of generic computational

infrastructure developed to handle parallelization and adaptive regridding so as to

ensure an efficient usage of computational resources (e.g. like the publicly available

Cactus/Carpet, PAMR, HAD [65, 66, 67]). Within holographic studies, published

works of black hole formation have relied on the characteristic formulation of Einstein

equations [68, 69] and ongoing work is also exploiting the generalized-harmonic approach

[70].

Interestingly, within the Cauchy approach, directly exploiting symmetries (say in

p of the dimensions) assumed at the onset, and defining a reduced problem has given

difficulties. These can be traced to the fact that Cartesian coordinates satisfy the

harmonic condition while spherical ones do not, giving rise to non-trivial sources which

couple numerical errors to a lower order. There is no fundamental impediment to

deal with this issue, and successful runs have been performed even for five dimensional

spacetime [60, 61, 62, 63]. On the other hand, implementing symmetries in an effective

way following the “cartoon method” (where the problem is treated formally as D

dimensional, but the equations are integrated in a (D − p) sector and derivatives off

this sector are accounted for via the symmetries) have provided robust implementations

in a rather direct, though perhaps not elegant way [57, 58, 59]. This observation stresses

that more work at the foundational level is still required to translate the success obtained

in D = 4 to higher dimensional settings. Beyond these issues, we next discuss some

particular points of relevance to our two encompassing themes.

§ Details depending on the accuracy requirements; non-vacuum scenarios can take significantly more

depending on the complications introduced by additional physical ingredients involved.
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In the context of TeV-scale gravity scenarios, translating the success of D = 4 sim-

ulations is in principle relatively direct; in vacuum scenarios, in particular, the intrinsic

computational problem is quite similar and existing computational infrastructure can

be readily exploited. In essence, one deals with an initial value problem and computa-

tional boundaries need just to be dealt with in a stable manner and placed sufficiently

far from the region of interest so they do not causally influence it. After dealing with

the dimensionally reduced problem with either option above, one can fine tune the im-

plementation (adjusting gauge conditions, refining algorithms, etc) and begin studying

problems of interest provided the correct physical ingredients are incorporated in the

model.

In the context of AdS-CFT dualities, the above picture is more complex as the

problem is intrinsically an initial boundary value problem. The AdS time-like boundary

is causally connected with the bulk region and must be carefully treated as it plays a

central role in the solution sought. Understanding how to deal with time-like boundaries

in D = 4 in the absence of a cosmological constant required major theoretical efforts

which culminated in a series of mathematically sound options guaranteeing the well-

posedness of the underlying problem [71, 72]. An analog of such work is absent in

AdS (even in D = 4) which is rendered more delicate due to the diverging behavior of

the spacetime metric at the boundary. We note, however, the derivation of boundary

conditions for the linearized field equations in AdS [73] and studies of the fall-off

behaviour of the metric in particular coordinate systems [74, 75]. Extension of this

work towards establishing well-posedness of the full equations will be of vital importance

for a robust numerical treatment of general problems. In the meantime however,

interesting advances have been presented exploring the characteristic formulation of

General Relativity –where the spacetime is foliated by incoming null hypersurfaces

emanating from the AdS boundary– [68, 69] (which is particularly robust, a property

that has been observed in D = 4 as well) but more restricted in applicability as caustics

will render the coordinate system employed singular. At present there is no general

purpose infrastructure to ensure efficient parallelization and dynamic regridding for

characteristic approaches, though a proof-of principle work has demonstrated there is

no fundamental obstacle for developing one [76]. Within a Cauchy approach –where

the spacetime is foliated by spacelike hypersurfaces–, strategies have been specifically

tailored for special cases, see Section 5.

Regardless of the nature of the foliation adopted, a related question concerns

the boundary topology. It is well known that within the global 5D-AdS spacetime

(with boundary topology R × S3) a Poincaré patch can be defined through a suitable

transformation. The boundary of this patch is R4. From the perspective of aiming for a

numerical implementation, these two options might bring up non-trivial issues related to

both the possibility of achieving a robust implementation and its application to generic

problems. Namely, if a global AdS picture is adopted, can all physics be extracted in

standard fashion through a Poincaré patch after a suitable coordinate transformation?



NR/HEP: roadmap for the future 12

As a matter of principle, a calculation performed in global AdS can always capture the

physics of a calculation in the Poincaré patch, although in practice it may be a rather

inefficient and involved manner of doing so. The converse, however, could not always be

possible. In Euclidean space, the global and Poincaré patches are, as mentioned above,

convertible into each other through a rather straightforward coordinate transformation

in a unique way. However, in Lorentzian spacetimes the situation is more subtle (one can

presumably ascribe this to the different possible prescriptions for how the continuation

from Euclidean to Lorentzian is performed). Excitations or objects evolving in global

AdS may cross the Cauchy horizon of the Poincaré patch, entering or leaving it (their

energies, measured in Poincaré-patch time, are redshifted to zero as they get to the

Cauchy horizon). As long as the relevant physics is occurring entirely inside the Poincaré

patch, this is not problematic, but for phenomena where properties on global AdS

are required, Poincaré-patch evolutions appear to be ill-suited. Although in principle

analyticity should allow for recovering Lorentzian-time global-AdS correlation functions

from Poincaré-patch ones, one must have a detailed understanding of the prescriptions

involved and the approach is likely unsuitable for numerical results. Moreover, relating

the Poincare picture to that of the global picture may require infinite resolution, and

thus be difficult in numerical approaches.

Alternatively, are particular conditions required in the boundary treatment of global

AdS to ensure this is the case? Furthermore, some applications require “operator

insertions” in the CFT that correspond to particularly “deformed” AdS boundaries.

Here again, all issues with respect to fall-off behavior, boundary regularization, well-

posedness of the resulting problem, need also to be investigated for these spacetimes.

It is important to stress here that some of these questions (such as Poincaré patch or

not) may have simple answers from the physics perspective, but they might introduce

delicate numerical issues that may also guide the approach to solutions.

Fields, what fields? An issue related to both broad themes concerns the choice of fields

to be included for studying relevant scenarios. For instance: In the context of AdS/CFT,

the inclusion of a gauge field is natural and well-motivated, as it allows the study of the

effect of non-zero chemical potential, i.e., finite density, in the boundary theory. Scalar

fields with suitable potentials are also of interest and have been studied to model in a

phenomenological manner the effects of confinement (“soft-wall” models).

• For TeV-scale gravity, considering charged collisions, or those involving other fields,

will allow an exploration of which other observational signatures could be sought

after in accelerator experiments. In D = 4, simulations involving scalar and vector

interactions are well under control (e.g. [77, 78, 79]). In higher dimensions, however,

these fields would be confined to branes and the treatment becomes considerably

more complicated.

• In the context of holography, studying the interaction of black holes with other fields

is important for exploring dualities within a broad physics scope. This includes
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the “condensation” of fields outside black holes, which has proven important for

studies of superconductors and generic (holographic) condensed matter systems. Of

particular importance, for instance, is to understand the global behavior driven by

super-radiance of scalar or even tensor fields [80, 81] and its final outcome, likely,

a hairy black hole or non-trivial black hole solutions.

While exciting work is proceeding to address problems of interest, there is

undoubtedly still plenty of room for resolving fundamental questions that will help

in the construction of robust and general methods to simulate relevant systems and to

extract useful physics from them.

2.4. Targets of opportunity

As mentioned, gravity in higher dimensions brings about several new delicate issues,

some of which can be addressed via numerical simulations while others must be taken

into account analytically in order to achieve a robust implementation. Indeed, essentially

every single point discussed in Sec. 2.2 would benefit from further work: while some

intuition from D = 4 can be brought to higher dimensions for guidance, the richer

phenomenology of gravity in D > 4 indicates that such intuition can only help within

limits. A few simple examples of radically different behavior are as follows: non-

existence of stable circular orbits even when ignoring back-reaction; non-uniqueness

of black hole solutions (distinct solutions are known with the same asymptotic charges);

the possibility of naked singularities arising in generic scenarios (already shown for the

GL instability); in brane-world scenarios gravity sees the bulk while other interactions

are restricted to the brane. In addition, there are important quantum issues not covered

here, such as the behavior of Hawking evaporation and non-perturbative quantum

gravity effects. On the one hand, these issues make the understanding of these systems

more difficult; on the other hand, they represent targets of opportunity. Indeed,

exploring them will certainly provide interesting new challenges in their own right.

While the landscape of possible systems is still largely unexplored, from a practical

standpoint, problems can be divided as:

• Mathematical. Understand the correct setting for guaranteeing a well posed initial

boundary value problem in AdS. Understand black hole topologies that might arise

in higher dimensional contexts [82].

• Mathematical/Physical. Very basic issues about the stability of higher-dimensional

black holes remain unresolved and at present we can only expect to address them

through numerical studies. Results thus obtained can guide us towards a rigorous

path to establish general results from a mathematical point of view. As discussed

earlier, this is particularly important for the scenarios in which black holes can be

formed at colliders. Two outstanding open (and related) questions in the context

of vacuum black holes (with Λ = 0) are: (i) black rings with large angular momenta

are unstable, but is there a window of stability for (5D) black rings at moderate
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values of the spin? (ii) for given values of M and J , is there more than one stable

black hole? If the answer is yes, it would have consequences, for instance, for

black hole production at colliders. If not, this would allow us to recover a notion

of uniqueness: the only neutral, asymptotically flat black holes with a connected

horizon, would be Myers-Perry black holes with angular momentum below a certain

bound.

More generally, numerical analysis, in a less intensive manner (“soft numerics”)

is necessary for obtaining information about the space of black hole solutions

in higher-dimensions that cannot be obtained through other methods. A good

example of this is the progress in the past decade in understanding black holes

and black strings in Kaluza-Klein theory. Very similar problems arise in any other

higher-dimensional theory of gravity, either in asymptotically flat vacuum, or with

a cosmological constant or additional fields.

• Physical. List scenarios relevant for TeV-gravity and Holography in both vacuum

and non-vacuum spacetimes. To this end, describe desired initial conditions

required to study the future development of the solution. Furthermore, investigate

which particularly interesting cases are amenable to a reduced dimensionality

description. Develop methods that could shed further light on the linearized

stability of many black hole solutions. For instance: recognize mappings between

different solutions and known cases (as in the case of mapping close horizon

geometries to the GL instability e.g. [83, 84, 85]); extend, and comprehend possible

limitations of thermodynamical arguments (e.g. [86, 87, 84]); construct suitable

approximating schemes able to capture the system’s behavior in appropriate limits

(e.g. extensions of PN and EFT [88], blackfolds [89], etc.)

• Numerical. Several open problems should be solved numerically, both to obtain

static/stationary solutions or particular initial data as well as studying the

dynamical behavior of relevant cases. In the following sections we discuss some

particularly interesting issues on this front.

Initial data: stationary/static solutions and perturbations thereof. Of particular

interest are black hole solutions; as mentioned, these can form as a result of high-

speed collisions or are intrinsically important within AdS-CFT dualities. A number

of solutions are known, but generically their stability behavior is not understood (see

further discussions in section 3). In some cases, important headway has been made

by entropic arguments and recognized mappings to known instabilities (most notably

the Gregory-Laflamme (GL) instability [90, 91]). For those, recent work uncovering

what the non-linear dynamics of the system might be, gives an indication of what to

expect in general. With the exception of the GL instability, present options (short of

performing a full non-linear study) are linearized perturbation analysis or considering

scenarios describing black hole perturbations violating Penrose’s inequality [87]. To

date, linearized stability of many of the known black hole solutions is not yet known.

The question is further complicated as many solutions for interesting cases are only
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known numerically. Indeed, many situations of interest relate to static or stationary

black hole solutions [92] whose derivation requires significant work at analytical and

numerical levels.

Dynamical behavior. Understanding of the full non-linear behavior of black-hole

perturbations at both classical and quantum levels is paramount for establishing a

connection with possible observations in the framework of TeV-scale gravity models

as well as elucidating holographic connections with equilibration in the dual picture.

Furthermore, studies of dynamical scenarios in higher dimensional gravity will help in

building up intuition and guide further work. For instance, numerical simulations have

already shown (see also [93]):

• That negative energy “bubbles of nothing” do not give rise to naked singularities,

and initially expanding ones continue doing so. Furthermore, that gauge fields can

significantly affect the dynamics and give rise to a static bubble solution dual to

black strings [94, 95].

• That large static black holes exist in AdS5 with the Schwarzschild black hole as the

boundary metric [96, 97] thus disproving a conjecture that no such solutions are

admitted [98, 99].

• That a higher dimensional class of unstable black holes –black strings–[90, 91]

display rich dynamics leading to a self-similar behavior that ultimately gives rise

to naked singularities [58, 17] in rather generic conditions. Thus cosmic censorship

does not hold beyond D = 4.

• The unstable behavior of rapidly spinning black holes [83], which can lose enough

angular momentum through gravitational waves so as to cross to the stable

branch [57, 59].

• That the amount of energy radiated in D = 5 head-on black hole collisions agrees

well with the value obtained from (extrapolations of) linearized, point-particle

calculations [63, 100].

• That within the holographic picture, the collision of gravitational shock waves

in AdS gives rise to a dynamical behavior consistent with that expected from

hydrodynamics in the boundary theory. Furthermore, the behavior in the gravity

sector was exploited to compute the time required for thermalization in the system

[69].

These are just a few examples of interesting physics that can be extracted from the

dynamical behavior of relevant systems. A priori there is a vast number of interesting

problems and this number will likely grow as new, and probably unexpected, behavior

is uncovered in the process. Obviously prospects for exciting physics lie ahead. Indeed,

within large extra dimensions, a thorough understanding of how a newly formed –but

unstable– black hole decays to its eventual fate, what that fate is and how it depends on

dimensionality can have profound observational implications and/or signal difficulties
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in prospective models. Furthermore, the influence of the strongly gravitating/highly

dynamical regime explored by such a process on additional fields could induce tractable

signals that can provide important additional observational channels.

Within holographic studies for static situations there is a clear prescription on

the relationship between the CFT thermal state and properties of the BH horizon.

