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We present a new numerical implementation of the genelafivistic resistive magnetohydrodynamics
(MHD) equations within th&\hi sky code. The numerical method adopted exploits the propestikaplicit-
Explicit Runge-Kutta numerical schemes to treat the sifirts that appear in the equations for small electrical
conductivities. Using tests in one, two, and three dimerssiove show that our implementation is robust and
recovers the ideal-MHD limit in regimes of very high condvity. Moreover, the results illustrate that the code
is capable of describing physical setups in all ranges oflgotivities. In addition to tests in flat spacetime, we
report simulations of magnetized nonrotating relaticistiars, both in the Cowling approximation and in dy-
namical spacetimes. Finally, because of its astrophysiteance and because it provides a severe testbed for
general-relativistic codes with dynamical electromaigniélds, we study the collapse of a nonrotating star to
a black hole. We show that also in this case our results areringood agreement with the perturbative studies
of the dynamics of electromagnetic fields in a Schwarzsdbalckground and provide an accurate estimate of
the electromagnetic efficiency of this process.

PACS numbers: 04.25.dk, 04.25.Nx, 04.30.Db, 04.40.Dg®5f, 97.60.Jd

I. INTRODUCTION magnetars [17]. It is not surprising then that several gsoup
have developed in the recent years numerical codes to solve

Magnetic fields play an important role in several astrophys{N€ €guations of special relativistic resistive MHDI[1.8}-24

ical scenarios, many of which involve also the presence of Inthose scenarios that involve compact objects such as NSs
compact objects such as neutron stars (NSs) and black holasd BHs, resistivity plays also a very important role and the
(BHs), whose accurate description requires the numerizal s equations of ideal MHD would not be sufficient to study them.
lution of the equations of general relativistic magnetaloyd In the case of general relativistic simulations of magreetiz
dynamics (GRMHD). binary NS (BNS) and NS-BH mergers, for example, the mag-

In most of these phenomena, such as for the interior dynanfetic field has been up to now always confined to the interior
ics of magnetized stars, or for the accretion of matter ont®f the NS, where the ideal-MHD limit is a very good approxi-
BHs, the electrical conductivity of the plasma is extremelymation [25531] and therefore neglecting any effect thatdtou
high and the ideal-MHD approximation, in which the con- come from the magnetic field evolution in the NS magneto-
ductivity is actually assumed to be infinite, representsrg ve Sphere. The equations of general relativistic resistivelMH
good approximation. In this case, the magnetic flux is conProvide a framework that can be used to study both the re-
served and the magnetic field is frozen in the fluid, being simgions of the domain with a high (such as the NS interior) and
ply advected with it. Following this approximation, severa small conductivity (such as the NS magnetosphere). More-
numerical codes solving the equations of general-refditivi Over, when the conductivity is set to zero, Maxwell equa-
ideal-MHD have been developed over the yehr§ [1-13]. Byiions in vacuum are recovered [19], thus allowing for the
construction, therefore, the ideal-MHD equations new StUdy of the magnetic field evolution also well outside the NS
effect of resistivity on the dynamics. In practice, however This is particularly important, since several recent wdrége
even in the scenarios mentioned above, there will be spatiglaimed that the interaction of magnetic fields surrounding
regions with very hot plasma where the electrical conductivBNS and NS-BH systems may lead to strong electromagnetic
ity is finite and the resistive effects, most notably, magnet emissionsl[32], and even affect the dynamics of these sgstem
reconnection, will occur in reality. Such effects are expdc  (ee [38] but also [34] for a different conclusion). In order
to take p|ace, for examp|e, during the merger of two magneto verify such predictions, it is therefore important to lidea
tized NSs or of binary System Composed by a NS and a BHt’O accurately follow the dynamics of the magnetic fields in
or near the accretion disks of AGNs, and could provide arthe region surrounding these compact binary and this cannot
important contribution to the energy losses from the system be done in the limit of ideal MHD. Last but not least, binary

The importance of resistivity effects can be easily deduced€rgers are also thought to be behind the central engine of
from the evolution of a current sheet in high but finite conduc Sh0rt gamma-ray bursts (GRB5)[80] B5-37] and the accurate
tivity. Under these conditions, several instabilities ¢ake study of the magnetic field both before and after merger could
place in the plasma and release substantial amounts ofyenergeVide insights on current observations.
via magnetic reconnectioh [14], as frequently observed, fo We present the first fully general-relativistic resistivéis
example, in solar flares [15]. The study of reconnectionlin re code in a 3+1 decomposition of spacetime. We extended
ativistic phenomena is instead important to try to explam t the ideal GRMHDWhi sky code to include the general rel-
origin of flares in relativistic sources, such as blazarg §8l  ativistic version of the resistive MHD formalism presented
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Ref. [19]. This new version of thenhi sky code can han- normal to the spacelike hypersurface in a 3+1 decomposition
dle different values of the conductivity going from the itlea of spacetime (i.e.p#n, = 0). Notice that the time com-
MHD limit (for very high conductivities) to resistive andesl-  ponent is not independent due to the normalization relation
trovacuum regimes (obtained respectively with low and zera/#u,, = —1, so that

conductivity). The code implements state-of-the-art nikme

cal techniques and has been tested in both fixed and dynamical W = —nu=(1- Uﬂ/l)_l/Q,
spacetimes. In particular we show the first fully general rel ; P

ativistic simulation of a magnetized NS collapse to BH using ut =W (“ - g) ) (®)
resistive MHD to accurately follow the dynamics of magnetic

fields both inside and outside the NS. wherelV is the Lorentz factor.

The paper is organized as follows. In Secfidn Il we describe The 3+1 decomposition of the conservation lak$ (2),
the general relativistic resistive MHD equations, in $8tthe (@) provides the evolution equations for the fluid variables
main numerical methods used to solve them, and in[Sdc. I\P, U, Si, which comes from the following projections of the
our numerical tests. In Selc] V we summarize and conclude. Stress-energy tensor

Throughout this paper we use a spacelike signature of

(—,+,+,+) and a system of units in which= G = Mg = D= oW, 1 ©)
1. Greek indices are taken to run from 0 to 3, Latin indices U= hW?—p+=(E*+B?), (7)
from 1 to 3 and we adopt the standard convention for the sum- 20
mation over repeated indices. S; = hW?v; + e, E? B, (8)
Sij = hWQUin +vijp — E;E; — BB +
Il. MATHEMATICAL SETUP %%.,-(EQ + B?) | 9)

We next describe our extension of the special-relativistidVhere~i; is the usual spatial part of the metric and where
resistive MHD formalism presented in Ref. [19] to a generalWe have introduced the specific enthalpy= p(1 + ¢) + p.

relativistic MHD framework. A similar (but independent)-ex 1 Ne conserved rest-mass denditythe energy density and
tension has been presented recently in [24]. the momentuny; are usually referred to as the “conserved”

guantities since they can be shown to satisfy conservatios |

in flat spacetime< [38]. In general, it is more convenient to
A. Themagnetohydrodynamic equations describe the energy conservation in terms of the quantity

U — D, which allows to recover the Newtonian limit of the

The complete set of relativistic MHD equations result from energy density.

