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Abstract It is shown that every integral varifold in an open subset of Euclidean space
whose first variation with respect to area is representable by integration can be cov-
ered by a countable collection of submanifolds of the same dimension of class 2 and
that their mean curvature agrees almost everywhere with the variationally defined
generalized mean curvature of the varifold.
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1 Introduction

Overview In the present paper the existence of an approximate second order struc-
ture for integral varifolds in Euclidean space whose first variation with respect to area
is representable by integration is established. Such varifolds are called “of locally
bounded first variation” in [33]. Moreover, it is proven that the variationally defined
generalized mean curvature of the varifold agrees almost everywhere with the mean
curvature induced from the approximate second order structure. This problem can be
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considered a geometric, nonlinear, higher multiplicity version of the following linear
one: Prove existence of approximate second order differentials for weakly differen-
tiable functions whose distributional Laplacian is representable by integration (i.e.,
by a “vector-valued Radon measure”) and show that these differentials satisfy the
equation Lebesgue almost everywhere. Clearly, the linear case itself is not too hard
to solve, and in fact follows immediately from classical results if the distributional
Laplacian is integrable with respect to Lebesgue measure to a power larger than 1.
Nevertheless, the main objective of the present paper is to develop a method which is
based on the study of the nearly linear case and is sufficiently robust to be applied to
the present elliptic system of geometric partial differential equations involving higher
multiplicity.

Results of the type obtained in the present paper have proven useful, for example,
in the context of Brakke’s mean curvature flow, or sharp and diffuse interfaces, or
image reconstruction, or the Willmore functional; see [7, 9, 26, 28–30, 32] and the
references therein.

Result of the Present Paper in the Context of Known Results Fix positive integers m

and n with m < n. The principal result is as follows; see Sect. 2 for the notation used.

Theorem 1 (see 4.8) Suppose U is an open subset of Rn, V ∈ IVm(U) and ‖δV ‖ is
a Radon measure.

Then there exists a countable collection C of m-dimensional submanifolds of Rn

of class 2 such that ‖V ‖(U ∼ ⋃
C) = 0 and each member M of C satisfies

h(V ; z) = h(M; z) for ‖V ‖ almost all z ∈ U ∩ M.

In the terminology of Anzellotti and Serapioni [8, 3.1] the first part of the conclu-
sion can be expressed equivalently by the condition that U ∩ {z : 0 < �m(‖V ‖, z) <

∞} meets every compact subset of U in a set which is (H m,m) rectifiable of
class C 2. The second part of the assertion is sometimes called “locality of the mean
curvature”; see Schätzle [32, Sect. 4].

Clearly, if W ∈ IVm(U) then the existence of a countable collection C of m-
dimensional submanifolds of Rn of class 2 with ‖W‖(U ∼ ⋃

C) = 0 is equivalent to
the existence of sequences Ai and Mi such that Mi are m-dimensional submanifolds
of Rn of class 2, Ai are H m measurable subsets of Mi , and

W(f ) =
∞∑

i=1

ˆ
Ai

f (z,Tan(Mi, z))dH mz for f ∈ K (U × G(n,m)).

However, in Theorem 1 one cannot require

�m(‖V ‖, z) = card{M : z ∈ M ∈ C} for H m almost all z ∈ U

even if spt‖V ‖ is contained in an m-dimensional subspace; see 4.11.
Theorem 1 contains (and re-proves) the fact that h(V ; z) ∈ Norm(‖V ‖, z) for ‖V ‖

almost all z previously obtained by Brakke [9, 5.8]; see 4.9. Moreover, it is worth
noting, see 4.10, that if V is a curvature varifold with boundary in U in the sense



Second Order Rectifiability of Integral Varifolds 711

of Mantegazza [21, Definition 3.1] then V satisfies the hypotheses of Theorem 1
and, taking C as in its conclusion, the second fundamental form of V agrees almost
everywhere with the second fundamental form induced by the members M of C.

Evidently, Theorem 1 implies that the function mapping ‖V ‖ almost every z onto
the orthogonal projection of Rn onto the approximate m-dimensional tangent plane
of ‖V ‖ at z is (‖V ‖,m) approximately differentiable. If the first variation of ‖V ‖
satisfies the integrability condition (Hp) below with sufficiently large exponent p

then this map is in fact differentiable in a stronger L2(‖V ‖,Hom(Rn,Rn)) sense.
Whenever U is an open subset of Rn, V ∈ IVm(U) and 1 ≤ p ≤ ∞, the varifold V is
said to satisfy (Hp) if and only if ‖δV ‖ is a Radon measure and, if p > 1,

(δV )(g) = −
ˆ

h(V ; z) • g(z)d‖V ‖z for g ∈ D(U,Rn),

h(V ; ·) ∈ Lp(‖V ‖�K,Rn) whenever K is a compact subset of U.

(Hp)

Theorem 2 (see 5.2 and 5.5) Suppose U is an open subset of Rn, 1 ≤ p ≤ ∞, and
V ∈ IVm(U) satisfies (Hp).

If either m = 1 or m = 2 and p > 1 or m > 2 and p ≥ 2m/(m + 2), then for ‖V ‖
almost all a

 
B(a,r)

(|R(z) − R(a) − 〈R(a)(z − a), apDR(a)〉|/|z − a|)2 d‖V ‖z → 0

as r → 0+ where R(z) = Tanm(‖V ‖, z)� ∈ Hom(Rn,Rn) and the approximate dif-
ferential is taken with respect to (‖V ‖,m).

With the possible exception of the case m = 2 this differentiability result is optimal
with respect to the assumptions on p, i.e., whenever m > 2 and mp

m−p
< 2 there exists

an integral varifold satisfying (Hp) not having the property in question; see 5.4.
In previous work, Schätzle established the following result in codimension one of

the existence of submanifolds of class ∞ touching a given varifold; see [31, Propo-
sition 4.1, Theorem 5.1] where it is phrased in terms of upper and lower height func-
tions.

Theorem (Schätzle [31]) Suppose U is an open subset of Rn, p > m = n−1, p ≥ 2,
and V ∈ IVm(U) satisfies (Hp).

Then for ‖V ‖ almost all a there exists 0 < r < ∞ such that

U(a + v, r) ∩ spt‖V ‖ = ∅
whenever v ∈ Norm(‖V ‖, a) with |v| = r .

This is the key to showing that such a varifold satisfies the conclusion of Theo-
rem 1, see Schätzle [31, Theorem 6.1], and, in combination with previous results of
the author in [22, 3.7, 3.9], also that it satisfies the conclusion of Theorem 2. Evi-
dently (see, for example, [22, 1.2]), Schätzle’s theorem does not extend to the case
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p < m. Also, the use of the theory of viscosity solutions for fully nonlinear equa-
tions, more precisely the results of Caffarelli [10] and Trudinger [35], leads to the
restriction to codimension one, i.e., m = n − 1.

Therefore, in order to establish Theorem 1, a different method needs to be devel-
oped which is able to deal both with the low integrability of the generalized mean
curvature and with higher codimension. The main independent result in this process
is the following theorem stated here in the case of Laplace’s operator.

Theorem 3 (see 3.11) Suppose U is an open subset of Rm, u : U → Rn−m is weakly
differentiable, j ∈ {0,1}, 1 ≤ q < ∞,

h(a, r) = inf

{
j∑

i=0

ri−m/q |Di (u − v)|q;a,r : v ∈ E (U(a, r),Rn−m), Lapv = 0

}

whenever a ∈ U , 0 < r < ∞ with U(a, r) ⊂ U and A denotes the set of all a ∈ U

such that

lim sup
r→0+

r−2h(a, r) < ∞.

Then for L m almost all a ∈ A there exists a polynomial function Qa : Rm →
Rn−m of degree at most 2 such that

lim
r→0+ r−2

j∑

i=0

ri−m/q |Di (u − Qa)|q;a,r = 0.

Here the seminorms | · |q;a,r correspond to Lq(L m �U(a, r)). The weaker state-
ment which results when the condition Lapv = 0 is replaced by D2v = 0 is con-
tained in Calderón and Zygmund [11, Theorem 5] if q > 1. However, the construc-
tion of affine comparison functions at a given point from information on the distribu-
tional Laplacian of u may—for integral orders of differentiability—fail at individual
points; see [24, 10.4]. This corresponds to the well-known fact of the nonexistence
of Schauder estimates for the Hölder exponent 1. In this respect the value of the
current theorem stems from the fact that harmonic comparison functions are readily
constructed independent of the order of differentiability considered, cp. 3.13. In fact,
if j = 1, q > 1, and denoting by T ∈ D ′(U,Rn−m) the distributional Laplacian of u

then

�−1h(a, r) ≤ r1−m/q |T |−1,q;a,r ≤ �h(a, r)

whenever a ∈ U , 0 < r < ∞, U(a, r) ⊂ U , and u|U(a, r) ∈ W1,q (U(a, r),Rn−m)

where � is a positive, finite number depending only on n and q and |·|−1,q;a,r denotes

the seminorm corresponding to (W1,q/(q−1)

0 (U(a, r),Rn−m))∗. In particular, if T is
representable by integration and q < m/(m − 1) if m > 1 then one verifies L m(U ∼
A) = 0. An extensive study of both integral and nonintegral orders of differentiability
for solutions of linear elliptic partial differential equations in nondivergence form can
be found in Calderón and Zygmund [11].
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In passing to divergence form equations, one is naturally lead to consider the re-
lated problem for distributions:

Theorem 4 (see 3.13 and A.3) Suppose U is an open subset of Rm, 1 ≤ q < ∞,
T ∈ D ′(U,Rn−m) and A denotes the set of all a ∈ U such that

lim sup
r→0+

r−1−m/q |T |−1,q;a,r < ∞.

Then for L m almost every a ∈ A there exists a unique constant distribution Ta ∈
D ′(U,Rn−m) such that

lim
r→0+ r−1−m/q |T − Ta|−1,q;a,r = 0.

This may be seen as a Lebesgue point theorem for distributions. In case q > 1,
it is in fact a corollary to Theorem 3 obtainable by representing T locally as the
distributional Laplacian of some function u. In contrast, the case q = 1 is independent
from the other results of the present paper.

Finally, it should be noted that the proof of Theorem 3 only relies on a priori
estimates in Lebesgue spaces, i.e., “Lp theory”, which are known to hold for a much
wider class of linear equations; see Agmon, Douglis, and Nirenberg [1, 2].

Outline of the Proofs To prove Theorem 3, one considers the subsets of Ak of A of
all a ∈ A such h(a, r) ≤ kr2 whenever 0 < r < 1/k. Denoting by va,r : U(a, r) →
Rn−m harmonic functions essentially realizing the infimum in the definition of h, one
then uses the partition of unity with estimates from [16, 3.1.13] together with well-
known a priori estimates for the Laplace operator to construct functions vk : Rm →
Rn−m with the following properties; see 3.9:

(1) There holds

j∑

i=0

ri−m/q |Di (vk − u)|q;a,r ≤ �kr2

for a ∈ Ak and 0 < r < (36k)−1 and � a positive, finite number depending only
on n and q , in particular vk(x) = u(x) for L m almost all x ∈ Ak .

(2) The distributional Laplacian of vk is represented by a function locally in
L∞(L m,Rn−m).

Then clearly vk locally belongs to W2,q (Rm,Rn−m) for 1 ≤ q < ∞ and the conclu-
sion of Theorem 3 follows from by now classical differentiability results for func-
tions in Sobolev spaces which were also obtained by Calderón and Zygmund in [11].
An important feature of this proof is that it is readily adapted to the case where the
Laplace operator is replaced by the Euler–Lagrange differential operator LF corre-
sponding to an integrand F : Hom(Rm,Rn−m) → R of class 2 sufficiently close to
the Dirichlet integrand, i.e., LipD2F < ∞ and

∣
∣D2F(σ)(τ1, τ2) − τ1 • τ2

∣
∣ ≤ ε for σ, τ1, τ2 ∈ Hom(Rm,Rn−m)

with a suitable number ε.
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Next, it will be explained how this result on a rather restricted class of differential
operators can be used to treat the general case. For this purpose let U be an open
subset of Rn and let V ∈ IVm(U) be such that ‖δV ‖ is a Radon measure. Comparing
the behavior of V near certain “good” points to the behavior of harmonic functions,
a procedure developed by De Giorgi in [12] and Almgren in [4], one proves the tilt
decay estimate

lim sup
r→0+

r−τ−m/2
(ˆ

U(a,r)×G(n,m)

|S� − T�|2 dV (z,S)

)1/2

< ∞

for V almost all (a, T ) where 0 < τ < 1 if m ∈ {1,2} and τ = m
2(m−1)

< 1 if m > 2.
This has been done by the author in [24, 10.6] extending results of Brakke [9, 5.7, 5]
who proved the case τ = 1/2 with “< ∞” replaced by = 0, which is sufficient for
the proof of all theorems stated in the Introduction. As the order of differentiability
considered is nonintegral, i.e., 0 < τ < 1, the argument applies, in contrast to those
of the present paper, in a direct way to all points satisfying a simple set of conditions;
see [24, 10.2].

