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Abstract

There are various diagrams leading to neutrinoless double beta decay in left-right sym-

metric theories based on the gauge group SU(2)L × SU(2)R. All can in principle be

tested at a linear collider running in electron-electron mode. We argue that the so-called

λ-diagram is the most promising one. Taking the current limit on this diagram from

double beta decay experiments, we evaluate the relevant cross section e−e− → W−
L W−

R ,

where W−
L is the Standard Model W -boson and W−

R the one from SU(2)R. It is observ-

able if the life-time of double beta decay and the mass of the WR are close to current

limits. Beam polarization effects and the high-energy behaviour of the cross section are

also analyzed.
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1 Introduction

There are at present several experiments searching for neutrinoless double beta decay (0νββ)

that are running, under construction or in the planning phase [1, 2]. Observation of 0νββ

will be proof of lepton number violation, but extracting more specific information requires an

assumption as to the underlying mechanism of the process. While one usually assumes that

massive Majorana neutrinos will be the leading contribution, there are many other particle

physics candidates that can lead to 0νββ [3, 4]. These include, to name a few, particles in

R-parity violating supersymmetric theories, heavy (including fourth generation) neutrinos,

leptoquarks, Majorons, as well as particles arising in extra-dimensional and left-right sym-

metric theories. Indeed, current limits on the lifetime of 0νββ can be used to set constraints

on a variety of particle physics parameters [4]. In this paper we will focus on 0νββ within

left-right symmetric theories, and propose to test one of the possible diagrams at a linear

collider running in like-sign electron mode.

It is obvious that in comparison to 0νββ a linear collider has the advantage of providing

an extremely clean environment to test lepton number violation. While 0νββ,

(A,Z) → (A,Z + 2) + 2e− , (1)

is plagued by nuclear physics uncertainties, linear collider processes such as

e− e− →W−W− (2)

directly test the central part of most 0νββ-diagrams, see for instance Figs. 1, 2 and 3. In-

deed, the process (2), often called inverse neutrinoless double beta decay, has been proposed

frequently in the past [5–19] to test lepton number conservation and to check the mechanism

of 0νββ. Here we revisit the process in which left-handed and right-handed W -bosons of an

SU(2)L × SU(2)R symmetric theory are produced [6, 9, 10]:

e− e− → W−
L W−

R , (3)

depicted in Fig. 4. The corresponding double beta diagram is the so-called λ-diagram, see

Fig. 3(a). We will argue that from the many possible 0νββ-diagrams in left-right symmet-

ric theories, this is the one which promises the largest cross section at an electron-electron

machine. We evaluate the cross section and apply current limits from 0νββ to it. Beam

polarization issues are also considered, and the high energy behaviour of the cross section is

analyzed.

Note that lepton number violating processes can be tested at hadron colliders via the

process qq̄′ → ℓℓjj, i.e. production of like-sign dileptons plus jets, which could proceed via

the exchange of heavy neutrinos and right-handed W bosons. Several studies in this direction

have been performed [20–23], although the λ-diagram was not included1. Recent analyses by

1For other collider probes of 0νββ, see [24, 25].
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the CMS [26] and ATLAS [27,28] collaborations using data from pp collisions at
√
s = 7 TeV

have excluded certain regions in the mWR
−MR mass plane, where MR is the right-handed

neutrino mass scale. The ATLAS limit on mWR
extends up to nearly 2.5 TeV for some values

of MR, assuming that mWR
> MR. These analyses also assume negligible left-right mixing

between light and heavy neutrinos and between gauge bosons.

Other features of the left-right symmetric model include the existence of a new neutral

gauge boson Z ′, which could in principle be seen at both pp [21] and e+e− colliders [29] (see

Ref. [30] for a review and further references). Roughly speaking, since mZ′ ≃ 1.7mWR
(see

Appendix A), the cross sections for processes such as pp → Z ′ → ℓ+ℓ− will be lower than

those involving charged gauge bosons. At linear colliders the Z ′ could mediate new four

fermion interactions, i.e. e+e− → Z ′ → f f̄ , and could be detected due to interference with

the virtual γ and Z contributions. In addition, the model includes doubly charged scalar

bosons, which could be produced in pp and e+e− collisions [31, 32]; the latest ATLAS limits

are m±±
δL

> 244 GeV and m±±
δR

> 209 GeV [33]. s-channel production of δ−− at like-sign linear

colliders has been studied in, e.g. Refs. [34, 35].

The detection of a neutral gauge boson or doubly charged scalars would provide alterna-

tive tests of the left-right model, although the former has no immediate connection to 0νββ.