the combination of the conservation of rest mass

B. TheMaxwell equations
Vulput) =0, (1) .

and the conservation energy and momentum conservation ~ Given a four-metric tensgy,,, , the dynamics of the electro-
magnetic fields is described by the extended Maxwell equa-

vV, TH = 0. (2) tions [19/30]
The stress-energy tensor for a magnetized perfect fluid is Vo (F* +g") = 1" — kn”y, (10)
given by Vo (“FM 4 gt g) = —kn”¢, (11)
T = [p(1+€) +pluptty + pguy + F Fon where F*¥ is the Maxwell tensor;F*" is the Faraday ten-
" ) ! ! ! sor, I” is the electric current an, 1) are scalars to con-
— 79 F2Fyq, (3) trolthe constraints. In vacuum or highly magnetized plasma

where the electric and magnetic susceptibilities of theiomad

where the rest mass denshythe Specific internal energy VaniSh, the Faraday tensor can be written as the dual of the
the pressure and the velocityu” describe the state of the Maxwell tensor

fluid, and are usually referred to as the “primitive” variedl _— L as
The pressure is described by an equation of state (EOS) as PR = e Fap, (12)
a functionp = p(p, €) and it is a property of the type of fluid
considered. (6. with evof = prved /., /g andg the determinant of the four-
The velocity of the fluid can be decomposed as metric. These tensors can be decomposed in terms of the
electric and magnetic fields measured by an observer moving
ut =W (n# + o), (4) along a normal direction” as:
FM = nltEY —n’E* 4 P B,ng, (13)

wherev* corresponds to the three-dimensional velocity mea-
sured by Eulerian observers moving along a four-vegipr PR = ntBY —nYBF — EHVQBEO/I’Lﬂ. (24)
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Following the same decomposition, the electric curiént  which provides an evolution equation for the charge density
can be written as:

" =n'q+ J", (15) (0 = Ls)a + Vi(ad') = a Kq. (21)
whereq and.J" are the charge density and the current for anp,q charge density can either be computed using the evolutio

qbserver moving a_llong“, respectively. _Usmg these deflm— equation above or using the constrajnt V, E".
tions and performing a 3+1 decomposition of the equations

@0), (1), [I5) with respect to the normal vectdt, we ar- Finally, a relation for the current as a function of the other
rive to the following evolution equations fields is needed in order to close the system. Ohm’s law pro-
vides a prescription for the spatial conduction currentvilie
(0 — ,/gﬁ)Ei — eijkvj (aBg) + a»yijvw = consider here an isotropic scalar Ohm law
atr KE' — aJ', (16) . ‘ . - .
(0 — L)Y + aViE' = aq — ary, (17) J' = qu' + WolE' + ¢7"0;By — (0, EF)0'],  (22)
(0 — Lg)B" + "V (aBy) + ay’ V¢ = o :
atr KB, (18) where the conductivity is chosen to be either a constant or a

, function of the rest-mass density.
(0 — L)p + aV;B' = —arg, (19)

where the scalar fields, » measure the deviation from the
constrained solution. Their evolution equations contaimg-
ing terms such that the constraint violations decay exponen
tially to zero over a timescale/x [1d,[39).

A consequence of the Maxwell equations is the current con-
servation Combining the MHD and Maxwell equations we obtain the

following set of evolution equations, which we write in flux-
VIt =0, (20)  conservative form as

C. Thefull set of evolution equations

Oi(VAB') + Ok(=B"AB' + ac™ YE)) = —/AB"(0k5') — ay7v7 050, (23)
h(VAE') + h(=B"VAE' — ac \AB)) = —FE"(08') — a0 — ay/A T, (24)
0u) + Ou(=B"0+ aB*) = —6(aB") + B*(0ha) = 5" ) B — aro, (25)
O + Ok(=B" + aB*) = —p(0,8°) + E* (9ar) — %(vl’”amm)E’“ +aq — ary, (26)
(V) + OklyvA(=B%q +ad®)] =0, (27)
di(vAD) + Ok[VA(—=B"D + av* D)) =0, (28)
O(y/T) + (?k{\/'_y[—ﬂkT + a(Sk - ka)]} = \/'_y(olemKlm - Sk(?koz), (29)
O(VAS:) + OlVA(=B"Si +aS*)] = VA | 55" Ovim + Sk0iB* — (7 + D)dial (30)
|
1. NUMERICAL SETUP CCATI E code, a three-dimensional finite-differencing code

providing the solution of a conformal traceless formulatod

This new version of théMi sky code implements sev- the Ei_nstein equationﬂ_hO]. The genergl-relativist_ic RMH
eral numerical methods that have been successfully usesd in equations are solved instead using high-resolution shock-
ideal-MHD version[[11[ 29], but it also implements new nu- C@pturing schemes (HRSC) [41]. As its ideal-MHD coun-
merical algorithms which are instead needed in order to harf€rPart, also thehi skyRVHD code implements several re-
dle the evolution in time of the resistive MHD equations. éler construction methods, such as Total-Variation-Dimimighi
we briefly summarize the numerical methods that are in com(TVD) methods, Essentially-Non-Oscillatory (ENO) meth-
mon with the ideal-MHD version oMi sky [11,27/2b[40], ©0ds [42] and the Piecewise Parabolic Method (_PPM} [43].
while in the following section we provide a more detailed de- The Harten-Lax-van Leer-Einfeldt (HLLE) approximate Rie-
scription of the new algorithms that have been implemented.Mann solver([44] has been used to compute the fluxes in all

The evolution of the spacetime is obtained using thdhe results presented here. Since the code is based on the



Cact us [45] computational framework, it can also use adap-

tive mesh refinement (AMR) via th@ar pet driver ]. TABLE I: Tableau for the explicit (left) implicit (right) IMEX-

SSP3(4,3,3) L-stable scheme

oloo0o 0 O a|a 0 0 0
A. IMEX Runge-Kutta Methods 0|00 O O O |—-a a 0 0
1101 0 0 110 1—-a a 0

1/210 1/4 1/4 0O

The general-relativistic RMHD equations in high- b ¢ 1/2—-b—c—a a

conductivity media contain stiff terms which make the time | 0 1/6 1/6 2/3 0 1/6 1/6 2/3
evolution with an explicit time integrator very inefficient
not impossible. The prototype of the stiff system of partial a = 0.24169426078821 , b = 0.06042356519705 ,
differential equations can be written as ¢ = 0.12915286960590
1
0,U = F(U) + —R(U), (31)
g

wheree = 1/0 > 0 is the relaxation time. In the limit of law (22). Its right-hand-side can be splitted in potenyiatiff
e — oo, the second term on the right-hand side of EEq] (31)}terms and regular ones

vanishes and the system is then hyperbolic with a spectral ra _ _ _

dius ¢, (i.e., with ¢, being the absolute value of the maxi- o (VYE") = Fp+ Rp, (33)
mum eigenvalue). In the opposite limit ef — 0 the first ) o
term on the right-hand side of E§_{31) vanishes and the Syé/y?ere we have introduced the factot= on the definition of

tem is clearly stiff, since the timescadeof the relaxation (or Ry and
stiff term) R(U) is very different from the speeds, of the i & i ki & i
hyperbolic (or non-stiff) parf’(U). Fp = _a’“[__@ VIYE" —ae _JﬁBj] ~VYE"(OuB") ~
Stiff systems of this type can be solved efficiently by a com- a/ Y 0 — an/yqu', (34)
bination of implicit and explicit time integragors. In p_'mmlar, Ry = —ayAWo [El T Eijkvak _ (,UkEk)vi] _ (35)
the IMEX Runge-Kutta scheme consists in applying an im-
plicit discretization to the stiff terms and an explicit cioehe In order to evolve this system numerically, the
non-stiff terms. When applied to the systdml(31) it takes thé|uxes {F.,Fsi,Fp} have to be computed at each
form [47] timestep.  This implies that the primitive quantities
i1 {p, », v', E', B’} have to be recovered from the con-
Uu® =ur + AtZd»»F(U(-j)) served fields{D, r, S*, /v E', /7 B'}. With the
= “ ’ exception of very simple EOSs, this recovery cannot be
N done analytically and it is instead necessary to solve afset o
1 ; algebraic equations via some root-finding iterative proced
oz ) g q g p
+ At 2; i ER(U ) (32) which we will describe below.
=

