Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Fascin controls neuronal class-specific dendrite arbor morphology

MPG-Autoren
/persons/resource/persons45835

Nagel,  Julia
Research Group: Dendrite Differentiation / Tavosanis, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons71872

Zhang,  Yun
Research Group: Dendrite Differentiation / Tavosanis, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39095

Tavosanis,  Gaia
Research Group: Dendrite Differentiation / Tavosanis, MPI of Neurobiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nagel, J., Delandre, C., Zhang, Y., Foerstner, F., Moore, A. W., & Tavosanis, G. (2012). Fascin controls neuronal class-specific dendrite arbor morphology. DEVELOPMENT, 139(16), 2999-3009. doi:10.1242/dev.077800.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-EECE-E
Zusammenfassung
The branched morphology of dendrites represents a functional hallmark of distinct neuronal types. Nonetheless, how diverse neuronal class-specific dendrite branches are generated is not understood. We investigated specific classes of sensory neurons of Drosophila larvae to address the fundamental mechanisms underlying the formation of distinct branch types. We addressed the function of fascin, a conserved actin-bundling protein involved in filopodium formation, in class III and class IV sensory neurons. We found that the terminal branchlets of different classes of neurons have distinctive dynamics and are formed on the basis of molecularly separable mechanisms; in particular, class III neurons require fascin for terminal branching whereas class IV neurons do not. In class III neurons, fascin controls the formation and dynamics of terminal branchlets. Previous studies have shown that transcription factor combinations define dendrite patterns; we find that fascin represents a downstream component of such programs, as it is a major effector of the transcription factor Cut in defining class III-specific dendrite morphology. Furthermore, fascin defines the morphological distinction between class III and class IV neurons. In fact, loss of fascin function leads to a partial conversion of class III neurons to class IV characteristics, while the reverse effect is obtained by fascin overexpression in class IV neurons. We propose that dedicated molecular mechanisms underlie the formation and dynamics of distinct dendrite branch types to elicit the accurate establishment of neuronal circuits.