Here we focus on the λ-diagram at an e−e− machine, and show that it is observable if the

WR mass and the life-time of 0νββ are close to their current limits. Note that this process

can be tested not only at a linear collider, but also due to its unique angular distribution

in 0νββ [36], and that it has not yet been studied at hadron colliders. Our analysis is thus

complementary to those in Refs. [20–23].

The paper is built up as follows: in Section 2 we summarize the various diagrams for

0νββ within left-right symmetric theories, and argue that the so-called λ-diagram looks most

promising for tests at a linear collider. Then in Section 3 we discuss the cross section, including

the effects of beam polarization. Details of left-right symmetric theories, a study of the high

energy behaviour, and the helicity amplitudes of the process are delegated to the appendices,

and we conclude in Section 4.

2 0νββ in left-right symmetric models

Here we summarize the various possible diagrams for 0νββ in left-right symmetric models

(for one of the first analyses on this topic, see [37]). Details of the theory are delegated to

Appendix A; here it suffices to know that there are left- and right-handed currents with the

associated gauge bosons WL and WR (that can mix with each other), Higgs triplets ∆L and

∆R coupling to left- and right-handed leptons, respectively, as well as light left-handed and

heavy right-handed Majorana neutrinos that can also mix with each other. With this particle

content, one can construct the diagrams leading to 0νββ displayed in Figs. 1, 2 and 3. They

can be categorized in terms of their topology and the helicity of the final state electrons.
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Figure 1: Feynman diagrams of double beta decay in the left-right symmetric model, mediated
by (a) light neutrinos (the standard mechanism) and by (b) heavy neutrinos in the presence of
right-handed currents. There is also a diagram with heavy neutrino exchange and left-handed
currents, as well light neutrino exchange and right-handed currents, the latter is negligible.

We will discuss them in detail; the limits on the particle physics parameters are taken from

Ref. [4].

• Fig. 1(a) is the standard diagram, whose amplitude is proportional to

ALL ≃ G2
F

〈mee〉
q2

, (4)

where |q2| ≃ (100 MeV)2 is the momentum exchange of the process. The particle physics

parameter 〈mee〉 ≡ |
∑

U2
eimi| is called the effective mass, and the suitably normalized

dimensionless parameter describing lepton number violation is

ηLL =
〈mee〉
me

=
|
∑

U2
eimi|

me

<∼ 9.9× 10−7 . (5)

Here Uei is the (PMNS) mixing matrix of light neutrinos and mi are the light neutrino

masses.

• Fig. 1(b) is the exchange of right-handed neutrinos with purely right-handed currents.

The amplitude is proportional to

ANR
≃ G2

F

(

mWL

mWR

)4
∑

i

V ∗
ei
2

Mi

, (6)

where mWR
(mWL

) is the mass of the right-handed WR (left-handed WL), Mi the mass

of the heavy neutrinos and V the right-handed analogue of the PMNS matrix U . The

4
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Figure 2: Feynman diagrams of double beta decay in the left-right symmetric model, mediated
by doubly charged triplets: (a) triplet of SU(2)R and (b) triplet of SU(2)L.

dimensionless particle physics parameter is

ηNR
= mp

(

mWL

mWR

)4
∣

∣

∣

∣

∣

∑

i

V ∗
ei
2

Mi

∣

∣

∣

∣

∣

<∼ 1.7× 10−8 . (7)

There is also a diagram with left-handed currents in which right-handed neutrinos are

exchanged. The amplitude is proportional to

A
N

(LH)
R

≃ G2
F

∑

i

S2
ei

Mi

, (8)

with S describing the mixing of the heavy neutrinos with left-handed currents. The

limit is

η
N

(LH)
R

= mp

∣

∣

∣

∣

∣

∑

i

S2
ei

Mi

∣

∣

∣

∣

∣

<∼ 1.7× 10−8 . (9)

Another possible diagram is light neutrino exchange with right-handed currents, which

is however highly suppressed.

• Fig. 2(a) is a diagram with different topology, mediated by the triplet of SU(2)R. The

amplitude is given by

AδR ≃ G2
F

(

mWL

mWR

)4
∑

i

V ∗
ei
2Mi

m2

δ−−

R

, (10)

and the dimensionless particle physics parameter is

ηδR =

∣

∣

∑

i V
∗
ei
2Mi

∣

∣

m2

δ−−

R

m4
WR

mp

G2
F

<∼ 6.9× 10−6 . (11)

Here we have used the fact that the term vRhee is nothing but the ee element of the

right-handed Majorana neutrino mass matrix MR diagonalized by V , with vR the VEV
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Figure 3: Feynman diagrams of double beta decay in the left-right symmetric model with
final state electrons of different helicity: (a) the λ-mechanism and (b) the η-mechanism due
to gauge boson mixing.

of the triplet ∆R and hee the coupling of the triplet with right-handed electrons.

