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We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics
(MHD) equations within theWhisky code. The numerical method adopted exploits the propertiesof Implicit-
Explicit Runge-Kutta numerical schemes to treat the stiff terms that appear in the equations for small electrical
conductivities. Using tests in one, two, and three dimensions, we show that our implementation is robust and
recovers the ideal-MHD limit in regimes of very high conductivity. Moreover, the results illustrate that the code
is capable of describing physical setups in all ranges of conductivities. In addition to tests in flat spacetime, we
report simulations of magnetized nonrotating relativistic stars, both in the Cowling approximation and in dy-
namical spacetimes. Finally, because of its astrophysicalrelevance and because it provides a severe testbed for
general-relativistic codes with dynamical electromagnetic fields, we study the collapse of a nonrotating star to
a black hole. We show that also in this case our results are in very good agreement with the perturbative studies
of the dynamics of electromagnetic fields in a Schwarzschildbackground and provide an accurate estimate of
the electromagnetic efficiency of this process.

PACS numbers: 04.25.dk, 04.25.Nx, 04.30.Db, 04.40.Dg, 95.30.Sf, 97.60.Jd

I. INTRODUCTION

Magnetic fields play an important role in several astrophys-
ical scenarios, many of which involve also the presence of
compact objects such as neutron stars (NSs) and black holes
(BHs), whose accurate description requires the numerical so-
lution of the equations of general relativistic magnetohydro-
dynamics (GRMHD).

In most of these phenomena, such as for the interior dynam-
ics of magnetized stars, or for the accretion of matter onto
BHs, the electrical conductivity of the plasma is extremely
high and the ideal-MHD approximation, in which the con-
ductivity is actually assumed to be infinite, represents a very
good approximation. In this case, the magnetic flux is con-
served and the magnetic field is frozen in the fluid, being sim-
ply advected with it. Following this approximation, several
numerical codes solving the equations of general-relativistic
ideal-MHD have been developed over the years [1–13]. By
construction, therefore, the ideal-MHD equations neglectany
effect of resistivity on the dynamics. In practice, however,
even in the scenarios mentioned above, there will be spatial
regions with very hot plasma where the electrical conductiv-
ity is finite and the resistive effects, most notably, magnetic
reconnection, will occur in reality. Such effects are expected
to take place, for example, during the merger of two magne-
tized NSs or of binary system composed by a NS and a BH,
or near the accretion disks of AGNs, and could provide an
important contribution to the energy losses from the system.

The importance of resistivity effects can be easily deduced
from the evolution of a current sheet in high but finite conduc-
tivity. Under these conditions, several instabilities cantake
place in the plasma and release substantial amounts of energy
via magnetic reconnection [14], as frequently observed, for
example, in solar flares [15]. The study of reconnection in rel-
ativistic phenomena is instead important to try to explain the
origin of flares in relativistic sources, such as blazars [16] and

magnetars [17]. It is not surprising then that several groups
have developed in the recent years numerical codes to solve
the equations of special relativistic resistive MHD [18–24].

In those scenarios that involve compact objects such as NSs
and BHs, resistivity plays also a very important role and the
equations of ideal MHD would not be sufficient to study them.
In the case of general relativistic simulations of magnetized
binary NS (BNS) and NS-BH mergers, for example, the mag-
netic field has been up to now always confined to the interior
of the NS, where the ideal-MHD limit is a very good approxi-
mation [25–31] and therefore neglecting any effect that could
come from the magnetic field evolution in the NS magneto-
sphere. The equations of general relativistic resistive MHD
provide a framework that can be used to study both the re-
gions of the domain with a high (such as the NS interior) and
small conductivity (such as the NS magnetosphere). More-
over, when the conductivity is set to zero, Maxwell equa-
tions in vacuum are recovered [19], thus allowing for the
study of the magnetic field evolution also well outside the NS.
This is particularly important, since several recent workshave
claimed that the interaction of magnetic fields surrounding
BNS and NS-BH systems may lead to strong electromagnetic
emissions [32], and even affect the dynamics of these systems
(see [33] but also [34] for a different conclusion). In order
to verify such predictions, it is therefore important to be able
to accurately follow the dynamics of the magnetic fields in
the region surrounding these compact binary and this cannot
be done in the limit of ideal MHD. Last but not least, binary
mergers are also thought to be behind the central engine of
short gamma-ray bursts (GRBs) [30, 35–37] and the accurate
study of the magnetic field both before and after merger could
provide insights on current observations.

We present the first fully general-relativistic resistive MHD
code in a 3+1 decomposition of spacetime. We extended
the ideal GRMHDWhisky code to include the general rel-
ativistic version of the resistive MHD formalism presentedin
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Ref. [19]. This new version of theWhisky code can han-
dle different values of the conductivity going from the ideal
MHD limit (for very high conductivities) to resistive and elec-
trovacuum regimes (obtained respectively with low and zero
conductivity). The code implements state-of-the-art numeri-
cal techniques and has been tested in both fixed and dynamical
spacetimes. In particular we show the first fully general rel-
ativistic simulation of a magnetized NS collapse to BH using
resistive MHD to accurately follow the dynamics of magnetic
fields both inside and outside the NS.

The paper is organized as follows. In Section II we describe
the general relativistic resistive MHD equations, in Sec. III the
main numerical methods used to solve them, and in Sec. IV
our numerical tests. In Sec. V we summarize and conclude.

Throughout this paper we use a spacelike signature of
(−,+,+,+) and a system of units in whichc = G = M⊙ =
1. Greek indices are taken to run from 0 to 3, Latin indices
from 1 to 3 and we adopt the standard convention for the sum-
mation over repeated indices.

II. MATHEMATICAL SETUP

We next describe our extension of the special-relativistic
resistive MHD formalism presented in Ref. [19] to a general
relativistic MHD framework. A similar (but independent) ex-
tension has been presented recently in [24].

A. The magnetohydrodynamic equations

The complete set of relativistic MHD equations result from
the combination of the conservation of rest mass

∇µ(ρu
µ) = 0, (1)

and the conservation energy and momentum conservation

∇νT
µν = 0. (2)

The stress-energy tensor for a magnetized perfect fluid is
given by

Tµν ≡ [ρ(1 + ǫ) + p]uµuν + pgµν + Fµ
λFνλ

−1

4
gµν F

λαFλα, (3)

where the rest mass densityρ, the specific internal energyǫ,
the pressurep and the velocityuµ describe the state of the
fluid, and are usually referred to as the “primitive” variables.
The pressurep is described by an equation of state (EOS) as
a functionp = p(ρ, ǫ) and it is a property of the type of fluid
considered.

The velocity of the fluid can be decomposed as

uµ =W (nµ + vµ), (4)

wherevµ corresponds to the three-dimensional velocity mea-
sured by Eulerian observers moving along a four-vectornµ

normal to the spacelike hypersurface in a 3+1 decomposition
of spacetime (i.e.,vµnµ = 0). Notice that the time com-
ponent is not independent due to the normalization relation
uµuµ = −1, so that

W ≡ −nµu
µ = (1− viv

i)−1/2,

ui = W

(

vi − βi

α

)

, (5)

whereW is the Lorentz factor.
The 3+1 decomposition of the conservation laws (2),

(3) provides the evolution equations for the fluid variables
D,U, Si, which comes from the following projections of the
stress-energy tensor

D ≡ ρW, (6)

U ≡ hW 2 − p+
1

2
(E2 +B2), (7)

Si ≡ hW 2vi + ǫijkE
jBk, (8)

Sij ≡ hW 2vivj + γijp− EiEj −BiBj +

1

2
γij(E

2 +B2) , (9)

whereγij is the usual spatial part of the metric and where
we have introduced the specific enthalpyh = ρ(1 + ǫ) + p.
The conserved rest-mass densityD, the energy densityU and
the momentumSi are usually referred to as the “conserved”
quantities since they can be shown to satisfy conservation laws
in flat spacetimes [38]. In general, it is more convenient to
describe the energy conservation in terms of the quantityτ =
U − D, which allows to recover the Newtonian limit of the
energy density.