The principal idea to prove Theorem 1 is now to use the tilt decay estimate to
construct a sequence of functions gi : Rm → Rn−m, L m measurable sets Ki ⊂ Rm,
and distributions Ti ∈ D ′(Rm,Rn−m) with the following properties:

(1) The varifold is covered by suitably rotated graphs of the gi |Ki .
(2) The distribution Ti corresponds to the Euler–Lagrange differential operator asso-

ciated with the nonparametric area integrand � applied to gi .
(3) There holds

lim
r→0+ r−1−m

ˆ
U(x,r)

|Dgi(ζ ) − Dgi(x)|2 dL mζ = 0 whenever x ∈ Ki.

(4) The Lipschitz constant of the gi is small.
(5) The distributions Ti satisfy the conclusion of Theorem 4 with q = 1 and A re-

placed by Ki with constant distribution given by the generalized mean curvature
of the varifold.

Condition (4) is the minimum condition needed to be able to replace � with some
integrand F of the type discussed before in the definition of Ti without changing it;
see 3.21. The basis for the construction of gi , Ki , and Ti is an approximation by
QQ(Rn−m)-valued functions where the space QQ(Rn−m) is isometric to the Q-fold
product of Rn−m divided by the action of the group of permutations of {1, . . . ,Q}.
Here the version of the author in [24, 5.7] is employed which contains some es-
timates designed for the current applications and was obtained by combining and
extending similar constructions of Almgren in [6, Sect. 3] and Brakke in [9, 5.4].
This yields Lipschitzian functions fi : Ki → QQi

(Rn−m) with small Lipschitz con-
stant for suitable positive integers Qi . Denoting the “center” of S ∈ QQ(Rn−m) by
ηQ(S) = Q−1 ∑Q

j=1 yj whenever y1, . . . , yQ ∈ Rn−m correspond to S, the functions
gi are then constructed in 4.4 as extensions of ηQi

◦ fi . In this process the conditions
(3) and (5) are ultimately consequences of the tilt decay estimate.
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The final step in the proof of Theorem 1 is now to construct for fixed i and x ∈
Ki comparison functions vr ∈ W1,2(U(x, r),Rn−m) with LF (vr) = 0 for 0 < r <

∞ and estimating gi − vr in U(x, r); see 3.14–3.18. The natural choice is to take
vr as the solution of the Dirichlet problem with boundary values given by gi . If q

in (5) would satisfy q > 1 this would immediately yield an estimate of gi − vr in
W1,q (U(x, r),Rn−m). In case q = 1 the estimate needs to be derived differently,
namely, linearizing F and estimating the remaining terms with the help of condition
(3), obtaining an estimate in L1(L m �U(x, r),Rn−m) instead; see 3.16. Then the
extended version of Theorem 3 with LF replacing Lap, see 3.11, implies the first
part of Theorem 1. Recalling condition (5), the second part is derived similarly by
using functions wr ∈ W1,2(U(x, r),Rn−m) with LF (wr) = (Ti)x where (Ti)x is the
constant distribution of type Rn−m corresponding to Ti at x as in Theorem 4.

Organization of the Paper Section 2 reviews the notation. Section 3 contains results
which can be phrased solely in terms of elliptic partial differential equations and
distributions, in particular Theorem 3 and the case q > 1 of Theorem 4. Section 4 is
devoted to the proof of Theorem 1 whereas Sect. 5 contains Theorem 2. Then, the
Appendix gives the proof of the case q = 1 of Theorem 4.

Each section starts with a brief overview. Moreover, comments on individual re-
sults are supposed to further facilitate the navigation through the paper by explaining
the content, the idea, and the role of the result in question without being a prerequisite
for its proof. Finally, frequently, references are given also to results certainly known
to most experts in order to make the proofs accessible to a wider audience.

2 Notation

Overview The notation from Federer [16] and Allard [3] is used with some mod-
ifications and additions described in [24, Sects. 1, 2]. The reader familiar with this
notation may directly proceed to the paragraph “Additional notation” at the end of this
section. Also, the reader interested only in the results on elliptic partial differential
equations and distributions, i.e., Sect. 3 and the Appendix, may skip the paragraphs
on varifolds and Almgren’s multiple-valued functions.

In order to review the notation cited, suppose m and n are positive integers with
m < n.

Basic Notation Among the basic symbols used are the following:

P denotes the positive integers.
imf = {y : (x, y) ∈ f for some x} if f is a relation.
dmnf = {x : (x, y) ∈ f for some y} if f is a relation.
f |A = {(x, y) : (x, y) ∈ f for some x ∈ A} if f is a relation and A is a set.
f [A] = imf |A if f is a relation and A is a set.
U(a, r) denotes the open ball with center a and radius r .
B(a, r) denotes the closed ball with center a and radius r .
〈v,f 〉 = f (v) whenever f is a linear map and v ∈ dmnf .
v • w denotes the inner product of v and w.
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α(m) = L m U(0,1).
β(n) is the best constant in Besicovitch’s covering theorem in Rn.
γ (m) is the best constant in the isoperimetric inequality for m-dimensional rectifi-
able varifolds.
μr denotes multiplication by r .
τ a denotes translation by a.
O∗(n,m) denotes the set of orthogonal projections of Rn onto Rm.
G(n,m) denotes the set of all m-dimensional vector subspaces of Rn.
T� denotes the orthogonal projection of Rn onto T for T ∈ G(n,m).
T ⊥ = kerT� for T ∈ G(n,m).
Tan(S, a) denotes the tangent cone of S at a.
Tanm(φ,a) is the cone of (φ,m) approximate tangent vectors.
Norm(φ,a) is the cone of (φ,m) approximate normal vectors.
K (X) is the space of all real-valued continuous functions with compact support
on a locally compact Hausdorff space X.
A function is said to be of class k if and only if it is k times continuously differen-
tiable. A similar usage of the term “of class k” is made concerning submanifolds.ffl
A
f dφ = φ(A)−1

´
A
f dφ if φ measures X, 0 < φ(A) < ∞ and f ∈ L1(φ �A).

Lapu(a) is the Laplacian of a function u of class 2 at a.

Multilinear Algebra Suppose V and W are real vector spaces. Denote by
⊙i

(V ,W)

the vector space of all i linear symmetric functions (forms) mapping the i-fold prod-
uct V i into W whenever i ∈ P . One abbreviates

⊙i
V = ⊙i

(V ,R). Extending the
notation for linear maps, the alternate notations

φ(v1, . . . , vi) and 〈v1 � · · · � vi, φ〉

will be used whenever φ ∈ ⊙i
(V ,W) and v1, . . . , vi ∈ V . In this context the i-fold

product v�· · ·�v will be abbreviated to vi . (This notation is justified by the fact that
� is the multiplication in the symmetric graded algebra

⊙
∗ V = ⊕∞

i=0
⊙

i V of V ,
v1 �· · ·� vi ∈ ⊙

i V and φ induces a unique linear map from
⊙

i V into W ; see [16,
1.9.1, 1.10.1].) Whenever V and W are inner product spaces and dimV = j < ∞ one
may introduce a natural inner product on

⊙i
(V ,W); see [16, 1.10.6]. The induced

norm satisfies for every orthonormal base e1, . . . , ej of V

i!|φ|2 =
∑

s∈S (j,i)

|φ(es(1), . . . , es(i))|2 for φ ∈ ⊙i
(V ,W)

where S (j, i) denotes the set of all functions mapping {1, . . . , i} into {1, . . . , j}. In
particular, this is the usual norm on Hom(V ,W) = ⊙1

(V ,W) induced by an inner
product but may differ by a factor i!−1/2 from other definitions if i > 1. Additionally,
the norm

‖φ‖ = sup{φ(v1, . . . , vi) : vk ∈ V and |vk| ≤ 1 for k = 1, . . . , i}

for φ ∈ ⊙i
(V ,W) is employed. These concepts will be mainly used with either V =

Rm and W = Rn−m or V = Hom(Rm,Rn−m) and W = R.
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Weakly Differentiable Functions Whenever U is an open subset of Rm and u is
an L m �U measurable function with values in Rn−m, the function u is termed
k times weakly differentiable if and only if its distributional derivatives up to
order k are representable with respect to L m �U by functions Diu belonging
to L1(L m �K,

⊙i
(Rm,Rn−m)) whenever K is a compact subset of U and i =

0, . . . , k. The definition of the function Diu includes the requirement

Diu(a) = lim
r→0+

 
B(a,r)

DiudL m for a ∈ U ;

hence a ∈ dmn Diu if and only if the limit on the right-hand side exists. In partic-
ular, the weak derivative Diu will be distinguished notationally from the classical
derivative Diu. One abbreviates 1 times weakly differentiable and D1u to weakly
differentiable and Du, respectively. Let

|f |p;a,r =
(ˆ

U(a,r)

|f |p dL m

)1/p

if 1 ≤ p < ∞,

|f |∞;a,r = inf{t : L m(U(a, r) ∩ {x : |f (x)| > t}) = 0}

whenever a ∈ Rm, 0 < r < ∞ with U(a, r) ⊂ U , and f is an L m �U(a, r) mea-
surable function with values in a Hilbert space. In particular, this applies with
f = Diu and

⊙i
(Rm,Rn−m) equipped with the inner product described in the

paragraph on multilinear algebra. The Sobolev space Wk,p(U,Rn−m) consists of
all k times weakly differentiable functions in U with values in Rn−m such that
Diu ∈ Lp(L m �U,

⊙i
(Rm,Rn−m)) whenever i = 0, . . . , k with topology induced

by its canonical embedding into
⊕k

i=0 Lp(L m �U,
⊙i

(Rm,Rn−m)). Note that nei-
ther in the Sobolev spaces nor in the Lebesgue spaces are functions agreeing L m �U

almost everywhere treated as single elements; instead the aforementioned condition
on Diu is employed.

Distributions Whenever U is an open subset of Rm and Y is a Banach space,
D(U,Y ) denotes the space of functions mapping U into Y of class ∞ having
compact support. The space D(U,Y ) is equipped with the usual topology and
D ′(U,Y ) denotes its topological dual; see [16, 4.1.1]. If 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞
with 1/p + 1/q = 1, i is a negative integer, and T ∈ D ′(U,Rm) then

|T |i,p;a,r = sup{T (θ) : θ ∈ D(U,Rn−m), spt θ ⊂ U(a, r) and |D−iθ |q;a,r ≤ 1}.

Note, if U = U(a, r) and |T |−1,p;a,r < ∞ then one may use the Hahn–Banach
theorem to represent T with the help of either the duality of Lebesgue spaces
if p > 1 or [16, 2.5.12, 14] if p = 1; in fact, if p > 1 then there exists g ∈
Lp(L m �U(a, r),Hom(Rm,Rn−m)) with |g|p;a,r = |T |−1,p;a,r and

T (θ) =
ˆ

Dθ(x) • g(x)dL mx for θ ∈ D(U(a, r),Rn−m),
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and if p = 1 then there exists a Radon measure φ on U(a, r) and a φ measurable
function k : U(a, r) → Hom(Rm,Rn−m) with |k(x)| = 1 for φ almost all x ∈ U(a, r)

such that φ U(a, r) = |T |−1,1;a,r and

T (θ) =
ˆ

Dθ(x) • k(x)dφ x for θ ∈ D(U(a, r),Rn−m).

Moreover, the closure of D(U,Rn−m) in Wk,p(U,Rn−m) is Wk,p

0 (U,Rn−m).

Varifolds The following notation for varifolds based on Allard [3, 3.1, 4.2, 4.3, 3.5]
will be used in Sects. 4 and 5.

Suppose U is an open subset of Rn and G(n,m) is equipped with the usual topol-
ogy, e.g., induced by its embedding into

⊙
2
∧

m Rn; see [16, 3.2.28 (4)]. An m-
dimensional varifold V in U is a Radon measure on U × G(n,m). The weight mea-
sure ‖V ‖ of V is given by ‖V ‖(A) = V (A × G(n,m)) for A ⊂ U . The distributional
first variation with respect to area of a varifold V is given by

δV (θ) =
ˆ

Dθ(z) • S� dV (z,S) whenever θ ∈ D(U,Rn)

with associated Borel regular measure ‖δV ‖ characterized by

‖δV ‖(Z) = sup{δV (θ) : θ ∈ D(U,Rn) with spt θ ⊂ Z and |θ(z)| ≤ 1 for z ∈ U}

whenever Z is an open subset of U . If V is an m-dimensional varifold in U and ‖δV ‖
is a Radon measure, the generalized mean curvature vector of V at z is the unique
h(V ; z) ∈ Rn such that

h(V ; z) • v = − lim
r→0+

(δV )(bz,r · v)

‖V ‖B(z, r)
for v ∈ Rn

where bz,r is the characteristic function of B(z, r); hence z ∈ dmn h(V ; ·) if and only
if the above limit exists for every v ∈ Rn.