• Fig. 2(b) is a diagram mediated by the triplet of SU(2)L. The amplitude is given by

AδL ≃ G2
F

heevL
m2

δ−−

L

. (12)

The diagram is suppressed with respect to the standard light neutrino exchange by at

least a factor q2/m2

δ−−

L

.

• Fig. 3(a) is a diagram in which the helicities of the final state electrons are different. It

is called the λ-diagram, and has an amplitude reading

Aλ ≃ G2
F

(

mWL

mWR

)2
∑

i

UeiT
∗
ei

1

q
; (13)

the particle physics parameter is

ηλ =

(

mWL

mWR

)2
∣

∣

∣

∣

∣

∑

i

UeiT
∗
ei

∣

∣

∣

∣

∣

<∼ 9× 10−7 , (14)

where T ∗
ei quantifies the mixing of light neutrinos with right-handed currents [Eq. (A-15)].

• Finally, Fig. 3(b) is another diagram with mixed helicity, possible due to WL − WR

mixing, which is described by the parameter tan ζ defined in Eq. (A-21). The amplitude

is

Aη ≃ G2
F tan ζ

∑

i

UeiT
∗
ei

1

q
, (15)
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with particle physics parameter

ηη = tan ζ

∣

∣

∣

∣

∣

∑

i

UeiT
∗
ei

∣

∣

∣

∣

∣

<∼ 6× 10−9 . (16)

Note that in both the λ- and η-diagrams there are light neutrinos exchanged (long-range

diagrams), and the amplitude is proportional to the mixing matrix T ∗
ei = O(MD/MR).

One therefore needs both a non-zeroMD andMR <∞, which is illustrated by the Dirac

and Majorana mass terms in the propagator. In this case lepton number violation

is implicit: the mixing MD/MR vanishes for infinite Majorana mass. Ref. [3] gives

a detailed explanation of how a complicated cancellation of different nuclear physics

amplitudes leads to a limit on the η-diagram that is much stronger than the one on the

λ-diagram.

Having written down all interesting diagrams, it is instructive to discuss their expected

relative magnitudes. For this naive exercise, let us denote the masses of all particles belonging

to the right-handed sector (Mi, WR and δ−−
R ) as R. The matrices T and S describing left-

right mixing can be written as L/R, where L is about 102 GeV, corresponding to the weak

scale, or the mass of the WL. The gauge boson mixing angle ζ is at most of order (L/R)2,

and can be much smaller2. The mixed λ- and η-diagrams in Fig. 3 are of order (L/R)3/q,

whereas the purely right-handed short-range diagrams in Figs. 1(b) (heavy neutrino exchange

and right-handed currents) and 2(a) (SU(2)R triplet exchange and right-handed currents) are

of order L4/R5. Therefore, with R being of order TeV, the mixed diagrams are expected

to dominate by a factor R2/(Lq) ∼ 105. In the same sense, the amplitudes of the mixed

diagrams are also larger than the one for heavy neutrino exchange with left-handed currents

(which is proportional to L2/R3). Leaving these estimates aside, we continue with a purely

phenomenological analysis of the different diagrams at a linear collider.

For this exercise, let us use crossing symmetry to translate the 0νββ-diagrams from Figs. 1–

3 into linear collider cross sections of the form e−e− → W−W− (Fig. 4). In each case the

two gauge bosons can either have the same polarization (W−
L W

−
L or W−

RW
−
R ), in which case

the process can be mediated by either Majorana neutrinos or Higgs triplets, or opposite

polarizations (W−
LW

−
R ), only possible with the exchange of Majorana neutrinos plus non-

zero left-right mixing. Since the limits on WR are 2.5 TeV [38, 39], diagrams with two WR

are obviously disfavoured. In what regards diagrams with two WL, both the light and the

heavy neutrino exchange can be shown to be suppressed and unobservable, see Ref. [18] for a

recent reanalysis. The cross section corresponding to left-handed triplet exchange [Fig. 2(b)]

is proportional to
√
2vLhee = [ML]ee (see Eq. (A-12) and Ref. [35]), so that it is suppressed

by light neutrino mass. We are left with diagrams with only one WR, i.e. the mixed diagrams

from Fig. 3. Noting that the limit on the λ-diagram is less stringent by almost two orders

2See Eq. (A-23) and the comments just below it.
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νLi

NRi

NRi

e−

e−

WR
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ei

(b) u-channel production

Figure 4: Inverse neutrinoless double beta decay diagrams with WL and WR in the final state.

of magnitude with respect to the one for η [compare Eqs. (14) and (16)], we are led to the

conclusion that the λ-diagram is the most promising channel to study. Fig. 4 shows the

relevant Feynman diagram; its cross section will be evaluated in what follows. Let us note

here that the SuperNEMO experiment has the possibility to disentangle the λ-diagram from

the standard one, because it can probe the angular and energy correlation of the two emitted

electrons in 0νββ [36]. The mechanism is therefore testable in a variety of ways.