However, for dynamical scenarios –related to both formation and stabilization of black

holes– is there a sensible, unique way to define such a map in a dynamical situation?

Furthermore, what is the preferred way to connect CFT and horizon properties as a

function of time? The answer to this question necessarily ties to the choice of a preferred

slicing, which need not be the most convenient one for the numerical implementation.

Additionally, during the dynamical stage complex dynamics might be driven by the

super-radiance “instability”. However, to date, a study of such scenario even in D = 4

is absent. Related work has presented possible end-state solutions describing hairy black

holes [101, 102, 103, 104, 105], though their stability is not yet established nor whether

they are indeed attractor solutions. However, the super-radiance instability need not

be the only or main effect driving the dynamics. For instance, recent work indicating

‘turbulent-like’ behavior in AdS gravity [42, 43] highlights surprises might still be lurking

in dynamical scenarios beyond what might be understood at low perturbation orders.

Understanding these phenomena and their possible dual on the field theory side can

shed light on key behavior or raise further questions. For instance, this turbulent-like

behavior takes place on the gravity side in all dimensions. However, the Navier-Stokes

equations (appearing in to lowest order on the field theory side), display a behavior

markedly different in D = 3 with respect to higher dimensions. This reveals that a

different phenomena is awaiting our understanding in the context of strongly coupled

QFT.

Drawing a path from analogies to 4D. As mentioned above, many cases of interest

involve understanding the interaction of black holes in a fully non-linear framework. It

is important to recall once more that simulations provide information about one single,

isolated black-hole system per run. Having a sufficient number of such simulations

available, certain phenomenological models could be constructed to capture relatively

generic behavior with respect to certain regions of the parameter space. Undoubtedly

this would be a time-consuming task. An alternative (or complementary) approach

has been pursued successfully in D = 4. Namely to employ different approximations

to understand the system in separate (early and late) regimes and exploit numerical

simulations to bridge the gap in between. Techniques used for this purpose are

Post Newtonian (and related) approximations when the compact objects move at slow

velocities and perturbation theory around a suitable black hole solution for the post-

merger (or black-hole formation) stage (e.g [106, 107, 108, 109, 110, 111] for D = 4

studies and [112] for a first step in this direction for D > 4.). Consequently, a judicious

phenomenological match between the two phases, motivated and further tuned via

gradual generation of numerical solutions, can provide for an efficient way to encode the
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system’s behavior. This approach should be given consideration in higher dimensional

scenarios. However, to this end the following issues must be kept in mind:

• PN and EFT approximations must be developed to the appropriate order. In

particular to incorporate radiation-reaction effects. Currently this is only available

to first order (and not in the AdS case) [88]. It is important to note that the

order at which this can be done without internal effects playing a role, depends on

dimensionality. Nevertheless, where possible, knowledge of the trajectories can be

directly exploited in obtaining reasonable approximations to the spacetime metric

by suitable superpositions (see e.g. [113, 114, 115, 116]).

• Perturbations of black holes only make sense if the stability of the black hole is

understood. As mentioned in many cases this is still to be addressed.

For a detailed discussion of the use of approximation methods for D ≥ 4-

dimensional black-hole spacetimes see Sec. 7.
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3. Higher-dimensional black holes

Coordinator: Harvey Reall

3.1. Motivation

This section will discuss classical properties of stationary black hole solutions of the

vacuum Einstein equation in higher dimensions.

The review article [13] listed several motivations for the study of black hole solutions

in more than four spacetime dimensions:

(i) Statistical calculations of black hole entropy using string theory. This was first

achieved for certain 5-dimensional black holes and later extended to 4D black holes.

Each entropy calculation is a check on the theory, irrespective of the dimension.

Hence the study of higher-dimensional black holes is a worthwhile contribution to

developing a theory of quantum gravity.

(ii) The gauge/gravity correspondence relates the properties of black holes in D

dimensions to strongly coupled, finite temperature, quantum field theory in D − 1

dimensions. This provides a way of calculating certain field theory quantities which

cannot be determined by any other method.

(iii) Certain “large extra dimensions” scenarios predict that microscopic higher-

dimensional black holes might be formed at the LHC. However, LHC results

discussed at the workshop give no evidence in favour of “large extra dimensions”

scenarios. It was also emphasized that if black holes were formed at the LHC when

run at higher energy, they would be not be in a semi-classical regime, so quantum

gravity would be required to study them. Therefore it seems that this motivation

for the study of classical higher dimensional gravity is lessened.

(iv) Higher-dimensional black hole spacetimes might have interesting mathematical

properties. For example, analytically continued versions of black hole solutions

have been used to obtain explicit metrics on compact Sasaki-Einstein spaces.

(v) Just as it is valuable to consider quantum field theory with field content different

from that of the Standard Model (or any conceivable extension), it might be

worthwhile considering higher dimensions when studying black holes. For example,

there might exist explicit higher-dimensional solutions that provide a clean example

of some effect in GR. A nice example of this is the frame-dragging effect exhibited

by the “black Saturn” solution [117]. Perhaps there are examples in which an exact

calculations in higher dimensions can be used to check a calculation that has to be

done perturbatively in 4D.

(vi) Some things are simpler in higher dimensions. For example, in 4D the asymptotic

symmetry group of null infinity in an asymptotically flat spacetime is the infinite-

dimensional Bondi-Metzner-Sachs group. However, in higher dimensions it is simply

the Poincaré group [118, 119]. This makes it possible to define angular momentum

at null infinity in higher dimensions [120]. In 4D this appears to be difficult.
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The focus of this article will be on stationary black hole solutions and their

properties. Time-dependent processes are of great interest for the applications but

will only be touched on here (see Sections 2 and 5 for further details on this topic).

3.2. State of the art

Explicit solutions. We restrict this discussion to the vacuum Einstein equations with

vanishing cosmological constant. There are two families of explicit asymptotically flat

black hole solutions with a connected horizon. There are the Myers-Perry solutions

[121], known for any spacetime dimension D, and the 3-parameter black ring solution

[122, 123], for D = 5. The MP solutions have horizons with topologically spherical

cross-section. The black ring solution has topology S1 × S2.

There are also explicit solutions with disconnected horizons. The “black Saturn”

solution [117] describes a black ring with a MP black hole sitting at the centre of the

ring. There are solutions involving a pair of black rings, e.g., the “black di-ring” [124].

The MP solutions have been generalized to include a cosmological constant for

D = 5 [125] and D ≥ 6 [126]. These solutions describe rotating, topologically spherical

black holes in an asymptotically (anti-)de Sitter spacetime.

Classification. It has been shown that a static, asymptotically flat, black hole must be

described by the Schwarzschild solution in any number of dimensions [127].

Hawking’s topology theorem has been generalized to higher dimensions [128], with

the conclusion that a cross-section of the event horizon of a stationary black hole must

be a positive Yamabe space, i.e., it must admit a metric with positive Ricci scalar. In

4D this implies spherical topology. In 5D, it restricts the topology to a connected sum

in which each component is either S1 × S2 or a quotient of S3. For D > 5 there are

many more possibilities.

Hawking’s rigidity theorem asserts that a stationary black hole must admit a

rotational symmetry. This has been extended to higher dimensions [129]. But it

guarantees only one rotational symmetry whereas all known explicit solutions have

multiple rotational symmetries. Combining the rigidity and topology theorems restricts

further the possible topologies in 5D [130].

For D = 5, one can classify stationary black holes with two commuting rotational

symmetries according to their “rod structure”: there exists at most one black hole with

given mass, angular momenta, and rod structure [131]. If one also assumes S3 topology

then the black hole must be a Myers-Perry solution [132]. Solutions with lens space

topology are consistent with this classification. It is not known whether such solutions

exist (they do not appear in the blackfold approach discussed below).

Related to the problem of classification is the characterization of the phase space

of black hole solutions: what are the different families of black hole solutions that exist,

and how they branch-off or merge at different points in the phase space. Even if we do

not have a complete classification of all possible black holes, one would like to know how
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the known phases (explicit or approximate) relate to each other, at least qualitatively.

In this direction, one expects that the main features of the phase space of neutral,

asymptotically flat, higher-dimensional black holes are controlled by solutions in three

different regions:

(i) Large angular momenta.

(ii) Bifurcations in phase space.

(iii) Topology-changing transition regions.

The regime (i) is captured by the blackfold effective theory [133, 89] discussed below.

Regions (ii) are controlled by zero-mode perturbations of black holes that give rise to

bifurcations into new families of solutions. The initial conjectures about these points

[83, 134] have been confirmed and extended in [85]. For the regions (iii) in D ≥ 6,

ref. [135] has provided local models for the critical geometries that effect the topology

change. The critical behavior in the five-dimensional case is qualitatively different.

Stability. Singly spinning MP black holes in D ≥ 6 have no upper bound on the

angular momentum J for a given mass. Ref. [83] conjectured that such black holes

should be classically unstable for large enough J . Strong evidence for this was found in

Ref. [85, 136], where it was shown that a regular stationary perturbation appears at a

critical value of J . This is believed to be a “threshold” mode indicating the presence of

exponentially growing perturbations for larger J .

Ref. [84] considered the most symmetrical case of MP black holes with odd D and

all angular momenta equal. Such solutions have an upper bound on J at which the black

hole becomes extreme. It was shown that, close to extremality, there exist linearized

perturbations that grow exponentially with time. Ref. [137] showed how the threshold

mode of this instability connects to the threshold mode in the singly spinning case by

considering unequal angular momenta.

The studies just described considered only instabilities that preserve the rotational

symmetry of the black hole that arises from the rigidity theorem. However, in the

singly spinning case, it is known that a non-rotationally symmetric instability appears

at a lower value of J than the rotationally symmetric instability. Ref. [57] performed

a full nonlinear evolution of the Einstein equation starting from initial data describing

a singly spinning MP black hole with a non-rotationally symmetric perturbation. For

large enough J , it was found that the black hole became very asymmetrical, resulting in

significant gravitational wave emission, and then settled down to a (presumably stable)

MP black hole with J always smaller than some critical value. It was found that this

kind of instability is present for D = 5 (despite the upper bound on J) as well as for

D ≥ 6.

With a negative cosmological constant, MP-AdS black holes suffer a superradiant

instability when Ω` > 1 where Ω is the angular velocity of the horizon and ` the AdS

radius [81]. This instability breaks rotational symmetry. A rotationally symmetric

instability can also appear at even larger angular velocity [138].
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Refs [139, 140] presented heuristic arguments indicating a classical instability of

“fat” black rings. This was confirmed by Ref. [87] using an argument based on Penrose

inequalities. This instability preserves rotational symmetry. Heuristic arguments also

suggest that sufficiently thin black rings will suffer a GL instability, which would break

rotational symmetry [122].

Approximate techniques. Heuristic arguments suggest that black ring solutions also

should exist for D > 5. These are made more precise by the “blackfold” approach

[134, 133, 89] which constructs solutions perturbatively in a derivative expansion, valid

when the geometry of the solution has a large hierarchy of scales, e.g., a black ring

with topology S1 × SD−3 where the radius of the S1 is large compared to that of the

SD−3. This approach indicates the existence of black hole solutions with a variety of

different topologies, for example a product Sp1×. . .×Spk×sD−p−2 where pi are odd with∑
pi = p and Spi denotes a sphere of “large” radius and sD−p−2 a sphere of “small”

radius. It also indicates the existence of “helical” black ring solutions with just the

single rotational symmetry predicted by the rigidity theorem, i.e., less symmetry than

any known higher-dimensional black hole [14].

Another approximate technique which also points to the existence of new solutions

is to consider perturbations of a known solution. If one finds a perturbation which is

stationary, regular, and does not correspond simply to a variation of parameters of the

known solution then it may correspond to the bifurcation of a new family of stationary

black hole solutions. The studies of MP perturbations just discussed do indeed provide

evidence for such bifurcations. For singly spinning MP black holes with D ≥ 6, a

stationary perturbation appears at the critical value of the angular momentum beyond

which the black hole is unstable [85]. This is taken to indicate the existence of a new

family of “pinched” MP black holes. Further bifurcations appear at larger angular

momentum. All of these perturbations preserve the symmetries of the original MP

solution.

The same technique applied to cohomogeneity-1 MP black holes also suggests the

bifurcation of a new family of solutions at the critical value of angular momentum beyond

which the solution becomes unstable [84]. However, in this case, the perturbation

generically breaks all of the rotational symmetries of the MP solution except for the

symmetry guaranteed by the rigidity theorem. In contrast with helical black rings, the

new family of solutions would be topologically spherical. Furthermore, counting the

number of free parameters in the perturbation suggests that the new solutions should

have many parameters (e.g. 70 in D = 9 whereas the 9D MP solution has only 5

parameters).

In summary: approximate techniques indicate the existence of many stationary

vacuum black hole solutions in D > 5 dimensions. These include solutions with only a

single rotational symmetry, solutions with topology different from any known solution,

and solutions with many more parameters than the known solutions.

In asymptotically AdS spacetimes, it appears that things can be even more
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complicated. Ref. [81] suggested the possible existence of stationary, non-static, vacuum

black holes without any rotational symmetry. Evidence in favour of this was found in

Ref. [43].