N N Before that, we note that the solution of the conserved quan-
. 1 ; tites{D, 7, S*, \/7 B'} attimet = (n+1)At is obtained by
n+1 n ~ 7 7 » )
Ut =un + At Z“iF(U( )+ At Z“igR(U( ), simply evolving the equationk (P8], (3], {23). Howeveg th
i=1 i=1 same procedure for the electric field leads only to an approx-
whereU( are the auxiliary intermediate values of the Runge-imate solution{ £} containing only the explicit terms. The
Kutta time integrator. The matricet — (ai;), a; = 0 for full solution, involving also the potentially stiff termsequires
j > iandA = (ay), areN x N matricés sujch that the therefore the inversion the implicit equatidn24), whic d
resulting scheme is explicit iff and implicitin R. An IMEX ~ Pends on the velocity’ and the field{ 5*, E'}. In the case
Runge-Kutta scheme is characterized by these two matrice¥ the scalar Ohm IavﬂIZ), the stiff part is linearf, so a
and the coefficient vectors; andw,. Since the simplicity simple analytic inversion can be performed
and efficiency of solving the implicit part at each step is of i A=/ i - .
great importance, it is natural to consider diagonallyinip B =M (v") [E" + 0 Sp(v’, BY)], (36)
Runge-Kutta (DIRK) schemes for the stiff terms, i.@,, (= 0
for j > i). The matrices of coefficients are reported in Table
I . . ) 14+l —v0") —a(vyv®) —a(vv”)
Our approach to the solution of the potentially stiff set ‘
of general-relativistic RMHD equation consists therefore

whereg = a;; At o W o and the inversion matrix is given by

the use of the IMEX RK method introduced above. For™ —o(vz0?)  1+a(l—vyeY)  —a(v0?)

the particular set of equations {23)(30), the evolved dield

can be split into stiff term&/ = {E£‘} and non-stiff terms = (vy0%) —a(vyv®)  143a(1 —v,07)
W = {B" ¢, ¢,q,7, 5", D}. (37)

The evolution of the electric field {24) can become stiff de-The recovery procedure is similar to the one presented in
pending on the value of the conductivity= 1/¢ in the Ohm  Ref. [19] and can be summarized in the following steps:



1. Consider an initial guess for the electric field. Some IV. NUMERICAL TESTSAND RESULTS
possible options are: its value in the previous timestep,

its approximate value in the current time st€f or the In this extended Section we report the numerical results ob-
ideal MHD valueE* = __EWUJ‘Bk' wherev; is the  tained in one-, two- and three-dimensional tests, which con
velocity in the previous time level. firm that our implementation is correct and provides the ex-
pected results in a large range of conductivities. Moreigpec
2. Subtract the electromagnetic field contributions fromijcally, the one-dimensional tests invohig:a large-amplitude

the conserved fields, namely compute circularly-polarized (CP) Alfvén wave to validate thatrémn-
plementation matches the ideal-MHD results in the high con-
P E(EQ + B?), (38) ductivity r_egime;ii) thg evolution c_>f a self—_similar current
. 2 sheet, which tests our implementation in the intermediatte ¢
S; = 8, — eijkEjB’“. (39) ductivity regimejii) a collection of shock-tube tests involving

a range of uniform and non-uniform conductivities. In these
) ) particular tests we also examine the zero-conductivitimeg
3. Perform the recovery as in the non-magnetized casgyhere the electromagnetic fields are expected to follow the

The EOS can be used to write the pressure as a functiof,o,,ym Maxwell equations and hence behave as propagating
of the conserved quantities and the unknawa 17?2,

waves.
so that the definition of can be written as Following the one-dimensional tests, we then present two
r—1 r—1 and three-dimensional tests, which include the standaintcy
flz) = (1 - W) x <W - 1> D drical and spherical explosion tests, which we consideinén t
case of very large conductivities in order to test the ideal-

r-r, D\ MHD limit of our equations. Finally, we have performed three
+mK (W) -7 (40)  ifferent sets of simulations involving spherical magnedi
b stars in general relativity. The first setup consists in a&siphl
which must vanish for the physical solutions. Hére (TOV) star with prescribed magnetic fields confined initiall
andr are the adiabatic indices corresponding to an idealn the interior of the star. The second set involves the evo-
gas and a polytropic EOS, respectively, whileis the lution of a magnetized star with initial data generated lg th

polytropic constant. By settinf = 1 we recover the L ORENE Iibrary_and having a dipolar magnetic field.that ex-
simple polytropic EOS, while the ideal EOS can be re-tends also outside the star. As a conclusive three-dimeakio

covered by setting, = . test we consider the gravitational collapse of a nonrogesiar
b to a black hole, where the initial data is again generatetiéy t

4. A solution of the functionf(z) = 0 can be found LCRENEIibrary @]' .
numerically by means of an iterative Newton-Raphson With the exception of the collapsing star, where we have

solver. The initial guess for the unknowris given by used a polytropic EOS, all simulations reported here have em
the previous time step. ployed an ideal gad ¢law) EOS

5. After each step of the Newton-Raphson solver, update p=pe(l=1), (43)
the values of the fluid primitives with I = 2 for the one-dimensional tests afid= 4/3 for the
- ) two and three-dimensional tests. In addition, for the evolu
v = Si w2 = _* p= D (41) tion of the stable magnetized stars we have adopfed-a2.
x’ 2 — 527 w’ As mentioned above, the collapse of the unstable magnetized
-1,/ =z (T, —T)Kp'» star has been followed using a polytropic EQS= Kp',
P =T (m - P) m - (42)  withT = 2. Finally, to ensure a divergence-free magnetic

field with the our hyperbolic divergence-cleaning apprgach

and then invert the electric field according[fal(36). we have set the damping coefficiento be one everywhere.

6. Iterate the steps 2.-5. until the difference between two
successive values afand the electric field fall below a
given threshold, usually of the order t—1°.

A. One-dimensional Test Problems

1. Circularly Polarized Alfven waves

This procedure converges quickly in the high-conductivity
regions if the ideal MHD solution is chosen as an initial gyes ~ The present test has been discussed in detail in[Réf. [10] and
and in the intermediate conductivity regions if the initialess it computes the propagation of a large-amplitude circytarl
is given by the approximate electric fielf. In general< 5 polarized Alfvén wave through a uniform background mag-
iterations are sufficient for intermediate conductivitiekile  netic field By. For the purpose of this test, we set a very high
< 70 iterations are usually necessary in the regions with higrconductivityo = 10° in order to recover the ideal-MHD limit.
conductivity. Since the propagating wave is expected to be the advected ini
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FIG. 1: Circularly-Polarized Alfvén wave. BY component FIG. 2: Self-similar current sheetBY component of the magnetic
of the magnetic field for three different resolutionsz = field at the initialt = 1 and final timet = 10. The exact solution at
{1/50,1/100, 1/200}, together with the exact initial solution (black ¢ = 1 is shown with a dashed blue line. The solution given by the
solid line). Clearly, the numerical solution provided by ttesistive  analytic expression (47) at= 10 (black solid line) is indistinguish-
MHD implementation and the exact one overlap for a uniform-co able from the numerical solution obtained form the ressstWHD
ductivity o = 10° and the highest resolution. equations (red dashed line).

tial profile, it is convenient to apply periodic boundary eon conductivity of o = 109, using the following resolutions:
ditions and compare the evolved profile after one full perioda ,. — {1/50,1/100,1/200}.

with the initial one, in order to check the accuracy of ourim- |, Fig.[I we show the componef at timet = 2, cor-
plementation. _ ) _ responding to one full period. By superimposing the results
In particular, we consider a CP Alfven wave with anormal- 4t — 2 with the initial data at — 0, it is evident that the
ized amplituden s traveling along positiver-axis, in a uni-  nymerical solution of the resistive MHD equations tends to
form background magnetic field, with components the ideal-MHD exact solution for a high-enough conductiv-
B = {Boy, naBo cosk(z — vat)], naBosin[k(z — vat)]}. |ty and resolupon. We have used both a I_mear reconstrctio
{Bo, naBo coslk( At naBosinlk( 4 )(]34) with monotonized-central (MC) slope limiter and the second
order PPM reconstruction. The numerical solution converge
to the exact one at second order when using PPM reconstruc-
tion and at second order with the linear reconstructiongxa
vy = —vaBY/By, v, = —vaB*/By, (45)  the same convergence rates than with the original ideal MHD
system implemented i sky MHD.