B. The Maxwell equations

Given a four-metric tensorgµν , the dynamics of the electro-
magnetic fields is described by the extended Maxwell equa-
tions [19, 39]

∇ν(F
µν + gµνψ) = Iν − κnνψ, (10)

∇ν(
∗Fµν + gµνφ) = −κnνφ, (11)

whereFµν is the Maxwell tensor,∗Fµν is the Faraday ten-
sor, Iν is the electric current and(φ, ψ) are scalars to con-
trol the constraints. In vacuum or highly magnetized plasmas,
where the electric and magnetic susceptibilities of the medium
vanish, the Faraday tensor can be written as the dual of the
Maxwell tensor

∗Fµν =
1

2
ǫµναβFαβ , (12)

with ǫµναβ ≡ ηµναβ/
√
g andg the determinant of the four-

metric. These tensors can be decomposed in terms of the
electric and magnetic fields measured by an observer moving
along a normal directionnν as:

Fµν = nµEν − nνEµ + ǫµναβBαnβ , (13)
∗Fµν = nµBν − nνBµ − ǫµναβEαnβ . (14)
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Following the same decomposition, the electric currentIµ

can be written as:

Iµ = nµq + Jµ, (15)

whereq andJµ are the charge density and the current for an
observer moving alongnµ, respectively. Using these defini-
tions and performing a 3+1 decomposition of the equations
(10), (11), (15) with respect to the normal vectornν , we ar-
rive to the following evolution equations

(∂t − Lβ)E
i − ǫijk∇j(αBk) + αγij∇jψ =

α trKEi − αJ i, (16)

(∂t − Lβ)ψ + α∇iE
i = αq − ακψ, (17)

(∂t − Lβ)B
i + ǫijk∇j(αEk) + αγij∇jφ =

α trKBi, (18)

(∂t − Lβ)φ + α∇iB
i = −ακφ, (19)

where the scalar fieldsφ, ψ measure the deviation from the
constrained solution. Their evolution equations contain damp-
ing terms such that the constraint violations decay exponen-
tially to zero over a timescale1/κ [19, 39].

A consequence of the Maxwell equations is the current con-
servation

∇µI
µ = 0, (20)

which provides an evolution equation for the charge density

(∂t − Lβ)q +∇i(αJ
i) = αKq. (21)

The charge density can either be computed using the evolution
equation above or using the constraintq = ∇iE

i.

Finally, a relation for the current as a function of the other
fields is needed in order to close the system. Ohm’s law pro-
vides a prescription for the spatial conduction current. Wewill
consider here an isotropic scalar Ohm law

J i = qvi +Wσ[Ei + ǫijkvjBk − (vkE
k)vi], (22)

where the conductivityσ is chosen to be either a constant or a
function of the rest-mass density.

C. The full set of evolution equations

Combining the MHD and Maxwell equations we obtain the
following set of evolution equations, which we write in flux-
conservative form as

∂t(
√
γBi) + ∂k(−βk√γBi + αǫikj

√
γEj) = −√

γBk(∂kβ
i)− α

√
γγij∂jφ, (23)

∂t(
√
γEi) + ∂k(−βk√γEi − αǫikj

√
γBj) = −√

γEk(∂kβ
i)− α

√
γγij∂jψ − α

√
γJ i, (24)

∂tφ + ∂k(−βkφ+ αBk) = −φ(∂kβk) +Bk(∂kα)−
α

2
(γlm∂kγlm)Bk − ακφ, (25)

∂tψ + ∂k(−βkψ + αEk) = −ψ(∂kβk) + Ek(∂kα)−
α

2
(γlm∂kγlm)Ek + αq − ακψ, (26)

∂t(
√
γq) + ∂k[

√
γ(−βkq + αJk)] = 0, (27)

∂t(
√
γD) + ∂k[

√
γ(−βkD + αvkD)] = 0, (28)

∂t(
√
γτ) + ∂k{

√
γ[−βkτ + α(Sk − vkD)]} =

√
γ(αSlmKlm − Sk∂kα), (29)

∂t(
√
γSi) + ∂k[

√
γ(−βkSi + αSk

i)] =
√
γ
[α

2
Slm∂iγlm + Sk∂iβ

k − (τ +D)∂iα
]

. (30)

III. NUMERICAL SETUP

This new version of theWhisky code implements sev-
eral numerical methods that have been successfully used in its
ideal-MHD version [11, 29], but it also implements new nu-
merical algorithms which are instead needed in order to han-
dle the evolution in time of the resistive MHD equations. Here
we briefly summarize the numerical methods that are in com-
mon with the ideal-MHD version ofWhisky [11, 27, 29, 40],
while in the following section we provide a more detailed de-
scription of the new algorithms that have been implemented.

The evolution of the spacetime is obtained using the

CCATIE code, a three-dimensional finite-differencing code
providing the solution of a conformal traceless formulation of
the Einstein equations [40]. The general-relativistic RMHD
equations are solved instead using high-resolution shock-
capturing schemes (HRSC) [41]. As its ideal-MHD coun-
terpart, also theWhiskyRMHD code implements several re-
construction methods, such as Total-Variation-Diminishing
(TVD) methods, Essentially-Non-Oscillatory (ENO) meth-
ods [42] and the Piecewise Parabolic Method (PPM) [43].
The Harten-Lax-van Leer-Einfeldt (HLLE) approximate Rie-
mann solver [44] has been used to compute the fluxes in all
the results presented here. Since the code is based on the
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Cactus [45] computational framework, it can also use adap-
tive mesh refinement (AMR) via theCarpet driver [46].

A. IMEX Runge-Kutta Methods

The general-relativistic RMHD equations in high-
conductivity media contain stiff terms which make the time
evolution with an explicit time integrator very inefficient, if
not impossible. The prototype of the stiff system of partial
differential equations can be written as

∂tU = F (U) +
1

ε
R(U), (31)

whereε ≡ 1/σ > 0 is the relaxation time. In the limit of
ε → ∞, the second term on the right-hand side of Eq. (31)
vanishes and the system is then hyperbolic with a spectral ra-
dius ch (i.e., with ch being the absolute value of the maxi-
mum eigenvalue). In the opposite limit ofε → 0 the first
term on the right-hand side of Eq. (31) vanishes and the sys-
tem is clearly stiff, since the timescaleε of the relaxation (or
stiff term)R(U) is very different from the speedsch of the
hyperbolic (or non-stiff) partF (U).

Stiff systems of this type can be solved efficiently by a com-
bination of implicit and explicit time integrators. In particular,
the IMEX Runge-Kutta scheme consists in applying an im-
plicit discretization to the stiff terms and an explicit oneto the
non-stiff terms. When applied to the system (31) it takes the
form [47]

U
(i) = U

n + ∆t

i−1
∑

j=1

ãijF (U
(j)),

+ ∆t
N
∑

j=1

aij
1

ε
R(U(j)) (32)

U
n+1 = U

n + ∆t

N
∑

i=1

ω̃iF (U
(i)) + ∆t

N
∑

i=1

ωi
1

ε
R(U(i)),

whereU(i) are the auxiliary intermediate values of the Runge-
Kutta time integrator. The matrices̃A = (ãij), ãij = 0 for
j ≥ i andA = (aij), areN × N matrices such that the
resulting scheme is explicit inF and implicit inR. An IMEX
Runge-Kutta scheme is characterized by these two matrices
and the coefficient vectors̃ωi andωi. Since the simplicity
and efficiency of solving the implicit part at each step is of
great importance, it is natural to consider diagonally-implicit
Runge-Kutta (DIRK) schemes for the stiff terms, i.e., (aij = 0
for j > i). The matrices of coefficients are reported in Table
I.

Our approach to the solution of the potentially stiff set
of general-relativistic RMHD equation consists thereforein
the use of the IMEX RK method introduced above. For
the particular set of equations (23)–(30), the evolved fields
can be split into stiff termsV = {Ei} and non-stiff terms
W = {Bi, ψ, φ, q, τ, Si, D}.

The evolution of the electric field (24) can become stiff de-
pending on the value of the conductivityσ = 1/ε in the Ohm

TABLE I: Tableau for the explicit (left) implicit (right) IMEX-
SSP3(4,3,3) L-stable scheme

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0

1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

a a 0 0 0

0 −a a 0 0

1 0 1− a a 0

1/2 b c 1/2− b− c− a a

0 1/6 1/6 2/3

a = 0.24169426078821 , b = 0.06042356519705 ,

c = 0.12915286960590

law (22). Its right-hand-side can be splitted in potentially-stiff
terms and regular ones

∂t(
√
γEi) = F i

E +Ri
E , (33)

where we have introduced the factor1/ε on the definition of
Ri

E and

F i
E = −∂k[−βk√γEi − αǫikj

√
γBj ]−

√
γEk(∂kβ

i)−
α
√
γγij∂jψ − α

√
γqvi, (34)

Ri
E = −α√γWσ

[

Ei + ǫijkvjBk − (vkE
k)vi

]

. (35)

In order to evolve this system numerically, the
fluxes {Fτ , FSi , FD} have to be computed at each
timestep. This implies that the primitive quantities
{ρ, p, vi, Ei, Bi} have to be recovered from the con-
served fields{D, τ, Si,

√
γ Ei,

√
γ Bi}. With the

exception of very simple EOSs, this recovery cannot be
done analytically and it is instead necessary to solve a set of
algebraic equations via some root-finding iterative procedure,
which we will describe below.