Numerical solutions. The study of asymptotically flat black holes gives one a stepping

stone to understand more complicated theories of gravity relevant for phenomenology

or holography. In the asymptotically flat setting the static solutions are simply

Schwarzschild and are known to be unique [141]. However in more exotic settings,

such as compact extra dimensions or braneworlds, even the static black holes often have

a complicated structure. For example in the simplest toy model, Kaluza-Klein theory,

where we are interested in vacuum geometries that asymptote to R1,3 × S1, there are 3

distinct classes of static solution. As reviewed in [16] these are the homogeneous black

string, the inhomogeneous black string and the localised black hole. Only the first is

known analytically. The second and third class may be constructed perturbatively

in various limits, but generally are only known from numerical computations (the

most recent being [142]). The inhomogeneous black strings were originally predicted

by Gregory and Laflamme [143] and are generated from the homogeneous strings by

the marginally stable static Gregory-Laflamme perturbation [144]. Moving along this

solution branch the horizon appears to degenerate to pinch off and change the topology

to that of a spherical horizon [145]. Kol has argued [146] that on general grounds a

singular cone geometry provides a local model for the part of the horizon where the

pinch off occurs, and that one may resolve the cone to pass through to the spherical

topology horizons of the localised static solution branch. This localised branch is thought

to interpolate between this topology changing point and very low mass spherical black

holes that near their horizon approximate 5-dimensional Schwarzschild and were first

studied by Myers [147] and may be constructed in perturbation theory [148, 149]. This

picture is indeed supported by the numerical evidence [150, 142]. This topology change

of the horizon through a conical transition is also thought to be relevant in understanding

the space of asymptotically flat stationary solutions [134, 135]. Further work to improve

these numerical solutions and confirm the cone topology change picture is an interesting

future direction.

3.3. Future directions

Explicit solutions. The approximate methods discussed above point to the existence of

many stationary vacuum black hole solutions in higher dimensions in addition to the

known Myers-Perry and 5D black ring solutions. It is of obvious interest to determine

such solutions explicitly. This is a long-term goal. To do this, new techniques for solving

the Einstein equation in higher dimensions must be developed.

So far, the technique which has led to the most interesting results is the Belinskii-

Zakharov inverse scattering method for solving the Einstein equation when there are

D − 3 commuting rotational symmetries, as well as time-translation symmetry. This
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method led to the discovery of doubly spinning black rings and black Saturn and

its generalizations. But these symmetry assumptions are consistent with asymptotic

flatness only for D = 4, 5. Furthermore, this method does not work with a cosmological

constant. However, if 5D “black lenses” exist then this method could be used to find

them.

An alternative approach is based on algebraic classification of the Weyl tensor. The

Kerr solution was discovered in a search for solutions with a Weyl tensor that, in the

Petrov classification, is algebraically special. There is a large literature on exploiting

the algebraically special property as a tool for solving the Einstein equation in 4D. The

most spectacular example of this is the determination of all vacuum type D solutions.

This technique is not restricted to the case of vanishing cosmological constant.

In higher dimensions, there are various notions of “algebraically special” that have

been explored. These have been reviewed in Ref. [151]. The most widely used definition

is that of Coley, Milsson, Pravda and Pravdova (CMPP) [152]. So far, the only attempt

to use the CMPP “algebraically special” property as a tool for solving the Einstein

equation is Ref. [153] which determined all axisymmetric algebraically special solutions

of the vacuum Einstein equation (with cosmological constant) where “axisymmetric” is

defined as the existence of a SO(D−4) symmetry with SD−3 orbits. There is significant

scope for extending this approach of combining the algebraically special property with

some symmetry assumptions. An obvious case of interest is U(1)D−2 symmetry.

A more systematic exploitation of the algebraically special property probably will

require further development of the general theory of algebraically special solutions. The

key result lacking is a higher-dimensional generalization of the Goldberg-Sachs theorem.

Partial progress has been made (reviewed in Ref. [151]) but this is an area in which

plenty remains to be done.

An alternative definition of “algebraically special” involves spinors. This works

only for D = 5 (and D = 4). This definition is independent of the CMPP classification

(although the MP solutions are algebraically special according to both definitions) and

therefore could lead to rather different results if exploited as a tool to solve the Einstein

equation. A first attempt at exploiting the spinorial definition of algebraically special to

solve the 5D Einstein equation was made in Ref. [154]. Only the most special algebraic

classes were considered. It would be very interesting to consider more general classes.

Another property that might be exploited to solve the Einstein equation is the

existence of a Killing, or Killing-Yano tensor. It is known that the wave equation is

separable in a MP spacetime and this is because of the existence of a conformal Killing-

Yano tensor. Furthermore, it has been shown that a certain generalization of the MP

solution is the most general spacetime admitting a “principal” conformal Killing-Yano

tensor [155, 156]. This result shows that one can exploit the existence of such a tensor

to solve the Einstein equation. In this case it leads to a known solution but maybe the

assumptions here could be weakened. Is it possible to make progress if the “principal”

condition is dropped? Does this lead to new solutions?
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Classification. A long term goal is to solve the classification problem: classify all

stationary, asymptotically flat, vacuum black hole solutions in D > 4 dimensions. This

seems far beyond current techniques.

So far, classification results for higher-dimensional black holes are restricted to

D = 5 with two rotational symmetries. Since the general case of one rotational

symmetry appears intractable at present, one could consider other special cases with

enhanced symmetry. For example, can one classify cohomogeneity-1 vacuum black hole

solutions? Are there any such solutions other than Schwarzschild and equal angular

momentum, odd D Myers-Perry? What about cohomogeneity-2 solutions in general D?

These include singly spinning MP black holes. Can such solutions be classified?

Another simplifying assumption is extremality. Any extreme black hole admits a

near-horizon geometry with more symmetry than the full black hole solution [157]. Can

we classify possible near-horizon geometries?(See Refs. [158, 159] for results in this

direction.) Can this be used to classify extreme black holes? To do this would involve

understanding the global question of what restrictions asymptotic flatness imposes on

a near-horizon geometry.

Although black holes with gauge fields are not within the scope of this article, it

should be noted that supersymmetry is more restrictive than extremality. So perhaps

one could attempt to classify supersymmetric black holes in a higher-dimensional

supergravity theory. So far, this has been investigated only for the simplest 5D theory

[160].

Stability. A long term goal is to determine the classical stability of the known black

hole solutions, i.e., Myers-Perry and black rings. Where instabilities exist, the endpoint

should be determined.

As discussed above, there are now several results concerning instabilities of

MP black holes. So far, studies of linearized perturbations have considered only

perturbations preserving the rotational symmetry that arises from the rigidity theorem.

However, for a singly spinning black hole, numerical evolution finds that the instability

which appears first (i.e. at smallest J) breaks this symmetry. Since numerical evolution

is hard, it would be interesting to study this non-rotationally symmetric instability using

linearized theory. It would also be nice to know which type of instability is dominant

at very large J .

A target for future research would be to map out the stable regions of the MP

parameter space. This could be done via a combination of linearized analysis and full

numerical evolution. Although unsuccessful so far [161], perhaps one could derive a

master equation describing MP perturbations, a higher-dimensional analogue of the

Teukolsky equation.

The stability of black rings against non-rotationally symmetric perturbations is an

important open question that future work should address. Are there any stable vacuum

black rings?

At present, the endpoint of the super-radiant instability of MP-AdS black holes is
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unknown although it is conceivable that no regular endpoint exists [43]. It would be

interesting to determine the time evolution of this instability numerically.

Numerical methods. Given that we expect higher dimensions to admit many new

solutions, many without much symmetry, it is unlikely that we will succeed in

constructing them all analytically. Numerically solving the Einstein equation is likely to

become an important tool in finding new stationary black hole solutions. New methods

have been developed recently for solving the Einstein equation to obtain stationary

solutions, see Ref. [92] for a review.

Of course, numerical work has its limitations: one usually must have a good idea

of the properties of the solution one wishes to find: it will be hard to go “fishing” for

new solutions; as discussed above, there may exist black hole solutions with a large

number of parameters, it would be hard to explore such a parameter space numerically.

Nevertheless, numerical methods can be used to confirm the existence of solutions for

which the evidence is otherwise indirect, or perturbative in nature. For example, the

arguments for the existence of black holes with a single rotational symmetry are based on

perturbation theory. If we cannot find such solutions explicitly then numerical analysis

of the Einstein equation provides the only way of confirming the existence of such

solutions at the full nonlinear level. (Actually, this is not quite true: one might be able

to prove existence of solutions without finding them explicitly, but such an approach

may not provide much information about properties of the solutions.) Finding numerical

solutions describing stationary D > 4 black holes with a single rotational symmetry

should be a goal for future work.

An obvious approach to finding new black hole solutions is to try to form them in

a time-dependent simulation of gravitational collapse. However, this approach probably

will only find classically stable solutions and many higher-dimensional solutions are

expected to be unstable. (This does not make them uninteresting: the time-scale for the

instability might be long e.g. compared to the time-scale of Hawking evaporation.) On

the other hand, there is no reason that new stable solutions should not exist, particularly

in the less well understood case of asymptotically anti-de Sitter spacetimes.

The recent discovery of the absence of a threshold for black hole formation [42]

emphasizes how little is understood about time dependent processes in AdS. Numerical

simulations will be invaluable in developing our intuition for what is possible. It will be

interesting to see how the results of Ref. [42] are modified if one relaxes the assumption

of spherical symmetry.

The case of asymptotically AdS spacetimes is particularly interesting because of

the range of possible boundary conditions that one can consider. For example, there

has been recent progress in constructing solutions in which the conformal boundary is

the Schwarzschild spacetime [96], which can be used to study the behaviour of strongly

coupled field theory in a black hole background. This idea has been discussed more

generally in Ref. [162], which argues for the existence of different types of “funnel”

and “droplet” solutions when the boundary metric describes a black hole. Future
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numerical work should investigate such solutions. It will also be interesting to construct

numerically solutions which describe an AdS black hole localized on an internal space

e.g. on the S5 of AdS5×S5 (see [163] for a discussion of the instability of Schwarzschild-

AdS5 × S5 and its implications for the dual gauge theory).

Approximate methods. The equations of the blackfold approach described above, which

allow to construct approximate black hole solutions, have been solved only in the

simplest cases with a high degree of symmetry that allows to solve the equations

algebraically. This, however, is far from being a systematic and exhaustive study and

has uncovered only a very small part of the solutions that presumably exist in D ≥ 6.

For instance, it would be important to study solutions with a lower degree of symmetry,

since they will play a role in connecting different black hole phases, as well as providing

new classes of black holes with less symmetry than the Cartan subgroup of SO(D− 1).

Novel horizon topologies may also be discovered.

Instead of a case-by-case study of specific ansatze for the solutions, a more

systematic approach to the blackfold equations would be highly desirable. This approach

should give very valuable results towards a classification of black holes, or at least

towards a useful characterization of them.

The blackfold methods can also be usefully applied to the study of the stability

properties of black holes whenever their horizons possess two separate length scales.

The connection it makes to hydrodynamics has made it possible to simplify the study

of the GL instability of black branes and possibly will yield a better understanding of

the non-linear evolution of this instability towards its endpoint. Having an analytical

tool to study this problem seems very valuable since so far it has only been tackled via

massive numerical calculations with supercomputers.
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4. Trans-Planckian scattering

Coordinator: Seongchan Park

The ultimate aim of physics is to discover the fundamental laws of nature.

According to the uncertainty principle, ∆x ≥ ~/∆p, higher energies are needed to

probe smaller distances. Ultimately, however, when the energies involved in physical

processes exceed the Planck energy we enter the profoundly mysterious trans-Planckian

regime. In trans-Planckian processes, gravity dominates the scattering at increasing

distances [164, 165], and it has been argued that it prevents probing distances shorter

than the Planck length [166, 35],

`D ≡
(
GD~
c3

) 1
D−2

. (1)

Specifically, in the regime with centre of mass energy
√
s � MD, where the Planck

mass in D-dimensions is MD =
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and the scattering range grows as a power of energy. Here, general features of the

dynamics are expected to be well-approximated by semiclassical scattering and/or

horizon formation.

One can characterize the scattering in terms of the center-of-mass energy E =
√
s

and impact parameter b = J/
√
s, where J is the angular momentum. A proposed

‘phase diagram’ describing the relevant physics in different regions of the (E, b) plane

is summarized in Fig. 1 (see [167]). The left lower part is unphysical as ∆x < ~/∆p.
The gray part near the Planck scale

√
s ∼ MD is largely unknown and non-linear

quantum gravity effects dominate so that we need the full theory of quantum gravity

to describe physics in this domain. On the other hand, the large impact parameter

regime appears well-approximated by the Born or eikonal approximations, as long as the

scattering angle is ‘small’, θ ∼ (Rs/b)
D−3 � 1. Lowering the impact parameter further

to the value of Schwarzschild-Tangherlini radius, gravity becomes strong and highly non-

linear, and black hole formation is expected even though a full quantum description

of this process remains unknown. Specifically, in the classical theory high-energy

particles are well approximated by colliding Aichelburg-Sexl solutions [168], and in such

a collision, at impact parameters b . Rs(
√
s), one can show that a trapped surface

forms [169, 56, 170]. (One can supply additional arguments that quantum effects do not

modify these statements [171].) Simulations in numerical relativity have confirmed this

prediction of black hole formation in high-energy collisions [77, 172, 173, 174].

Once a black hole is formed, it decays through Hawking radiation. This process

would enable the LHC to probe black hole signatures in TeV gravity models with extra

dimensions [35, 36] (For reviews, see for instance Refs. [9, 38, 37, 39]).
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In this section, we review the current status of trans-Planckian physics focusing on

the LHC search for black holes and other trans-Planckian signatures.

Figure 1. A proposed “phase diagram” of different regimes for gravitational scattering

(from [167]).

4.1. Is Trans-Planckian physics testable in the near future?: the experimental status of

TeV gravity models

The critical question for experimental observation of trans-Planckian physics is the

size of the fundamental Planck scale. In extra-dimensional models with large and/or

highly warped extra dimensions, the scale of gravity can be as low as MD = O(1) TeV,

eliminating a large hierarchy between this scale and the electroweak scale. The LHC

has begun to exclude the low end of the parameter space for TeV gravity models by

searching for signatures in various channels. What is the current status of the exclusion?

What are the future expectations?

ATLAS searches. At the time of writing, the most recent results from ATLAS come

from an integrated luminosity of around 1fb−1, acquired during the first part of 2011.

These results will be updated with around 5 pb−1 available in early 2012. ATLAS has

focused its searches on channels with leptons, because of the expected democratic nature

of the gravitational coupling. This means that one would expect particle production to

be in proportion to the number of states available (with appropriate gray-body factors),
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and not related to the gauge quantum numbers of the states. However, it is possible to

construct models, such as split branes, where this is not the case.