For simplicity, we take/” = 0 and write the remaining veloc-
ity components as

where

-1

2
V% = 283 1+\/ _ < 204 B3 > ' 2. Self-similar Current Sheet
ph + B§(1+13) ph + BE(1+13%)
(46) We next considera a test that involves the evolution of a self

By settingp = p = n4 = 1 andB, = 1.1547, we fix the  similar current sheet, as proposed in Ref! [18]. This sesup i
Alfvén velocity tov, = 0.5. Therefore, in a computational useful for testing codes which solve the resistive MHD equa-
domain centered at = 0 with x € [—0.5,0.5], we expect tions with a moderate conductivity regime, which we set to be
the wave to return to its initial position after one full peti o = 100.
t = L/va = 2. The comparison of the numerical solution In practice, the initial data consists in a magnetic field
with the initial condition[[44) at = 0 gives us a measure of solely in they-direction which changes sign in a thin cur-
the error. rent layer. Provided that the initial solution is in equiliom

In principle, the resistive MHD formalism would allow us (i.e., the pressure and density are constant, and the teloci
to recover the ideal-MHD limit only for an infinite conduc- is zero) and that the magnetic pressure is much smaller than
tivity. In practice, however, the use of a conductivity agta the fluid pressure everywhere, then the evolution of the mag-
aso = 109 is sufficient to obtain a solution that converges netic field is given by the simple diffusion equatiop3y —
to the ideal-MHD one with increasing resolution. As a re-(1/0) 82BY = 0, which will be responsible for the diffu-
sult, we have chosen to perform simulations with a uniformsive expansion of the current layer in response to the palysic
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FIG. 3: Shock-tube TestsBY component of the magnetic field at
t = 0.4 for different resolutionsAz = {1/100, 1/200, 1/400}.
The highest resolutioddz = 1/400 matches the exact ideal-MHD
solution remarkably well.

resistivity (we are also assuming that = 0 = 9,F%). Un-
der these simplified assumptions, the analytical solutfdhe
diffusion equation is given, far > 0, by

5

where¢ = t/x? andErf is the error function. Clearly, as the
evolution proceeds, the current layer expands in a selilegim
fashion.

Following [18,[19], we use as initial data the analytic so-

1
2

g

BY(x,t) = By Exf ( (47)

-0.6

-0.8

o

FIG. 4: Shock-tube TestsBY component of the magnetic field for
conductivitiesoo = {0, 10, 10%,10% 10°} att = 0.4 and resolution
Az = 1/200. Foroo = 0 the magnetic field is governed by a wave-
like equation, corresponding to the solution of the Maxweglliations
in vacuum.

states are initially separated by a discontinuityrat= 0.5
and are given by [50]

(1.0, 1.0, 0.5),
(0.125, 0.1, —0.5),,

(va prL, Bi[{)
(pRa PR, B%)

while all other variables are set to zero. The ideal-MHD evo-
lution of the aforementioned setup with® = 0 leads to
two fast waves, one rarefaction propagating to the left and a
shock propagating to the right of the discontinuity. Theusol
tion of this test in the ideal-MHD limit exists and is found in

lution (41) att = 1 and set the density and pressure to bethe exact ideal-MHD Riemann solver provided by Ref] [50].

uniform with p = 1 andp = 50 respectively, while keep-

For the rest of the one-dimensional tests, any comparisen be

ing the components of the electric field and velocity to zeronyeen the solution of the resistive MHD equations in the high
initially. In our calculations we have used a computationalconductivity regime and the exact solution of the ideal-MHD

domain with extents = y = z € [-5, 5] with a resolution
of Az = 1/200. Furthermore, a linear reconstruction method
was adopted with the further application of the MC limiter.

equations is performed with data obtained from the publicly
available codée [50]. All tests have been performed emplpyin
a linear reconstruction method with further applicatiortha

In Fig.[@ we present the results we obtained by solvingyc slope limiter.
numerically the resistive MHD equations and the compari- As a first setup of our shock-tube tests, we consider the

son with the exact solutioh (#7) at= 10 (black solid line).
Clearly, the numerical solution (red dashed line) is iridist

case of a uniform high conductivity = o9 = 10° and, in
analogy with the Alfvén-wave test in the high-conductivit

guishable from the analytic one, thus providing convincingregime, we verify that the solution of the coupled Maxwell-

evidence that the code can accurately describe resistle-ev
tions with intermediate values of the conductivity.

3. Shock-Tube Tests

Hydrodynamics equations tends to the ideal-MHD exact so-
lution ﬂé} as the resolution is increased. Figlite 3 reports
the magnetic field compone®? att = 0.4 for the three
resolutionsAz = {1,/100,1/200,1/400} considered. The
high-resolution result matches the exact ideal-MHD sotuti
so well that is difficult to distinguish them, thus providitige

We next consider the numerical solution of the standard ofirst evidence that our implementation is robust also in the

Brio and Wu shock-tube test [49] as adapted for its MHD im-

presence of discontinuities.

plementation and using either a variety of uniform or space- As a second setup of the shock-tube tests, we consider the

dependent conductivities parameterized by the referemue c
ductivity og. More specifically, the left I[) and right )

case in which the conductivity is still uniform in space, but
of different strength. In particular, we perform the sans te
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FIG. 5: Shock-tube TestsThe left panel shows the conductivity profiletat= 0.4 for non-uniform conductivity with different power laws,
i.e.,7 = {0,6,9,12}. They = 0 case corresponds to the high-conductivity regime of thisties MHD equations. The right panel reports
instead theBY component of magnetic field for the same initial conditiossrathe left one. The leftmost region tends to the ideal MHD
solution, while the rightmost tends to the vacuum solutimmf= 12.

for o = {0,10,102,10%,10°}, while keeping the resolution for different values of the power-law exponent, i.e., =
fixed atAz = 1/200. Figurel4 reports different solutions of {0,6,9,12}. Clearly, the conductivity follows the evolution
the magnetic-field componeB¥ given by the resistive MHD  of the rest-mass density, with a left-going rarefaction evav
equations with different values of;. It is important to note and right-going shock. It is interesting to note that our ap-
here that the solutions change smoothly from the ideal-MHDproach is able to track even very large variations in the con-
solution computed fory, = 109, to the wave-like solution ductivity, with jumps as large as eleven orders of magnitude
for o9 = 0, which corresponds to the propagation of a dis-across the computational domain. The right panel of fign5, o
continuity at the speed of light, corresponding to a sofutio the other hand, reports instead the magnetic field-componen
of the vacuum Maxwell equations. The ability of treating the BY att = 0.4 for the same initial conditions. As imposed by
two extreme behaviours of the Maxwell-MHD equations viaEg. (48), the solution in the leftmost part of the computagio
a resisitive treatment is an essential feature of our ajgproa domain, where the rest-mass density is very high, is cdettol
and a fundamental one in the description of the dynamics olby a very high conductivity, which tends #g = 10°. In turn,
magnetized binary neutron stars. this implies that the solution for the magnetic field should a
As a final setup our of our suite of shock-tube test, we haveroach the ideal-MHD limit in that region. On the other hand,
considered the same initial data but now prescribed a norin the rightmost region, where the rest-mass density is very
uniform conductivity given by the expression low, the conductivity is correspondigly small and tendiog t
B . zero for high values of. In such regions, therefore, the mag-
o =0ooD7, (48) netic field is expected to behave as a wave, thus explaineng th

where is an integer exponent we vary in the rangec ~ @ppearance of a moving peak for= 12.