Before that, we note that the solution of the conserved quan-
tities{D, τ, Si,

√
γ Bi} at timet = (n+1)∆t is obtained by

simply evolving the equations (28), (30), (23). However, the
same procedure for the electric field leads only to an approx-
imate solution{Ẽi} containing only the explicit terms. The
full solution, involving also the potentially stiff terms,requires
therefore the inversion the implicit equation (24), which de-
pends on the velocityvi and the fields{Bi, Ẽi}. In the case
of the scalar Ohm law (22), the stiff part is linear inEi, so a
simple analytic inversion can be performed

Ei = M
−1(vj) [Ẽi + σ̄ SE(v

j , Bj)], (36)

whereσ̄ ≡ aii ∆t α W σ and the inversion matrix is given by

M=















1 + σ̄(1 − vxv
x) −σ̄(vyvx) −σ̄(vzvx)

−σ̄(vxvy) 1 + σ̄(1− vyv
y) −σ̄(vzvy)

−σ̄(vxvz) −σ̄(vyvz) 1 + σ̄(1− vzv
z)















.

(37)
The recovery procedure is similar to the one presented in
Ref. [19] and can be summarized in the following steps:
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1. Consider an initial guess for the electric field. Some
possible options are: its value in the previous timestep,
its approximate value in the current time stepẼi, or the
ideal MHD valueEi = −ǫijkvjBk, wherevj is the
velocity in the previous time level.

2. Subtract the electromagnetic field contributions from
the conserved fields, namely compute

τ̃ = τ − 1

2
(E2 +B2), (38)

S̃i = Si − ǫijkE
jBk. (39)

3. Perform the recovery as in the non-magnetized case:
The EOS can be used to write the pressure as a function
of the conserved quantities and the unknownx = hW 2,
so that the definition ofτ can be written as

f(x) =

(

1− Γ− 1

W 2Γ

)

x+

(

Γ− 1

ΓW
− 1

)

D

+
Γ− Γp

Γ(Γp − 1)
K

(

D

W

)Γp

− τ̃ , (40)

which must vanish for the physical solutions. HereΓp

andΓ are the adiabatic indices corresponding to an ideal
gas and a polytropic EOS, respectively, whileK is the
polytropic constant. By settingΓ = 1 we recover the
simple polytropic EOS, while the ideal EOS can be re-
covered by settingΓp = Γ.

4. A solution of the functionf(x) = 0 can be found
numerically by means of an iterative Newton-Raphson
solver. The initial guess for the unknownx is given by
the previous time step.

5. After each step of the Newton-Raphson solver, update
the values of the fluid primitives

vi =
S̃i

x
, W 2 =

x2

x2 − S̃2
, ρ =

D

W
, (41)

p =
Γ− 1

Γ

( x

W 2
− ρ

)

+
(Γp − Γ)KρΓp

Γ(Γp − 1)
. (42)

and then invert the electric field according to (36).

6. Iterate the steps 2.–5. until the difference between two
successive values ofx and the electric field fall below a
given threshold, usually of the order of10−10.

This procedure converges quickly in the high-conductivity
regions if the ideal MHD solution is chosen as an initial guess,
and in the intermediate conductivity regions if the initialguess
is given by the approximate electric field̃Ei. In general,. 5
iterations are sufficient for intermediate conductivities, while
. 70 iterations are usually necessary in the regions with high
conductivity.

IV. NUMERICAL TESTS AND RESULTS

In this extended Section we report the numerical results ob-
tained in one-, two- and three-dimensional tests, which con-
firm that our implementation is correct and provides the ex-
pected results in a large range of conductivities. More specif-
ically, the one-dimensional tests involve:i) a large-amplitude
circularly-polarized (CP) Alfvén wave to validate that our im-
plementation matches the ideal-MHD results in the high con-
ductivity regime; ii) the evolution of a self-similar current
sheet, which tests our implementation in the intermediate con-
ductivity regime;iii) a collection of shock-tube tests involving
a range of uniform and non-uniform conductivities. In these
particular tests we also examine the zero-conductivity regime,
where the electromagnetic fields are expected to follow the
vacuum Maxwell equations and hence behave as propagating
waves.

Following the one-dimensional tests, we then present two
and three-dimensional tests, which include the standard cylin-
drical and spherical explosion tests, which we consider in the
case of very large conductivities in order to test the ideal-
MHD limit of our equations. Finally, we have performed three
different sets of simulations involving spherical magnetized
stars in general relativity. The first setup consists in a spherical
(TOV) star with prescribed magnetic fields confined initially
in the interior of the star. The second set involves the evo-
lution of a magnetized star with initial data generated by the
LORENE library and having a dipolar magnetic field that ex-
tends also outside the star. As a conclusive three-dimensional
test we consider the gravitational collapse of a nonrotating star
to a black hole, where the initial data is again generated by the
LORENE library [48].

With the exception of the collapsing star, where we have
used a polytropic EOS, all simulations reported here have em-
ployed an ideal gas (Γ-law) EOS

p = ρǫ(Γ− 1) , (43)

with Γ = 2 for the one-dimensional tests andΓ = 4/3 for the
two and three-dimensional tests. In addition, for the evolu-
tion of the stable magnetized stars we have adopted aΓ = 2.
As mentioned above, the collapse of the unstable magnetized
star has been followed using a polytropic EOS,p = KρΓ,
with Γ = 2. Finally, to ensure a divergence-free magnetic
field with the our hyperbolic divergence-cleaning approach,
we have set the damping coefficientκ to be one everywhere.

A. One-dimensional Test Problems

1. Circularly Polarized Alfvén waves

The present test has been discussed in detail in Ref. [10] and
it computes the propagation of a large-amplitude circularly-
polarized Alfvén wave through a uniform background mag-
netic fieldB0. For the purpose of this test, we set a very high
conductivityσ = 106 in order to recover the ideal-MHD limit.
Since the propagating wave is expected to be the advected ini-
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FIG. 1: Circularly-Polarized Alfvén wave. By component
of the magnetic field for three different resolutions∆x =
{1/50, 1/100, 1/200}, together with the exact initial solution (black
solid line). Clearly, the numerical solution provided by the resistive
MHD implementation and the exact one overlap for a uniform con-
ductivity σ = 106 and the highest resolution.

tial profile, it is convenient to apply periodic boundary con-
ditions and compare the evolved profile after one full period
with the initial one, in order to check the accuracy of our im-
plementation.

In particular, we consider a CP Alfvén wave with a normal-
ized amplitudeηA traveling along positivex-axis, in a uni-
form background magnetic fieldB0 with components

Bi = {B0, ηAB0 cos[k(x− vAt)], ηAB0 sin[k(x− vAt)]}.
(44)

For simplicity, we takevx = 0 and write the remaining veloc-
ity components as

vy = −vABy/B0 , vz = −vABz/B0 , (45)

where

v2A =
2B2

0

ρh+B2
0(1 + η2A)



1+

√

1−
(

2ηAB2
0

ρh+B2
0(1 + η2A)

)2




−1

.

(46)
By settingρ = p = ηA = 1 andB0 = 1.1547, we fix the
Alfvén velocity to vA = 0.5. Therefore, in a computational
domain centered atx = 0 with x ∈ [−0.5, 0.5], we expect
the wave to return to its initial position after one full period
t = L/vA = 2. The comparison of the numerical solution
with the initial condition (44) att = 0 gives us a measure of
the error.

In principle, the resistive MHD formalism would allow us
to recover the ideal-MHD limit only for an infinite conduc-
tivity. In practice, however, the use of a conductivity as large
asσ = 106 is sufficient to obtain a solution that converges
to the ideal-MHD one with increasing resolution. As a re-
sult, we have chosen to perform simulations with a uniform

FIG. 2: Self-similar current sheet.By component of the magnetic
field at the initialt = 1 and final timet = 10. The exact solution at
t = 1 is shown with a dashed blue line. The solution given by the
analytic expression (47) att = 10 (black solid line) is indistinguish-
able from the numerical solution obtained form the resistive MHD
equations (red dashed line).

conductivity of σ = 106, using the following resolutions:
∆x = {1/50, 1/100, 1/200}.