An m-dimensional varifold V in U is integral if and only if there exist sequences
Ai and Mi such that Mi are m-dimensional submanifolds of Rn of class 1, Ai are
H m measurable subsets of Mi , and

V (f ) =
∞∑

i=1

ˆ
Ai

f (z,Tan(Mi, z))dH mz for f ∈ K (U × G(n,m)).

In this case �m(‖V ‖, z) ∈ P and Tanm(‖V ‖, z) ∈ G(n,m) for ‖V ‖ almost all z and

V (f ) =
ˆ

f (z,Tanm(‖V ‖, z))�m(‖V ‖, z)dH mz for f ∈ K (U × G(n,m)).

The set of all integral m-dimensional varifolds in U is denoted by IVm(U).
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Almgren’s Multiple-Valued Functions The following notation from Almgren [6,
1.1(1)(3)(9)(10), 2.3(2)] is used in Sect. 4. Suppose Q ∈ P .

The space QQ(Rn−m) equals the set of all 0-dimensional integral currents R such
that R = ∑Q

i=1[[yi]] for some y1, . . . , yQ ∈ Rn−m. The metric G on QQ(Rn−m) sat-
isfies

G

(
Q∑

i=1

[[yi]],
Q∑

i=1

[[y′
i]]

)

= inf

{(
Q∑

i=1

|yi − y′
π(i)|2

)1/2

: π ∈ P(Q)

}

whenever y1, . . . , yQ,y′
1, . . . , y

′
Q ∈ Rn−m, where P(Q) denotes the set of permuta-

tions of {1, . . . ,Q}. The function ηQ : QQ(Rn−m) → Rn−m satisfies

ηQ(R) = Q−1
Q∑

i=1

yi whenever R =
Q∑

i=1

[[yi]] for some y1, . . . , yQ ∈ Rn−m

and LipηQ = Q−1/2.
If f : X → QQ(Rn−m) then

graphQ f = (X × Rn−m) ∩ {(x, y) : y ∈ sptf (x)}
and if additionally g : X → Rn−m then f (+)g : X → QQ(Rn−m) satisfies

(f (+)g)(x) =
Q∑

i=1

[[y + yi]] if f (x) =
Q∑

i=1

[[yi]] and g(x) = y

whenever x ∈ X.
Moreover, a function f : Rm → QQ(Rn−m) is affine if and only if there exist

affine functions fi : Rm → Rn−m, i = 1, . . . ,Q such that

f (x) =
Q∑

i=1

[[fi(x)]] whenever x ∈ Rm.

f1, . . . , fQ are uniquely determined up to order. Moreover,

|f |2 =
Q∑

i=1

|Dfi(0)|2.

Let a ∈ A ⊂ Rm and f : A → QQ(Rn−m). f is affinely approximable at a if and
only if a ∈ IntA and there exists an affine function g : Rm → QQ(Rn−m) such that

lim
x→a

G (f (x), g(x))/|x − a| = 0.

The function g is unique and denoted by Af (a). f is strongly affinely approximable
at a if and only if Af (a) has the following property: If Af (a)(x) = ∑Q

i=1[[gi(x)]]
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for some affine functions gi : Rm → Rn−m and gi(a) = gj (a) for some i and j , then
Dgi(a) = Dgj (a). The concepts of approximate affine approximability and approx-
imate strong affine approximability are obtained through omission of the condition
a ∈ IntA and replacement of lim by ap lim. The corresponding affine function is
denoted by apAf (a).

The projections p ∈ O∗(n,m) and q ∈ O∗(n,n − m) satisfy

p(z) = (z1, . . . , zm), q(z) = (zm+1, . . . , zn)

whenever z = (z1, . . . , zn) ∈ Rn. The closed cuboid C(T , a, r, h) equals

Rn ∩ {z : |T�(z − a)| ≤ r and |T ⊥
� (z − a)| ≤ h}

whenever T ∈ G(n,m), a ∈ Rn, 0 < r < ∞, and 0 < h ≤ ∞. One abbreviates
C(T , a, r,∞) = C(T , a, r). Note that the symbol C(T , a, r) is used by Allard in [3,
8.10] to denote Rn ∩ {z : |T�(z − a)| < r}.

References to Constants Each statement asserting the existence of a positive, finite
number, small (ε) or large (�), will give rise to a function depending on the listed
parameters whose “name” is εx.y or �x.y where x.y denotes the number of the state-
ment.

Additional Notation If M is a submanifold of Rn of class 2 and a ∈ M then the
mean curvature vector of M at a is the unique h(M;a) ∈ Rn such that

Tan(M;a)� • Dg(a) = −g(a) • h(M;a)

whenever g : Rn → Rn is class 1 and g(z) ∈ Nor(M; z) for z ∈ M , cp. Allard [3,
2.5(2)]. And if U is an open subset of Rm and Y is a Banach space then T is called
a constant distribution in U of type Y if and only if T ∈ D ′(U,Y ) and for some
α ∈ Y ∗ there holds T (θ) = ´

U
α ◦ θ dL m for θ ∈ D(U,Y ). Moreover, a subset of a

topological space X is called universally measurable if and only if it is measurable
with respect to every measure φ such that all closed subsets of X are φ measurable.

3 A Criterion for Second Order Differentiability in Lebesgue Spaces

Overview The purpose of this section is to prove 3.11, which contains Theorem 3
of the Introduction, and to provide the preparations necessary for its application in
Sect. 4.

First, in 3.1 the situation studied is described. Then, for the convenience of the
reader, in 3.2–3.8 adaptations and applications of standard theory are carried out.
The main ingredient in the proof of 3.11 is contained in 3.9. The part q > 1 of Theo-
rem 4 is provided in 3.13. Finally, in 3.14–3.18 it is shown how a certain nonintegral
differentiability condition on the solution u allows treating the case where estimates
for LF (u), see 3.1, are only available in |·|−1,1;a,r .

The following set of definitions will be used frequently in the present section.
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3.1 Suppose m,n ∈ P with m < n. Occasionally, the use of Euclidean coordinates
will be useful. For this purpose choose dual orthonormal bases

e1, . . . , em and X1, . . . ,Xm

of Rm and
⊙1 Rm and dual orthonormal bases

υ1, . . . , υn−m and Y1, . . . , Yn−m

of Rn−m and
⊙1 Rn−m. For � ∈ ⊙2 Hom(Rm,Rn−m) one then obtains the expres-

sion

�(σ, τ) =
m∑

i=1

n−m∑

j=1

m∑

k=1

n−m∑

l=1

�i,j ;k,l〈σ(ei), Yj 〉〈τ(ek), Yl〉

where �i,j ;k,l = �(Xiυj ,Xkυl) and Xυ maps x ∈ Rm onto X(x)υ ∈ Rn−m when-
ever X ∈ ⊙1 Rm and υ ∈ Rn−m.

Let ϒ ∈ ⊙2 Hom(Rm,Rn−m) be defined by

ϒ(σ, τ) = σ • τ for σ, τ ∈ Hom(Rm,Rn−m),

and suppose F : Hom(Rm,Rn−m) → R is of class 2, 0 ≤ ε < ∞, and

‖D2F(σ) − ϒ‖ ≤ ε whenever σ ∈ Hom(Rm,Rn−m).

The quantity LipD2F will be computed with respect to | · | on Hom(Rm,Rn−m) and
‖ · ‖ on

⊙2 Hom(Rm,Rn−m).
To each such F there corresponds the Euler–Lagrange differential operator LF

which associates with every u ∈ W1,1(U,Rn−m) for some open subset U of Rm a
distribution LF (u) in D ′(U,Rn−m) defined by

LF (u)(θ) = −
ˆ

U

〈Dθ(x),DF(Du(x))〉dL mx for θ ∈ D(U,Rn−m).

There also occurs the linear function CF (σ) : ⊙2
(Rm,Rn−m) → Rn−m which for

σ ∈ Hom(Rm,Rn−m) is given by

〈φ,CF (σ )〉 =
m∑

i=1

n−m∑

j=1

m∑

k=1

n−m∑

l=1

〈(Xiυj ,Xkυl),D
2F(σ)〉〈φ(ei, ek), Yj 〉υl

whenever φ ∈ ⊙2
(Rm,Rn−m). The function CF (σ) is uniquely determined by

D2F(σ); see [16, 5.2.11]. One obtains by partial integration for u ∈ W2,1(U,Rn−m),
θ ∈ D(U,Rn−m)

LF (u)(θ) =
ˆ

U

θ(x) • 〈D2u(x),CF (Du(x))〉dL mx.
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Sometimes also S : ⊙2
(Rm,Rn−m) → Rn−m corresponding to the Dirichlet inte-

grand, i.e., F(σ) = |σ |2/2 for σ ∈ Hom(Rm,Rm), (and therefore to ϒ ) will be used.
Note 〈φ,S〉 = ∑m

i=1 φ(ei, ei) whenever φ ∈ ⊙2
(Rm,Rn−m). One may check that

with κ = 21/2m(n − m)

|CF (σ)| ≤ κ‖D2F(σ)‖, |CF (σ) − S| ≤ κε,

|CF (σ) − CF (τ)| ≤ κ‖D2F(σ) − D2F(τ)‖

for σ, τ ∈ Hom(Rm,Rn−m), where | · | denotes the norm associated with the inner
product on Hom(

⊙2
(Rm,Rn−m),Rn−m); see [16, 1.7.9, 1.10.6].

The development of the present section requires a priori estimates of solutions to
linear elliptic systems of second order both in W1,p(U(a, r),Rn−m) in the case of
divergence form and in W2,p(U(a, r),Rn−m) in case of nondivergence form. The
coefficients are possibly neither continuous nor of vanishing mean oscillation. In-
stead, they are close in an L∞(L m) sense to those associated with Laplace’s opera-
tor. Therefore, the required estimates are obtained in 3.2–3.8 by standard perturbation
methods from the case of Laplace’s operator.

First, recall the following existence result with corresponding a priori estimates
for solutions in W1,p

0 (U(a, r),Rn−m).

Theorem 3.2 Suppose n ∈ P and 1 < p < ∞.
Then there exist positive, finite numbers ε and � with the following property.
If n > m ∈ P , ϒ is as in 3.1, a ∈ Rm, 0 < r < ∞,

A : U(a, r) → ⊙2 Hom(Rm,Rn−m) is L m �U(a, r) measurable,

‖A(x) − ϒ‖ ≤ ε whenever x ∈ U(a, r),

then for every T ∈ D ′(U(a, r),Rn−m) with |T |−1,p;a,r < ∞ there exists an

L m �U(a, r) almost unique u ∈ W1,p

0 (U(a, r),Rn−m) such that

−
ˆ

U(a,r)

〈Dθ(x) � Du(x),A(x)〉dL mx = T (θ) for θ ∈ D(U(a, r),Rn−m).

Moreover, whenever u and T are related as above there holds

|Du|p;a,r ≤ �|T |−1,p;a,r .

Proof By the Neumann series (cf. [16, 3.1.11]) it is enough to consider the case
ε = 0. Note also that there exists g ∈ Lp(L m �U(a, r),Hom(Rm,Rn−m)) with
T (θ) = −´

U(a,r)
g • Dθ dL m for θ ∈ D(U(a, r),Rn−m) and |T |−1,p;a,r = |g|p;a,r

by the Hahn–Banach theorem.
The conclusion then follows from [18, Theorem 10.15] in case p ≥ 2, to which

the case p < 2 reduces by use of a duality argument. �
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Remark 3.3 Representing T via g, the result is contained in Dong and Kim [13,
Theorem 8.2 (ii)], where measurable coefficients of nearly vanishing mean oscillation
are treated.

In order to express the equation for u in Euclidean coordinates, suppose T is rep-
resented by g as in the preceding proof. If u is of class 2, A and g are of class 1 and
Ai,j ;k,l(x) ∈ R represent A(x) ∈ ⊙2 Hom(Rm,Rn−m) as �i,j ;k,l represent � in 3.1,
and gi,j (x) = 〈ei, g(x)〉 • υj both for x ∈ U(a, r), the hypothesis relating u to T is
equivalent to

m∑

i=1

m∑

k=1

n−m∑

l=1

Di(Ai,j ;k,lDkul) =
m∑

i=1

Digi,j whenever j ∈ {1, . . . , n − m}

where θj = Yj ◦ θ and ul = Yl ◦ u; see 3.1.
From the preceding theorem, one deduces as usual local a priori estimates in

W1,p(U(a, r),Rn−m) for weak solutions belonging to W1,q (U(a, r),Rn−m), pos-
sibly with q < p.

Theorem 3.4 Suppose n ∈ P , 1 < q < ∞, and 1 < p < ∞.
Then there exists a positive, finite number ε with the following property.
If n > m ∈ P , ϒ is as in 3.1, a ∈ Rm, 0 < r < ∞,

A : U(a, r) → ⊙2 Hom(Rm,Rn−m) is L m �U(a, r) measurable,

‖A(x) − ϒ‖ ≤ ε whenever x ∈ U(a, r),

and u ∈ W1,q (U(a, r),Rn−m), T ∈ D ′(U(a, r),Rn−m) satisfy

−
ˆ

U(a,r)

〈Dθ(x) � Du(x),A(x)〉dL mx = T (θ) for θ ∈ D(U(a, r),Rn−m),

then

|Du|p;a,r/2 ≤ �
(
r−m−1+m/p|u|1;a,r + |T |−1,p;a,r

)

where � is a positive, finite number depending only on n and p.