In [175] a search for microscopic black holes and string ball states was performed,

using final states with three or more high transverse momentum objects, at least one of

which was required to be an electron or muon. No deviations were observed from the

standard model expectations, which were estimated using a combination of data-driven

and Monte Carlo based techniques. The dominant background sources come from vector

boson production, either directly or from top decays. A smaller background arises from

QCD events which contain a fake lepton. The events were studied as a function of the

scalar sum of the transverse momenta of the final state particles (ΣpT ). In the highest

bin, with ΣpT > 1500 GeV, there were 8 (2) electron (muon) events observed, with

standard model expectations of 10.2± 1.4± 2.6 (2.8± 0.5± 1.1), respectively.

In [176] events are selected containing two muons of the same charge. This

channel is expected to have low Standard Model backgrounds while retaining good

signal acceptance. Isolated muons (i.e. muons with very little activity around them in

the detector) can be produced directly from the black hole or from the decay of heavy

particles such as W or Z bosons. Muons from the semi-leptonic decays of heavy-flavour

hadrons produced from the black hole can have several other particles nearby and can

therefore be non-isolated. In order to maintain optimal acceptance for a possible signal,

only one of the muons is required to be isolated in this analysis, thereby typically

increasing the acceptance in the signal region by 50%. The decay of the black hole

to multiple high-pT objects is used to divide the observed events into background-rich

and potentially signal-rich regions. This is done by using the number of high-pT charged

particle tracks as the criterion to assign events to each region. Black hole events typically

have a high number of tracks per event (Ntrk), while Standard Model processes have

sharply falling track multiplicity distributions. In the background-rich region, where

only small signal contributions are expected, data and Monte Carlo simulations are

used to estimate the number of events after selections. This background estimate is

validated by comparing to data. The expected number of events from Standard Model

processes in the signal-rich region is then compared with the measured number, and

a constraint on the contribution from black hole decays is inferred. Good agreement

is observed between the measured distributions and the background expectations. No

excess over the Standard Model predictions is observed in the data.

Although it is clear that there is no anomalous signal in the data, setting limits

on black hole production is problematic. The LHC experiments are searching at the

limit of its current energy range, and hence, by definition, cannot explore well beyond

the current limit on the bulk Planck mass. This means that predictions for the rate of

black hole production using semi-classical approximations are not valid: a full theory of

quantum gravity is required.

The experiment tackles this issue in two ways. Firstly, using the number of events

observed in data, and the background expectations, upper limits are set on σ×BR×A,

where σ is the cross section, BR the branching ratio to the signal channel, and A the
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acceptance of non-Standard Model contributions in this final state in the signal region.

These limits are reasonably model-independent. However, to make use of these limits,

theorists need to know the relevant value of A for their model scenario. Representative

values of A are therefore published by the experiments. The acceptance tends to be

high for the very high mass states from black hole decay, and so this approach is useful;

however, such limits must be used with caution when applied to extreme scenarios, such

as two-body decays.

The second approach is to set limits on benchmark scenarios. This is done in a

plane of MD vs MTH , where MD is the bulk Planck mass. For the purpose of limit

setting, it is assumed that black hole production only occurs above MTH , which should

be well above MD for the semiclassical calculations used in the event generators to be

valid. This approach produces 90% confidence limits up to MD ≈ 1.5 TeV depending

on the model used. However, there is a strong dependence on the modeling of the final

remnant decay, which is a pure quantum gravity effect, and can dominate the final state

in this mass range.

CMS Searches The CMS experiment has pioneered accelerator searches for black holes

in 2011 and published a paper [177] based on data collected in the first 7 TeV running

period of the LHC (March-November, 2010), corresponding to an integrated luminosity

of 36 pb−1. Despite the relatively small statistics, the sensitivity of the search was high

enough to largely disfavor the possibility of black hole production at a 7 TeV center-of-

mass energy. The analysis conducted by the CMS collaboration was done in the inclusive

final state, thus maximizing the sensitivity to black-hole production and decay. Semi-

classical black holes are expected to evaporate in a large (∼ 10) number of energetic

particles, emitted nearly isotropically, with the major fraction of the emitted particles

being quarks and gluons, which are detected as jets in the CMS detector. Quantum

effects and gray-body factors may change the relative fraction of emitted quarks and

gluons, but generally it is expected that these particles appear most often even in decays

of quantum black holes, due to a large number of (color) degrees of freedom that quarks

and gluons possess, compared to the other standard model particles (e.g., photons,

leptons, neutrinos, and gauge bosons).

The discriminating variable between the signal and the dominating QCD multijet

background used in the search was the scalar sum of transverse energies‖ of all particles

in the event, for which transverse energy exceeds 50 GeV. This variable, ST , was further

corrected for any missing transverse energy in the event by adding the missing transverse

energy to the ST variable, if the former exceeds 50 GeV. The choice of ST as the

discriminating variable is extremely robust and rather insensitive to the particle content

in the process of black-hole evaporation, as well to the details of the final, sub-Planckian

evaporation phase. The addition of the missing transverse energy to the definition of

ST further ensures high sensitivity of the search for the case of stable non-interacting

‖ Transverse energy of a particle, ET , is defined as the energy of the particle E times the sine of the

polar angle of the particle direction with respect to the counterclockwise proton beam.
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remnant with the mass of order of the fundamental Planck scale, which may be produced

in the terminal stage of the evaporation process.

The main challenge of the search is to describe the inclusive multijet background

in a robust way, as the black-hole signal corresponds to a broad enhancement in ST
distribution at high end, rather than a narrow peak. Since the black-hole signal

is expected to correspond to high multiplicity of final-state particles, one has to

reliably describe the background for large jet multiplicities, which is quite challenging

theoretically, as higher-order calculations to fully describe multijet production simply

do not exist. Thus, one can not rely on the Monte Carlo simulations to reproduce the

ST spectrum correctly.

The CMS collaboration developed and used a novel method of predicting the QCD

background directly from collision data to overcome this problem. It has been noted

empirically, first via Monte Carlo based studies, and then from the analysis of data at low

jet multiplicities that the shape of the ST distribution for the dominant QCD multijet

background does not depend on the multiplicity of the final state, above the turn-on

threshold. This observation, motivated by the way parton shower is developed via nearly

collinear emission, which conserves ST , allows one to predict ST spectrum of a multijet

final state using low-multiplicity QCD events, e.g. dijets or three-jet events. This

provides a powerful method of predicting the main background for black-hole production

by taking the ST shape from the diet events, for which signal contamination is expected

to be negligible, and normalizing it to the observed spectrum at high multiplicities at

the low end of the ST distribution, where signal contamination is also negligible even

for large multiplicities of the final-state objects. The results are shown in Fig. 2 (left).

The CMS data at high final-state multiplicities is well fit by the background shape

obtained from the diet events, no excess characteristic of a black-hole production is seen

in the data. This lack of an apparent signal can be interpreted in a model-independent

way by providing limit on a cross section for any new physics signal for ST values above

a certain cutoff, for any given inclusive final state multiplicity. An example of such

a limit is shown in Fig. 2 (right), for the final-state multiplicity N ≥ 5. For signals

corresponding to large values of ST (above 2 TeV or so) the cross section limit reaches

∼ 100 fb. These limits can be compared with production cross section for the black

holes in a variety of models and used to set limits on the minimum black-hole masses

(MBH) that can be produced in these models. In the original publication [177], the

CMS collaboration used just a few simplest semi-classical benchmark models that are

expected to break down at the values of black-hole masses near the exclusion, given

that they are of the same order as the probed values of the fundamental Planck scale.

Despite these obvious limitations, the benchmark models probed in this search show

that the results are rather insensitive to the details of the black-hole decay and that

black-hole masses as high as 4.5 TeV are probed in this analysis. The negative results

of this search largely exclude the possibility of observing black-hole production at the

7 TeV LHC. An updated analysis using full 2011 statistics is expected to be published

soon.
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Figure 2. Left: predicted QCD multijet background with its uncertainties (the shaded

band), data, and several reference black-hole signal benchmarks, as a function of ST in

the final state with the multiplicity of 5 or more particles. Right: model-independent

upper limits at 95% confidence level on a cross section of a new physics signal decaying

in the final state with 5 or more particles, as a function of the minimum ST requirement.

From [177].

Theoretical issues. In order to observe strong-gravitational scattering, approximated as

classical black hole formation, scattering energies must significantly exceed the Planck

energy. There are two reasons for this: 1) an object must have a mass significantly

exceeding MD in order to be well-approximated as a semiclassical black hole; the

expansion parameter justifying the semiclassical approximation is MD/E and 2) not

all of the energy of colliding partons goes into black hole formation; some escapes in

radiation [178, 35, 56].

It is thus important to determine the threshold for onset of black hole formation,

for a given Planck mass. There are different aspects of this problem. Classically,

an important question is to determine the inelasticity, the amount of energy lost to

radiation as compared to the mass of the resulting black hole. The trapped surface

constructions [169, 56, 170] places lower bounds on the mass of the black hole; these

have been modestly improved in [179]. One can also estimate the radiated energy

perturbatively [178, 180, 181, 182, 183, 184, 100]. Here, numerical relativity calculations

could ultimately provide more definitive answers, by computing the amount of radiated

energy, in higher dimensional gravity, and as a function of impact parameter.

Another aspect of the problem is to determine where quantum effects lead to large

deviations from semiclassical black hole behavior. This requires greater knowledge of

quantum gravity. One possible criterion for onset of black hole behavior is the onset of

thermodynamic behavior, characterized by the entropy [35].
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Figure 3. Limits on the minimum black-hole mass as a function of the fundamental

Planck scale for a few semi-classical benchmark models with and without black hole

rotation and non-evaporating remnant. Note that the semi-classical approximation

used in setting these limits is not expected to hold for black hole masses so close to

the Planck scale, so this plot should be considered as illustration only. From [177].

4.2. How can we improve our understanding of trans-Planckian Scattering ?

There are a number of important questions on the subject of trans-Planckian scattering.

As noted above, we would like to determine classical characteristics of high-energy

gravitational collisions. In particular, we would like to find the radiated energy and

black hole mass as a function of collision energy and impact parameter. In addition to

giving the inelasticity factors, this would also provide information about the cross section

for black hole formation. It would also be interesting to determine further characteristics

of the radiation, and the evolution of the black hole as it goes through the “balding”

phase [35], asymptoting to a Myers-Perry [121] black hole. Also of interest is determining

the classical evolution (e.g. radiation details) in the larger impact parameter regime,

where a black hole does not form.

A second class of questions regards corrections to the classical analysis. Specifically,

given a classical description of scattering in the eikonal and black hole regimes, one would

like to understand the size and nature of quantum corrections. In the eikonal regime

θ � 1, one would for example like to check what effect quantum corrections have on the

classical scattering plus radiation, and check the expectation that the basic features of

the scattering are largely determined by classical physics.

In the black hole regime, we know there are important quantum corrections to

the classical analysis. These include Hawking radiation. However, so far we lack any
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quantum description of the full evolution of the black hole, and in fact encounter a

conflict of basic physical principles in attempting to describe such evolution. This

conflict (for some more discussion see [167] and references therein) has been called

the “information paradox” or “unitarity crisis,” and seems to indicate the need for

fundamental revision of the foundations of physics. Beyond theoretical study of this

regime, one can anticipate that experimental data on transplanckian scattering, should

it be found, could provide further clues.

Interplay between perturbative and numerical methods. Despite being a well defined

problem the computation of the exact solution for the collision of two ultra-relativistic

particles in general relativity is out of reach and approximation techniques have to be

used. Then, obtaining estimates from different techniques becomes fundamental for

cross-checking. Let us discuss three such techniques and compare their results.

The oldest method consists in modeling the gravitational field of the colliding

particles by Aichelburg-Sexl (AS) shock waves [168] and compute the apparent horizon

that forms, as first done in four dimensions by Penrose [169]. From the apparent horizon

construction a lower bound for the energy loss into gravitational radiation and estimate

of the threshold impact parameter for black hole formation in D-dimensional collisions

can be obtained [56]. This method does not require the knowledge of the geometry in

the future light cone of the collision and can only provide bounds. Its main advantage is

its technical and conceptual simplicity, although the critical impact parameter estimates

in D > 4 require numerical solutions [170]. This method suggests that the amount of

radiation loss increases (as a ratio of
√
s) with D. An improvement of the method,

for determining the cross section, that considers an apparent horizon on the future

light-cone (but not inside) was given in [179].

The second method, which may be regarded as a refinement of the first one, also

uses the superposition of two AS shocks, but attempts to compute the geometry in the

future light cone of the collision by a perturbative expansion. In four dimensions the

method was carried out to second order in perturbation theory [178, 180, 181], in the

case of a head-on collision, yielding 0.164
√
s for the energy loss. The case with impact

parameter is technically harder, due to the loss of symmetry, and has not been fully

discussed. The generalisation of this method to higher D head-on collisions was done

recently, in first order perturbation theory [182]. Interestingly, the trend exhibited for

the energy loss is the same as that obtained from the first method and suggests that

the two methods converge as D →∞.

The third method is to model the colliding particles as black holes and to perform

high energy collisions using numerical relativity techniques. The use of black holes is,

in principle, only for simplicity (i.e. one uses the vacuum Einstein equations). Using

any other lumps of energy (such as boson stars) should yield similar results in the trans-

Planckian regime, since the process should be dominated by the energy of the objects; in

other words, the individual phase space of the colliding objects is irrelevant as compared

to the phase space of the entire collision process, and the detailed structure of the
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objects is hidden behind their mutual event horizon. It would be extremely interesting

to confirm this expectation; in four dimensions, since high energy head-on collisions of

both black holes [172] and boson stars [77] have been performed, such comparison is

within reach. The high energy collisions performed so far have reached γ ∼ 3 [172];

these authors extrapolated to γ → ∞ using the numerical points and a fit based on

the zero frequency limit¶, yielding, in the ultra-relativistic regime (0.14 ± 0.03)
√
s for

the energy loss. Remarkably, this overlaps the second order perturbation theory result

described above, which may be interpreted as lending credibility to both methods. Thus,

two important directions are to obtain both the perturbative computation to second

order in higher D and the corresponding numerical simulations. Some important steps

concerning the latter have been given already [185, 186, 62, 63, 187], but it seems

harder to reach the same γ’s in higher dimensions, due to stability, but also perhaps

fundamental [64], problems.