In Fig. 1 we show the componentBy at timet = 2, cor-
responding to one full period. By superimposing the results
at t = 2 with the initial data att = 0, it is evident that the
numerical solution of the resistive MHD equations tends to
the ideal-MHD exact solution for a high-enough conductiv-
ity and resolution. We have used both a linear reconstruction
with monotonized-central (MC) slope limiter and the second
order PPM reconstruction. The numerical solution converges
to the exact one at second order when using PPM reconstruc-
tion and at second order with the linear reconstruction, exactly
the same convergence rates than with the original ideal MHD
system implemented inWhiskyMHD.

2. Self-similar Current Sheet

We next considera a test that involves the evolution of a self-
similar current sheet, as proposed in Ref. [18]. This setup is
useful for testing codes which solve the resistive MHD equa-
tions with a moderate conductivity regime, which we set to be
σ = 100.

In practice, the initial data consists in a magnetic field
solely in they-direction which changes sign in a thin cur-
rent layer. Provided that the initial solution is in equilibrium
(i.e., the pressure and density are constant, and the velocity
is zero) and that the magnetic pressure is much smaller than
the fluid pressure everywhere, then the evolution of the mag-
netic field is given by the simple diffusion equation∂tBy −
(1/σ) ∂2xB

y = 0, which will be responsible for the diffu-
sive expansion of the current layer in response to the physical
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FIG. 3: Shock-tube Tests.By component of the magnetic field at
t = 0.4 for different resolutions∆x = {1/100, 1/200, 1/400}.
The highest resolution∆x = 1/400 matches the exact ideal-MHD
solution remarkably well.

resistivity (we are also assuming thatEi = 0 = ∂tE
i). Un-

der these simplified assumptions, the analytical solution of the
diffusion equation is given, fort > 0, by

By(x, t) = B0 Erf

(

1

2

√

σ

ξ

)

, (47)

whereξ ≡ t/x2 andErf is the error function. Clearly, as the
evolution proceeds, the current layer expands in a self-similar
fashion.

Following [18, 19], we use as initial data the analytic so-
lution (47) att = 1 and set the density and pressure to be
uniform with ρ = 1 andp = 50 respectively, while keep-
ing the components of the electric field and velocity to zero
initially. In our calculations we have used a computational
domain with extentsx = y = z ∈ [−5, 5] with a resolution
of ∆x = 1/200. Furthermore, a linear reconstruction method
was adopted with the further application of the MC limiter.

In Fig. 2 we present the results we obtained by solving
numerically the resistive MHD equations and the compari-
son with the exact solution (47) att = 10 (black solid line).
Clearly, the numerical solution (red dashed line) is indistin-
guishable from the analytic one, thus providing convincing
evidence that the code can accurately describe resistive evolu-
tions with intermediate values of the conductivity.

3. Shock-Tube Tests

We next consider the numerical solution of the standard of
Brio and Wu shock-tube test [49] as adapted for its MHD im-
plementation and using either a variety of uniform or space-
dependent conductivities parameterized by the reference con-
ductivity σ0. More specifically, the left (L) and right (R)

FIG. 4: Shock-tube Tests.By component of the magnetic field for
conductivitiesσ0 = {0, 10, 102, 103, 106} at t = 0.4 and resolution
∆x = 1/200. Forσ0 = 0 the magnetic field is governed by a wave-
like equation, corresponding to the solution of the Maxwellequations
in vacuum.

states are initially separated by a discontinuity atx = 0.5
and are given by [50]

(ρL, pL, B
y
L) = (1.0, 1.0, 0.5) ,

(ρR, pR, B
y
R) = (0.125, 0.1, −0.5) ,

while all other variables are set to zero. The ideal-MHD evo-
lution of the aforementioned setup withBx = 0 leads to
two fast waves, one rarefaction propagating to the left and a
shock propagating to the right of the discontinuity. The solu-
tion of this test in the ideal-MHD limit exists and is found in
the exact ideal-MHD Riemann solver provided by Ref. [50].
For the rest of the one-dimensional tests, any comparison be-
tween the solution of the resistive MHD equations in the high-
conductivity regime and the exact solution of the ideal-MHD
equations is performed with data obtained from the publicly
available code [50]. All tests have been performed employing
a linear reconstruction method with further application ofthe
MC slope limiter.

As a first setup of our shock-tube tests, we consider the
case of a uniform high conductivityσ = σ0 = 106 and, in
analogy with the Alfvén-wave test in the high-conductivity
regime, we verify that the solution of the coupled Maxwell-
Hydrodynamics equations tends to the ideal-MHD exact so-
lution [50] as the resolution is increased. Figure 3 reports
the magnetic field componentBy at t = 0.4 for the three
resolutions∆x = {1/100, 1/200, 1/400} considered. The
high-resolution result matches the exact ideal-MHD solution
so well that is difficult to distinguish them, thus providingthe
first evidence that our implementation is robust also in the
presence of discontinuities.

As a second setup of the shock-tube tests, we consider the
case in which the conductivity is still uniform in space, but
of different strength. In particular, we perform the same test
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FIG. 5: Shock-tube Tests.The left panel shows the conductivity profile att = 0.4 for non-uniform conductivity with different power laws,
i.e.,γ = {0, 6, 9, 12}. Theγ = 0 case corresponds to the high-conductivity regime of the resistive MHD equations. The right panel reports
instead theBy component of magnetic field for the same initial conditions as in the left one. The leftmost region tends to the ideal MHD
solution, while the rightmost tends to the vacuum solution for γ = 12.

for σ = {0, 10, 102, 103, 106}, while keeping the resolution
fixed at∆x = 1/200. Figure 4 reports different solutions of
the magnetic-field componentBy given by the resistive MHD
equations with different values ofσ0. It is important to note
here that the solutions change smoothly from the ideal-MHD
solution computed forσ0 = 106, to the wave-like solution
for σ0 = 0, which corresponds to the propagation of a dis-
continuity at the speed of light, corresponding to a solution
of the vacuum Maxwell equations. The ability of treating the
two extreme behaviours of the Maxwell-MHD equations via
a resisitive treatment is an essential feature of our approach
and a fundamental one in the description of the dynamics of
magnetized binary neutron stars.

As a final setup our of our suite of shock-tube test, we have
considered the same initial data but now prescribed a non-
uniform conductivity given by the expression

σ = σ0D
γ , (48)

whereγ is an integer exponent we vary in the rangeγ ∈
[0, 12]. Thes prescription above introduces nonlinearities with
respect to the conserved rest-mass densityD and provides
an intuitive way of tracking the dense fluid regions. It leads
to low values of the conductivity in places were the plasma
is tenuous and high values in more dense regions, which
will prove very useful later on when evolving magnetized
stars. However, this prescription is far from being realis-
tic and normally a more general conductivity prescription
σ = σ(D, τ, E) is to be seeked starting from micro-physical
considerations.

Following [19], we adopt the same initial data as before,
however this time we change the exponentγ of Eq. (48) while
maintaining the value of conductivity toσ0 = 106.

The results of this last test are reported in the left panel of
Fig. 5, which show the profile of the conductivity att = 0.4

for different values of the power-law exponent, i.e.,γ =
{0, 6, 9, 12}. Clearly, the conductivity follows the evolution
of the rest-mass density, with a left-going rarefaction wave
and right-going shock. It is interesting to note that our ap-
proach is able to track even very large variations in the con-
ductivity, with jumps as large as eleven orders of magnitude
across the computational domain. The right panel of Fig. 5, on
the other hand, reports instead the magnetic field-component
By at t = 0.4 for the same initial conditions. As imposed by
Eq. (48), the solution in the leftmost part of the computational
domain, where the rest-mass density is very high, is controlled
by a very high conductivity, which tends toσ0 = 106. In turn,
this implies that the solution for the magnetic field should ap-
proach the ideal-MHD limit in that region. On the other hand,
in the rightmost region, where the rest-mass density is very
low, the conductivity is correspondigly small and tending to
zero for high values ofγ. In such regions, therefore, the mag-
netic field is expected to behave as a wave, thus explaining the
appearance of a moving peak forγ = 12.

Overall, this suite of shock-tube tests, demonstrates that
our numerical implementation is able to treat accurately both
uniform and non-uniform conductivity profiles in one dimen-
sional tests, independently of the steepness of the profilesand
even in the presence of shocks.