Proof Let 0 < δ ≤ 1, suppose n, q , p, m, ϒ , a, r , A, u, and T satisfy the hypotheses
in the body of the theorem with ε replaced by δ and assume q ≤ p. It will be shown
that u satisfies the estimate in the conclusion of the theorem provided δ is suitably
small.

The problem will be reduced.
First, to the case p = q by constructing as solutions of approximating Dirichlet

problems by use of 3.2 a sequence of functions ui ∈ W1,p(U(a, r),Rn−m) such that
ui → u in W1,q (U(a, r),Rn−m) as i → ∞ and for i ∈ P

−
ˆ

U(a,r)

〈Dθ(x) � Dui(x),A(x)〉dL mx = T (θ) for θ ∈ D(U(a, r),Rn−m)

provided δ ≤ inf{ε3.2(n,p), ε3.2(n, q)}.
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Second, to the case p = q and δ = 0 by considering Simon’s absorption lemma in
[34, p. 398].

Third, to the case p = q , δ = 0, and T = 0 by use of 3.2 and Poincaré’s inequality.
Finally, the remaining case follows by convolution from [17, Theorems 2.8,

2.10]. �

Next, local a priori estimates in W2,p(U(a, r),Rn−m) for so-called strong solu-
tions of linear elliptic systems in nondivergence form with measurable coefficients
close to those of Laplace’s operator are stated.

Theorem 3.5 Suppose n ∈ P and 1 < p < ∞.
Then there exists a positive, finite number ε with the following property.
If n > m ∈ P , S is as in 3.1, a ∈ Rm, 0 < r < ∞,

B : U(a, r) → Hom
(⊙2

(Rm,Rn−m),Rn−m
)

is L m �U(a, r) measurable,

|B(x) − S| ≤ ε whenever x ∈ U(a, r),

and u ∈ W2,p(U(a, r),Rn−m), f ∈ Lp(L m �U(a, r),Rn−m) satisfy

〈D2u(x),B(x)〉 = f (x) for L m almost all x ∈ U(a, r),

then

|D2u|p;a,r/2 ≤ �
(
r−2−m+m/p|u|1;a,r + |f |p;a,r

)

where � is a positive, finite number depending only on n and p.

Proof From [17, Theorem 7.26(i)] and Ehring’s lemma, see, e.g., [36, Theo-
rem I.7.3], it follows that for every 0 < κ < ∞ there exists a positive, finite number
� depending only on n, p, and κ such that

r−2−m/p|v|p;a,r ≤ κr−m/p|D2v|p;a,r + �r−2−m|v|1;a,r

for v ∈ W2,p(U(a, r),Rn−m).
Now, one may readily use [17, Theorem 9.11] in conjunction with the absorption

lemma in Simon [34, p. 398] to obtain the conclusion. �

In Euclidean coordinates the equation relating u to f reads

m∑

i=1

m∑

k=1

n−m∑

l=1

Bi,j ;k,l(x)Di,kul(x) = fj (x) for L m almost all x ∈ U(a, r)

whenever j ∈ {1, . . . , n − m} where, see 3.1, ul = Yl ◦ u, fj = Yj ◦ f and

Bi,j ;k,l(x) = B((Xi � Xk/2)υl) • υj , Di,kul(x) = D2ul(x)(ei, ek),

(α � β)(v,w) = α(v)β(w) + α(w)β(v) for α,β ∈ ⊙1Rm and v,w ∈ Rm,

see [16, 1.10.2].
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Proceeding to the Euler–Lagrange differential operator LF associated with F , one
may deduce local a priori estimates in W2,p(U(a, r),Rn−m) via difference quotients
from the local a priori estimates in W1,p(U(a, r),Rn−m) in 3.4. For the intended use
in 3.9 it is important to appropriately subtract an affine function P in the lower order
term.

Lemma 3.6 Suppose n ∈ P , 1 < q < ∞, and 1 < p < ∞.
Then there exists a positive, finite number ε with the following property.
If F is related to ε as in 3.1, a ∈ Rm, 0 < r < ∞, u ∈ W1,q (U(a, r),Rn−m), and

f ∈ Lp(L m �U(a, r),Rn−m) satisfy

LF (u)(θ) =
ˆ

U(a,r)

θ(x) • f (x)dL mx whenever θ ∈ D(U(a, r),Rn−m),

then u is twice weakly differentiable and for every affine function P : Rm → Rn−m

there holds

|D2u|p;a,r/2 ≤ �
(
r−2−m+m/p|u − P |1;a,r + |f |p;a,r

)

where � is a positive, finite number depending only on n and p.

Proof Let ε = ε3.4(n, q,p) and suppose F , a, r , u, f , and P satisfy the hypotheses
in body of the lemma.

Let v = u − P , i ∈ {1, . . . ,m} and define for 0 < h < r , x ∈ U(a, r − h)

uh(x) = h−1(u(x + hei) − u(x)), vh(x) = h−1(v(x + hei) − v(x)),

Ah(x) =
ˆ 1

0
D2F(tDu(x + hei) + (1 − t)Du(x))dL 1t,

and let Sh ∈ D ′(U(a, r − h),Rn−m) be characterized by

Sh(θ |U(a, r − h)) = h−1
ˆ

U(a,r)

(θ(x − hei) − θ(x)) • f (x)dL mx

whenever θ ∈ D(Rm,Rn−m) with spt θ ⊂ U(a, r − h). One readily verifies, noting
Duh = Dvh,

−
ˆ

U(a,r−h)

〈Dθ(x) � Dvh(x),Ah(x)〉dL mx = Sh(θ)

for θ ∈ D(U(a, r − h),Rn−m). Hence, by 3.4,

|Dvh|p;a,(r−h)/2 ≤ �
(
(r − h)−1−m+m/p|vh|1;a,r−h + |Sh|−1,p;a,r−h

)

where � = �3.4(n,p). Since |vh|1;a,r−h ≤ |Dv|1;a,r and |Sh|−1,p;a,r−h ≤ |f |p;a,r ,
taking the limit h → 0+ one infers that v, hence u, is twice weakly differentiable
and satisfies the desired estimate, using Simon’s absorption lemma [34, p. 398] as
before. �
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Remark 3.7 In general, even if Lipu ≤ L < ∞ and P = 0 the condition involving
ε cannot be replaced by some uniform strong ellipticity condition on D2F(σ) for
σ ∈ Hom(Rm,Rn−m) with ‖σ‖ ≤ L, as may be seen from the example of Lawson
and Osserman in [20, Theorem 7.1].

Next, differences of solutions to LF are estimated in W2,p(U(a, r),Rn−m). Here
the nonlinearity of DF enters via LipD2F in the estimate. However, concerning the
use of the estimate in 3.9, the factor r−m−1|u1 −P |1;a,r in the estimate below can be
assumed to be uniformly bounded.

Lemma 3.8 Suppose n ∈ P , and 1 < q ≤ p < ∞.
Then there exists a positive, finite number ε with the following property.
If n > m ∈ P , F is related to ε as in 3.1, LipD2F < ∞, a ∈ Rm, 0 < r < ∞,

and ui ∈ W1,q (U(a, r),Rn−m) with i ∈ {1,2} satisfy LF (ui) = 0, then ui are twice
weakly differentiable and for every affine function P : Rm → Rn−m there holds

r−m/p+1|D2(u2 − u1)|p;a,r/2

≤ �
(
r−m−1|u2 − u1|1;a,r

+ (r−m−1|u1 − P |1;a,r )Lip(D2F)(r−m−1|u2 − u1|1;a,r )
)

where � is a positive, finite number depending only on n and p.

Proof Using an elementary covering argument, it is enough to prove the assertion
with |D2(u2 − u1)|p;a,r/2 replaced by |D2(u2 − u1)|p;a,r/4. For this purpose let κ =
21/2n2,

ε = inf{ε3.6(n, q,2p), ε3.5(n,p)/κ, ε3.4(n, q,2p)}, �1 = �3.6(n,2p),

�2 = �3.5(n,p), �3 = �3.4(n,2p), � = �2 sup{21+n, κ�1�3}.
Suppose F , a, r , and ui satisfy the hypotheses with ε and that P : Rm → Rn−m is an
affine function. In order to show that they satisfy the modified conclusions with �, it
will be assumed a = 0 and r = 1. Abbreviate � = LipD2F .

By 3.6 the functions ui are twice weakly differentiable with

|D2ui|2p;0,1/2 ≤ �1|ui − P |1;0,1 for i ∈ {1,2}
and one obtains from 3.1 for L m almost all x ∈ U(0,1)

〈D2ui(x),CF (Dui(x))〉 = 0 for i ∈ {1,2},
〈D2(u2 − u1)(x),CF (Du2(x))〉 = 〈D2u1(x),CF (Du1(x)) − CF (Du2(x))〉.

Therefore by 3.5, 3.1, and Hölder’s inequality

|D2(u2 − u1)|a,1/4;p ≤ �2
(
22+m−m/p|u2 − u1|0,1/2;1

+ κ�|D2u1|2p;0,1/2|D(u2 − u1)|2p;0,1/2
)
.
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To estimate |D(u2 − u1)|2p;0,1/2, one computes for θ ∈ D(U(0,1),Rn−m)

−
ˆ

U(0,1)

〈Dθ(x) � D(u2 − u1)(x),A(x)〉dL mx = 0,

where A(x) =
ˆ 1

0
D2F(tDu2(x) + (1 − t)Du1(x))dL 1t,

and obtains from 3.4

|D(u2 − u1)|2p;0,1/2 ≤ �3|u2 − u1|1;0,1

and the conclusion follows. �

Having gathered the local a priori estimates needed, the patching procedure in-
volved in the proof of the main theorem of this section, 3.11, is carried out. Suppose
va,� are solutions to LF in balls U(a,�) with a in some closed set A and 0 < � ≤ 1
which are suitably close to some reference function u. Then the following lemma
shows how to construct by use of a partition of unity a single function v defined in a
neighborhood of A such that v retains from the va,� both the closeness to u and the a
priori estimates for the weak derivatives of second order.

Lemma 3.9 Suppose m,n ∈ P , m < n, 1 ≤ p ≤ r < ∞, and 1 < q < ∞.
Then there exist a positive, finite number ε, a positive, finite number �1 depending

only on m and p, and a positive, finite number �2 depending only on m, n, p, and r

with the following property.
If F is related to ε as in 3.1, LipD2F < ∞, j ∈ {0,1}, A is a closed subset of Rm,

u : Rm ∩ {x : dist(x,A) < 1} → Rn−m is j times weakly differentiable, 0 ≤ γ < ∞,
and if for each a ∈ A, 0 < � ≤ 1 there are va,� ∈ W1,q (U(a,�),Rn−m) and an affine
function Pa,� : Rm → Rn−m such that

LF (va,�) = 0,

j∑

i=0

�−m/p+i|Di (u − va,�)|p;a,� ≤ γ �2, �−m/p|u − Pa,�|p;a,� ≤ γ �

then there exists a twice weakly differentiable function v : Rm ∩ {x : dist(x,A) <
1
36 } → Rn−m with

j∑

i=0

�−m/p+i|Di (u − v)|p;a,� ≤ �1γ �2,

�−m/r |D2v|r;a,� ≤ �2
(
γ (1 + Lip(D2F)γ )2 + �−m−2|u − Pa,2�|1;a,2�

)

whenever a ∈ A, 0 < � ≤ 1
36 .
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The solutions va,� approximate u of second order in �, and so does the constructed
function v. In order to properly treat the nonlinearity of DF the hypothesis concern-
ing approximation of u of first order in � by affine functions Pa,� is introduced; see
also 3.12. Moreover, as a guiding principle for the proof, note that a priori estimates
for differences of functions can be controlled via terms of type |Di (u − va,�)|p;a,� ,
hence are of second order in �, whereas a priori estimates for single functions addi-
tionally involve terms of type |u − P |p;a,� , hence are of first order in �.

Proof of 3.9 Assume r ≥ q and define

ε = inf{1, ε3.6(n, q,2r), ε3.8(n, q,2r), ε3.6(n, q, r)}.
Suppose F , j , A, u, γ , va,� , and Pa,� are as in the hypotheses in the body of the
lemma with ε and abbreviate � = LipD2F .