4.3. Black hole search at the LHC: future improvements

There are various theoretical developments needed to refine black hole searches in high-

energy collisions. As noted above, it is important to better determine black hole mass as

a function of energy and impact parameter, which also supplies cross section information,

as well as to characterize the classical radiation.

To improve study of black hole signatures, one needs further information about

black hole decay. In particular, the full evolution of a black hole through the “spindown”

and “Schwarzschild” phases [35], ending with the “Planck phase” M ∼ MD, where the

semiclassical approximation breaks down, has not been determined. One would like

to determine from this the spectra of decay products, as well as other features such

as angular distributions, indicative of black hole spin. First estimates of these basic

features for a spinning black hole were given in [35], and there has been a lot of work on

the important problem of refining calculations of gray-body factors [188, 189, 190, 191],

[192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204]. However, we still lack

a calculation of the gray-body factors for graviton emission from spinning black holes,

and so a complete picture of black hole evolution is lacking (see [191] for the evolution in

the spin-down and Schwarzschild phases). Such a calculation in particular is important

to determine the amount of radiation in visible particles.

Finally, in addition to the questions associated with the unitarity crisis (described

above) and Planck phase, there are questions of the dependence of black hole decay on

the detailed microphysical model of TeV-scale gravity. Such details could contribute

additional signatures. For this reason, further study of viable models for TeV-scale

gravity would be helpful.

The data samples accumulated during 2011 are likely to provide the strongest limits

obtainable on black hole production for the LHC at a centre of mass energy of 7 TeV.

The results are already constrained by the lack of theoretical understanding of the final

¶ The error bars are dominated by the numerical errors, rather than the specific fit.
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stages of black hole decay. Furthermore, the fundamental Planck scale MD has been

constrained over the years, up to the present LHC data. The main sources of bounds

come from: i) deviations from Newtonian gravity in torsion balance experiments [205,

206]; ii) collider searches for Kaluza-Klein graviton production (monojet or photon

with missing energy) [207, 208, 209] and KK graviton mediated dilepton or diphoton

production [210, 211, 212, 213, 214]; iii) astrophysical or cosmological KK graviton

production in supernovae and in the early universe [215, 216]. The most stringent

laboratory bounds from current LHC searches indicate MD & 2.5− 3.5 TeV for D > 6

whereas observational bounds from astrophysics and cosmology only allow for such

small MD for D > 7 (however there are many model dependent uncertainties on the

latter). Because of the theoretical uncertainties and the limits on MD indicated by these

searches, it is important to perform a wide-ranging search in the data, using all available

channels to look for TeV gravity effects. It would be dangerous, for example, to use

limits from dijet production to infer an absence of signal in a leptonic channel, since a

TeV gravity model would be needed to link the observations together. The experiments

have already looked at dijet, multijet, single lepton and dilepton data, and this approach

should be continued. Once the full 2011 dataset has been analysed, further progress will

probably have to await an increase in the LHC beam energy.

On the theoretical front, it would be useful to try to constrain the range of allowed

scenarios near the bulk Planck mass. The cross section is predicted to rise by many

orders of magnitude, at a very rapid rate, in this region. From past experience with

the onset of new physics, such as that observed in low energy hadron scattering near

the QCD scale, one would expect resonant behavior near threshold, settling to the

semi-classical prediction as the energy increases. Such behavior could greatly enhance

the sensitivity of the experiments, since the peak cross sections could be very large. It

would be useful, if it were possible, to make generic predictions for the maximum allowed

cross section for black hole production, perhaps based on unitarity considerations, or

even on the maximum allowed rate of change of the cross section near threshold. Such

predictions could then be used instead of sampling parameter space in regions where

the approximations required are known to be violated.

Finally, studies of the possible black hole solutions of higher-dimensional gravity

over the last decade have revealed a vast number of possible solutions besides the Myers-

Perry family of black holes (see Section 3). These include five-dimensional black rings

and black Saturns (which are known in exact explicit form) as well as a large number

of other black holes in six or more dimensions with more complicated topologies (which

have been constructed using approximate techniques). The potential formation and

detection of one of these black holes would provide a new window into the study

of higher-dimensional gravity. However, many of these solutions are expected to be

dynamically unstable when their angular momentum is sufficiently large and therefore

would not appear as states after the balding phase (although they might play a role

in the approach to this phase). For moderate angular momenta, currently it is not yet

known whether a black ring (arguably the simplest and most important among the new
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kinds of black holes) may be dynamically stable and thus have observational signatures

in a collision. It is expected that progress in this stability problem will be achieved in

the near future via numerical studies. Before that, it seems premature to make any

predictions about the possibility of observing them in collider experiments.
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5. Strong gravity and High Energy Physics

Coordinator: Paul M. Chesler

5.1. Dynamics in holographic quantum field theories from numerical relativity

The study of real-time dynamics in quantum field theory (QFT) is a theoretically diverse

topic, with available tools ranging from perturbative quantum field theory and kinetic

theory to string theory and gauge/gravity duality. It’s also a challenging topic to

study. Prior to the discovery of gauge/gravity duality, the only theoretically controlled

regime of real-time dynamics in QFT was that of asymptotically weak coupling, where

QFTs often admit an effective kinetic theory description in terms of weakly interacting

quasiparticles. In this regime one can systematically study real time dynamics via

perturbative expansions. However, the domain of utility of real-time perturbative

expansions is more often than not quite limited, with extrapolations to O(1) couplings

converging poorly.

One interesting phenomena where strongly coupled dynamics appears to be relevant

is that of heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the

Large Hadron Collider (LHC). There, collisions are believed to produce a strongly

coupled quark-gluon plasma (QGP), which behaves as a nearly ideal liquid [217]. During

the initial stages of a collision, when the QGP is produced, the system is surely far-

from-equilbrium. However, the success of near-ideal hydrodynamic models of heavy ion

collisions suggests that the time required for the far-from-equilibrium initial state to

thermalize may be as short as 1 fm/c, the time it takes for light to traverse the diameter

of a proton [218].

Quantum Chromodynamics (QCD) is the accepted theory of the strong interactions

and therefore should describe the dynamics of heavy ion collisions. Understanding the

dynamics of the QGP produced in heavy ion collision — from small viscosities to short

thermalization times — from QCD has been a challenge. This isn’t to say that QCD is

an incorrect description of nature, but rather that theorists simply do not know how to

do controlled calculations in QCD when the coupling is large.

Holography, or gauge/gravity duality, has emerged as a powerful tool to study real-

time dynamics in strongly coupled QFTs from first principles calculations [10]. The

utility of gauge/gravity duality lies in the fact that it maps the dynamics of some

strongly coupled QFTs (i.e. holographic QFTs) in D spacetime dimensions onto the

dynamics of semiclassical gravity in D + 1 spacetime dimensions. From a utilitarian

perspective this means strongly coupled QFT dynamics can be mapped onto classical

PDEs in D + 1 spacetime dimensions, which can be solved numerically if needed.

Holography is a unique tool. There is no other tool available which provides

controlled access to dynamics in strongly coupled QFTs. However, it is also a tool

of limited applicability [219]. Currently, there are no known theories of nature with

dual gravitational descriptions. However, this has not deterred the construction of

holographic toy models of QCD or other QFTs. While holography does not provide
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systematic access to strongly coupled QCD, it does provide systematic access to a regime

of QFT never accessible before and therefore should be explored to the fullest possible

extent. Moreover, holographic toy models of QCD can provide valuable qualitative

insight into strongly coupled dynamics in QCD (for a useful review see [52]). Perhaps

the most celebrated example is that of the shear viscosity in strongly coupled holographic

QGP. All QGPs with holographic descriptions have the same shear viscosity to entropy

density ratio η
s

= 1
4π

[220]. Such a small viscosity is a hallmark of a strongly coupled

QFT. Indeed, recent models of heavy ion collisions suggest that the viscosity of the QGP

produced is within a factor of two of η
s

= 1
4π

[221]. No other systematic calculation of

the viscosity has yielded values close to this.

Much can be learned about holographic QFTs via analytical techniques. Indeed,

many other transport coefficients than the shear viscosity can be computed analytically

[222, 223]. However, there are many dynamical processes where one must resort to

numerical techniques. For example, the creation of a QGP via collisions of sheets

of matter in 3 + 1 spacetime dimensions is dual to the creation of a black hole via

the collision of gravitational waves in 4 + 1 dimensions. To study such a complicated

process one must have a numerical relativity toolkit suitable for spacetimes relevant to

holography. The development of such a toolkit would be a valuable addition to the

quantum field theorist’s toolbox. However, as we discuss below in Sec. 5.2, stable

algorithms for numerical relativity in holographic spacetimes have been difficult to

construct. As a consequence of this, very little progress has been made in the application

of numerical relativity to holography and strongly coupled dynamics in QFT.

5.2. The challenge of numerical relativity in asymptotically AdS geometries

The simplest and most widely studied example of holography is the AdS/CFT

correspondence, which maps the dynamics of non-Abelian conformal field theories

(CFT) in D spacetime dimensions onto semiclassical gravity in asymptotically AdSD+1

spacetime. In particular, the AdS metric encodes the expectation value of the stress

〈Tµν〉 in the dual CFT [224] and metric correlation functions (which satisfy linearized

Einstein equations) encode stress correlation functions in the dual CFT [225]. For

concreteness we shall consider the case of D = 3+1. In Fefferman-Graham coordinates,

the metric of asymptotically AdS5 takes the form

ds2 = r2gµν(x, r)dx
µdxν +

dr2

r2
, (3)

where xµ are the 3+1 spacetime directions of the dual CFT and r is the radial direction

of the AdS geometry. The boundary of the AdS geometry, which is where the dual CFT

can be thought of as living, is at r =∞.

As is evident from the metric (3), a lightlike signal from some finite r can reach

r = ∞ in a finite amount of time. As a consequence of this, boundary conditions

must be imposed on the metric at the boundary. To shed light on what the requisite

boundary conditions should be, it is useful to solve Einstein’s equations with a series
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expansion near the boundary. Doing so, one finds that near the boundary the metric

has the asymptotic expansion

gµν(x, r) = g(0)µν (x) + . . .+ g(4)µν (x)/r4 + . . . , (4)

where g
(0)
µν (x) and g

(4)
µν (x) are two independent constants of integration. Via holography,

the expansion coefficient g
(0)
µν (x) has the physical interpretation of the 3 + 1 dimensional

metric of the geometry that the dual CFT lives in and the expansion coefficient g
(4)
µν (x)

is related to the expectation value of the dual CFT stress tensor via [224]

〈Tµν(x)〉 = const.× g(4)µν (x). (5)

From the perspective of the dual CFT the required boundary conditions on the

metric gµν(x, r) are obvious. The CFTs described by AdS/CFT are not gravitating:

they do not backreact on the geometry they live in. For a given geometry that the

CFT lives in, the evolution of the expectation value of the stress tensor is governed by

the Hamiltonian of the CFT. Therefore, natural boundary conditions consist of fixing

g
(0)
µν (x) and letting g

(4)
µν (x) be dynamically determined. The simplest possible choice is

g
(0)
µν (x) = ηµν where ηµν is the metric of Minkowski space. It should be emphasized

that fixing g
(4)
µν (x) can lead to unstable evolution (and even the appearance of naked

singularities). Such unphysical behavior is easy to interpret from the perspective of the

dual CFT, as one must judiciously choose the evolution of g
(4)
µν (x) so that it is consistent

with the CFT Hamiltonian.

In addition to imposing the boundary condition limr→∞ gµν(x, r) = fixed, there is

another type of boundary condition that must be imposed at r =∞. Four components

of Einstein’s equations are radial constraint equations. If they are satisfied at one value

of r then the other Einstein equations imply they are satisfied at all values of r. In

addition to imposing limr→∞ gµν(x, r) = fixed, one must also demand that the four

radial constraint equations are satisfied at r =∞. As we discuss below in Sec. 5.3, this

is tantamount to demanding that the CFT stress tensor is conserved.

Even with the correct boundary conditions imposed, finding stable numerical

relativity algorithms in asymptotically AdS spacetime is a challenge. The challenge lies

in the fact that Einstein’s equations are singular at r =∞. At r =∞ one must not only

impose boundary conditions, but one must also solve Einstein’s equations very well near

r = ∞ if one is to peel off the expansion coefficient g
(4)
µν (x) and obtain the expectation

value of the (conserved) stress in the dual CFT. The simplest possible approach is to

put a cutoff on the geometry at some r = rmax and impose the boundary condition

gµν(x, rmax) = ηµν . However, such an approach generically does not lead to stable

evolution. Einstein’s equations imply that gravitational radiation propagating towards

r = ∞ cannot change the boundary geometry at r = ∞ +. However, gravitational

radiation propagating up from the bulk can change the geometry at rmax. An arbitrary

boundary condition at rmax is generally inconsistent with Einstein’s equations and thus

+ In other words, the expectation value of the CFT stress tensor does not change the geometry that

the CFT lives in.
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the evolution of the stress tensor in the dual CFT. For suitably large rmax one would

expect this effect to be small and controllable by taking rmax larger. However, because

Einstein’s equations are singular at r =∞, any discontinuity in the metric at rmax can

be amplified by the singular point in Einstein’s equation and lead to numerical evolution

which quickly breaks down. Therefore, one of the challenges of doing numerical relativity

in asymptotically AdS spacetime lies in imposing boundary conditions at r = ∞.

One must find an algorithm which is consistent with Einstein’s equations and which

is suitably accurate near r =∞ so that the asymptotics of the metric can be peeled off

and the dual CFT stress tensor can be determined.