B. Multidimensional Tests

We now focus on multidimensional tests that involve
shocks in several directions, such as the two-dimensional
cylindrical explosion and the three-dimensional spherical ex-
plosion test suggested in Ref.[1]. Despite the fact that there
is no analytical solution for any of these tests, even in the
ideal-MHD case, the symmetries of the problem can be of
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FIG. 6: Left Panel:Snapshot of the magnetic field componentBx in the(x, y) plane att = 4.0; Right Panel:Snapshot of the magnetic field
componentBy in the(x, y) plane att = 4.0.

FIG. 7: Left Panel:One-dimensional cuts along thez-direction and att = 4.0 of the the pressure. The black dashed line corresponds to the
resistive code (theWhiskyRMHD code), while the blue dotted line corresponds to the ideal-MHD code, (theWhiskyMHD code).Right Panel:
The same as in the left panel but for the Lorentz factor.

great help in verifying that the numerical implementation is
correct and that it preserves the expected symmetries. Our ap-
proach in these tests will be therefore that of comparing the
solution of the same multidimensional test as obtained with
the ideal-MHD code presented in [11] and our new resistive
WhiskyRMHD code in the limit of very high conductivities.
The initial electric field is computed in such a way that it sat-
isfies the ideal-MHD condition, i.e.,Ei = −ǫijkvjBk, and all
the tests have been performed adopting a linear reconstruction
method and the minmod slope limiter.

1. Cylindrical Blast-Wave

In the two-dimensional cylindrical blast-wave problem, we
adopt a square domain with 200 grid cells per direction, in a
range of(−6.0, 6.0)× (−6.0, 6.0). The setup of the problem
consists of three regions. The innermost region with0 ≤ r ≤
0.8, for which the pressure and the density are set top = 1,
ρ = 0.01 respectively, the intermediate region which extends
from 0.8 < r < 1.0 wherer ≡ (x2+y2)1/2 both the pressure
and the density exponentially decrease, and the outermost re-
gion which is filled with an ambient plasma withp = 0.001,
ρ = 0.001 and occupies the domain1.0 ≤ r ≤ 6.0. The
initial magnetic field is along thex-direction with an initial
magnetic field strength ofB0 = 0.05.
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The numerical results are presented in Fig. 6, where we
show that the magnetic field solution is regular everywhere
and that there are no visible artifacts that could indicate a
possible symmetry error in our implementation. Furthermore,
when one-dimensional cuts of the resistive solution are plot-
ted against the ideal-MHD solution obtained with the code
presented in [11], the agreement is extremely good (this is not
shown in Fig. 6).

2. Spherical Blast-Wave

In the three-dimensional spherical blast-wave problem, the
grid structure is similar, but the domain is now within the
ranges(−6.0, 6.0) × (−6.0, 6.0) × (−6.0, 6.0). The prob-
lem setup consists of the same three regions as in the cylin-
drical blast wave problem, although here the radiusr refers to
the spherical-polar radial coordinate, and not to the cylindrical
radius, i.e.,r ≡ (x2 + y2 + z2)1/2.

The corresponding solution of the spherical blast-wave
problem in the(x, y) plane is essentially identical to the one
already reported in Fig. 6 and for this reason we do not show
it here. What we do show in Fig. 7, however, are one-
dimensional cuts along thez-direction of the pressurep and of
the Lorentz factorW as computed with the ideal-MHD code
(blue dotted line) and the resistive MHD code (black dashed
line). This comparison, which is not expected to be exact
given that the resistivity is large but not infinite, provides con-
vincing evidence of the ability of our implementation to accu-
rately describe higher-dimensional discontinuous flows inthe
high-conductivity regime.

C. Nonrotating Magnetized Stars

In the following Section we present the numerical results
obtained from the evolution of nonrotating spherical starsin
the presence of electromagnetic fields and for a variety of con-
ductivities. In order to accurately model both the interiorand
the exterior of the star, we prescribe a spatial dependence of
the electrical conductivity such that the ideal-MHD limit is
recovered in the deep interior of the star (which is expected
to be an excellent conductor) and such that the electrovacuum
limit is recovered outside the star, where the density and the
isotropic conductivity is expected to be negligibly small.

This behaviour can be easily achieved assuming that the
conductivity tracks the (conserved) rest-mass density, thus in-
suring a smooth transition between the two regimes. In prac-
tice, we have experimented with functional prescriptions of
the type

σ = σ0 max [(1−Datmo/D) , 0]
2
, (49)

whereσ ≃ σ0 is the conductivity in the regions of large rest-
mass density (σ = σ0 at the stellar center) andσ = 0 in
the atmosphere, where we set the conserved rest-mass den-
sity to its uniform valueD = Datmo. In our calculations we
normally setσ0 = 106 andDatmo to be about ten orders of

magnitude smaller than the value ofD at the center of the
star. Furthermore, in the atmosphere we set the fluid veloc-
ity to zero and sinceσ = 0 there, the electric and magnetic
fields are evolved via the Maxwell equations with zero cur-
rents (electrovacuum).

This non-uniform conductivity prescription allows us to
provide effective boundary conditions at the surface of the
star for the exterior electrovacuum solution similar to those
in Refs. [51, 52], but without the limitations of using an ana-
lytical solution for the interior of the star or the further com-
plications of finding a suitable matching between the electro-
magnetic fields of the interior ideal-MHD solution and the ex-
terior one. All the simulations reported hereafter have been
performed adopting the PPM reconstruction scheme, for rel-
ativistic stars whose initial properties are summarized inTa-
ble II.

1. Stable Star with confined magnetic fields

For the sake of simplicity, we consider as initial data spher-
ical stars in equilibrium to which a poloidal magnetic field
confined to the stellar interior is superimposed (see, e.g.,[53–
55]). While the hydrodynamical quantities are consistent so-
lutions of the Einstein equations, the magnetic field is added
a-posteriori, with a consequent violation of the constraint at
the initial time. In practice, however, this violation is always
very small, even for the largest fields, and is quickly domi-
nated by the violations introduced by the standard evolution.

The toroidal vector potential that generates the poloidal in-
terior magnetic field is expressed as [11]

Aφ = r2 max [Ab(P − Pcut), 0]
2
, (50)

wherePcut is about4% the central pressurePc. The the star,
initially computed with a polytropic EOS withΓ = 2, K =
100, has a gravitational massM = 1.40M⊙ and is endowed
with a poloidal magnetic field of strengthBc = 1012 G at the
center of the star andβ ≡ pmag/p = 4.49×10−13, with pmag

the magnetic pressure. The magnetic field in the atmosphere
is initially zero. For all of the evolutions presented hereafter
we have used an ideal-fluid EOS withΓ = 2.

We first examine the evolution of the magnetized star
in the fixed spacetime of the initial solution (Cowling-
approximation). In the left panel of Fig. 8 we show with thin
solid, dashed and dotted lines the evolution of the central rest-
mass density normalized to its initial valueρc,0 in thin colored
lines. The tests were performed using three spatial resolutions
of ∆x = {0.4, 0.3, 0.2} km, corresponding respectively to
N = {80, 120, 160}points across the finest AMR grid, which
extends up toRout = ±18 km. As customary in this type
of tests, stellar oscillations are triggered by the truncation er-
ror and their amplitude decreases as the numerical resolution
is increased. The importance of the test lays therefore in the
calculation of the eigenfrequencies of the oscillations, which
we find to be in very good agreement with those computed
via perturbative analyses (not shown here) and with other hy-
drodynamics and ideal-MHD codes [11, 56]. In addition, a
comparison with the ideal-MHD code [11] shows a very good
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Star type MADM [M⊙] Mb [M⊙] Req [km] K Γ Bc [G] # levels N Nstar Rout [km]

Confined fields 1.40 1.51 12.00 100.0 2 1012 4 80, 120, 160 56, 80, 112 142

Extended fields 1.33 1.37 32.56 372.0 2 2.4 × 1014 4 120 84 355

Unstable model 2.75 2.89 16.30 364.7 2 5× 1015 5 272 216 241

TABLE II: Properties of the magnetized star models used in the simulations. The columns report: the ADM and baryon massesin units of
solar massesMADM andMb respectively, the circumferential equatorial radius of the star in kilometersReq, the polytropic constantK, the
polytropic indexΓ, the value of the magnetic field in Gauss at the center of the star Bc, the number of refinement levels, the number of
gridpoints on the finest levelN , the number of gridpoints across the starNstar for the different resolutions considered, the computational grid
outer boundary in kilometersRout.