[0, 12]. Thes prescription above introduces nonlinearities with Overall, this suite of shock-tube tests, demonstrates that
respect to the conserved rest-mass denbitgnd provides Our numerical implementation is able to treat accuratetynbo
an intuitive way of tracking the dense fluid regions. It leadsuniform and non-uniform conductivity profiles in one dimen-
to low values of the conductivity in places were the plasmasional tests, independently of the steepness of the prafiles

is tenuous and high values in more dense regions, whicRven in the presence of shocks.

will prove very useful later on when evolving magnetized

stars. However, this prescription is far from being realis-

tic and normally a more general conductivity prescription B. Multidimensional Tests
o = o(D, 1, E) is to be seeked starting from micro-physical
considerations. We now focus on multidimensional tests that involve

Following [19], we adopt the same initial data as before,shocks in several directions, such as the two-dimensional
however this time we change the exponeof Eq. (48) while  cylindrical explosion and the three-dimensional sphégga
maintaining the value of conductivity g, = 10°. plosion test suggested in Ref.[1]. Despite the fact thatethe

The results of this last test are reported in the left panel ofs no analytical solution for any of these tests, even in the
Fig.[3, which show the profile of the conductivityfat= 0.4 ideal-MHD case, the symmetries of the problem can be of
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FIG. 7: Left Panel: One-dimensional cuts along thedirection and at = 4.0 of the the pressure. The black dashed line corresponds to the

resistive code (th#hi sky RVHD code), while the blue dotted line corresponds to the ideldBMode, (théthi sky MHD code).Right Panel:
The same as in the left panel but for the Lorentz factor.

great help in verifying that the numerical implementatien i 1. Cylindrical Blast-Wave

correct and that it preserves the expected symmetries. @ur a

proach in these tests will be therefore that of comparing the ) ) o

solution of the same multidimensional test as obtained with N the two-dimensional cylindrical blast-wave problem, we

the ideal-MHD code presented in [11] and our new resistive?dopt a square domain with 200 grid cells per direction, in a

Wi skyRVHD code in the limit of very high conductivities. fange of(—6.0,6.0) x (6.0, 6.0). The setup of the problem

The initial electric field is computed in such a way that it sat CONSists of three regions. The innermost region With r <

isfies the ideal-MHD condition, i.eE? = —¢/*v, By, and all 0.8, for which the pressure and the density are set te 1,

the tests have been performed adopting a linear recorisiuct » = 0.01 respectively, the intermediate region which extends
and the density exponentially decrease, and the outermost r
gion which is filled with an ambient plasma with= 0.001,
p = 0.001 and occupies the domain0 < r < 6.0. The
initial magnetic field is along the-direction with an initial
magnetic field strength a8, = 0.05.
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The numerical results are presented in [Eilg. 6, where wenagnitude smaller than the value bf at the center of the
show that the magnetic field solution is regular everywherestar. Furthermore, in the atmosphere we set the fluid veloc-
and that there are no visible artifacts that could indicate aty to zero and since = 0 there, the electric and magnetic
possible symmetry error in our implementation. Furthemmor fields are evolved via the Maxwell equations with zero cur-
when one-dimensional cuts of the resistive solution aré plo rents (electrovacuum).
ted against the ideal-MHD solution obtained with the code This non-uniform conductivity prescription allows us to
presented in [11], the agreement is extremely good (thistis n provide effective boundary conditions at the surface of the
shown in Fig[®). star for the exterior electrovacuum solution similar tos#o

in Refs. [51/ 5], but without the limitations of using an ana
lytical solution for the interior of the star or the furthesro-

2. Spherical Blast-Wave plications of finding a suitable matching between the etectr
magnetic fields of the interior ideal-MHD solution and the ex

In the three-dimensional spherical blast-wave probles, thterior one. All the simulations reported hereafter havenbee

grid structure is similar, but the domain is now within the Performed adopting the PPM reconstruction scheme, for rel-
ranges(—6.0,6.0) x (—6.0,6.0) x (—6.0,6.0). The prob- ativistic stars whose initial properties are summarizedn

lem setup consists of the same three regions as in the cylirﬁ)-le[[|1
drical blast wave problem, although here the radivsfers to

the spherical-polar radial coordinate, and not to the dylaal

radius, i.e.y = (22 + % + 22)1/2.

The corresponding solution of the spherical blast-wave o ) o
problem in the(z, y) plane is essentially identical to the one  For the sake of simplicity, we consider as initial data spher
already reported in Fif] 6 and for this reason we do not shoeal stars in equilibrium to which a poloidal magnetic field
it here. What we do show in Figl 7, however, are one-confined to the stellar interior is superimposed (see, B
dimensional cuts along thedirection of the pressureand of  55]). While the hydrodynamical quantities are consistent s
the Lorentz facto#V as computed with the ideal-MHD code lutions of the Einstein equations, the magnetic field is ddde
(blue dotted line) and the resistive MHD code (black dashed-Posteriori, with a consequent violation of the constrain
line). This comparison, which is not expected to be exacthe initial time. In practice, however, this violation isvalys
given that the resistivity is large but not infinite, proviceon- ~ very small, even for the largest fields, and is quickly domi-
vincing evidence of the ability of our implementation tomec Nated by the violations introduced by the standard evatutio

1. Stable Star with confined magnetic fields

rately describe higher-dimensional discontinuous flowthin The toroidal vector potential that generates the poloiutal i
high-conductivity regime. terior magnetic field is expressed as|[11]
Ay = r? max [Ay(P — Peyt), 0], (50)
C. Nonrotating M agnetized Stars whereP,; is about4% the central pressurB.. The the star,

initially computed with a polytropic EOS with = 2, K =
In the following Section we present the numerical results100, has a gravitational masg = 1.40M and is endowed
obtained from the evolution of nonrotating spherical stars with a poloidal magnetic field of strengff. = 10'2 G at the
the presence of electromagnetic fields and for a varietyiof co center of the star an@l = pyag/p = 4.49 x 10713, With prag
ductivities. In order to accurately model both the intedod  the magnetic pressure. The magnetic field in the atmosphere
the exterior of the star, we prescribe a spatial dependeince ¢ initially zero. For all of the evolutions presented hétea
the electrical conductivity such that the ideal-MHD limit i we have used an ideal-fluid EOS with= 2.
recovered in the deep interior of the star (which is expected We first examine the evolution of the magnetized star
to be an excellent conductor) and such that the electrovacuuin the fixed spacetime of the initial solution (Cowling-
limit is recovered outside the star, where the density ard thapproximation). In the left panel of Figl 8 we show with thin
isotropic conductivity is expected to be negligibly small. solid, dashed and dotted lines the evolution of the cergsit r
This behaviour can be easily achieved assuming that theass density normalized to its initial valpg in thin colored
conductivity tracks the (conserved) rest-mass densitig it lines. The tests were performed using three spatial résokit
suring a smooth transition between the two regimes. In pracef Az = {0.4,0.3,0.2} km, corresponding respectively to
tice, we have experimented with functional prescriptiohs o N = {80, 120, 160} points across the finest AMR grid, which
the type extends up taR,,+ = +18 km. As customary in this type
of tests, stellar oscillations are triggered by the truioceer-
o =oomax [(1 — Dagmo/ D), ()]2 , (49)  ror and their amplitude decreases as the numerical resoluti
is increased. The importance of the test lays thereforeen th
whereo ~ o is the conductivity in the regions of large rest- calculation of the eigenfrequencies of the oscillationlsiclw
mass densityd = o at the stellar center) and = 0 in  we find to be in very good agreement with those computed
the atmosphere, where we set the conserved rest-mass detia perturbative analyses (not shown here) and with other hy
sity to its uniform valueD = D,,,. In our calculations we drodynamics and ideal-MHD cod 56]. In addition, a
normally setoy = 10° and D, to be about ten orders of comparison with the ideal-MHD code [11] shows a very good
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Star type Mapym [Mg] My [Mg] Req [km] K T B. [G] |# levels N Niar  Rout [km]
Confined fields 1.40 1.51 12.00 100.0 2 10*2 4 80,120,160 56,80,112 142
Extended fields  1.33 1.37 3256 3720 2 24x10"| 4 120 84 355
Unstable model  2.75 2.89 16.30 364.7 2 5 x 10" 5 272 216 241