5.3. The characteristic formulation of Einstein’s equations

One successful approach to numerical relativity in asymptotically AdS has been the

characteristic formulation [226, 68, 69]. Using infalling Eddington-Finkelstein (EF)

coordinates, the metric of asymptotically AdS5 may be written

ds2 = −Adv2 + Σ2gijdx
idxj + 2Fidx

idv + 2drdv, (6)

where v is EF time, xi are the CFT spatial directions and det gij = 1. Lines of constant

v represent infalling null geodesics from r = ∞. Moreover, the radial coordinate r is

an affine parameter for these geodesics. The metric (6) is invariant under the residual

diffeomorphism r → r + ξ(v,x) where ξ(v,x) is an arbitrary function.

Einstein’s equations read

RMN − 1

2
GMN (R− 2Λ) = 0, (7)

where GMN is the 5d metric and Λ = −6/L2 is the cosmological constant, and L is the

AdS curvature radius (which can be set to 1). Upon substituting the metric (6) into

Einstein’s equations one reaches the following conclusions

1. Time derivatives only appear in the combination d+ ≡ ∂v + 1
2
A∂r. This is the

directional derivative along an outgoing null radial geodesic.

2. Given gij on a slice of constant v, the (0, 0), (0, i), (0, 5) and (i, j) components of

Einstein’s equations are a system of linear ODEs in r for the fields Σ, Fi, d+gij
and A at time v. These ODEs can be integrated in from the boundary and thereby

have all boundary conditions imposed at r =∞. Once these ODEs are solved, one

can compute ∂vgij = d+gij − 1
2
A∂rgij and compute gij on the next time slice.

3. The (i, 5) and (5, 5) components of Einstein’s equations are radial constraint

equations. If they are satisfied at one value of r the other components of Einstein’s

equations imply they are satisfied at all values of r. These equations must be

implemented as radial boundary conditions at r =∞ in the aforementioned nested

linear system of ODEs.

To determine the requisite boundary conditions for the nested system of ODEs and

how the radial constraint equations must be implemented it is again useful to solve

Einstein’s equations with a series expansion near r = ∞. Doing so, one finds that



NR/HEP: roadmap for the future 42

the required boundary conditions on the nested system of linear ODEs consists of the

boundary geometry and the expectation value of the conserved densities 〈T 0µ〉 at time

v. Moreover, then one finds that the radial constraint equations are equivalent to the

condition that the CFT stress is conserved ∂µ〈T µν〉 = 0. Therefore, the algorithm for

solving Einstein’s equation in the characteristic formulation consists of

1. Specify gij(x, r) and 〈T 0µ(x)〉 at time v.

2. Solve the (0, 0), (0, i), (0, 5) and (i, j) components of Einstein’s equations for Σ,

Fi, d+gij and A at time v with the boundary condition that the CFT momentum

density is 〈T 0µ(x)〉 and with a given boundary geometry.

3. Compute the field velocity ∂vgij.

4. Compute the field velocity ∂v〈T 0µ(x)〉. This is given by the energy-momentum

conservation equation ∂v〈T 0µ(x)〉 = −∇i〈T iµ(x)〉, which is equivalent to the radial

constraint equations. At time v the spatial components 〈T ij(x)〉 are determined by

the near-boundary asymptotic of gij.

5. Compute gij and 〈T 0µ(x)〉 on the next time step and repeat the above process.

The utility of the characteristic formulation of Einstein’s equations lies in the fact

that Einstein’s equations are integrated in from the boundary along infalling null radial

geodesics. Therefore, any numerical error made at the boundary instantaneously falls

to finite r away from the singular point in Einstein’s equations. While this tames the

singular point in Einstein’s equations at r = ∞, it does not completely ameliorate

it. One must still solve Einstein’s equations very well near r = ∞. Two successful

approaches thus far are to i) solve Einstein’s equations semi-analytically for r > rmax

and match the semi-analytic solution onto the numerical solution at r = rmax [226] or

to ii) discretize Einstein’s equations using pseudospectral methods [69]. In the latter

approach one can directly impose boundary conditions at r = ∞, as the exponential

convergence of pseudospectral methods outpaces the power law singularities in Einstein’s

equations.

As a proof by example that the characteristic method can be stable in

asymptotically AdS, Fig. 4, taken from [69], shows the energy density and transverse

and longitudinal pressures for a collision of two translationally invariant sheets of

matter in a holographic CFT. Translational invariance in the two directions transverse

to the collision axis implies that the corresponding numerical relativity problem can

be dimensionally reduced to 2 + 1 dimensions. In the dual gravitational description

this problem is equivalent to the formation of a black brane via the collision of two

gravitational waves.∗
∗ We note that AdS5 contains a horizon at r = 0, the Poincare horizon. Because of this, a horizon

exists for all times, even in the infinite past before the collision event. As a consequence of this and

as a consequence of the fact that the horizon has the topology of a plane, the residual diffeomorphism

invariance of the metric (6) can be removed by setting the position of the apparent horizon to be at

r = 1.
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Figure 4. Left: The energy density E of two colliding sheets of matter in a holographic

CFT. Right: the transverse and longitudinal pressures P⊥ and P|| at z = 0. The

colliding sheets are translationally invariant in the two directions orthogonal to the

collision axis z. The scale µ sets the energy density per unit area of the sheets. The

sheets propagate at the speed of light and collide at time v = 0. Near v = 0 the

system is very far-from-equilibrium and the transverse and longitudinal pressures are

very different. However, after a few units of 1/µ the dynamics of the debris left over

from the collision is governed by viscous hydrodynamics with increasing accuracy as

time progresses.

The fluid gravity correspondence [222] implies that at suitably late times the

evolution of the CFT stress tensor will be governed by hydrodynamics. The charm

of the gravitational calculation is that Einstein’s equations encode all physics: from

far-from-equilibrium dynamics during the initial stages of the collision to the onset of

hydrodynamics at late times. As is evident from the right panel in Fig 4, the total time

required for the collision to take place and for the system to relax to a hydrodynamic

description is ∆hydrov ∼ 4/µ, where the scale µ is related to the energy density per unit

area of the shocks µ3(N2
c /2π

2) with Nc the number of colors of the CFT gauge group.

Crudely modeling heavy ion collisions at RHIC with translationally invariant sheets of

matter, one can estimate µ = 2.3 GeV, which yields a relaxation time ∆vhydro ∼ 0.35

fm/c.

While demonstrating that numerical relativity in asymptotically AdS geometries

can be stable, the above example also demonstrates that thermalization times < 1 fm/c

are not unnatural in strongly coupled QFTs.

5.4. Conclusions

The marriage of numerical relativity and holography is still in its infancy. There

are many unexplored QFT and gravity problems to study, such as turbulence, QGP

formation and thermalization in non-conformal QFTs, and Choptuik critical phenomena

and its holographic interpretation.

Much work remains to be done in order to develop a robust numerical relativity
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toolkit applicable to holography. While the characteristic method discussed in Sec. 5.3

has proven to be stable, it is not without its limitations. One limitation is that the

characteristic method breaks down when caustics form. This limits the applicability

of the characteristic method to black brane geometries, where the horizon of the black

brane has the topology of a plane. Clearly, it would be desirable to develop alternative

numerical relativity algorithms which lend themselves to more general geometries.

It cannot be over emphasized how valuable a robust numerical relativity toolkit

would be to the study of dynamics in QFT. The first QFTs studied were written down

a generation ago. And yet in that generation the vast majority of the progress made in

understanding dynamics in QFT has come from weak coupling expansions. With the

discovery of gauge/gravity duality, dynamics in strongly coupled QFTs is now accessible

in a systematic and controlled setting. The strongly coupled regime of QFT should

be explored to the fullest extent possible. While numerical relativity in holographic

spacetimes may be challenging, it is vastly easier than first principles calculations in

strongly coupled QFTs.
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6. Alternative theories of gravity

Coordinator: Leonardo Gualtieri

The theory of General Relativity (GR) is one of the greatest achievements in

Physics. Almost one century after its formulation, it still stands as an impressive

construction which captures in a compelling and successful way most of what is known

about the universe on a large-scale. And yet, both theory and observations hint at the

incompleteness of GR.

On the theoretical side, GR is conceptually disjoint from another remarkable and

successful explanation of Nature: Quantum Field Theory, which explains with great

accuracy small-scale physics. It is believed that GR and Quantum Field Theory should

be limits of a more fundamental theory, which despite a decades-long effort devoted to

its understanding, remains as yet elusive. Adding to this, GR is plagued by singularities

and other “weird” phenomena such as causality violations which appear to reveal a

breakdown of the theory at very small length scales, even though such occurrences are

probably always hidden by horizons.

On the experimental/observational side, important open problems may be

associated to deviations from GR. Among them, the most compelling regard cosmology:

observations have shown that our universe is filled with dark matter and dark energy,

which are difficult to incorporate elegantly in GR (even though some progress has been

done in this direction, see e.g. [227, 228]).

One possible way out of this conundrum is to accept that Einstein’s theory is valid

only in the weak field-regime, but has to be modified for a description of strong fields.

In fact, all experiments and observations so far have only probed the weak field regime

of gravity [229, 230, 231, 232] ] and while Einstein’s theory passes all these tests with

flying colours, extrapolating GR to the elusive strong-field regime may be dangerous.

Testing the strong field limit of GR is one of the main objectives of many future

astrophysical missions [233, 234]. In the context of testing alternative theories of gravity,

arguably the most promising of these missions is the space-based gravitational wave

(GW) detector LISA, which is expected (even in E.U.-redefined configuration [235])

not only to directly observe gravitational waves, but to give birth to the so-called

“gravitational-wave astronomy”, i.e., observing the universe through a new window,

the most appropriate to look at violent, strong field phenomena occurring in our

universe. Several other projects to probe the strong field regime of GR are currently

in construction or under design study. These include: the second generation ground-

based GW detectors Advanced LIGO/Virgo [236], and, on a longer timescale, LCGT

and AIGO [237]; the third generation detector ET [238]; more advanced space-based

detectors (DECIGO, BBO) [239, 240]; next generation X-ray and microwave detectors to

study black holes and the cosmic microwave background (IXO, NICER) [241]. Further

] Even tests from binary pulsars [230, 232] verify the weak field limit of GR, because the strong

gravitational field near the stellar surface does not significantly affect the orbital motion, and the

gravitational compactness is smaller than 1 part in 105 for the most relativistic (double) binary pulsar.
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experiments target the observation of specific violations of GR, like violations of Lorentz

symmetry, of the equivalence principle, of the expected polarization and speed of GWs,

etc. We expect then to have soon a large amount of data, which will allow us to test,

for the first time, the strong field limit of gravity. A signature of new physics in these

experiments and observations could be a “message in a bottle” coming from a more

fundamental theory, standing at energies far beyond our reach.

In this context, it is not surprising that the community of theorists has been

paying, in recent years, more and more attention to possible deviations of GR, and more

generally to alternative theories of gravity. Many theories have been proposed, such as

scalar-tensor theories [242], scalar-tensor-vector theories [243], massive graviton theories

[244, 245], brane-world models [6, 7, 246], f(R) theories [247], quadratic curvature

corrections (e.g. Gauss Bonnet gravity [248], Chern-Simons gravity [249]) or Lifshitz-

type theories [250]. Given this plethora of possible corrections to GR, it is crucial to

devise some guideline which allows us to make contact between theoretically conceivable

models and upcoming observations.

In the following we discuss some important issues about alternative theories of

gravity in four dimensions, with the aim to report both on the state-of-the-art and on

the ongoing discussion on these topics. We will not discuss here alternative theories of

gravity in D > 4; we only mention that some effort has been done to study deviations

from GR in higher dimensions, mainly in the context of theories with quadratic curvature

corrections [251, 252, 253].

6.1. Which kind of GR deviations should we expect?

An answer, even partial, to this question would be extremely valuable. Indeed, on the

one hand, the realm of possible alternative theories of gravity is too large to be the

starting point for systematic tests of GR. On the other hand, choosing one specific

alternative theory of gravity could become a merely formal exercise, unless the choice

is made on physical grounds. Actually, many alternative theories of gravity claim to be

“string inspired”, since they have features which also appear, in different contexts, in

String Theory/M Theory (ST). This is the case, for instance, for scalar-tensor theory

[242], in which, as in ST, the spacetime metric is non-minimally coupled to a scalar

field; of theories with quadratic curvature corrections [248, 249], which arise in several

low-energy truncations of ST; of brane-world theories where, as in ST, gauge fields can

be confined on submanifolds (branes) of the spacetime; and so on.

These are merely inspirations and analogies, however. It would be extremely

useful, in the study of possible GR modifications, to have a guidance from candidate

fundamental theories (ST, loop quantum gravity, etc.), but actual ST constraints

on the low energy theory are still poor, because we do not know the symmetry

breaking mechanism which would yield our world. Many deviations from GR can be

accommodated in some model of ST. Actually, it would be more appropriate to speak

of “predictions of a ST model” rather than “ST predictions”, since today ST should
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be viewed as a framework on which different models can be defined, rather than a well

defined theory.

Given that ST is one of the few candidates for a unified theory, it is perhaps wise to

extract from it general indications, which may be useful (if it is the correct route to the

fundamental theory unifying GR and quantum field theory) as a possible, preliminary

guideline. In this context, the most likely and potentially interesting GR corrections

would be associated to couplings with other fields (scalars, vectors, etc.) Another

interesting possibility is that GR corrections would involve curvature invariants. The

dimensionful coupling constant of such curvature invariants may, however, be suppressed

by the Planck scale, making these corrections irrelevant for astrophysical phenomena.

On the other hand, both the hierarchy problem and the cosmological constant problem

suggest that possible couplings to gravity may be very different from those expected

from standard field theory. Thus, if for some reason these corrections are not Planck-

suppressed, alternative theories like Chern-Simons gravity or Gauss-Bonnet gravity may

have important implications for gravitational-wave astronomy.