3 Cross section of e−e− → W−
LW

−
R

3.1 Cross section

The two possible channels for the process e−(p1) e
−(p2) →W−

L (k1, µ)W
−
R (k2, ν) are shown in

Fig. 4. Here p1,2 and k1,2 are the momenta of the particles and µ, ν the Lorentz indices of the

W polarization vectors. The matrix element is

− iM = −i (Mt +Mu) , (17)

where the subscript denotes the t- or u-channel process. In order to evaluate the differential

cross section

dσ

dΩ
=

1

64π2 s

1

4
|M|2

√

λ(s,m2
WL
, m2

WR
)

λ(s, 0, 0)
, (18)

where λ(a, b, c) = a2 + b2 + c2 − 2 (a b+ a c+ b c), we need

|M|2 = |Mt|2 + |Mu|2 + 2Re
(

M∗
t Mu

)

. (19)
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Figure 5: Differential cross section for e−e− → W−
L W

−
R with

√
s = 3 TeV and for both

mWR
= 2.5 TeV (dashed red line) and 2.7 TeV (solid blue line), with the latter normalized to

facilitate comparison.

The result is (neglecting mWL
)

|Mt|2 =
8G2

F |∑i Uei T
∗
ei|2

(t−m2
i )

2

(

mWL

mWR

)2
{

4m4
WL
m2

WR
(t−m2

WR
)− t2

[

t(s+ t)−m2
WR

(2s+ t)
]

+ m2
WL
t
[

4m4
WR

+ t(2s + t)−m2
WR

(4s+ 5t)
]}

,

|Mu|2 = |Mt|2 (t↔ u) , (20)

M∗
t Mu ∝ Tr{PRγνq/γµp/1γαq̃/γβp/2PL} = 0 .

The interference term vanishes, since the final state particles are distinguishable. Fig. 5 shows

the differential cross section dσ/d cos θ as a function of cos θ, for mWR
= 2.5 TeV and 2.7 TeV,

normalized with respect to each other (the cross section formWR
= 2.7 TeV is actually a factor

of two smaller). dσ/d cos θ is practically flat, and approaches a straight line as mWR
increases.

It is interesting to study the high energy behaviour of the total cross section in the case

of light neutrino exchange. In the limit that
√
s→ ∞, the cross section becomes

σ(e−e− →W−
L W

−
R ) ≃

G2
F m

2
WR

24 πm2
WL

s η2λ ≤ 8.8× 10−5
(mWR

TeV

)2
( √

s

TeV

)2(
ηλ

9× 10−7

)2

fb , (21)

where the upper bound on ηλ is given in Eq. (14) and we have neglected the mass of the

light neutrinos mi in the propagator. The apparent violation of unitarity can be explained by

taking the full theory into account, in which case the cross section will vanish when
√
s→ ∞

and unitarity is restored (see Appendix B for details).

There is also another diagram analogous to Fig. 4, with heavy neutrinos exchanged. The

structure of the matrix elements is the same, we need only to interchange mi ↔Mi, Uei ↔ V ∗
ei

9
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−
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σ
[f
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]
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Figure 6: Cross section for e−e− → W−
L W

−
R with

√
s = 3 TeV and three limits for the ηλ

parameter: the solid (blue) line is for the current limit ηλ = 9× 10−7, the dashed (green) line
and the dotted (red) line are for limits on ηλ improved by a factor

√
2 and 2, respectively.

The dotted (black) horizontal line corresponds to the cross section that would give five events
at an integrated luminosity of 3000 fb−1.

and T ∗
ei ↔ Sei, where Mi is the mass of the heavy neutrinos and V ∗

ei and Sei are 3×3 mixing

matrices defined in Eq. (A-15). In this case the rate for double beta decay will be suppressed

with respect to the case of light neutrino exchange in the λ-diagram.