TABLE II: Properties of the magnetized star models used endimulations. The columns report: the ADM and baryon massesits of
solar massed/apnv and M, respectively, the circumferential equatorial radius @f itar in kilometersi.q, the polytropic constank’, the
polytropic indexI’, the value of the magnetic field in Gauss at the center of telt, the number of refinement levels, the number of
gridpoints on the finest leveY, the number of gridpoints across the shk., for the different resolutions considered, the computatignid

outer boundary in kilometerBot.
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FIG. 8: Left Panel: Evolution of the central rest-mass density of a nonrotatiragnetized star for both the Cowling approximation (C; thin
lines) and a dynamical spacetime (D; thick lines). Diffeérére types mark different resolutions: dashed light biwe = 0.4 km, dotted dark
blue Az = 0.3 km, continuous black\z = 0.2 km. Middle Panel: The same as the left one but for the central magnetic fRight Panel:
The same as the middle one but different values of the coivityicto. All lines refer to a resolution oAz = 0.2 km.

agreement in the evolution of the rest mass density, indicat
ing that the oscillations are tracked correctly by our rtegs
MHD implementation.

We next examine the same scenario, but in a fully dynam-
ical spacetime and find also in this case a very good agree-
ment with the ideal MHD solution. Still in the left panel of
Fig[8 we report with thick solid, dashed and dotted lines the
evolution of the central rest-mass central density in a dyna
ical spacetime for different resolutions. As well knownrfro
perturbation theory, the eigenfrequencies of oscillatiare in
this case lower but what is relevant to note is that the secula
evolution in both the fixed and dynamical spacetimes are very
similar, with variations in the central density that is I¢isan
a couple of percent over tens of dynamical timescales.

The middle panel of Fid.18 displays instead the evolution
of the central value of the magnetic field, where lines of dif-
ferent color refer to different resolutions, while the t#hiess
marks whether we are considering a fixed or a dynamical
spacetime (thin for the Cowling approximation and thickdor
full general-relativistic evolution). The correspondipgwer

PSD [dB]

—-36

—-60

=72

f [kHz]

spectral density is shown in Figl. 9, where different linegyp FIG. 9: Power spectral density of a full general-relatigistvolution
refer to different resolutions and the dotted verticaldineark  of the central rest-mass density for a stable star with cedfimag-
the eigenfrequencies obtained from linear perturbatieotjpy ~ netic fields. Different line types refer to different restidns. Shown
The match between the numerical and perturbative results jith dotted vertical lines are the eigenfrequencies oletaiinom lin-

clearly excellent and the differences in the fundamentaleno

ear perturbation theory.
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FIG. 10: Two-dimensional cuts on the, z) plane of the solution the rest-mass density (colorcode frdmite to red) and of the magnetic
field lines and at times = 0, 9.88, and18.59 ms. The evolution refers to a nonrotating star in a dynamicatetime. Note that although the
magnetic field is contained in the star initially, it diffsseut as a result of numerical and physical resistivity.

at the highest resolution are 0.5%. ishingly small Laplacian (we recall that in the stellar eide
We note that, as for the central rest-mass density, the evoldhe resistivity is zero and the Maxwell equations tend to the
tion of the central magnetic field is accompanied by a seculaihose in vacuum), it is to a very good approximation a poten-
drift towards lower values, and this is simply the resultiad t  tial field, as shown by the clean dipolar-like structure.aClg
intrisic numerical resistivity(we recall that these tests have the Ohmic diffusion timescale increases with resolutiod an
been performed with the resistive code but for very large contherefore the relaxation of the magnetic field to a statipnar
ductivities and hence in a virtual ideal-MHD regime). Clgar dipolar-like structure takes place on longer timescalestfe
the numerical resistivity decreases with resolution arslith ~ high-resolution simulation.
exactly what the behaviour in the middle panel shows. It is
interesting to note that while with sufficient resolutio tte-
sistive losses saturate to ab@ot% of the original magnetic 2. Stable Star with extended magnetic fields
field over~ 12 ms, these can be very large for low resolution
and dissipate up te- 85% of the initial magnetic field over  We next consider initial data for a spherical magnetized sta
the same time-span. These numerical resistive lossesdshoukith a poloidal magnetic field extending outside the star, as
be compared with the ones introduced instead bypiisi-  generated by théhgst ar code fromLORENE library [48].
cal resistivityand which can of course be much larger. ThisThe external magnetic field is dipolar and is computed by
is shown in the right panel of Fi@] 8, which is the same assolving the Maxwell equations in vacuum, with boundary con-
the middle one, but where we have used the highest resolutiatitions given by the interior poloidal magnetic field. This s
(i.e., Az = 0.2 km) and varied the strength of the physical re- Jution is fully consistent with the Einstein equations and i
sistivity from oy = 10° to op = 10*. Because the fluid veloc-  provides accurate measurements of the stellar deforngition
ities are essentially zero at this resolution, the magsfetid  response to either rapid rotation or large magnetic fiéldk [5
evolution follows a simple diffusion equation with a Ohmic More specifically, we have considered a nonrotating star-mod
decay timescale which scales linearly witfic. This is in-  elled initially as polytrope witH® = 2 and K = 372, hav-
deed what shown in the right panel of Hig. 8 where, after théng a gravitational mas8/ = 1.33 M, and endowed with
initial transient, the solution settles to an exponent&tay a poloidal magnetic field of strengt, = 5 x 10'® G. The
and where the magnetic field can be reduced of almost twenagnetic field in the atmosphere is given by the electrovac-
orders of magnitude ovér ms in the case af, = 10°. uum solution, which has a dipolar structure. The evolutions
Finally, we show in Fig['Tl0 two-dimensional cuts on the have been carried out in a computational domain with outer
(z, z) plane of the rest-mass density (shown in a colorcodéoundary atR,,; = 355 km and a resolution oAz = 0.7
from white to red) and of the magnetic field lines for an os-km, corresponding t60 points covering the positive part of
cillating star; the three panels refer to times: 0, 9.88, and  finest grid which extends up tbl km.
18.59 ms, respectively. Itis important to remark that although  Figure[I1 displays in its left and middle panels two-
we start with a magnetic field that is initially confined insid dimensional cuts on ther, z) plane of the rest-mass density
the star, the inevitable presence of a small but finite nuzakri  (shown in a colorcode from white to red) at the initial and fi-
resistivity and our choice of a nonzero physical condugtivi nal times, i.e.f = Oms and¢ = 37 ms. A rapid comparison
near the surface of the star [we recall that our conductivityamong the three panels clearly shows the ability of the code
follows the profile given in EqL(49)], induce a slow but con- to reproduce stably the evolution of this oscillating stsoa
tinuous “leakage” of the magnetic field, which leaves the stawhen the magnetic field extends in its exterior. The righigban
and fills the computational domain. Because the externat magf Figure[11, on the other hand, shows in its top part shows the
netic field is essentially with a zero divergence and withrava evolution of the magnetic flux computed across a hemispheric
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FIG. 11: Left and Middle PanelsEvolution of the magnetic field lines displayed at tintles 0 ms and¢ = 37 ms. The rest mass density is
also shown with purple-red-yellow colorRight Panel:The top part shows the evolution of the magnetic flux compatdss a hemispheric
surface at a radius = 135 km, while the bottom part shows the power spectral densith@frest-mass density (black solid line) and of the
magnetic flux (blue dotted line).