Alternatively, one could adopt an “agnostic” attitude, not trying to infer general

indications from candidate fundamental theories, and instead considering whether

gravitational wave observations or other gravitational experiments can provide any

constraints on gravity theories beyond that of Einstein. One route toward this goal

is to think about what possible symmetries or fundamental GR principles one could

compromise to study whether nature violates them. This is the case, for instance, of

generic breaking of parity invariance (captured in Chern-Simons gravity [249]), or of

kinematical violations of Lorentz-Symmetry in the propagation of gravitational modes

[254]. Whether one expects such deviations from fundamental principles or not, it might

still be worthwhile to consider what current or future experiments have to say about

these topics.

6.2. Strategies to find a GR deviation in experiments and observations

The answer to this question is not unique. A possible strategy may be to build

a parametrization as general as possible of metric theories of gravity, modelling in

this framework the relevant (strong field) astrophysical processes, and determining

observable signatures in terms of the parameters of the theory. This could be

made in two ways (which have been dubbed, respectively, top-down and bottom-up

[255]): parameterizing the action and looking at the phenomenological consequences,

or parameterizing a phenomenological description of the observations, and inferring the

consequences on the underlying theory. An attempt to pursue the former approach has

been made in Ref. [256], where a parametrization of the action in terms of polynomials

in the curvature tensor has been proposed. An example of the latter, instead, is

the parametrization of the black hole spacetime (in a general theory of gravity) in

terms of multipole momenta, which has been proposed in the context of extreme mass-

ratio inspirals [257, 258]. Another example is given by the ppE formalism [259, 260],
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in which a parametrization of the the gravitational waveform emitted in black hole

binary coalescences is proposed. All these approaches are attempts to build a general

parametrization of the gravitational theory, to be compared with observations.

On the other hand, a general parametrization of gravitational theories could

be difficult to implement in the analysis of data (for instance from gravitational

interferometers). Indeed, it could depend on too many parameters to preserve

practicality of the matched filtering process: too many free parameters in the template

space can introduce degeneracies in the parameter estimation process and also lead

to larger uncertainties in those estimations, i.e., they could raise the false-alarm rate.

It should further be remarked that having a precise template will be crucial for the

determination of the physical parameters, but should be less important for detection,

[261]. Therefore, it will probably be the outcome of the experiments which dictate how

we should proceed or which strategies will work best in testing the behaviour of the

gravitational interaction.

Nevertheless, there exists strong motivation for embedding the alternative theories

of gravity proposed so far in a large class of theories. A clever strategy could be to

first find the general signature of a theory (or of a class of theories), then identify

the experimental/observational setup in which such a signature is enhanced. Thus, the

search for “smoking guns” of alternative theories (for instance spontaneous scalarization

[262] and floating orbits [263] in scalar-tensor theories, birefringence of GWs in parity-

violating theories [264]) would be a solid route to establish or rule out many candidate

theories. Knowing “where to look” would also be extremely useful to conceive new

experiments and to fine-tune the experiments now in the commissioning and building

stages. We would be able, once a deviation from the GR prediction is detected or

observed, to understand its theoretical implications, and translate the new observation

into a deeper understanding of the fundamental laws of nature.

It is also worth saying that, even in the absence of any observational evidence to date

for deviations from GR, experimental/observational data are already providing useful

information on alternative theories of gravity. Indeed, negative results (even in weak field

processes) enable us to constrain the set of allowed theories [265, 229, 266, 267, 268, 269].

6.3. GR deviations in astrophysical processes

To test deviations from GR we should look at the most violent astrophysical processes

dominated by gravitational fields, which are the coalescence of compact binary systems

formed by black holes and/or neutron stars, either of comparable masses [270, 271, 272]

or of extreme mass ratio [273, 274, 275]. Black hole oscillations are a promising process,

too, since they encode in a clean way the features of the underlying theory of gravity

[276]. Such processes provide an optimal testbed for GR, as they probe the pure

gravitational interaction. Indeed, most of the literature on phenomenological bounds of

alternative theories of gravity refers to such processes.

Possible insights from black hole and neutron star physics would be complementary
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to the large amount of literature on alternative theories in cosmological scenarios.

Indeed, cosmological observations could also provide a valuable tool to study alternative

theories of gravity. For instance, some of these theories (braneworld models, f(R)

gravity) could account for the acceleration of the universe without the need of including

dark energy [277, 278, 279]; these models can then be tested against the large amount of

observational data on supernovae, cosmic microwave background, gravitational lensing,

galaxy clustering, etc. [280] (see also [281]). Other theories (such as scalar-vector-

tensor theories) could explain the galaxy rotation curves without the need of including

dark matter [243] (see also [282]). This topic is beyond the scope of this article; for a

comprehensive review we refer the reader to [283].

Some of these processes, however, especially those involving black holes, do not

probe a key aspect of GR, namely the coupling of gravitation to matter. Possible

constraints in this sector may come from different kinds of strong-gravity processes, like

those involving the internal dynamics of neutron stars. Unfortunately, the uncertainty

about the behavior of matter at extreme density in the core of a neutron star makes it

difficult to disentangle the effects of an alternative theory of gravity from those due to

a different equation of state. Within the next few years, astrophysical and gravitational

wave observations may be able to shed more light onto the neutron star equation of state.

This will open up the possibility of making precision tests of the coupling of gravity with

matter [284, 285, 286]. Accretion of matter into black holes has also been studied in

alternative theories of gravity [287, 288], but the uncertainties in our knowledge of this

process make it difficult to use it as a testbed of GR against other theories.

More generally, rather than constraining small corrections to standard gravity,

it could be useful to look for effects which only appear in alternative theories, but

identically vanish in GR [262, 263, 264]. Such effects may provide clear observational

signatures and thus prove effective in constraining or ruling out alternative theories.

6.4. Numerical relativity and alternative theories of gravity

Numerical relativity may be a powerful tool to study alternative theories of gravity, and

to understand their phenomenology in strong field astrophysical processes. Numerical

simulations, however, have so far almost exclusively been restricted to highly symmetric

configurations such as the spherically symmetric gravitational collapse of dust [289, 290,

291], or processes involving scalar fields in spherical symmetry [292]. We note, however,

the recent study of black holes in scalar-tensor theory by Healy et al. [293]. With that

exception, though, the use of numerical relativity following the 2005 breakthroughs

[1, 3, 2] in the study of alternative theories of gravity remains essentially uncharted

territory. Aside from the rather well-studied case of scalar-tensor theories (see also

[294, 295]), it is not even clear to what extent the stability properties of the present state-

of-the-art codes in 3 + 1 and higher-dimensional spacetimes carry over to modifications

of general relativity. Furthermore, for those cases where the action contains higher-order

polynomials of the Riemann tensor, the existence of a well-posed initial value formulation
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of the field equations is not known. For this class of theories, which includes for example

Chern-Simons Gravity, the field equations contain derivatives higher than second order

which may drastically change the mathematical structure of the theory (see e.g. [30]).

There may be reason, however, for some optimism in this regard. We emphasize that

the following items cannot be regarded as mathematical arguments, but merely as an

intuitive motivation for carrying out such investigations with some level of confidence.

First, if a given theory correctly describes real physical processes, we should expect

there to exist a well-posed form of this theory. Second, we typically consider scenarios

which only mildly deviate from GR. Given that GR itself has well-posed initial-value

formulations, we might hope that this remains the case, at least in a “neighborhood

around GR in the space of theories”. Third, modified theories of gravity often arise as

the low-energy limits of more fundamental theories. It could then be acceptable if a

modified theory is well-posed in certain regimes only.

Deriving fully non-linear numerical evolutions in the framework of alternative

theories of gravity will require substantial effort, but the wealth of physical systems

thus opened up for systematic study almost certainly justifies the effort. For instance,

we would be able to model processes with low degree of symmetry or those involving

complex matter distributions and/or other fields, whose study is not possible using

semi-analytic approaches such as perturbation theory or parametrized post-Newtonian

expansions.

The answer to the above questions and issues crucially depends on the specific

alternative theory to be studied. Two recent works on different directions allow for

optimism. In the case of GR coupled with a scalar and/or vector field, the mathematical

structure of the evolution equations is expected to be preserved [294, 295]. In line with

this expectation, numerical relativity simulations of binary black hole coalescences in

scalar/tensor theory have recently been performed [293]. A second exciting development

concerns a well-known conjecture [98, 99, 296] that large static black holes do not exist

in type II Randall-Sundrum scenarios of modified gravity model. These works used

indirect arguments to claim static solutions do not exist, and gravitational collapse

would yield a dynamical black hole that would “evaporate” classically due to (classical)

gravitational radiation. A counter-example to this conjecture was recently presented

where static black holes were numerically generated [97, 96].
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7. Approximation Methods in GR

Coordinator: Carlos F. Sopuerta

7.1. Relativistic Perturbation Theory

In the theory of General Relativity (GR) gravity does no longer appear as a force but

as a manifestation of the geometry of spacetime, which is a dynamical entity. As such,

the gravitational dynamics is encoded by the spacetime metric tensor, a spin-2 field

that satisfies the Einstein field equations. The main difficulties that arise in GR are

related to the non-linearity and the diffeomorphism invariance of the theory, which

complicate solving the field equations and understanding the solutions. Most of what

we have learned about GR comes from the detailed studies of a few exact solutions (see,

e.g. [297, 298]), in particular Minkowski, Schwarzschild, Kerr, Friedmann-Lemâitre-

Robertson-Walker (FLRW), etc.). These exact solutions can also be taken as the basis

for the study of more complex physical situations, e.g. oscillations of compact stars

and Black Holes (BHs), cosmological structure formation, etc. The reason for this is

that many of these physical situations admit a perturbative analysis where the zeroth-

order solution (usually called the background geometry) is one of the exact solutions

mentioned above. The starting point of relativistic perturbation theory is to consider

two different spacetimes, the physical one, which describes the actual physical system,

and the background one, which corresponds to a simpler idealized situation. We can

relate these two spacetimes using different maps (which identify points of the background

and physical spacetimes and can be used to transport the tensorial structure between

them), each of them corresponding to a gauge choice and the transformation between

maps is known as a gauge transformation. Using one such mapping we can write the

metric tensor of the physical spacetime, gµν , as

gµν = g̃µν + δgµν (µ, ν = 0 , . . . , D − 1) , (8)

where D is the spacetime dimension, g̃µν denotes the background spacetime metric

and δgµν are the metric perturbations, which can be split into a first-order piece (that

satisfies the Einstein equations linearized with respect to the background metric), a

second-order piece, etc. Experience tells us that the gauge freedom in the identification

between the background and physical spacetimes can cause problems, in fact many

authors talk about the gauge problem; e. g. [299, 300]. These problems arise in the

physical interpretation of results, and in particular when one works with a family of

gauges instead of a unique gauge. For instance, considering only first-order perturbations

(something similar applies to higher perturbative orders), the Lorenz gauge condition

∇̃µ(δgµν − (1/2)g̃µν g̃
ρσδgρσ) = 0, does not identify a unique gauge since we can perform

gauge transformations whose generating vector field ξµ satisfies �ξµ ≡ g̃ρσ∇̃ρ∇̃σξ
µ = 0.

These gauge transformations respect the Lorenz gauge condition but can change the

metric perturbations and hence one must be careful when dealing with perturbations in

this family of gauges. To avoid these potential problems, a usual procedure is to look for
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gauge-invariant quantities, i.e. quantities that have the same values independently of

the gauge one is working in. For details on the mathematical formulation of relativistic

perturbation theory see [301, 302, 303, 304, 305, 306, 307]. In the case of 4D spacetimes,

it has been applied and developed for different physical systems, mainly for the following:

(i) Perturbations of flat spacetime (see, e.g. [308]). These are the most simple type of

perturbations that one can think of since the background spacetime geometry is the

Minkowski flat spacetime. They are useful for several types of studies, in particular to

describe the propagation of gravitational waves far away from the sources. Perturbations

of flat spacetime is also at the core of the so-called post-Minkowskian approximation,

where one is interested in gravitational weak field phenomena.

(ii) Cosmological Perturbation Theory [309, 310, 311, 312, 313, 314, 315, 316]. As

the name indicates, here one perturbs a spacetime of cosmological character. Most

of the work done in the literature has focused on the development of perturbations

of the FLRW cosmological models. They are one of the cornerstones of the present

standard model of cosmology as they are fundamental for the description of many

physical phenomena in cosmology: The formation and growth of structures in the early

universe within the inflationary paradigm, the description of anisotropies in the cosmic

microwave background (e.g. the Sachs-Wolfe effect [317]), etc. Recently, second-order

perturbation theory has been used to argue that the acceleration of the Universe (the

so-called dark energy problem) could be explained as a backreaction effect (for a review

see, e.g. [318]), although some other studies indicate that this is unlikely [319, 320].

(iii) BH Perturbation Theory. Here we have to distinguish between non-rotating

(Schwarzschild) and rotating (Kerr) black holes (for textbook reviews on BHs and BH

perturbations see [321, 322]). In the case of non-rotating black holes the formalism

has been developed based on metric perturbation variables [323, 324, 325]. Spherical

symmetry is a key ingredient since it allows decomposition in tensor spherical harmonics

and the equations for each harmonic can be decoupled in terms of gauge-invariant master

functions that satisfy wave-type equations in 1+1 dimensions. Once these equations

are solved, all metric perturbations can be reconstructed from the master functions.

The situation in the rotating case is significantly different. First of all, partly due

to the lack of the spherical symmetry, we do not have any metric-perturbation based

formalism to decouple the first-order perturbative equations. Nevertheless, we do have

a formalism based on curvature variables due to Teukolsky [326, 327] that provides

master equations (the Teukolsky equation) for the Weyl tensor components that can be

associated with ingoing and outgoing gravitational radiation. In both cases, rotating

and non-rotating, we can compute gravitational waveforms, and energy and momentum

fluxes radiated at infinity from the master functions. What remains to be done in the

rotating case is to establish, in general, the reconstruction of the metric perturbations

from the curvature-based variables, although significant progress has already been made

(see [328, 329, 330, 331]).