To calculate the total cross section the limits from 0νββ experiments as well as the allowed

region formWR
must be taken into account. Fig. 6 shows the cross section for e−e− →W−

L W
−
R

as a function of mWR
for

√
s = 3 TeV, assuming only light neutrinos are exchanged and with

three different limits for ηλ: the solid (blue) line corresponds to the present upper limit

[Eq. (14)] given by 0νββ experiments, the dashed (green) uses a limit improved by a factor

of
√
2 and the dotted (red) line is for a limit improved by a factor of 2. Note that a factor of

x improvement in ηλ corresponds to a factor of x2 improvement in life-time. We also indicate

the cross section that would give five events at an integrated luminosity of 3000 fb−1 [40],

corresponding to a few years of running. It is evident that for 2.5 TeV <∼ mWR
<∼ 2.8 TeV,

enough events are possible in case 0νββ is observed soon, and caused by the λ-diagram. Note

that since there is no Standard Model background to the process, a small rate is tolerable.

In the next subsection we will show that polarization of the electron beams could be

used to enhance the cross section by up to a factor of two. Finally, we should note that in

neutrinoless double beta decay different contributions could interfere destructively. In this

case the bound on ηλ would be relaxed and a larger cross section is possible.

10



beam polarization R
1 2

0% 0% 1
90% RH 0% 1
50% LH 50% LH 0.75
50% LH 50% RH 1.25
80% LH 50% RH 1.40
90% LH 90% RH 1.81
90% LH 80% RH 1.72
100% LH 100% RH 2

Table 1: Suppression or enhancement factors of the cross section with polarized beams with
respect to the unpolarized case.

3.2 Polarized beams

Future linear colliders have the possibility to polarize their beams. In order to quantify the

effects on our process, we define the polarization for an electron beam P1,2 as follows:

P1,2 ≡
N1,2

R −N1,2
L

N1,2
R +N1,2

L

, (22)

where NR and NL stand for the number of electrons having right- and left-handed helicity in

the electron beam 1 or 2, respectively. If beam 1 is fully left-handed, P1 = −1, whereas for a

fully right-handed beam, P1 = +1.

When the electron beam 1 has a polarization of P1 and the electron beam 2 has a polar-

ization of P2, the total cross section σ(P1, P2) of a process is calculated as

σ(P1, P2) =
1

4
{(1− P1)(1 + P2)σLR + (1− P1)(1− P2)σLL

+ (1 + P1)(1 + P2)σRR + (1 + P1)(1− P2)σRL} ,
(23)

where σLR stands for the cross section of the process when both electron beams are 100%

polarized, one left-handed and the other right-handed; σRL, σLL and σRR are defined in a

similar way. In our case for the λ-diagram σLL = σRR = 0, and σLR (σRL) is the cross section

that would arise from the t-channel (u-channel) diagram only. Furthermore, σLR = σRL.

Thus, equation (23) simply becomes

σ(P1, P2) = σ(P2, P1) =
σLR
2

(1− P1 P2) . (24)

Table 1 gives numerical examples. We have defined the ratio R between the cross section of

polarized and unpolarized beams:

R ≡ σ(P1, P2)

σ(0, 0)
= 1− P1 P2 . (25)

11



Obviously, σ(0, 0) is the total cross section calculated before. We see that the event numbers

can in principle be doubled. Furthermore, polarization could be used as an additional method

to distinguish different mechanisms for processes of the form e−e− → W−W−. For instance,

the process e−e− → 4 jets [19] mediated by R-parity violating supersymmetry, involves slepton

exchange, which couple mainly to left-handed electrons.

4 Conclusion

We have considered in this paper the process e−e− → W−
L W

−
R as a clean check of the so-

called λ-diagram as the leading contribution to neutrinoless double beta decay. We argued

that among the many possible diagrams for 0νββ that are possible in left-right symmetric

theories, it is the most promising one at a linear collider. Indeed, it may be possible to observe

the process at a linear collider with center-of-mass energy of 3 TeV. It is however necessary

that both the mass of theWR and the life-time of 0νββ are close to their current experimental

limits. We have also considered beam polarization effects and the high energy behaviour of

the total cross section, as well as the individual amplitudes.
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Appendix

A Details of the left-right symmetric model

In the left-right symmetric model [41–45], the Standard Model is extended to include the

gauge group SU(2)R (with gauge coupling gR 6= gL), and right-handed fermions are grouped

into doublets under this group. Thus we have the following fermion particle content under

SU(2)L × SU(2)R × U(1)B−L:

L′
iL =

(

ν ′i
ℓ′i

)

L

∼ (2, 1,−1) , L′
iR =

(

ν ′i
ℓ′i

)

R

∼ (1, 2,−1) , (A-1)

Q′
iL =

(

u′i
d′i

)

L

∼ (2, 1, 1
3
) , Q′

iR =

(

u′i
d′i

)

R

∼ (1, 2, 1
3
) , (A-2)