By 3.6 and Hölder’s inequality

j∑

i=0

|Diva,�|2r;a,1/2 < ∞,

j∑

i=0

|Diu|p;a,1/2 < ∞

whenever a ∈ A. Therefore, taking limits (for example, by use of an interpolation
inequality similar to [25, Lemma 6.2.2] and weak compactness properties of Sobolev
spaces [25, Theorem 3.2.4(e)]) the conclusion can be deduced from the following
assertion: There exist a positive, finite number �1 depending only on m and p, and
a positive, finite number �2 depending only on m, n, p, and r such that for every
0 < δ ≤ 1

18 there exists a function v : Rm → Rn−m whose restriction to Rm ∩ {x :
dist(x,A) < 1

18 } is twice weakly differentiable satisfying

j∑

i=0

�−m/p+i|Di (u − v)|p;a,� ≤ �1γ �2,

(�/2)−m/r |D2v|r;a,�/2 ≤ �2
(
γ (1 + �γ )2 + (�/2)−m−2|u − Pa,�|1;a,�

)

whenever a ∈ A, δ ≤ � ≤ 1
18 .

Assume A �= ∅, let � = {Rm ∼ A} ∪ {U(a, δ) : a ∈ A}, note
⋃

� = Rm, define
h : Rm → R by

h(x) = 1

20
sup{inf{1,dist(x,Rm ∼ U)} : U ∈ �} for x ∈ Rm,

and apply [16, 3.1.13] to obtain a countable subset S of Rm and functions ϕs : Rm →
{t : 0 ≤ t ≤ 1} of class ∞ corresponding to s ∈ S such that with Sx = S ∩ {s :
B(x,10h(x)) ∩ B(s,10h(s)) �= ∅} for x ∈ Rm and a sequence Vi of positive, finite
numbers depending only on m there holds

cardSx ≤ (129)m, sptϕs ⊂ B(s,10h(s)) for s ∈ S,

1/3 ≤ h(x)/h(s) ≤ 3 for s ∈ Sx, |Diϕs(x)| ≤ Vi(h(x))−i for s ∈ S, i ∈ P,
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∑

s∈S

ϕs(y) =
∑

s∈Sx

ϕs(y) = 1,
∑

s∈S

Diϕs(y) =
∑

s∈Sx

Diϕs(y) = 0 for i ∈ P

whenever x ∈ Rm, y ∈ B(x,10h(x)). Note for x ∈ Rm, y ∈ B(x,10h(x)), s ∈ S,
i ∈ P

|Diϕs(y)| ≤ Vi(h(y))−i ≤ (20)iVi(10h(x))−i ,

because h(x) − h(y) ≤ 1
20 |x − y| ≤ 1

2h(x). Choose ξ : S → A such that

|ξ(s) − s| = dist(s,A) whenever s ∈ S.

Note 20h(x) ≤ sup{dist(x,A), δ} for x ∈ Rm and observe

B(x,20h(x)) ⊂ B(ξ(s),120h(s)), 120h(s) ≤ 1

whenever x ∈ Rm, dist(x,A) ≤ 1
18 , s ∈ Sx , because

|x − s| ≤ 10h(x) + 10h(s) ≤ 40h(x) ≤ 2 sup{dist(x,A), δ} ≤ 1/9,

|s − ξ(s)| = dist(s,A) ≤ |x − s| + dist(x,A) ≤ 1/6,

|x − ξ(s)| ≤ |x − s| + |s − ξ(s)| ≤ 40h(s) + 20h(s) = 60h(s),

|x − ξ(s)| + 20h(x) ≤ 120h(s) ≤ 360h(x) ≤ 1.

Define R = ⋃{Sx : x ∈ Rm and dist(x,A) ≤ 1
18 },

vs = vξ(s),120h(s) and Ps = Pξ(s),120h(s) for s ∈ R

and, denoting by v′
s the extension of vs to Rm by 0, v : Rm → Rn−m by

v(x) =
∑

s∈R

ϕs(x)v′
s(x) whenever x ∈ Rm.

Suppose for the rest of the proof x ∈ Rm with dist(x,A) ≤ 1
18 and observe

v(y) =
∑

s∈Sx

ϕs(y)vs(y) whenever y ∈ B(x,10h(x)).

The asserted weak differentiability is a consequence of 3.6.
One estimates

|Di (u − vs)|p;x,20h(x) ≤ |Di (u − vs)|p;s,120h(s)

≤ γ (120h(s))m/p+2−i ≤ (18)m/p+2γ (20h(x))m/p+2−i

for i ∈ {0, j}, s ∈ Sx , hence by Hölder’s inequality
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(20h(x))−m|u − vs|1;x,20h(x)

≤ α(m)1−1/p

j∑

i=0

(20h(x))−m/p+i|Di (u − vs)|p;x,20h(x) ≤ 2�1γ (20h(x))2 (I)

for s ∈ Sx where �1 = α(m)1−1/p(18)m/p+2. Also

(20h(x))−m|u − Ps|1;x,20h(x) ≤ α(m)1−1/p(20h(x))−m/p|u − Ps|p;ξ(s),120h(s)

≤ �1γ (20h(x)),

(20h(x))−m|vs − Ps|1;x,20h(x) ≤ 3�1γ (20h(x)) (II)

for s ∈ Sx . Using

v(y) − u(y) =
∑

s∈Sx

ϕs(y)(vs(y) − u(y)) whenever y ∈ B(x,10h(x))

and the Leibniz formula, one obtains from (I)

j∑

i=0

(10h(x))−m/p+i|Di (u − v)|p;x,10h(x) ≤ �2γ (10h(x))2

where �2 = α(m)1/p−18�12m/p(1 + 20V1)(129)m.
In case x ∈ B(a,�) for some a ∈ A, δ ≤ � ≤ 1

18 ,

20h(x) ≤ sup{dist(x,A), δ} ≤ �, B(x,20h(x)) ⊂ B(a,2�)

and Vitali’s covering theorem yields a countable subset T of B(a,�) such that

{B(t,2h(t)) : t ∈ T } is disjointed, B(a,�) ⊂
⋃

{B(t,10h(t)) : t ∈ T }

and one estimates for i ∈ {0, j}

|Di (u − v)|p
p;a,�

≤
∑

t∈T

|Di (u − v)|p
p;t,10h(t)

≤ (�2γ )p
∑

t∈T

(10h(t))m+(2−i)p

= (5m/p+2−i�2γ )pα(m)−1−(2−i)p/m
∑

t∈T

L m(B(t,2h(t)))1+(2−i)p/m

≤ (5m/p+2−i�2γ )pα(m)−1−(2−i)p/mL m(B(a,2�))1+(2−i)p/m

= (
(10)m/p+2−i�2γ

)p
�m+(2−i)p.
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Therefore, one obtains for a ∈ A, δ ≤ � ≤ 1
18 , i ∈ {0, j}

�−m/p+i|Di (u − v)|p;a,� ≤ (10)m/p+2�2γ �2 (III)

and one may take �1 = 2(10)m/p+2�2 in the first estimate of the assertion.
According to 3.6 the functions vs are twice weakly differentiable and satisfy for

s ∈ Sx

(20h(x))−m/(2r)+2|D2vs|2r;x,10h(x) ≤ �3(20h(x))−m|vs − Ps|1;x,20h(x)

where �3 = �3.6(n,2r). Combining this with (II) yields

(10h(x))−m/(2r)+2|D2vs|2r;x,10h(x) ≤ 2m/(2r)3�1�3γ (10h(x)) (IV)

for s ∈ Sx .
Using 3.8, one obtains for s, t ∈ Sx

(20h(x))−m/(2r)+1|D2(vs − vt )|2r;x,10h(x)

≤ �4
(
(20h(x))−m−1|vs − vt |1;x,20h(x)

+ �((20h(x))−m−1|vs − Ps|1;x,20h(x))((20h(x))−m−1|vs − vt |1;x,20h(x))
)

where �4 = �3.8(n,2r). Since

(20h(x))−m|vs − vt |1;x,20h(x) ≤ 4�1γ (20h(x))2

by (I), one estimates using (II)

(10h(x))−m/(2r)|D2(vs − vt )|2r;x,10h(x) ≤ �5γ (1 + �γ )

where �5 = 2m+2�1�4 sup{3�1,1}. Using an interpolation inequality (which may
be proven similarly to [25, Lemma 6.2.2]), one infers with a positive, finite number
�6 depending only n and r

2∑

i=0

(10h(x))−m/(2r)+i|Di (vs − vt )|2r;x,10h(x)

≤ �6
(
(10h(x))−m/(2r)+2|D2(vs − vt )|2r;x,10h(x)

+ (10h(x))−m|vs − vt |1;x,10h(x)

)

≤ �6
(
�5(1 + �γ ) + 2m+4�1

)
γ (10h(x))2.

This implies for s, t ∈ Sx

2∑

i=0

(10h(x))−m/(2r)+i|Di (vs − vt )|2r;x,10h(x) ≤ �7γ (1 + �γ )(10h(x))2



732 U. Menne

where �7 = �6(�5 + 2m+4�1). Noting (v − vs)(y) = ∑
t∈Sx

ϕt (y)(vt − vs)(y) for
s ∈ Sx , y ∈ U(x,10h(x)), one infers using the Leibniz formula

(10h(x))−m/(2r)+i|Di (v − vs)|2r;x,10h(x) ≤ �8γ (1 + �γ )(10h(x))2 (V)

for s ∈ Sx , i ∈ {0,1,2} where �8 = 2(1 + 20V1 + 400V2)�7(129)m.
Using 3.1, one defines

f (y) = 〈D2v(y),CF (Dv(y))〉

whenever y ∈ U(z,10h(z)) for some z ∈ Rm with dist(z,A) ≤ 1
18 and computes for

s ∈ Sx

f (y) = 〈D2vs(y),CF (Dv(y)) − CF (Dvs(y))〉 + 〈D2(v − vs)(y),CF (Dv(y))〉
for L m almost all y ∈ U(x,10h(x)). Hölder’s inequality implies

|f |r;x,10h(x) ≤ κ�|D(v − vs)|2r;x,10h(x)|D2vs|2r;x,10h(x)

+ 2κα(m)1/(2r)(10h(x))m/(2r)|D2(v − vs)|2r;x,10h(x),

hence by (IV) and (V)

(10h(x))−m/r |f |r;x,10h(x) ≤ �9γ (1 + �γ )2

where �9 = κ�8 sup{2m/(2r)3�1�3,2α(m)1/(2r)}. Similarly but simpler as in the
deduction of (III), one obtains for δ ≤ � ≤ 1

18 , a ∈ A

|f |r;a,� ≤ �9(10)m/rγ (1 + �γ )2�m/r

and thus, using 3.6 with �10 = �3.6(n, r) and (III),

�−m/r |D2v|r;a,�/2 ≤ �10
(
�−m−2(|u − v|1;a,� + |u − Pa,�|1;a,�) + �−m/r |f |r;a,�

)

≤ �11
(
γ (1 + �γ )2 + �−m−2|u − Pa,�|1;a,�

)

where �11 = �10(α(m)1−1/p(10)m/p+2�2 + �9(10)m/r + 1). Therefore, one may
take �2 = 2m/r�11 in the second estimate of the assertion and the proof is com-
pleted. �

Remark 3.10 In fact, by Calderón and Zygmund [11, Theorem 10(ii)] (see also [37,
Lemma 3.7.2]) or by [22, 3.1]

lim
�→0+�−2

j∑

i=0

�−m/p+i|Di (u − v)|p;a,� = 0

for L m almost all a ∈ A. Now, Rešetnyak’s result in [27] applied to v yields that for
L m almost all a ∈ A there exists a polynomial function Qa : Rm → Rn−m of degree
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at most 2 such that

lim sup
�→0+

�−2
j∑

i=0

�−m/p+i|Di (u − Qa)|p;a,� = 0.

Alternately, this latter fact could have also been deduced by use of Calderón and
Zygmund [11, Theorem 12] (see also [37, Theorem 3.4.2]).

The main theorem of the present section, which contains Theorem 3 of the Intro-
duction, now follows by separately considering the subsets where the hypothesized
bounds are satisfied uniformly.

Theorem 3.11 Suppose m,n ∈ P , m < n, 1 ≤ p < ∞, and 1 < q < ∞.
Then there exists a positive, finite number ε with the following property.
If F is related to ε as in 3.1, LipD2F < ∞, U is an open subset of Rm, j ∈ {0,1},

u : U → Rn−m is weakly differentiable,

h(a, r)

= inf

{
j∑

i=0

r−m/p+i|Di (u − v)|p;a,r : v ∈ W1,q (U(a, r),Rn−m) and LF (v) = 0

}

whenever U(a, r) ⊂ U for some a ∈ Rm, 0 < r < ∞, and if A denotes the set of all
a ∈ U such that

lim sup
r→0+

r−2h(a, r) < ∞,

then A is a Borel set and for L m almost all a ∈ A there exists a polynomial function
Qa : Rm → Rn−m with degree at most 2 such that

lim
r→0+ r−2

j∑

i=0

r−m/p+i|Di (u − Qa)|p;a,r = 0.