FIG. 8: Left Panel:Evolution of the central rest-mass density of a nonrotatingmagnetized star for both the Cowling approximation (C; thin
lines) and a dynamical spacetime (D; thick lines). Different line types mark different resolutions: dashed light blue∆x = 0.4 km, dotted dark
blue∆x = 0.3 km, continuous black∆x = 0.2 km. Middle Panel:The same as the left one but for the central magnetic field.Right Panel:
The same as the middle one but different values of the conductivity σ0. All lines refer to a resolution of∆x = 0.2 km.

agreement in the evolution of the rest mass density, indicat-
ing that the oscillations are tracked correctly by our resistive
MHD implementation.

We next examine the same scenario, but in a fully dynam-
ical spacetime and find also in this case a very good agree-
ment with the ideal MHD solution. Still in the left panel of
Fig.8 we report with thick solid, dashed and dotted lines the
evolution of the central rest-mass central density in a dynam-
ical spacetime for different resolutions. As well known from
perturbation theory, the eigenfrequencies of oscillations are in
this case lower but what is relevant to note is that the secular
evolution in both the fixed and dynamical spacetimes are very
similar, with variations in the central density that is lessthan
a couple of percent over tens of dynamical timescales.

The middle panel of Fig. 8 displays instead the evolution
of the central value of the magnetic field, where lines of dif-
ferent color refer to different resolutions, while the thickness
marks whether we are considering a fixed or a dynamical
spacetime (thin for the Cowling approximation and thick fora
full general-relativistic evolution). The correspondingpower
spectral density is shown in Fig. 9, where different line types
refer to different resolutions and the dotted vertical lines mark
the eigenfrequencies obtained from linear perturbation theory.
The match between the numerical and perturbative results is
clearly excellent and the differences in the fundamental mode

FIG. 9: Power spectral density of a full general-relativistic evolution
of the central rest-mass density for a stable star with confined mag-
netic fields. Different line types refer to different resolutions. Shown
with dotted vertical lines are the eigenfrequencies obtained from lin-
ear perturbation theory.
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FIG. 10: Two-dimensional cuts on the(x, z) plane of the solution the rest-mass density (colorcode fromwhite to red) and of the magnetic
field lines and at timest = 0, 9.88, and18.59ms. The evolution refers to a nonrotating star in a dynamical spacetime. Note that although the
magnetic field is contained in the star initially, it diffuses out as a result of numerical and physical resistivity.

at the highest resolution are. 0.5%.
We note that, as for the central rest-mass density, the evolu-

tion of the central magnetic field is accompanied by a secular
drift towards lower values, and this is simply the result of the
intrisic numerical resistivity(we recall that these tests have
been performed with the resistive code but for very large con-
ductivities and hence in a virtual ideal-MHD regime). Clearly,
the numerical resistivity decreases with resolution and this is
exactly what the behaviour in the middle panel shows. It is
interesting to note that while with sufficient resolution the re-
sistive losses saturate to about20% of the original magnetic
field over∼ 12 ms, these can be very large for low resolution
and dissipate up to∼ 85% of the initial magnetic field over
the same time-span. These numerical resistive losses should
be compared with the ones introduced instead by thephysi-
cal resistivityand which can of course be much larger. This
is shown in the right panel of Fig. 8, which is the same as
the middle one, but where we have used the highest resolution
(i.e.,∆x = 0.2 km) and varied the strength of the physical re-
sistivity fromσ0 = 106 to σ0 = 102. Because the fluid veloc-
ities are essentially zero at this resolution, the magnetic-field
evolution follows a simple diffusion equation with a Ohmic
decay timescale which scales linearly with1/σ. This is in-
deed what shown in the right panel of Fig. 8 where, after the
initial transient, the solution settles to an exponential decay
and where the magnetic field can be reduced of almost two
orders of magnitude over12 ms in the case ofσ0 = 102.

Finally, we show in Fig. 10 two-dimensional cuts on the
(x, z) plane of the rest-mass density (shown in a colorcode
from white to red) and of the magnetic field lines for an os-
cillating star; the three panels refer to timest = 0, 9.88, and
18.59ms, respectively. It is important to remark that although
we start with a magnetic field that is initially confined inside
the star, the inevitable presence of a small but finite numerical
resistivity and our choice of a nonzero physical conductivity
near the surface of the star [we recall that our conductivity
follows the profile given in Eq. (49)], induce a slow but con-
tinuous “leakage” of the magnetic field, which leaves the star
and fills the computational domain. Because the external mag-
netic field is essentially with a zero divergence and with a van-

ishingly small Laplacian (we recall that in the stellar exterior
the resistivity is zero and the Maxwell equations tend to the
those in vacuum), it is to a very good approximation a poten-
tial field, as shown by the clean dipolar-like structure. Clearly,
the Ohmic diffusion timescale increases with resolution and
therefore the relaxation of the magnetic field to a stationary
dipolar-like structure takes place on longer timescales for the
high-resolution simulation.

2. Stable Star with extended magnetic fields

We next consider initial data for a spherical magnetized star
with a poloidal magnetic field extending outside the star, as
generated by theMagstar code fromLORENE library [48].
The external magnetic field is dipolar and is computed by
solving the Maxwell equations in vacuum, with boundary con-
ditions given by the interior poloidal magnetic field. This so-
lution is fully consistent with the Einstein equations and it
provides accurate measurements of the stellar deformations in
response to either rapid rotation or large magnetic fields [57].
More specifically, we have considered a nonrotating star mod-
elled initially as polytrope withΓ = 2 andK = 372, hav-
ing a gravitational massM = 1.33M⊙, and endowed with
a poloidal magnetic field of strengthBc = 5 × 1015 G. The
magnetic field in the atmosphere is given by the electrovac-
uum solution, which has a dipolar structure. The evolutions
have been carried out in a computational domain with outer
boundary atRout = 355 km and a resolution of∆x = 0.7
km, corresponding to60 points covering the positive part of
finest grid which extends up to44 km.

Figure 11 displays in its left and middle panels two-
dimensional cuts on the(x, z) plane of the rest-mass density
(shown in a colorcode from white to red) at the initial and fi-
nal times, i.e.,t = 0ms andt = 37ms. A rapid comparison
among the three panels clearly shows the ability of the code
to reproduce stably the evolution of this oscillating star also
when the magnetic field extends in its exterior. The right panel
of Figure 11, on the other hand, shows in its top part shows the
evolution of the magnetic flux computed across a hemispheric
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FIG. 11: Left and Middle Panels:Evolution of the magnetic field lines displayed at timest = 0ms andt = 37ms. The rest mass density is
also shown with purple-red-yellow colors.Right Panel:The top part shows the evolution of the magnetic flux computedacross a hemispheric
surface at a radiusr = 135 km, while the bottom part shows the power spectral density ofthe rest-mass density (black solid line) and of the
magnetic flux (blue dotted line).

surface at a radiusr = 135 km, which also shows signs of
oscillations. We have computed the power spectrum of these
oscillations and compared it with the corresponding one ob-
tained for the central rest-mass density. The results of this
comparison are shown in the bottom part of the right panel,
with a black solid line referring to the rest-mass density a blue
dotted line to the magnetic flux. The very good agreement
between the two implies that the oscillations observed in the
magnetic flux are essentially triggered by the oscillationsin
the rest-mass density.

3. Magnetized Collapse to a Black Hole

Our final and most comprehensive test is represented by
the collapse to a BH of a magnetized nonrotating star. This
is more than a purely numerical test as it simulates a pro-
cess that is expected to take place in astrophysically realis-
tic conditions, such as those accompanying the merger of a
binary system of magnetized neutron stars [26, 27], or of an
accreting magnetized neutron star. The interest in this pro-
cess lays in that the collapse will not only be a strong source
of gravitational waves, but also of electromagnetic radiation,
that could be potentially detectable (either directly or aspro-
cessed signal). The magnetized plasma and electromagnetic
fields that surround the star, in fact, will react dynamically
to the rapidly changing and strong gravitational fields of the
collapsing star and respond by emitting electromagnetic radi-
ation. Of course, no gravitational waves can be emitted in the
case considered here of a nonrotating star, but we can never-
theless explore with unprecedented accuracy the electromag-
netic emission and assess, in particular, the efficiency of the
process and thus estimate how much of the available bind-
ing energy is actually radiated in electromagnetic waves. Our
setup also allows us to investigate the dynamics of the elec-
tromagnetic fields once a BH is formed and hence to assess
the validity of the no-hair theorem, which predicts the expo-
nential decay of any electromagnetic field in terms of Quasi
Normal Mode (QNM) emission from the BH.