12



with the electric charge given by Q = T 3
L + T 3

R + B−L
2

and i = 1, 2, 3. The subscripts L and R

are associated with the projection PL,R = 1
2
(1 ∓ γ5). In order to break the gauge symmetry

and allow Majorana mass terms for neutrinos one introduces the Higgs triplets

∆L,R ≡
(

δ+L,R/
√
2 δ++

L,R

δ0L,R −δ+L,R/
√
2

)

, (A-3)

with ∆L ∼ (3, 1, 2) and ∆R ∼ (1, 3, 2); the electroweak symmetry is broken by the bi-doublet

scalar

φ ≡
(

φ0
1 φ+

2

φ−
1 φ0

2

)

∼ (2, 2, 0) . (A-4)

The relevant Lagrangian in the lepton sector is

Lℓ
Y =− L

′
L(fφ+ gφ̃)L′

R − L
′c
Liσ2∆LhLL

′
L − L

′c
Riσ2∆RhRL

′
R + h.c., (A-5)

where φ̃ ≡ σ2φ
∗σ2; f, g and hL,R are matrices of Yukawa couplings and charge conjugation is

defined as

ψc
L,R ≡ CψT

L,R , C ≡ iγ0γ2 . (A-6)

If one assumes a discrete LR symmetry in addition to the additional gauge symmetry, the

gauge couplings become equal (gL = gR = g) and one obtains relations between the Yukawa

coupling matrices in the model. With a discrete parity symmetry it follows that hL = h∗R,

f = f †, g = g†; with a charge conjugation symmetry h ≡ hL = hR, f = fT , g = gT .

Making use of the gauge symmetry to eliminate complex phases, the most general vacuum

is

〈φ〉 =
(

κ1/
√
2 0

0 κ2e
iα/

√
2

)

, 〈∆L〉 =
(

0 0

vLe
iθL/

√
2 0

)

, 〈∆R〉 =
(

0 0

vR/
√
2 0

)

. (A-7)

After spontaneous symmetry breaking, the mass term for the charged leptons is

Lℓ
mass = −ℓ′LMℓℓ

′
R + h.c., (A-8)

where the mass matrix

Mℓ =
1√
2
(κ2e

iαf + κ1g) 6=M †
ℓ (A-9)

can be diagonalized by the bi-unitary transformation

ℓ′L,R ≡ V ℓ
L,RℓL,R , V ℓ†

L MℓV
ℓ
R = diag(me, mµ, mτ ) . (A-10)
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In the neutrino sector we have a type I + II seesaw scenario,

Lν
mass = −1

2
n′
LMνn

′c
L + h.c. = −1

2

(

ν ′L ν
′
R
c
)

(

ML MD

MT
D MR

)(

ν ′L
c

ν ′R

)

+ h.c. , (A-11)

with

MD =
1√
2
(κ1f + κ2e

−iαg) , ML =
√
2vLe

iθLh , MR =
√
2vRh . (A-12)

Assuming that ML ≪ MD ≪ MR, the light neutrino mass matrix can be written in terms of

the model parameters as

mν =ML −MDM
−1
R MT

D =
√
2vLe

iθLh− κ2+√
2vR

hDh
−1hTD , (A-13)

where

hD ≡ 1√
2

κ1f + κ2e
−iαg

κ+
, κ2+ ≡ |κ1|2 + |κ2|2 . (A-14)

The symmetric 6 × 6 neutrino mass matrix Mν in Eq. (A-11) is diagonalized by the unitary

6× 6 matrix [46–48]

W ≡
(

V ν
L

V ν
R

)

=

(

U S

T V

)

≃
(

13×3 MDM
−1
R

−M−1
R

∗
M †

D 13×3

)(

UPMNS 0

0 VR

)

(A-15)

to W †MνW
∗ = diag(m1, m2, m3,M1,M2,M3), where the matrices UPMNS and VR are defined

by

ML −MDM
−1
R MT

D = UPMNS diag(m1, m2, m3)U
T
PMNS ,

MR = VR diag(M1,M2,M3)V
T
R .

(A-16)

The neutrino mass eigenstates n = nL + nc
L = nc are defined by

n′
L =

(

ν ′L
ν ′R

c

)

= WnL =

(

U S

T V

)(

νL

N c
R

)

(A-17)

n′c
L =

(

ν ′L
c

ν ′R

)

=W ∗nc
L =

(

U∗ S∗

T ∗ V ∗

)(

νcL
NR

)

. (A-18)

Note that the unitarity of W leads to the useful relations

V ν
L V

ν†
L = UU † + SS† = 1= V ν

RV
ν†
R = TT † + V V † and V ν

L V
ν†
R = UT † + SV † = 0 , (A-19)

with the unitary 3× 6 matrices V ν
L = (U S) and V ν

R = (T V ) defined in Eq. (A-15).
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The leptonic charged current interaction in the flavour basis is