Proof In view of 3.6 one may assume q ≥ p. Let ε = ε3.9(m,n,p,p,q). Suppose F ,
U , j , and u satisfy the hypotheses with ε. Define the open set V by

V = U ∩
{

x :
j∑

i=0

|Diu|p;x,r < ∞ for some 0 < r < dist(x,Rm ∼ U)

}

and note A ⊂ V . Denote by D the set of all v ∈ W1,q (U(0,1),Rn−m) such that
LF (v) = 0 and define

W = (V × R) ∩ {(a, r) : 0 < r < dist(a,Rm ∼ V )}
and the continuous map T : W → W1,p(U(0,1),Rn−m) by

T (a, r)(x) = r−1u(a + rx) whenever (a, r) ∈ W , x ∈ U(0,1).
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Since D �= ∅ and

h(a, r) = r inf

{
j∑

i=0

|Di (T (a, r) − v)|p;0,1 : v ∈ D

}

for (a, r) ∈ W,

h is continuous. Therefore, A is a Borel set. Similarly, denoting by D′ the set of all
affine functions mapping Rm into Rn−m one defines a continuous map h′ : W → R
by

h′(a, r) = r inf{|T (a, r) − w|1;0,1 : w ∈ D′} for (a, r) ∈ W.

By Rešetnyak [27] or [16, 4.5.9(26)(II)(III)] one notes

lim sup
�→0+

�−1h′(a,�) < ∞ for L m almost all a ∈ U.

Define

Ck = V ∩ {x : dist(x,Rm ∼ V ) ≥ 1/k},
Ak = Ck ∩ {a : h(a, r) ≤ kr2 and h′(a, r) ≤ kr for 0 < r < 1/k}

for k ∈ P and observe that the sets Ak are closed and

L m
(
A ∼ ⋃{Ak : k ∈ P}

)
= 0.

Finally, the conclusion is obtained by applying (for each k ∈ P) 3.9 in conjunction
with 3.10 to rescaled versions of u, Ak and a suitable number γ . �

Remark 3.12 Instead of using Rešetnyak [27] or [16, 4.5.9(26)(II)(III)], one can also
use the functions v occurring in the definition of h(a, r) in a way reminiscent of the
familiar harmonic approximation procedure to deduce

lim sup
�→0+

�−1h′(a,�) < ∞ whenever a ∈ A.

Therefore, u could have been required to be merely j times weakly differentiable.

An illustrative application of the differentiability criterion is constituted by the
following Rademacher type theorem for distributions.

Corollary 3.13 Suppose m,n ∈ P , m < n, 1 < p < ∞, U is an open subset of Rm,
T ∈ D(U,Rn−m), and A denotes the set of all a ∈ U such that

lim sup
r→0+

r−1−m/p|T |−1,p;a,r < ∞.

Then A is a Borel set and for L m almost all a ∈ A there exists a unique constant
distribution Ta ∈ D ′(U,Rn−m) such that

lim
r→0+ r−1−m/p|T − Ta|−1,p;a,r = 0.



Second Order Rectifiability of Integral Varifolds 735

Proof The conclusion is local and for each a ∈ A there exists 0 < r < ∞ with
|T |−1,p;a,r < ∞, hence one may assume sptT to be compact, U = Rm and
|T |−1,p;0,R < ∞, sptT ⊂ U(0,R) for some 0 < R < ∞.

For example, using 3.2, one obtains functions u ∈ W1,p

0 (U(0,R),Rn−m) and
va,r ∈ E (U(a, r),Rn−m) whenever a ∈ Rm, 0 < r < ∞ and U(a, r) ⊂ U(0,R) such
that

−
ˆ

U(0,R)

Du • Dθ dL m = T (θ) for θ ∈ D(U(0,R),Rn−m),

u − va,r ∈ W1,p

0 (U(a, r),Rn−m), Lapva,r = 0.

By 3.2 and Poincaré’s inequality

1∑

i=0

ri−1|Di (u − va,r )|p;a,r ≤ �|T |−1,p;a,r

for some positive, finite number � depending only on n and p, hence the set A

agrees with the set “A” defined in 3.11 with q = p, F the Dirichlet integrand and
j = 1. Therefore, applying 3.11, one may take Ta ∈ D ′(U(0,R),Rn−m) defined by
Ta(θ) = ´

θ(x) • LapQa(a)dL mx for θ ∈ D(Rm,Rn−m).
The uniqueness follows, since every Ta admissible in the conclusion satisfies

r−mTa(θ ◦ μ1/r ◦ τ−a) = Ta(θ), r−mT (θ ◦ μ1/r ◦ τ−a) → Ta(θ) as r → 0+
whenever θ ∈ D(Rm,Rn−m). �

The remaining part of the present section concerns estimates involving the norm
|·|−1,1;a,r . As control on the distributional Laplacian of u in this norm does not entail
control on the weak derivative Du in | · |1;a,r , a perturbation approach to pass from
Laplace’s operator to LF as it was used for the norm |·|−1,p;a,r with 1 < p < ∞
seems to be impossible. Instead, the analysis is based on the following estimate
of u in | · |1;a,r , which is readily obtained dualizing global a priori estimates in
W2,p(U(a, r),Rn−m) for p > m.

Lemma 3.14 Suppose m,n ∈ P , m < n, � ∈ ⊙2 Hom(Rm,Rn−m), 0 < c ≤ M <

∞, ‖�‖ ≤ M , � is strongly elliptic with ellipticity bound c, a ∈ Rm, 0 < r < ∞,
u ∈ W1,1

0 (U(a, r),Rn−m), T ∈ D ′(U(a, r),Rn−m), and

−
ˆ

U(a,r)

〈Dθ(x) � Du(x),�〉dL mx = T (θ) for θ ∈ D(U(a, r),Rn−m).

Then

|u|1;a,r ≤ �r|T |−1,1;a,r

where � is a positive, finite number depending only on n, c, and M .
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Proof See [24, 7.8]. �

Introducing an affine function P in the basic W1,2(U(a, r),Rn−m) estimate for
solutions of the Dirichlet problem for LF yields the following result.

Lemma 3.15 Suppose m,n ∈ P , m < n, 0 < c ≤ M < ∞,

F : Hom(Rm,Rn−m) → R is of class 2,

‖D2F(σ)‖ ≤ M, D2F(σ)(τ, τ ) ≥ c|τ |2 for σ, τ ∈ Hom(Rm,Rn−m),

a ∈ Rm, 0 < r < ∞, and u,v ∈ W1,2(U(a, r),Rn−m) with

u − v ∈ W1,2
0 (U(a, r),Rn−m).

Then for every affine function P : Rm → Rn−m

|D(v − u)|2;a,r ≤ c−1(M|D(u − P)|2;a,r + |LF (v)|−1,2;a,r

)

where LF is defined as in 3.1.

Proof Compute for θ ∈ D(U(a, r),Rn−m)

LF (v)(θ) = −
ˆ

U(a,r)

〈Dθ(x),DF(Dv(x)) − DF(DP(x))〉dL mx

= −
ˆ

U(a,r)

〈Dθ(x) � D(v − P)(x),A(x)〉dL mx

where A(x) =
ˆ 1

0
D2F(tDv(x) + (1 − t)DP (x))dL 1t .

This implies for θ ∈ D(U(a, r),Rn−m)

ˆ
U(a,r)

〈Dθ(x) � D(v − u)(x),A(x)〉dL mx

= −
ˆ

U(a,r)

〈Dθ(x) � D(u − P)(x),A(x)〉dL mx − LF (v)(θ).

Letting θ approximate v − u in W1,2(U(a, r),Rn−m), one obtains

c(|D(v − u)|2;a,r )
2 ≤ (

M|D(u − P)|2;a,r + |LF (v)|−1,2;a,r

)|D(v − u)|2;a,r . �

If DF is linear, one may use 3.14 to estimate |u − v|1;a,r for two functions u and
v having the same Dirichlet data in terms of |LF (u) − LF (v)|−1,1;a,r . In case DF is
not linear, the validity of a similar estimate appears to be unclear. Instead, one may—
similarly to the familiar harmonic approximation procedure—introduce an additional
term |D(u − P)|2;a,r + |D(v − P)|2;a,r which enters quadratically.
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Lemma 3.16 Suppose m,n ∈ P , m < n, ε = 1/2 is related to F as in 3.1,
LipD2F < ∞, a ∈ Rm, 0 < r < ∞, and u,v ∈ W1,2(U(a, r),Rn−m) with u − v ∈
W1,2

0 (U(a, r),Rn−m).
Then for every affine function P : Rm → Rn−m

r−1−m|v − u|1;a,r ≤ �r−m
(|LF (v) − LF (u)|−1,1;a,r

+ Lip(D2F)(|D(u − P)|2;a,r + |D(v − P)|2;a,r )
2)

where � = �3.14(n,1/2/,3/2).

Proof Let � = LipD2F , choose σ ∈ Hom(Rm,Rn−m) such that DP(x) = σ for
x ∈ Rm, and define T = LF (v) − LF (u), the L m �U(a, r) measurable function A :
U(a, r) → ⊙2 Hom(Rm,Rn−m) by

A(x) =
ˆ 1

0
D2F(tDv(x) + (1 − t)Du(x)) − D2F(σ)dL 1t

whenever x ∈ U(a, r), and S ∈ D ′(U(a, r),Rn−m) by

S(θ) =
ˆ

U(a,r)

〈Dθ(x) � D(v − u)(x),A(x)〉dL mx + T (θ)

whenever θ ∈ D(U(a, r),Rn−m). One computes

DF(Dv(x)) − DF(Du(x))

=
〈

D(v − u)(x),

ˆ 1

0
DDF(tDv(x) + (1 − t)Du(x))dL 1t

〉

for L n almost all x ∈ U(a, r) and infers

S(θ) = −
ˆ

U(a,r)

〈Dθ(x) � D(v − u)(x),D2F(σ)〉dL mx

whenever θ ∈ D(U(a, r),Rn−m), hence by 3.14 with � replaced by D2F(σ)

r−1−m|v − u|1;a,r ≤ �r−m|S|−1,1;a,r .

It remains to estimate |S|−1,1;a,r . By use of the definition of S one estimates

‖A(x)‖ ≤
ˆ 1

0
‖D2F(tDv(x) + (1 − t)Du(x)) − D2F(tσ + (1 − t)σ )‖dL 1t

≤ �

ˆ 1

0
t |D(v − P)(x)| + (1 − t)|D(u − P)(x)|dL 1t

= �(|D(v − P)(x)| + |D(u − P)(x)|)/2
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for L m almost all x ∈ U(a, r). Finally,

|S|−1,1;a,r ≤ |T |−1,1;a,r + �/2
ˆ

U(a,r)

(|D(u − P)(x)| + |D(v − P)(x)|)2 dL mx.

�

3.17 Whenever m,n ∈ P , m < n, U is an open subset of Rm, a ∈ U , and T ∈
D ′(U,Rn−m) there exists at most one constant distribution Ta ∈ D ′(U,Rn−m) such
that

lim
r→0+ r−m−1|T − Ta|−1,1;a,r = 0;

see the last paragraph of the proof of 3.13.

Now, second order differentiability of u in L1(L m,Rn−m) spaces is derived from
existence of a “value” (in the sense of 3.17) of LF (u) at a provided a certain supple-
mentary L2(L m,Rn−m) differentiability condition of order 1/2 holds for Du.

Lemma 3.18 Suppose m,n ∈ P , m < n.
Then there exists a positive, finite number ε with the following property.
If F is related to ε as in 3.1, LipD2F < ∞, U is an open subset of Rm, u : U →

Rn−m is weakly differentiable, A1 denotes the set of all a ∈ U such that

lim sup
r→0+

r−m−1|LF (u)|−1,1;a,r < ∞,

A2 denotes the set of all a ∈ U such that there exists a (unique, see 3.17) constant
distribution Ta ∈ D ′(U,Rn−m) such that

lim
r→0+ r−m−1|LF (u) − Ta|−1,1;a,r = 0,

B1 denotes the set of all b ∈ dmn Du such that

lim sup
r→0+

r−m−1
ˆ

U(b,r)

|Du(x) − Du(b)|2 dL mx < ∞,

and B2 denotes the set of all b ∈ dmn Du such that

lim
r→0+ r−m−1

ˆ
U(b,r)

|Du(x) − Du(b)|2 dL mx = 0,

then the following two statements hold:

(1) For L m almost all a ∈ A1 ∩ B1 there exists a polynomial function Qa : Rm →
Rn−m of degree at most 2 such that

lim
r→0+ r−2−m|u − Qa|1;a,r = 0.
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(2) If a ∈ A2 ∩ B2 satisfies the conclusion of (1) with Qa then

Ta(θ) =
ˆ

U

θ(x) • 〈D2Qa(a),CF (DQa(a))〉dL mx

for θ ∈ D(U,Rn−m) where CF is defined as in 3.1.

The proof of (1) is readily obtained by constructing comparison functions for use
in the differentiability criterion 3.11. The relevant estimates are obtained from 3.15
and 3.16.

In order to link the “value” y ∈ Rn−m of T = LF (u) at a to the polynomial
function Qa constructed in (1) one could directly use the equation if the second
order differentiability of u would involve the space W1,1(Rm,Rn−m) rather than
L1(L m,Rn−m). However, such control is available, due to the interior a priori es-
timates 3.6, if u is replaced by solutions wr of the Dirichlet problem in U(a, r) with
boundary data given by u and the right-hand side given by y.