surface at a radius = 135 km, which also shows signs of ~ Ours is not the first detailed investigation of this process
oscillations. We have computed the power spectrum of thesand relevant previous studies are that in Ref| [51] and the
oscillations and compared it with the corresponding one obmore recent one in Ref. [52]. However, our approach differs
tained for the central rest-mass density. The results af thifrom previous ones in that it correctly describes the geavit
comparison are shown in the bottom part of the right paneltional dynamics of a collapsing fluid (the semianalyticatkvo
with a black solid line referring to the rest-mass densitjueb in Ref. [51], in fact, considered the more rapid collapse of a
dotted line to the magnetic flux. The very good agreementiust sphere, for which the Oppenheimer-Snyder (OS) apalyti
between the two implies that the oscillations observed én th solution can be used [58]) and does not require any match-
magnetic flux are essentially triggered by the oscillations ing of the solution near the stellar surface (the fully rielat
the rest-mass density. tic work in Ref. [52] had to resort to an ingeniuous match-
ing between the interior ideal-MHD solution and a forceefre
one in the magnetosphere), leaving the complete evolufion o
3. Magnetized Collapse to a Black Hole the electromagnetic fields to our prescriptién](49) of a non-
uniform conductivity. Indeed, our solution is expected & b

Our final and most comprehensive test is represented b actly the same as the force-free one except in regionsawher

the collapse to a BH of a magnetized nonrotating star. Thi&>. — £~ < 0 and an anomalous resistivity appears. Since
is more than a purely numerical test as it simulates a proW€ can handle accurately such resistive regions, this ltest i

cess that is expected to take place in astrophysicallysreali lUStrates the capabilities of our resistive implementatiad

tic conditions, such as those accompanying the merger of S€7Ves as a more realistic approach to this astrophysieal sc
binary system of magnetized neutron st , 27], or of afi@o-

accreting magnetized neutron star. The interest in this pro In practice, we have considered the evolution of a nonrotat-
cess lays in that the collapse will not only be a strong sourcég neutron star with a gravitational mass2f5M, which

of gravitational waves, but also of electromagnetic radigt IS chosen to sit on the unstable branch of the equilibrium con
that could be potentially detectable (either directly opes= ~ figurations and is endowed with an initial poloidal magnetic
cessed signal). The magnetized plasma and electromagnefigld of strengthB. = 5 x 10'* G extending also in the ex-
fields that surround the star, in fact, will react dynamigall terior space. As for the previous stellar solutions, we use a
to the rapidly changing and strong gravitational fields @ th polytropic EOS withl' = 2 and K = 364.7 for the initial
collapsing star and respond by emitting electromagnetic ra data and continue to use this isentropic EOS also for the sub-
ation. Of course, no gravitational waves can be emitteden thSsequent evolution. The evolutions have been carried out in
case considered here of a nonrotating star, but we can nevet-computational domain with outer boundaryr&y,; = 241
theless explore with unprecedented accuracy the electromakm and a resolution ofz = 0.11 km, corresponding ta72
netic emission and assess, in particular, the efficienchef t Points covering the finest grid which extends upito5 km.
process and thus estimate how much of the available bind- Because the magnetic energy is only a small fraction of the
ing energy is actually radiated in electromagnetic wavas. O binding energy, the hydrodynamical and spacetime evaiutio
setup also allows us to investigate the dynamics of the eleaf the fluid star as it collapses to a BH is very similar to the
tromagnetic fields once a BH is formed and hence to assessimagnetized case and this has been discussed in greht detai
the validity of the no-hair theorem, which predicts the expo in [5S]. The most important difference, therefore, is in the
nential decay of any electromagnetic field in terms of Quastdynamics of the magnetic field, and this is shown in Eig. 12,
Normal Mode (QNM) emission from the BH. which reports two-dimensional cuts on the z) plane of the
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FIG. 12: Two-dimensional cuts on tlfe, z) plane of the collapse to a BH of a magnetized NS. Shown witbreare the rest-mass density
(colorcode from white to red) and the radial poynting vedtmiorcode from blue to green) in units 6>, while thin lines reproduce the
magnetic-field lines. The different snapshots refer to $ime- 0,0.32,0.57,0.65, 1.0 and1.1 ms, and an apparent horizon is marked with
a thin red line starting from = 0.57 ms. Note that all the matter is accreted into the hole andatwatadrupolar QNM ringdown is clearly
visible in the Poynting flux.
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FIG. 13: The same as the three bottom panels of EFig. 12 butanitiear scale ot5 km to highlight the dynamics near the horizon. It is now
very clear that a closed set of magnetic field lines is buit putside the horizon at= 1.0 ms, that is radiated away as QNM of the BH.

collapse to a BH of a magnetized NS. Shown with colors areghe instability to gravitational collapse develops, thisra re-
the rest-mass density (colorcode from white to red) and tharrangement of the external electromagnetic fields, dien
radial poynting vector (colorcode from blue to green), whil a toroidal electric fieldZ, ~ —wv, By produced in the inte-
thin solid lines reproduce the magnetic-field lines. rior of the perfectly conducting star, and which is continsio
across the stellar surface. As the collapse proceeds, she re

the exception of a small transient induced by truncatioarerr increase until an appararent horizon is found at 0.57 ms
which produces a small radiative outburst g€ 0.3 ms. As
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FIG. 14: The same as in F{g.]12, but where in addition to themesss density (colorcode from white to red) and the magsfietid lines (thin
solid lines) we show the electrically-dominated regions. (8 — E* < 0, colorcode from light blue to white in units aH?3).

and is marked with a thin red line in Flg.112 (we have used the

apparent-horizon finder described|in|[60]). E 24 ]
n

As the stellar matter is accreted onto the BH (the rest-mass S 8
outside the horizonMy, owt = 0 is zero byt 2 0.62 ms), g 16 ]
the external magnetic field which was anchored on the stel- & ]
lar surface becomes disconnected, forming closed magnetic — 0.8 .
field loops which carry away the electromagnetic energyeén th - ]
form of dipolar radiation. This process, which has been de- —~ 0 —

scribed through a simplified non-relativistic analyticabael 0.06
in Ref. [52], predicts the presence of regions wHéte> |B|
as the toroidal electric field propagates outwards as a wave. .§ o g4
This process can be observed very clearly in Eig. 13, which ™
displays the same three bottom panels of Ei§l. 12 on a smaller
scale of onlyl5 km to highlight the dynamics near the hori-
zon. In particular, it is now very clear that a closed set of
magnetic field lines is built just outside the horizor at 1.0 0
ms, that is radiated away. Note also that our choice of gauges
(which are the same used [n [61]) allows us to model without
problems also the solution inside the apparent horizonléVhi
the left panel of Fid_113 shows that most of the rest-massis di
sipated away already by= 0.65 ms (see discussion ih [62]
about why this happens), some of the matter remains on tHelG. 15: Top Panel: Luminosity calculated at a distanee= 39
grid near the singularity, anchoring there the magnetic fiel Km from the compact object. The black dotted line represerés
which slowly evolves as shown in the middle and right pan-Ume at which the apparent horizon is formed and the blackeths
els. A complementary view of the collapse process is aIS(I?'}?e corresponds to the t@e at which all the matter is wethia

' ; . . e horizon. Bottom Panel:Evolution of the total radiated energy
offered by Fig[[I4, which reports, in addition to the restssia

- ) 0 2 normalized to the initial magnetic energy.
density (colorcode from white to red) and the magnetic-field

rad

=
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FIG. 16: Left Panel: QNM ringdown of the magnetic field as measured through thene@gflux atr = 37 km. Again, the black dotted line
represents the time at which the apparent horizon is formedtee black dashed line corresponds to the time at whiclhelhiatter is well
within the horizon; the dot-dashed line represents insteadit to an exponential decaRRight Panel:Logarithm of the absolute values of the
magnetic and electric fluxes as normalized to the initial metig flux.

lines (thin solid lines), also the electrically-dominatedions  to a dipole only outside the star as in our case), differences
(i.e. B2 — E? < 0, colorcode from light blue to white). The in the stellar models, differences in the numerical apgnoac
larger scales used in this case makes it easier to followythe d (treatment of the surface of the star of the transition betwe
namics of the closed field lines that once produced near thigleal and force-free MHD). A closer comparison between the
horizon, propagate as dipolar radiation at infinity. two approaches will be carried out in a separate work.