Llep
CC = g√

2

[

ℓ′γµ(PL cos ζ − PR sin ζ e−iα)ν ′W−
1µ

+ ℓ′γµ(PL sin ζ e
iα + PR cos ζ)ν ′W−

2µ

]

+ h.c.,
(A-20)

where
(

W±
L

W±
R

)

=

(

cos ζ sin ζ eiα

− sin ζ e−iα cos ζ

)(

W±
1

W±
2

)

(A-21)

characterizes the mixing between left- and right-handed gauge bosons, with tan 2ζ = − 2κ1κ2

v2
R
−v2

L

.

With negligible mixing the gauge boson masses become

mWL
≃ mW1 ≃

g

2
κ+ , and mWR

≃ mW2 ≃
g√
2
vR , (A-22)

and assuming that3 κ2 < κ1, it follows that

ζ ≃ −κ1κ2/v2R ≃ −2
κ2
κ1

(

mWL

mWR

)2

, (A-23)

so that the mixing angle ζ is at most4 the square of the ratio of left and right scales (L/R)2.

The charged current then becomes

Llep
CC = g√

2

[

ℓ′Lγ
µν ′LW

−
Lµ + ℓ′Rγ

µν ′RW
−
Rµ

]

+ h.c.

= g√
2

[

ℓLγ
µKLnLW

−
Lµ + ℓRγ

µKRn
c
LW

−
Rµ

]

+ h.c.
(A-24)

Here KL and KR are 3× 6 mixing matrices

KL ≡ V ℓ†
L V

ν
L , and KR ≡ V ℓ†

R V
ν∗
R , (A-25)

connecting the three charged lepton mass eigenstates ℓi to the six neutrino mass eigenstates

(νi, Ni)
T , (i = 1, 2, 3), with [using Eq. (A-19)] KLK

†
L = KRK

†
R = 1 and KLK

T
R = 0.

Note that in this model one also expects a new neutral gauge boson, Z ′, which mixes with

the standard model Z boson. The mass eigenstates Z1,2 have the masses

mZ1 ≃
g

2 cos θW
κ+ , and mZ2 ≃

g cos θW√
cos 2θW

vR , (A-26)

where g = e/ sin θW and the U(1) coupling constant is g′ ≡ e/
√
cos 2θW . Again one expects

the mixing to be of order (L/R)2. Eqs. (A-22) and (A-26) imply that mZ2 ≃ 1.7mW2.

3This is justified if one assumes no cancellations in generating quark masses [49].
4Although the experimental limit is ζ < 10−2 [50], for mWR

= O(TeV) one has ζ <∼ 10−3 [51]; supernova
bounds for right-handed neutrinos lighter than 1 MeV are even more stringent (ζ < 3× 10−5) [51–53].
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B High energy behaviour of e−e− →W−
LW

−
R

Naively, the high-energy limit of the cross section is obtained by neglecting the neutrino mass

in the propagator [see Eq. (20)], i.e.

σ ∝
(

∑

i

UeiT
∗
ei

)2

, (A-27)

which does not seem to vanish. However, one needs to consider the full theory. In calculating

the cross section one combines two terms from the Lagrangian in Eq. (A-24):

∑

i

[

e γµ(KL)eiPLniW
−
Lµ

] [

e γν(KR)eiPRniW
−
Rν

]

. (A-28)

The identity e γνPRni = −nc
i γ

νPLe
c allows one to contract nin

c
i to a propagator, so that in

the high energy limit the amplitude is proportional to

∑

i

(KL)ei(KR)ei = [KLK
T
R ]ee , (A-29)

instead of
∑

i UeiT
∗
ei as in the naive case. As shown in the previous subsection, KLK

T
R = 0,

which means that the cross section vanishes in the high energy limit and unitarity is ensured.

C Helicity amplitudes for e−e− →W−
LW

−
R

It is an illustrative exercise to evaluate the helicity amplitudes of the process e−e− →W−
L W

−
R ,

with the helicity of the electrons and the polarization of theW -bosons fixed. Denoting electron

(W -boson) momenta with pi (ki), (i = 1, 2), the process is

e−(p1, λ1) e
−(p2, λ2) →W−

L (k1, τ1)W
−
R (k2, τ2) , (A-30)

where λ1,2 = ±1
2
and τ1,2 = 0,±1. Without loss of generality, one can choose p1 and p2 to

be in the ±z-directions, and assume that the final state particles propagate in the x–z plane.