Proof of 3.18 Let

ε = inf{1/2, ε3.11(m,n,1,2), ε3.6(n,2,2)}.
Suppose F and u satisfy the hypotheses with ε. Abbreviate � = LipD2F and T =
LF (u). Fix a ∈ A1 ∩ B1 and 0 < R < ∞ such that B(a,R) ⊂ U and u|U(a,R) ∈
W1,2(U(a,R),Rn−m).

To prove part (1), the criterion 3.11 will be verified with q = 2, j = 0. Using
the direct method of the calculus of variation, see, e.g., [18, Theorems 4.5, 6, Re-
mark 4.1], one constructs for 0 < r < R functions vr ∈ W1,2(U(a, r),Rn−m) such
that

vr − u ∈ W1,2
0 (U(a, r),Rn−m), LF (vr) = 0.

By 3.16 one estimates

r−1−m|vr − u|1;a,r

≤ �1r
−m

(|T |−1,1;a,r + �(|D(u − Du(a))|2;a,r + |D(vr − Du(a))|2;a,r )
2)

with �1 = �3.16(n). By 3.15 with c = 1/2, M = 2 one infers

|D(vr − u)|2;a,r ≤ 4|D(u − Du(a))|2;a,r ,

hence

r−1−m|vr − u|1;a,r ≤ �1r
−m

(|T |−1,1;a,r + �(6|D(u − Du(a))|2;a,r )
2).

Since a ∈ A1 ∩ B1, this implies

lim sup
r→0+

r−2−m|vr − u|1;a,r < ∞.

Therefore, part (1) follows from 3.11.
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To prove part (2), assume now additionally that the assumptions of (2) are valid
for a, i.e., a ∈ A2 ∩B2 and Qa satisfies the conclusion of (1). Choose y ∈ Rn−m such
that

Ta(θ) =
ˆ

U

θ(x) • y dL mx for θ ∈ D(U,Rn−m).

Using the direct method of the calculus of variation as before, one constructs for
0 < r < R functions wr ∈ W1,2(U(a, r),Rn−m) such that

wr − u ∈ W1,2
0 (U(a, r),Rn−m),

LF (wr)(θ) =
ˆ

U(a,r)

θ(x) • y dL mx whenever θ ∈ D(U(a, r),Rn−m).

By 3.16 one estimates

r−1−m|wr − u|1;a,r ≤ �1r
−m

(|T − Ta|−1,1;a,r

+ �(|D(u − Du(a))|2;a,r + |D(wr − Du(a))|2;a,r )
2)

Since, by Poincaré’s inequality,
∣
∣
∣
∣

ˆ
U(a,r)

θ(x) • y dL mx

∣
∣
∣
∣ ≤ |y|�2r

1+m/2|Dθ |2;a,r

where �2 is a positive, finite number depending only on n, one infers from 3.15

|D(wr − u)|2;a,r ≤ 4|D(u − Du(a))|2;a,r + 2�2|y|r1+m/2,

hence

r−1−m|wr − u|1;a,r

≤ �1r
−m

(|T − Ta|−1,1;a,r + �(6|D(u − Du(a))|2;a,r + 2�2|y|r1+m/2)2).

Since a ∈ A2 ∩ B2, this implies

lim
r→0+ r−2−m|wr − u|1;a,r = 0.

Therefore, by the assumption on Qa

lim
r→0+ r−2−m|wr − Qa|1;a,r = 0.

In order to estimate derivatives of wr − Qa , define P : Rm → Rn−m by P(x) =
Qa(a) + 〈x − a,DQa(a)〉 for x ∈ Rm, R = Qa − P , S : Rm → Rn−m by S(x) =
〈x2/2,D2Qa(a)〉 for x ∈ Rm and note r−2R ◦ τ a ◦ μr = S and

r−2(wr − P) ◦ τ a ◦ μr |U(0,1) → S|U(0,1) in L1(U(0,1),Rn−m)
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as r → 0+. By 3.6

r−m/2|D2(wr − P)|2;a,r/2 ≤ �3(r
−2−m|wr − P |1;a,r + |y|)

where �3 = sup{1,α(m)1/2}�3.6(n,2), hence

lim sup
r→0+

r−m/2|D2(wr − P)|2;a,r/2 < ∞.

By Rellich’s embedding theorem

r−2(wr − P) ◦ τ a ◦ μr |U(0,1/2) → S|U(0,1/2) in W1,2(U(0,1/2),Rn−m),

r−2(wr − Qa) ◦ τ a ◦ μr |U(0,1/2) → 0 in W1,2(U(0,1/2),Rn−m)

as r → 0+. This convergence implies

∣
∣
∣
∣r

−m−1
ˆ

U(a,r/2)

〈(Dθ) ◦ μ1/r ◦ τ−a(x),DF(Dwr(x)) − DF(DQa(x))〉dL mx

∣
∣
∣
∣

≤ r−m/2−1(LipDF)|Dθ |2;0,1|D(wr − Qa)|2;a,r → 0 as r → 0+

for θ ∈ D(U(0,1/2),Rn−m). Therefore, noting

ˆ
U(0,1/2)

θ(x) • y dL mx

= r−m

ˆ
U(a,r/2)

(θ ◦ μ1/r ◦ τ−a)(x) • y dL mx

= −r−m−1
ˆ

U(a,r/2)

〈(Dθ) ◦ μ1/r ◦ τ−a(x),DF(Dwr(x))〉dL mx

for θ ∈ D(U(0,1/2),Rn−m) and

− r−m−1
ˆ

U(a,r/2)

〈(Dθ) ◦ μ1/r ◦ τ−a(x),DF(DQa(x))〉dL mx

= r−m

ˆ
U(a,r/2)

(θ ◦ μ1/r ◦ τ−a)(x) • 〈D2Qa(x),CF (DQa(x))〉dL mx

→
ˆ

U(0,1/2)

θ(x) • 〈D2Qa(a),CF (DQa(a))〉dL mx as r → 0+,

for θ ∈ D(U(0,1/2),Rn−m), one infers

y = 〈D2Qa(a),CF (DQa(a))〉,

as asserted. �
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Remark 3.19 Clearly, by Rešetnyak [27] or [16, 4.5.9(26)(II)(III)] for L m almost all
a ∈ A1 ∩ B1

Qa(a) = u(a), DQa(a) = Du(a).

Also by Calderón and Zygmund [11, Theorem 9] (see also [37, 3.6–8]), there exists
a sequence of functions ui : Rm → Rn−m of class 2 such that

L m

(

A1 ∩ B1 ∼
∞⋃

i=1

{
a : Dkui(a) = DkQa(a) for k ∈ {0,1,2}

}
)

= 0.

Remark 3.20 In A.3 it will be shown that L m(A1 ∼ A2) = 0.

The section is concluded by a cut-off lemma which is a consequence of Taylor’s
formula. It will be used in the proof of the main Theorem 4.8 to replace the nonpara-
metric area integrand by a function F satisfying the conditions in 3.1.

Lemma 3.21 Suppose H is a Hilbert space with dimH = N < ∞, k, l ∈ P ∪ {0},
l ≥ k, � : H → R is of class l, a ∈ H , 0 < δ < ∞, and

s = sup{‖Dk�(x) − Dk�(a)‖ : x ∈ B(a, δ)}.

Then there exists F : H → R of class l such that

DiF(x) = Di�(x) for x ∈ B(a, δ/2), i = 0, . . . , k,

‖DkF(x) − Dk�(a)‖ ≤ �s for x ∈ H,

F |H ∼ B(a, δ) is the restriction of a polynomial function of degree at most k

where � is a positive, finite number depending only on N and k.

Proof Choosing ϕ ∈ E 0(R) with 0 ≤ ϕ(t) ≤ 1 for t ∈ R and

{t : −∞ < t ≤ 1/2} ⊂ Int{t : ϕ(t) = 1}, {t : 1 ≤ t < ∞} ⊂ Int{t : ϕ(t) = 0}

one defines P : H → R, F : H → R by

P(x) =
k∑

i=0

〈(x − a)i/i!,Di�(a)〉,

F (x) = P(x) + ϕ(|x − a|/δ)(�(x) − P(x))

for x ∈ H and readily estimates ‖DkF(x) − Dk�(a)‖ be means of Taylor’s formula
(cf. [16, 3.1.11]). �
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4 An Approximate Second Order Structure for Certain Integral Varifolds

Overview In the present section the main Theorem 4.8, which is Theorem 1 of the
Introduction, is proven. In order to do this a general lemma is established which states
that the part of a varifold exhibiting a certain decay of its tilt-excess can be covered
with some accuracy by suitable rotated graphs of Lipschitzian functions having sim-
ilar decay properties of their “tilt-excess”. This is done by carefully combining the
approximation by QQ(Rn−m)-valued functions of [24, 5.7] with more basic differ-
entiability results in [22]. The “tilt-excess” decay of the Lipschitzian functions is the
nonintegral differentiability condition used in Sect. 3 to compensate for the use of the
weak norm |·|−1,1;a,s in the estimates, which seems to be unavoidable; see 4.6.

Almgren introduced “multiple-valued”, i.e., QQ(Rn−m)-valued, functions in [6] in
order to approximate integral varifolds; see also Almgren [5]. The procedure has been
adapted several times, e.g., by Brakke in [9, 5.4], by Schätzle in [31, Appendix D]
and by the author in [23, 3.15]. Here, essentially the latter version is used with some
simple but crucial modifications carried out in [24, 5.7(1)–(7)(9)].

To explain the basic idea, recall that a weakly differentiable function can be ap-
proximated by Lipschitzian functions using the fact that points where the maximal
function of its weak derivative is bounded are related in a Lipschitzian way; see,
e.g., the proof of [15, 6.6.2 Theorem 2]. However, there is no corresponding result
for merely approximately differentiable functions; see, for example, characteristic
functions of L m measurable sets (whose graphs obviously correspond to integral
varifolds). As such behavior is excluded for stationary varifolds, see Almgren [6,
3.6], one instead considers points satisfying an additional maximal type condition on
the first variation. The extension to multiple layers then involves some elementary
matching theory.

Lemma 4.1 Suppose n,Q ∈ P , 0 < L < ∞, 1 ≤ M < ∞, 0 < δi ≤ 1 for i ∈
{1,2,3}, and 0 < δ4 ≤ 1/4.

Then there exists a positive, finite number ε with the following property.
If m ∈ P , m < n, 0 < s < ∞, S = im p∗,

U = (Rm × Rn−m) ∩ {(x, y) : dist((x, y),C(S,0, s, s)) < 2s},
V ∈ IVm(U), ‖δV ‖ is a Radon measure,

(Q − 1 + δ1)α(m)sm ≤ ‖V ‖(C(S,0, s, s)) ≤ (Q + 1 − δ2)α(m)sm,

‖V ‖(C(S,0, s, s + δ4s) ∼ C(S,0, s, s − 2δ4s)) ≤ (1 − δ3)α(m)sm,

‖V ‖(U) ≤ Mα(m)sm,

0 < δ ≤ ε, B denotes the set of all z ∈ C(S,0, s, s) with �∗m(‖V ‖, z) > 0 such that

either ‖δV ‖B(z, t) > δ‖V ‖(B(z, t))1−1/m for some 0 < t < 2s,

or
ˆ

B(z,t)×G(n,m)

|R� − S�|dV (ξ,R) > δ‖V ‖B(z, t) for some 0 < t < 2s,
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A = C(S,0, s, s) ∼ B , A(x) = A ∩ {z : p(z) = x} for x ∈ Rm, X1 is the set of all
x ∈ Rm ∩ B(0, s) such that

∑

z∈A(x)

�m(‖V ‖, z) = Q and �m(‖V ‖, z) ∈ P ∪ {0} for z ∈ A(x),

X2 is the set of all x ∈ Rm ∩ B(0, s) such that

∑

z∈A(x)

�m(‖V ‖, z) ≤ Q − 1 and �m(‖V ‖, z) ∈ P ∪ {0} for z ∈ A(x),

N = Rm ∩ B(0, s) ∼ (X1 ∪ X2), and f : X1 → QQ(Rn−m) is characterized by the
requirement

�m(‖V ‖, z) = �0(‖f (x)‖,q(z)) whenever x ∈ X1 and z ∈ A(x),

then the following seven statements hold:

(1) X1 and X2 are universally measurable, and L m(N) = 0.
(2) A and B are Borel sets and

q[A ∩ spt‖V ‖] ⊂ B(0, s − δ4s).

(3) p[A ∩ {z : �m(‖V ‖, z) = Q}] ⊂ X1.
(4) The function f is Lipschitzian with Lipf ≤ L.
(5) For L m almost all x ∈ X1 the following is true:

(a) The function f is approximately strongly affinely approximable at x.
(b) If (x, y) ∈ graphQ f then

Tanm(‖V ‖, (x, y)) = Tan
(

graphQ apAf (x), (x, y)
) ∈ G(n,m).