Ours is not the first detailed investigation of this process
and relevant previous studies are that in Ref. [51] and the
more recent one in Ref. [52]. However, our approach differs
from previous ones in that it correctly describes the gravita-
tional dynamics of a collapsing fluid (the semianalytical work
in Ref. [51], in fact, considered the more rapid collapse of a
dust sphere, for which the Oppenheimer-Snyder (OS) analytic
solution can be used [58]) and does not require any match-
ing of the solution near the stellar surface (the fully relativis-
tic work in Ref. [52] had to resort to an ingeniuous match-
ing between the interior ideal-MHD solution and a force-free
one in the magnetosphere), leaving the complete evolution of
the electromagnetic fields to our prescription (49) of a non-
uniform conductivity. Indeed, our solution is expected to be
exactly the same as the force-free one except in regions where
B2 − E2 < 0 and an anomalous resistivity appears. Since
we can handle accurately such resistive regions, this test il-
lustrates the capabilities of our resistive implementation and
serves as a more realistic approach to this astrophysical sce-
nario.

In practice, we have considered the evolution of a nonrotat-
ing neutron star with a gravitational mass of2.75M⊙, which
is chosen to sit on the unstable branch of the equilibrium con-
figurations and is endowed with an initial poloidal magnetic
field of strengthBc = 5 × 1014 G extending also in the ex-
terior space. As for the previous stellar solutions, we use a
polytropic EOS withΓ = 2 andK = 364.7 for the initial
data and continue to use this isentropic EOS also for the sub-
sequent evolution. The evolutions have been carried out in
a computational domain with outer boundary atRout = 241
km and a resolution of∆x = 0.11 km, corresponding to272
points covering the finest grid which extends up to±15 km.

Because the magnetic energy is only a small fraction of the
binding energy, the hydrodynamical and spacetime evolution
of the fluid star as it collapses to a BH is very similar to the
unmagnetized case and this has been discussed in great detail
in [59]. The most important difference, therefore, is in the
dynamics of the magnetic field, and this is shown in Fig. 12,
which reports two-dimensional cuts on the(x, z) plane of the
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FIG. 12: Two-dimensional cuts on the(x, z) plane of the collapse to a BH of a magnetized NS. Shown with colors are the rest-mass density
(colorcode from white to red) and the radial poynting vector(colorcode from blue to green) in units of1034, while thin lines reproduce the
magnetic-field lines. The different snapshots refer to times t = 0, 0.32, 0.57, 0.65, 1.0 and1.1 ms, and an apparent horizon is marked with
a thin red line starting fromt = 0.57 ms. Note that all the matter is accreted into the hole and thata quadrupolar QNM ringdown is clearly
visible in the Poynting flux.
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FIG. 13: The same as the three bottom panels of Fig. 12 but witha linear scale of15 km to highlight the dynamics near the horizon. It is now
very clear that a closed set of magnetic field lines is built just outside the horizon att = 1.0 ms, that is radiated away as QNM of the BH.

collapse to a BH of a magnetized NS. Shown with colors are
the rest-mass density (colorcode from white to red) and the
radial poynting vector (colorcode from blue to green), while
thin solid lines reproduce the magnetic-field lines.

At early times the star remains close to its initial state with
the exception of a small transient induced by truncation error,
which produces a small radiative outburst att . 0.3 ms. As

the instability to gravitational collapse develops, thereis a re-
arrangement of the external electromagnetic fields, drivenby
a toroidal electric fieldEφ ≈ −vrBθ produced in the inte-
rior of the perfectly conducting star, and which is continuous
across the stellar surface. As the collapse proceeds, the rest-
mass density in the center and the curvature of the spacetime
increase until an appararent horizon is found att = 0.57 ms
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FIG. 14: The same as in Fig. 12, but where in addition to the rest-mass density (colorcode from white to red) and the magnetic-field lines (thin
solid lines) we show the electrically-dominated regions (i.e.B2 − E2 < 0, colorcode from light blue to white in units of1023).

and is marked with a thin red line in Fig. 12 (we have used the
apparent-horizon finder described in [60]).

As the stellar matter is accreted onto the BH (the rest-mass
outside the horizonMb, out = 0 is zero byt & 0.62 ms),
the external magnetic field which was anchored on the stel-
lar surface becomes disconnected, forming closed magnetic-
field loops which carry away the electromagnetic energy in the
form of dipolar radiation. This process, which has been de-
scribed through a simplified non-relativistic analytical model
in Ref. [52], predicts the presence of regions where|E| > |B|
as the toroidal electric field propagates outwards as a wave.
This process can be observed very clearly in Fig. 13, which
displays the same three bottom panels of Fig. 12 on a smaller
scale of only15 km to highlight the dynamics near the hori-
zon. In particular, it is now very clear that a closed set of
magnetic field lines is built just outside the horizon att = 1.0
ms, that is radiated away. Note also that our choice of gauges
(which are the same used in [61]) allows us to model without
problems also the solution inside the apparent horizon. While
the left panel of Fig. 13 shows that most of the rest-mass is dis-
sipated away already byt = 0.65 ms (see discussion in [62]
about why this happens), some of the matter remains on the
grid near the singularity, anchoring there the magnetic field
which slowly evolves as shown in the middle and right pan-
els. A complementary view of the collapse process is also
offered by Fig. 14, which reports, in addition to the rest-mass
density (colorcode from white to red) and the magnetic-field

FIG. 15: Top Panel: Luminosity calculated at a distancer = 89
km from the compact object. The black dotted line representsthe
time at which the apparent horizon is formed and the black dashed
line corresponds to the time at which all the matter is well within
the horizon. Bottom Panel:Evolution of the total radiated energy
normalized to the initial magnetic energy.



16

FIG. 16: Left Panel:QNM ringdown of the magnetic field as measured through the magnetic flux atr = 37 km. Again, the black dotted line
represents the time at which the apparent horizon is formed and the black dashed line corresponds to the time at which all the matter is well
within the horizon; the dot-dashed line represents insteadour fit to an exponential decay.Right Panel:Logarithm of the absolute values of the
magnetic and electric fluxes as normalized to the initial magnetic flux.

lines (thin solid lines), also the electrically-dominatedregions
(i.e. B2 − E2 < 0, colorcode from light blue to white). The
larger scales used in this case makes it easier to follow the dy-
namics of the closed field lines that once produced near the
horizon, propagate as dipolar radiation at infinity.

The total electromagnetic luminosityLrad emitted during
the collapse and computed as surface integral of the Poynt-
ing flux over a spherical surface at89 km is shown in the top
panel of Fig. 15. Note the presence of a rise during the col-
lapse and of several pulses after the stellar matter has been
accreted onto the black hole. The vertical dotted line repre-
sents the time at which the apparent horizon is first found,
while the vertical dashed line corresponds to the time at which
all the matter is within the horizon (i.e.Mb, out = 0). The
peaks in the electromagnetic luminosity correspond to the
closed magnetic-field loops that disconnect from the star and
trasport electromagnetic energy. The bottom panel of Fig. 15,
on the other hand, reports the evolution of the total electro-
magnetic energy lost in radiationErad and when normalized
to the value of the initial magnetic energy outside the star,
E0. Our results indicate therefore a total electromagnetic effi-
ciency which is≃ 5%; this result is smaller than the estimate
made in Ref. [51] (which was of≃ 20%), but, besides the dif-
ferent initial data used, this difference can be easily accounted
for by the fact that the gravitational collapse simulated here is
considerably slower (and hence inefficient) than the OS one
computed in [51], where matter is free falling. Our efficiency
is also smaller than the one computed in Ref. [52] and which
is ∼ 16% once the same definition forE0 is used. However,
many other factors could be behind this difference, e.g., differ-
ences in the initial data (use of a dipole everywhere in contrast

to a dipole only outside the star as in our case), differences
in the stellar models, differences in the numerical approach
(treatment of the surface of the star of the transition between
ideal and force-free MHD). A closer comparison between the
two approaches will be carried out in a separate work.

After BH formation, the luminosity decreases exponen-
tially in a fashion which is typical of the QNM ringing of an
electrovacuum electromagnetic field in a Schwarzschild BH
spacetime. These QNMs are clearly visible also in the (ab-
solute value of the) magnetic flux shown in the left panel of
Fig. 16, from which a comparison with the perturbative ex-
pectations can be made. More specifically, by fitting the har-
monic oscillations of the ringdown and the exponential de-
cay we have computed the frequencies of the “ringing-down”
magnetic-field flux for thel = 1 mode to beω = 0.344054−
i 6.46731 kHz, corresponding to a nonrotating black hole of
2.74M⊙. The agreement with the analytical value is excel-
lent, with a relative error of only∼ 0.7% for the real part of
the frequency and∼ 5.6% for the imaginary one [63].