The momenta are then given by

pµ1,2 = (E, 0, 0,±E) , kµ1,2 = (E1,2,±|k|~n) , (A-31)

where ~n = (sin θ, 0, cos θ) and

E =

√
s

2
, E1,2 =

s±m2
WL

∓m2
WR

2
√
s

, |k| =

√

λ(s,m2
WL
, m2

WR
)

2
√
s

. (A-32)

16



The gauge boson polarization vectors can be defined by

ǫτ1,2=0(k1, k2) = ± 1

mWL,R

(±|k|, E1,2 sin θ, 0, E1,2 cos θ) , (A-33)

ǫτ1,2=±1(k1, k2) =
1√
2
(0,∓τ1,2 cos θ,−i,±τ1,2 sin θ) . (A-34)

The helicity amplitudes are calculated from

Mλ1λ2τ1τ2 =
g2

2(t−m2
i )
ū(p1, λ1)γµ/qγνPLv(p2, λ2)ǫ

µ∗(k1, τ1)ǫ
ν∗(k2, τ2)

+
g2

2(u−m2
i )
ū(p1, λ1)γµ/̃qγνPRv(p2, λ2)ǫ

µ∗(k2, τ2)ǫ
ν∗(k1, τ1) , (A-35)

resulting in

Mλλ00 = −λg2
sin θ

{√

λ(s,m2
WL
, m2

WR
)
(

s+m2
WL

+m2
WR

)

− 2λ cos θ
[

(

m2
WL

−m2
WR

)2 − s2
]}

4mWL
mWR

(q2 −m2
i )

,

(A-36)

Mλλ0τ = λg2
√
s

[

(1 + 2λτ) cos2
θ

2
+ (1− 2λτ) sin2 θ

2

]

×
cos θ

(

s+m2
WL

−m2
WR

)

− 4λτm2
WL

+ 2λ
√

λ
(

s,m2
WL
, m2

WR

)

2
√
2mWL

(q2 −m2
i )

, (A-37)

Mλλτ0 = −λg2
√
s

[

(1− 2λτ) cos2
θ

2
+ (1 + 2λτ) sin2 θ

2

]

×
cos θ

(

s−m2
WL

+m2
WR

)

+ 4λτm2
WL

+ 2λ
√

λ
(

s,m2
WL
, m2

WR

)

2
√
2mWL

(q2 −m2
i )

, (A-38)

Mλλττ = g2
sin θ

[

2λ
√

λ
(

s,m2
WL
, m2

WR

)

− 2λτ
(

m2
WL

−m2
WR

)

+ s cos θ
]

4 (q2 −m2
i )

, (A-39)

Mλλτ−τ = −g
2s sin θ(cos θ − 2λτ)

4 (q2 −m2
i )

, (A-40)

Mλ−λ00 = Mλ−λ0τ = Mλ−λτ0 = Mλ−λττ = Mλ−λτ−τ = 0 , (A-41)

where λ = ±1
2
and τ = ±1, and q2 = t(u) when λ = −1

2

(

+1
2

)

. The amplitude vanishes

whenever λ1 = −λ2, or in other words, when the two electrons have the same spin (note that

one electron is described by a v spinor in Eq. (A-35), which means that its actual helicity is

the opposite of the spinor’s helicity). The amplitude is only non-zero when the electrons have

opposite spin (λ1 = λ2); squaring and summing over boson polarizations gives the polarized

cross sections σLR and σRL in Eq. (23), which correspond to the t- and u-channels respectively.

It is interesting to study the high energy behaviour of these helicity amplitudes. Explicitly,
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in the limit
√
s→ ∞ and neglecting neutrino mass one gets

Mλλ00

√
s→∞−−−−→ −λ g2 sin θ s

2mWL
mWR

,

Mλλ0τ

√
s→∞−−−−→ −g

2
√
s
[

(1 + 2λτ) cos2 θ
2
+ (1− 2λτ) sin2 θ

2

]

2
√
2mWL

,

Mλλτ0

√
s→∞−−−−→ g2

√
s
[

(1− 2λτ) cos2 θ
2
+ (1 + 2λτ) sin2 θ

2

]

2
√
2mWL

, (A-42)

Mλλττ

√
s→∞−−−−→ −λg2 sin θ ,

Mλλτ−τ

√
s→∞−−−−→ −λτ g

2 sin θ(1− 2λτ cos θ)

1 + 2λ cos θ
.

The amplitudes that contain at least one longitudinally polarized W -boson (τ1,2 = 0) are di-

vergent, whereas those with only transverse polarizations (τ1,2 = ±1) are finite. Summing over

fermion spins and boson polarizations gives the result in Eq. (21), and proper consideration

of the full theory will lead to a well-behaved total amplitude, in analogy to Appendix B.
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