BH perturbation theory has been applied to study the stability of BHs [332, 333,

334], the computation of quasi-normal modes of BHs [335, 336, 337], etc. In an analogous
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way to the BH case, perturbations and quasi-normal oscillations of relativistic stars

have been extensively studied (see [338] for a review). It also has been applied to the

description of the dynamics of binary systems with an extreme mass ratio and their

gravitational wave emission, the so-called Extreme-Mass-Ratio Inspirals (EMRIs). This

is a very demanding subject in terms of the perturbation theory technology needed for

the computations. Usually one describes the small compact object as a point mass

(which is at odds with the full theory but allows us some simplifications) that induces

perturbations on the geometry of the large one, considered to be a (supermassive) black

hole. Then, the inspiral can be described in terms of the action of a local force, called the

self-force, that can be constructed from the gradients of the first-order perturbations.

However, the point-like description of the small compact object leads to singularities

in the perturbative solution that must be regularized. Procedures to regularize the

solutions have been devised in the Lorenz gauge (see, e.g. [339]) but working in this

gauge complicates the computations as we no longer have some of the advantages

associated with the well-known Regge-Wheeler gauge in the case of non-rotating BHs,

as for instance the decoupling of the metric perturbations; something similar happens

in the case of spinning BHs. At present, the gravitational self-force has been computed

for the case of a non-rotating BH first using time-domain techniques [340, 341] and later

with frequency-domain techniques [342]. These calculations have allowed the study of

some physical consequences of the self-force [343, 344, 345]. Progress is being made

towards calculations for the case of a spinning BH [346]. In any case, given the amount

of cycles required for EMRI GWs (it scales with the inverse of the mass ratio, which

can be in the range 10−7 − 10−3) we cannot expect to generate complete gravitational

waveform template banks by means of full self-force calculations. Instead, the goal of

these studies should be to understand all the details of the structure of the self-force so

that we can formulate efficient and precise algorithms to create the waveforms needed

for gravitational-wave observatories like LISA [347] (see [348, 349, 350] for reviews on

the progress in the self-force program). Observations of EMRIs have a great potential

for improving our understanding of BHs and even the theory of gravity (see, e.g. [274]).

Usually approximation methods require the introduction of a smallness parameter

to establish in which sense the perturbations are small. In relativistic perturbation

theory this is done in an implicit way, in the sense that we could replace δgµν by λδgµν ,

where λ is a formal perturbation parameter without having a direct physical meaning

(as in cosmology, in backreaction problems, or in the study of quasi-normal modes

of stars and black holes), although there are situations in which we can assign to it

a specific physical meaning, as in the study of black hole mergers via the close limit

approximation, in the analysis of quasi-normal mode excitation by a physical source, or

in the modeling of perturbations generated by the collapse of a rotating star.

From these basic ideas one can develop other approximation schemes in GR.

In general, this involves adding extra assumptions in the approximations, combining

different schemes, etc. One example of this is post-Newtonian theory (see, e.g. [351,

352, 353]). In general, a post-Newtonian approximation can describe the GR dynamics
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in the regimes where the speeds involved are smaller than the speed of light (v � 1) and

the gravitational interaction is weak (M/R� 1, where R denotes the size of each body

or the typical orbital separations). Moreover, it is well-known that the post-Newtonian

approximation is valid only in the vicinity of the massive objects (a region around the

bodies that is small as compared with the wavelength of the gravitational waves emitted

by the system). One can use a post-Minkowskian approximation (where only the weak

gravitational field condition M/R � 1 is imposed) to describe the gravitational field

outside the near zone. Then, one can match the two expansions, the post-Newtonian

and post-Minkowskian ones, by means of the method of matched asymptotic expansions,

which is a key ingredient to connect the orbital motion and the gravitational-wave

emission. This process is quite involved in practice and has been developed during many

years (see [351] for a review). The result is a framework in which we can in particular

model the general relativistic dynamics of compact binary systems, including their

gravitational-wave emission. By comparing with recent numerical relativity simulations,

it has been found that post-Newtonian computations provide a good description of

inspiral of a binary system close to the merger phase. In order to improve these results

new schemes that use post-Newtonian theory has been proposed. In particular, the

Effective-one-Body scheme [354, 355] has been developed to a point where one can

construct gravitational waveforms for the whole binary BH coalescence [356], including

merger and ringdown in the case of non-rotating black holes; for first applications of the

Effective-one-Body method to spinning binaries see also Refs. [110, 357].

Another relativistic computation scheme that has been useful in General Relativity

is the so-called Close-Limit approximation [358]. This is based on the realization that

binary black hole coalescence can be divided in three stages: a long and relatively slow

inspiral, a short non-linear merger phase, and finally the ringdown of the final black

hole towards a stationary black hole state. Then, it turns out that in last two stages

of this process (or at least including a part of the merger phase where we are close to

the formation of an apparent horizon) the binary black hole system can be seen as a

single deformed black hole. The idea is then to map the two-black-holes system to a

single black hole (we must read its mass and eventually its spin from this mapping)

plus perturbations (which are also read from the mapping and this is the key part of

the computation). Then, by using the standard techniques of BH perturbation theory

that we have described above we can evolve the system until the final BH is settled, and

from this evolution we can compute physical quantities such as energy and momentum

emission in gravitational waves. It has been shown [359, 360] that in the case of head-on

collisions of BHs, the Close Limit approximation provides accurate results in comparison

with numerical relativity results. The Close Limit approximation scheme has been

developed by a number of authors [361, 362, 363, 364, 365, 366, 367, 368, 115, 369] and

it has been applied to astrophysical problems like the computation of recoil velocities

(see e. g. [370, 371]) of BHs formed in binary BH collisions, in the past for head-on

collisions [372] and recently for non-rotating BHs in circular and in small eccentricity

orbits [373, 374] (see also [108, 375]). Since the Close Limit approximation scheme
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applies to the final part of the binary BH coalescence it offers considerable potential for

problems in High-Energy Physics that involve black hole collisions or similar systems

(see next subsection). In essence, the close limit approximation is a linear approximation

around the final, equilibrium black hole state. In the context of gauge-gravity duality,

it has been recently applied in [376].

Up to now we have described approximation methods that use the most common

background spacetimes and the main perturbative schemes that have been developed

from them to study a variety of physical phenomena. However, this is not all what

has been done. There are other 4D spacetimes that have received attention and

perturbations of them have been studied. Among those, we note the study of oscillations

(quasi-normal modes) of Schwarzschild-dS black holes [377], Schwarzschild-AdS black

holes [378, 379, 380, 381], Reissner-Nordstrom-AdS black holes [382] and Kerr-AdS

black holes [383]. Oscillations of black holes in alternative theories of gravity, such as

higher derivative gravity, have also been studied [384, 385, 386, 387, 388] (for a review,

see [389]).

7.2. Perturbations of Higher-Dimensional Spacetimes

All that we have described until now is standard relativistic perturbation theory in the

case of 4D spacetimes. Nevertheless, it is clear that the basic ideas and foundations

of relativistic perturbation theory can be transferred without problems to higher

dimensional spacetimes. Here, we will only consider higher-dimensional spacetimes

governed by Einstein’s equations, Gµν [gρσ] = 8π Tµν , where Gµν is the Einstein curvature

tensor and Tµν is the stress-energy tensor.

In the last decades, there has been growing interest in physical phenomena in

higher dimensions motivated by the emergence of new theoretical models in High

Energy Physics. In particular on theoretical models either based on string theory

or motivated by it. An interesting feature of many of these scenarios is that they

involve higher-dimensional spacetime geometries where the extra dimensions need not

be compactified or have a large curvature radius. Many of these theories deal with

physical situations that involve energies beyond those associated with the standard

model, and given that some of them suggest that the fundamental Planck mass may

be small ( as low as the TeV range, which can be a solution to the so-called hierarchy

problem [4]), black holes and other dark objects (containing horizons) in spacetimes with

different number of dimensions can play an important role and as such are an important

subject of investigation (see Sections 2, 3 and 4 for further details). There is also a

strong motivation coming from the correspondence between N = 4 Super Yang-Mills

theory in the large N limit and type-IIB string theory in AdS5 × S5, the AdS/CFT

correspondence [10]. The idea is that in the low energy limit, string theory reduces to

classical supergravity and the AdS/CFT correspondence becomes a tool to calculate

the gauge field-theory correlation functions in the strong coupling limit leading to non-

trivial predictions on the behavior of gauge theory fluids, which has a lot of applications
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that have made this correspondence one of the main subjects of current research; see

also Sec. 5.

Cosmological perturbations have also been analyzed in certain theoretical scenarios,

as for instance in braneworld models. These models involve at least one extra dimension.

Two scenarios where these cosmological perturbations have been studied extensively

are the Randall-Sundrum type II scenario [7] (see, e.g. [390]) and a closely-related

one, the Dvali-Gabadadze-Porrati model [246]. Again, the interest here is in the early

Universe dynamics where the energies can make these models deviate from the usual

GR cosmological dynamics (see [391] for a review).

In higher dimensions many geometrical properties that are valid in 4D no longer

hold (and some hold in an appropriate form [129, 392]). In the context of High

Energy Physics, it is particularly relevant that the topology of connected components of

spacelike sections of event horizons does not need to be that of a sphere, as happens in

4D [393, 297] (see also [130]). This opens the door to many topologically different objects

with horizons [13]. Not all these objects need to be stable, and actually many of them

are not, and this strongly motivates the study of deviations from all those geometries;

cf. the discussion of stability in Sec. 3. Therefore, despite the fact that the basics of

relativistic perturbation theory are the same independently of the dimensionality, the

development of a complete perturbative scheme in the sense of constructing gauge-

invariant quantities and their equations for describing the physics associated with the

perturbations is a task that needs to be done for each background spacetime geometry

or at least for families of background spacetime geometries.

As we have discussed above, in 4D the perturbative schemes for BHs are quite

developed. For higher dimensional black holes there is still a long way to reach a

complete formulation for perturbations. Nevertheless, significant progress has already

been made. For static black holes in arbitrary higher dimensions a set of decoupled

master equations, which correspond to the Regge-Wheeler-Zerilli equations in 4D, have

been found [394, 395, 396]. In this case, for a D = 2+d BH background geometry, where

d is the number of dimensions of the internal space (which is an Einstein space; in D = 4

⇔ d = 2, it is the 2-sphere). Then, the perturbative variables are classified according

to their tensorial behaviour on the internal space and gauge-invariant variables are

introduced. Furthermore, for each type of perturbations, decoupled master equations

are found for scalar master functions on the 2-dimensional sector of the BH background

spacetime. Using these techniques, it has been established [397] that the Schwarzschild

solution is mode-stable against linearized gravitational perturbations for all dimensions

D > 4. More specifically, it was shown that the master equation for each tensorial type

of perturbations does not admit normalisable negative-modes which would describe

unstable solutions. It was also shown that there exists no static perturbation which

is regular everywhere outside the event horizon and well-behaved at spatial infinity,

which is a check, within the perturbation framework, of the uniqueness of the higher-

dimensional spherically symmetric, static, vacuum black hole.

The situation is different for the rotating case, where we have different families of
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solutions. So far, studies of linearized perturbations of higher-dimensional rotating black

holes have exploited isometries of black hole spacetimes, e.g. enhancement of symmetry

of the Myers-Perry family of solutions [121] by choosing some of the intrinsic angular

momenta to coincide. There has been some effort to extend the 4D Teukolsky formalism

to the case of the Myers-Perry family of solutions. To that end, in order to identify

similar perturbative variables as in the Teukolsky case, use of the Petrov classification

for higher-dimensional spacetimes [152] has been made. And in order to look for

decoupled equations, generalizations of the Geroch-Held-Penrose formalism [398] (a

generalization of the Newman-Penrose formalism [399] for cases with algebraically-

special spacetimes) have been proposed [400]. Unfortunately, decoupling does not occur

in higher-dimensional black hole spacetimes (see [81, 161, 401]), except for near-horizon

geometries (see also [402]) and some special cases. For instance, in D = 5 dimensions

a master equation for a part of the metric perturbations that are relevant for the study

of stability has been derived [403]. For a detailed discussion of the stability properties

of black holes in D > 4, we refer to Sec. 3.

Apart from the study of BH-like dark objects, other types of dark objects have been

investigated. In particular, this has led to the discovery of the well-known Gregory-

Laflamme instability of black strings and p-branes [90, 91]; see [404] for a review.

We also mention that there are a number of studies of Quasi-Normal modes of

black objects in 4D and in higher dimensions (for reviews see [405, 389, 406]), and that

gravitational radiation in D-dimensional spacetimes has been studied in [407].

7.3. Conclusions and Prospects for the Future

While relativistic perturbation theory has been developed for many years and even

though it has achieved great success in many areas of astrophysics, cosmology, and

fundamental physics, there remains a lot of work to be done, even in the realm of 4D GR.

Among the main challenges are the development of tools for higher-order perturbation

theory, and especially for the treatment of backreaction, which is important for EMRIs

and the particular case of cosmology where it has been invoked to try to explain the

acceleration of the Universe. It would also be important to extend approximation

methods currently applied to GR, to the study of alternative theories of gravity; see

Sec. 6.

In the case of higher-dimensional spacetimes, there has been significant progress

in the case of static non-rotating BHs; unfortunately, such progress has not yet been

extended to rotating BHs or other black objects, where there is a pressing need for

new tools. The fact that there are no decoupled master equations that describe

all the gravitational degrees of freedom is a challenge for future work. Given that

significant progress has also been done in non-linear numerical studies, it is important

for the near future to develop tools in perturbation theory to complement the numerical

computations and aid in their physical interpretation. In this sense, it would be

interesting to develop more sophisticated perturbative schemes adapted to the different
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problems. For instance, the close-limit approximation could be developed for higher-

dimensional BHs in spacetimes with different asymptotic properties, which may be of

interest for physical applications like ultrarelativistic collisions of BHs and the AdS/CFT

conjecture in relation with quark-gluon plasmas. Also in this line of research, point

particle calculations, which model black hole collisions when one of them is much smaller

than the other, give remarkably accurate results when extrapolated to the equal-mass

case [183, 184, 100]. Because this kind of computation relies on linear perturbation

theory, extension of classical results to different asymptotics is clearly desirable.
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