The total electromagnetic luminosity,.q emitted during
the collapse and computed as surface integral of the Poynt- After BH formation, the luminosity decreases exponen-
ing flux over a spherical surface & km is shown in the top tially in a fashion which is typical of the QNM ringing of an
panel of Fig[Ib. Note the presence of a rise during the colelectrovacuum electromagnetic field in a Schwarzschild BH
lapse and of several pulses after the stellar matter has bespacetime. These QNMs are clearly visible also in the (ab-
accreted onto the black hole. The vertical dotted line represolute value of the) magnetic flux shown in the left panel of
sents the time at which the apparent horizon is first foundFig.[18, from which a comparison with the perturbative ex-
while the vertical dashed line corresponds to the time atiwhi pectations can be made. More specifically, by fitting the har-
all the matter is within the horizon (i.eMy, ..« = 0). The  monic oscillations of the ringdown and the exponential de-
peaks in the electromagnetic luminosity correspond to th€ay we have computed the frequencies of the “ringing-down”
closed magnetic-field loops that disconnect from the stdr anmagnetic-field flux for thé = 1 mode to bes = 0.344054 —
trasport electromagnetic energy. The bottom panel of Hg. 1 ¢ 6.46731 kHz, corresponding to a nonrotating black hole of
on the other hand, reports the evolution of the total electro2.74 M. The agreement with the analytical value is excel-
magnetic energy lost in radiatiai,.q and when normalized lent, with a relative error of only- 0.7% for the real part of
to the value of the initial magnetic energy outside the starthe frequency anet 5.6% for the imaginary oné [63].
Ey. Our results indicate therefore a total electromagnetic ef
ciency which is~ 5%; this result is smaller than the estimate  Finally, as a measure of the accuracy of our simulation we
made in Ref.[[51] (which was af 20%), but, besides the dif- can compare the magnetic flux with the corresponding etectri
ferentinitial data used, this difference can be easilyanted  flux, which should vanish in the continuum limit since no net
for by the fact that the gravitational collapse simulatetkhie  electric charge should be present. This is indeed the case, a
considerably slower (and hence inefficient) than the OS onean be deduced from the right panel of [Figl 16, which reports
computed in [[51], where matter is free falling. Our efficignc the two fluxes normalized to the initial magnetic flux. Note
is also smaller than the one computed in Ref| [52] and whiclthat the electric flux is about 30 orders of magnitude smaller
is ~ 16% once the same definition fdf, is used. However, than the magnetic flux before BH formation, increasing after
many other factors could be behind this difference, e.fferdi  an apparent horizon is found, but remaining 15-10 orders of
ences in the initial data (use of a dipole everywhere in @str magnitude smaller.



17

V. CONCLUSIONS Finally, we have considered the challenging and compre-
hensive test represented by the gravitational collapseaig

We have introduced a general-relativistic resistive MHDNetized nonrotating star to a BH. This scenario has an as-
formalism as an extension of the special relativistic tagis trophysical interest of its own as it could lead to the emis-
MHD formalism reported in Ref[[19] for a 3+1 decompo- Sion of electromagnetic radiation, potentially detectalh- _
sition of the spacetime. Our numerical implementation hagleéed we have found that as the collapse proceeds, elefgtrical
been made within th€act us computational infrastructure dominated regions develop and lead to the development of
as a continuation of the already existing general-refgtiivi magnetic-field loops that propagate at the speed of light, ca
hydrodynamics cod@hi sky [56,/59] and of the ideal-MHD  'ying away electromagnetic energy. Upiti of the initial -
codeWhi skyVHD [11]. magnetic energy can be lost in this way and the following

Our numerical approach exploits Implicit-Explicit (IMEX) evolution of the magnetic field follows a (;Iean exponent!al
methods and allows us to treat astrophysical problems if€cay, as expected by an electromagnetic perturbation in a
which different spatial regions fall into different regimef ~ Schwarzschild spacetime. The match of the measured QNMs
conductivities. The flexibility introduced by using the Rign ~ @nd the perturbative predictions is well of a few percent or
Kutta will allow us to consider not only more general Ohm l€ss.
laws and a variety of astrophysical dynanios [24, 64], but als  Our new code is now ready to be applied to study a vari-
to use better dispersion relations to calculate the vedscit ety of astrophysical scenarios. These include the modefing
in the HLLE method and to describe more accurately nonthe magnetosphere that could be produced after the merger of
relativistic systemg [65]. binary neutron stars, or when the hypermassive neutron star

Our implementation has been tested for a number of strincollapses to a BH and is surrounded by a hot torus. The work
gent tests and its robustness has been verified. The speciit-Ref. [30] has already reported that under these condition
relativistic tests involved the propagation of circulapiglar-  strong magnetic fields can be produced and that a jet-like mag
ized Alfvén waves, the evolution of current sheets and khoc netic structure can develop. It is exciting to consider ket
tubes in one dimension, cylindrical and spherical explosio the resistive losses that are expected in the process wil pr
tests in two and three dimensions respectively, the ewniuti vide sufficient energy to launch of a powerful jet, not yet ob-
of stable and the collapse of unstable magnetized stars-in dgerved in Ref[[30]. Also of great interest is to study BH mag-
namical spacetime. We have compared our numerical resultietospheres and the origin of jets so as to answer the ques-
either with the analytical solution (in the cases where one e tion of whether an ergosphere is critical for the developimen
ists), or with the numerical ideal-MHD solution (in the limi of the Blandford-Znajek mechanism. Finally, our approach i
of high conductivity), proving that our implementationists ~ also well suited to study the properties of accretion distoon
able to describe regions with a wide range of conductivitiesBHs and to elucidate the role that resistive losses play en th
with or without large discontinuities and shocks. whole energetic budget. We will report on these application

We have also considered genuinely general-relativissiste in forthcoming works.
in terms of the evolution of nonrotating magnetized stafs ei
ther with fixed or fully dynamical spacetimes. Our stars have
been endowed with magnetic fields of varying strength, ei-
ther confined in their interior or permeating also the exteri
space, and have been modelled with a non-uniform conductiv-
ity that allows us to recover the ideal-MHD limit in the inier This work was supported in part by the DFG grant
of the star and such the electrovacuum limit outside the staSFB/Transregio 7; the computations were made at the AEI
All of our results indicate that the resistive implemerdatis  and also on the cluster RANGER at the Texas Advanced Com-
able to follow the evolution of the oscillations triggeredthe  puting Center (TACC) at The University of Texas at Austin
small truncation errors and that the associated eigendérequ through XSEDE grant No. TG-PHY110027. BG acknowl-
cies match well those either reported with other hydrodynamedges support from NASA Grant No. NNX09AI75G and NSF
ics and ideal-MHD code5 [11, 166] or from perturbation theory Grant No. AST 1009396.
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