Finally, as a measure of the accuracy of our simulation we
can compare the magnetic flux with the corresponding electric
flux, which should vanish in the continuum limit since no net
electric charge should be present. This is indeed the case, as
can be deduced from the right panel of Fig. 16, which reports
the two fluxes normalized to the initial magnetic flux. Note
that the electric flux is about 30 orders of magnitude smaller
than the magnetic flux before BH formation, increasing after
an apparent horizon is found, but remaining 15-10 orders of
magnitude smaller.
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V. CONCLUSIONS

We have introduced a general-relativistic resistive MHD
formalism as an extension of the special relativistic resistive
MHD formalism reported in Ref. [19] for a 3+1 decompo-
sition of the spacetime. Our numerical implementation has
been made within theCactus computational infrastructure
as a continuation of the already existing general-relativistic
hydrodynamics codeWhisky [56, 59] and of the ideal-MHD
codeWhiskyMHD [11].

Our numerical approach exploits Implicit-Explicit (IMEX)
methods and allows us to treat astrophysical problems in
which different spatial regions fall into different regimes of
conductivities. The flexibility introduced by using the Runge-
Kutta will allow us to consider not only more general Ohm
laws and a variety of astrophysical dynamos [24, 64], but also
to use better dispersion relations to calculate the velocities
in the HLLE method and to describe more accurately non-
relativistic systems [65].

Our implementation has been tested for a number of strin-
gent tests and its robustness has been verified. The special-
relativistic tests involved the propagation of circularlypolar-
ized Alfvén waves, the evolution of current sheets and shock-
tubes in one dimension, cylindrical and spherical explosion
tests in two and three dimensions respectively, the evolution
of stable and the collapse of unstable magnetized stars in dy-
namical spacetime. We have compared our numerical results
either with the analytical solution (in the cases where one ex-
ists), or with the numerical ideal-MHD solution (in the limit
of high conductivity), proving that our implementation is suit-
able to describe regions with a wide range of conductivities,
with or without large discontinuities and shocks.

We have also considered genuinely general-relativistic tests
in terms of the evolution of nonrotating magnetized stars ei-
ther with fixed or fully dynamical spacetimes. Our stars have
been endowed with magnetic fields of varying strength, ei-
ther confined in their interior or permeating also the exterior
space, and have been modelled with a non-uniform conductiv-
ity that allows us to recover the ideal-MHD limit in the interior
of the star and such the electrovacuum limit outside the star.
All of our results indicate that the resistive implementation is
able to follow the evolution of the oscillations triggered by the
small truncation errors and that the associated eigenfrequen-
cies match well those either reported with other hydrodynam-
ics and ideal-MHD codes [11, 66] or from perturbation theory.

Finally, we have considered the challenging and compre-
hensive test represented by the gravitational collapse of amag-
netized nonrotating star to a BH. This scenario has an as-
trophysical interest of its own as it could lead to the emis-
sion of electromagnetic radiation, potentially detectable. In-
deed we have found that as the collapse proceeds, electrically
dominated regions develop and lead to the development of
magnetic-field loops that propagate at the speed of light, car-
rying away electromagnetic energy. Up to5% of the initial
magnetic energy can be lost in this way and the following
evolution of the magnetic field follows a clean exponential
decay, as expected by an electromagnetic perturbation in a
Schwarzschild spacetime. The match of the measured QNMs
and the perturbative predictions is well of a few percent or
less.

Our new code is now ready to be applied to study a vari-
ety of astrophysical scenarios. These include the modelingof
the magnetosphere that could be produced after the merger of
binary neutron stars, or when the hypermassive neutron star
collapses to a BH and is surrounded by a hot torus. The work
in Ref. [30] has already reported that under these conditions
strong magnetic fields can be produced and that a jet-like mag-
netic structure can develop. It is exciting to consider whether
the resistive losses that are expected in the process will pro-
vide sufficient energy to launch of a powerful jet, not yet ob-
served in Ref. [30]. Also of great interest is to study BH mag-
netospheres and the origin of jets so as to answer the ques-
tion of whether an ergosphere is critical for the development
of the Blandford-Znajek mechanism. Finally, our approach is
also well suited to study the properties of accretion disk onto
BHs and to elucidate the role that resistive losses play on the
whole energetic budget. We will report on these applications
in forthcoming works.
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J. A. Font, and J. A. Pons, Astrophys. J.637, 296 (2006), astro-
ph/0506063.

[9] D. Neilsen, E. W. Hirschmann, and R. S. Millward, Classical
Quantum Gravity23, S505 (2006).

[10] L. Del Zanna, O. Zanotti, N. Bucciantini, and P. Londrillo, As-
tron. Astrophys.473, 11 (2007), 0704.3206.

[11] B. Giacomazzo and L. Rezzolla, Classical Quantum Gravity 24,
S235 (2007), gr-qc/0701109.



18

[12] B. D. Farris, T. K. Li, Y. T. Liu, and S. L. Shapiro, Phys. Rev.
D 78, 024023 (2008), 0802.3210.

[13] B. Zink, ArXiv e-prints (2011), 1102.5202.
[14] D. Biskamp, Physics of Fluids29, 1520 (1986).
[15] E. N. Parker, Solar Physics111, 297 (1987).
[16] D. Giannios, D. A. Uzdensky, and M. C. Begelman, Mon. Not.

R. Astron. Soc.395, L29 (2009), 0901.1877.
[17] M. Lyutikov, Mon. Not. R. Astron. Soc.367, 1594 (2006),

arXiv:astro-ph/0511711.
[18] S. S. Komissarov, Mon. Not. R. Astron. Soc.382, 995 (2007),

0708.0323.
[19] C. Palenzuela, L. Lehner, O. Reula, and L. Rezzolla, Mon. Not.

R. Astron. Soc.394, 1727 (2009), 0810.1838.
[20] M. Dumbser and O. Zanotti, Journal of Computational Physics

228, 6991 (2009), 0903.4832.
[21] S. Zenitani, M. Hesse, and A. Klimas, Astrophysical Journal

Lett. 716, L214 (2010), 1005.4485.
[22] M. Takamoto and T. Inoue, Astrophys. J.735, 113 (2011),

1105.5683.
[23] O. Zanotti and M. Dumbser, Mon. Not. R. Astron. Soc.418,

1004 (2011), 1103.5924.
[24] N. Bucciantini and L. Del Zanna, ArXiv e-prints (2012),

1205.2951.
[25] M. Anderson, E. W. Hirschmann, L. Lehner, S. L. Liebling,

P. M. Motl, D. Neilsen, C. Palenzuela, and J. E. Tohline, Phys.
Rev. Lett.100, 191101 (2008), 0801.4387.

[26] Y. T. Liu, S. L. Shapiro, Z. B. Etienne, and K. Taniguchi,Phys.
Rev. D78, 024012 (2008).

[27] B. Giacomazzo, L. Rezzolla, and L. Baiotti, Mon. Not. R.As-
tron. Soc.399, L164 (2009).

[28] S. Chawla, M. Anderson, M. Besselman, L. Lehner, S. L.
Liebling, P. M. Motl, and D. Neilsen, Phys. Rev. Lett.105,
111101 (2010), 1006.2839.

[29] B. Giacomazzo, L. Rezzolla, and L. Baiotti, Phys. Rev. D83,
044014 (2011).

[30] L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kou-
veliotou, and M. A. Aloy, Astrophys. J.732, L6 (2011),
1101.4298.

[31] Z. B. Etienne, Y. T. Liu, V. Paschalidis, and S. L. Shapiro, Phys.
Rev. D85, 064029 (2012), 1112.0568.

[32] S. T. McWilliams and J. Levin, Astrophys. J.742, 90 (2011),
1101.1969.

[33] A. L. Piro, ArXiv e-prints (2012), 1205.6482.
[34] D. Lai, ArXiv e-prints (2012), 1206.3723.
[35] B. Paczynski, Astrophys. J. Lett.308, L43 (1986).
[36] D. Eichler, M. Livio, T. Piran, and D. N. Schramm, Nature340,

126 (1989).
[37] R. Narayan, B. Paczynski, and T. Piran, Astrophys. J.395, L83

(1992).
[38] F. Banyuls, J. A. Font, J. M. Ibáñez, J. M. Martı́, and J. A.
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