(6) If a ∈ A, �m(‖V ‖, a) = Q, 0 < t ≤ s − |p(a)|, |q(a)| + δ4t ≤ s, and

Ba,t = C(S, a, t, δ4t) ∩ B,

Ca,t = B(p(a), t) ∼ (X1 ∼ p[Ba,t ]),
Da,t = C(S, a, t, δ4t) ∩ p−1[Ca,t ],

then Ba,t is a Borel set, Ca,t and Da,t are universally measurable, and

L m(Ca,t ) + ‖V ‖(Da,t ) ≤ �(6)‖V ‖(Ba,t )

with �(6) = 3 + 2Q + (12Q + 6)5m.
(7) If a, t , Ca,t , Da,t are as in (6), g : Rm → Rn−m, Lipg < ∞, g|X1 = ηQ ◦ f ,

τ ∈ Hom(Rm,Rn−m), θ ∈ D(Rm,Rn−m), η ∈ D0(Rn−m),

spt θ ⊂ U(p(a), t), 0 ≤ η(y) ≤ 1 for y ∈ Rn−m,

sptη ⊂ U(q(a), δ4t), B(q(a), δ4t/2) ⊂ Int(Rn−m ∩ {y : η(y) = 1}),
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and �§ denotes the nonparametric integrand associated with the area inte-
grand � , then

∣
∣
∣
∣Q

ˆ
〈
Dθ(x),D�

§
0 (Dg(x))

〉
dL mx − (δV )((η ◦ q) · (q∗ ◦ θ ◦ p))

∣
∣
∣
∣

≤ γ1Qm1/2 Lipg

ˆ
Ca,t

|Dθ |dL m

+ γ2

ˆ
Ea,t∼Ca,t

|Dθ(x)|| apAf (x)(+)(−τ)|2 dL mx

+ m1/2
ˆ

Da,t

|D((η ◦ q) · (q∗ ◦ θ ◦ p))|d‖V ‖

where

γ1 = sup‖D2�
§
0‖[B(0,m1/2 Lipg)],

γ2 = Lip
(
D2�

§
0 |B(0,m1/2(L + 2‖τ‖))),

Ea,t = B(p(a), t) ∩ X1 ∩ {x : �0(‖f (x)‖, g(x)) �= Q}.

Proof of 4.1 This follows from [24, 5.7, 8]; in fact the statements (1)–(5) are those
in [24, 5.7] with r , h, T replaced by s, s, S, and [24, 5.8] shows that the additional
conditions a ∈ A and �m(‖V,‖, a) = Q in (6), (7) can be arranged to imply

graphQ f |B(p(a), t) ⊂ C(S, a, t, δ4t/2),

‖V ‖(C(S, a, t, δ4t)) ≥ (Q − 1/4)α(m)tm,

hence (6), (7) are consequences of [24, 5.7(6)(7)(9)]. �

Remark 4.2 The nonparametric area integrand at 0, �
§
0 , associated with the area

integrand � , is given explicitly by

�
§
0 (τ ) =

(
m∑

i=0

∣
∣
∣
∧

i
τ

∣
∣
∣
2
)1/2

for τ ∈ Hom(Rm,Rn−m),

see [16, 5.1.9].

The main additional feature contained in [24, 5.7(1)–(7)(9)] lies in the fact that the
resulting estimates 4.1(6) and 4.1(7) are valid simultaneously for all cuboids which
are centered in the set A∩{a : �m(‖V ‖, a) = Q} and contained in C(S,0, s, s) rather
than just for the single cuboid C(S,0, s, s). Since the results of the preceding section
are not and cannot be of pointwise nature, it is important for the purpose of the present
paper that the set A ∩ {a : �m(‖V ‖, a) = Q} will have positive ‖V ‖ measure in the
relevant situations.
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4.3 The following situation will be studied: m,n ∈ P , m < n, 1 ≤ p ≤ ∞, U is an
open subset of Rn, V ∈ Vm(U), ‖δV ‖ is a Radon measure and, if p > 1,

(δV )(g) = −
ˆ

g(z) • h(V ; z)d‖V ‖(z) whenever g ∈ D(U,Rn),

h(V ; ·) ∈ Lp(‖V ‖�K,Rn) whenever K is a compact subset of U.

If p < ∞ then the measure ψ is defined by

ψ = ‖δV ‖ if p = 1, ψ = |h(V ; ·)|p‖V ‖ if p > 1.

Next, it is proven that one can cover an integral varifold with locally bounded first
variation by a countable family of sets Z such that each Z in a nonempty open set
of directions can be expressed as the graph of a Lipschitzian function with certain
properties which are discussed below. Exhibiting a single direction for each Z would
be sufficient to prove the principal theorem of this paper. The present formulation
allows to re-prove rather than use Brakke’s perpendicularity of mean curvature in
this process.

Lemma 4.4 Suppose m,n ∈ P , m < n, 1 ≤ p ≤ m, 1 ≤ q < ∞, 0 < α ≤ 1, αq(m−
p) ≤ mp, 0 < L < ∞, U is an open subset of Rn, V ∈ IVm(U), ψ is related to p

and V as in 4.3, and P is the set of all a ∈ U such that Tanm(‖V ‖, a) ∈ G(n,m) and

lim sup
s→0+

s−α−m/q

(ˆ
B(a,s)×G(n,m)

|S� − Tanm(‖V ‖, a)�|q dV (z,S)

)1/q

< ∞.

Then there exists a countable, disjointed family H of ‖V ‖ measurable subsets of
P such that ‖V ‖(P ∼ ⋃

H) = 0 and for each Z ∈ H there exists a nonempty open
subset O of O∗(n,m) such that for each π1 ∈ O there exist

g : Rm → Rn−m, G : Rm → Rn, K ⊂ Rm, Q ∈ P,

π2 ∈ O∗(n,n − m), T ∈ D ′(Rm,Rn−m)

with the following six properties:

(1) π2 ◦ π∗
1 = 0, G = π∗

1 + π∗
2 ◦ g, and G[K] = Z.

(2) Lipg ≤ L.
(3) K is an L m measurable subset of dmnDg.
(4)

´ 〈Dθ(x),D�
§
0 (Dg(x))〉dL mx = T (θ) for θ ∈ D(Rm,Rn−m) where � denotes

the area integrand.
(5) Whenever x ∈ K there holds with z = G(x) and R = Tanm(‖V ‖, z)

�m(‖V ‖, z) = Q, imDG(x) = R,

lim sup
s→0+

s−β−m/r

(ˆ
B(x,s)

|Dg(ζ ) − Dg(x)|r dL mζ

)1/r

≤ 2m1/2 lim sup
s→0+

s−β−m/r

(ˆ
B(z,s)×G(n,m)

|S� − R�|r dV (ξ,S)

)1/r

whenever 0 < β ≤ 1, 1 ≤ r < ∞ and βr ≤ αq .
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(6) Whenever x ∈ K there holds

lim
s→0+ s−m−1|T − Tx|−1,1;x,s = 0

where Tx ∈ D ′(Rm,Rn−m) is defined by

Tx(θ) = −
ˆ

�
§
0 (Dg(x))h(V ;G(x)) • (π∗

2 ◦ θ)(ζ )dL mζ

whenever θ ∈ D(Rm,Rn−m).

The condition (2) ensures that 3.21 can be applied to replace the nonparametric
area integrand by an integrand satisfying the conditions employed in Sect. 3. Con-
dition (5) entails that the tilt-excess decay obtained by Brakke in [9, 5.7,5] or the
author in [24, 10.6] carries over to the function g. This is required in order to satisfy
the supplementary L2(L m,Rn−m) differentiability condition of order 1/2 on Du in
3.18 with u = g. Finally, condition (6) guarantees that the “values” (in the sense of
3.17) of T at points x ∈ K relate to the mean curvature of the varifold so that 3.18 (2)
can be used in the proof of the main Theorem 4.8 to link the first and second order
L1(L m,Rn−m) derivatives of g to the mean curvature of V .

The proof rests on the fact that the accuracy of the approximation by QQ(Rn−m)-
valued functions is controlled by the ‖V ‖ measure of a set B where either the mean
curvature is large at some scale or the tilt-excess is large at some scale. In turn, the
m+αq density of B at a generic point can be estimated by use of the local p summa-
bility of the mean curvature (see 4.3) and the Lq(‖V ‖,Hom(Rn,Rn)) differentiabil-
ity of order α of the tangent space map Tanm(‖V ‖, ·)� at points in P applying results
of the author previously obtained in [22].

Proof of 4.4 First, observe that if some ‖V ‖ measurable set Z has the properties
listed in the conclusion so does every ‖V ‖ measurable subset of Z. Therefore, in
order to prove the assertion, it is enough to show that for ‖V ‖ almost all a ∈ P there
exists a ‖V ‖ measurable set Z having the stated properties and additionally satisfies
�∗m(‖V ‖�Z,a) > 0; in fact one can then take a maximal, disjointed family H of
such Z (hence ‖V ‖(Z) > 0) and note H is countable and �m(‖V ‖�

⋃
H,a) = 0 for

H m almost all a ∈ U ∼ ⋃
H by [16, 2.10.19(4)] so that ‖V ‖(P ∼ ⋃

H) > 0 would
contradict the maximality of H .

Define P ′ to be the set of all z ∈ U such that Tanm(‖V ‖, z) ∈ G(n,m) and

lim
t→0+ t−1/2−m/2

(ˆ
B(z,t)×G(n,m)

|S� − Tanm(‖V ‖, z)�|2 dV (ξ,S)

)1/2

= 0.

By Brakke [9, 5.7, 5] or [24, 10.6] there holds ‖V ‖(U ∼ P ′) = 0. Therefore, one may
assume αq ≥ 1 possibly replacing α, q by 1/2, 2 if αq < 1. Assume further L ≤ 1/8
and suppose Q ∈ P . The remaining assertion will be shown to hold for ‖V ‖ almost
all a ∈ P with �m(‖V ‖, a) = Q. For this purpose define
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δ1 = δ2 = δ3 = 1/2, δ4 = 1/4, M = 5mQ,

ε = inf
{
ε4.1(n,Q,L,M,δ1, δ2, δ3, δ4), (2γ (m))−1},

and R : U ∩ {z : Tanm(‖V ‖, z) ∈ G(n,m)} → Hom(Rn,Rn) by

R(z) = Tanm(‖V ‖, z)� whenever z ∈ U with Tanm(‖V ‖, z) ∈ G(n,m).

For i ∈ P let Ci denote the set of all z ∈ spt‖V ‖ such that either B(z,1/i) �⊂ U or

‖δV ‖B(z, t) > (2ε/3)‖V ‖(B(z, t))1−1/m for some 0 < t < 1/i,

let Di(w) for w ∈ dmnR denote the set of all z ∈ U such that either B(z,1/i) �⊂ U

or ˆ
B(z,t)

|R(ξ) − R(w)|q d‖V ‖ξ > (ε/3)q‖V ‖B(z, t) for some 0 < t < 1/i

and define Xi for i ∈ P by

Xi = U ∩ {
z : �m2/(m−p)(‖V ‖�Ci, z) = 0

}
if p < m,

Xi = U ∼ ClosCi if p = m,

as well as Yi for i ∈ P by

Yi = (dmnR) ∩ {
w : �m+αq(‖V ‖�Di(w),w) = 0

}
.

Since Ci+1 ⊂ Ci and Di+1(w) ⊂ Di(w) for w ∈ dmnR, one notes Xi ⊂ Xi+1 and
Yi ⊂ Yi+1 for i ∈ P . Xi are Borel sets. Yi are ‖V ‖ measurable sets by [22, 3.7(ii)].
P is ‖V ‖ measurable by [22, 3.7]. Moreover,

‖V ‖
(

U ∼
⋃

{Xi : i ∈ P}
)

= 0, ‖V ‖
(

P ∼
⋃

{Yi : i ∈ P}
)

= 0

by [22, 2.5, 9, 10, 3.7(ii)].
Define a measure μ on U such that μ + |h(V ; ·)|‖V ‖ = ‖δV ‖ and J = P ∩ {z :

�m(‖V ‖, z) = Q}. The remaining assertion will be shown at a point a such that for
some i ∈ P

a ∈ Xi ∩ Yi ∩ (dmnR), B(a,4/i) ⊂ U,

�m(‖V ‖, a) = Q, �m(‖V ‖�U ∼ (J ∩ Xi ∩ Yi), a) = 0,

R is approximately continuous at a with respect to ‖V ‖.
These conditions are satisfied by ‖V ‖ almost all a ∈ J by the preceding remarks
and [16, 2.9.11,13]. Fix such a and i, choose 0 < κ ≤ 1/2 such that (1 + κ)mQ <

Q + 1/2, and define λ = (1 + κ2)−1/2 and δ = (1 − λ)/2. Noting for S ∈ G(n,m)

with |S� − R(a)| < δ and 0 < s < ∞,

Rn ∩ {z : |S�(z − a)| ≤ λ|z − a|} ⊂ Rn ∩ {z : |R(a)(z − a)| ≤ (λ + δ)|z − a|},
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C(S, a, s) ∩ {z : |S�(z − a)| > λ|z − a|} ⊂ C(S, a, s, κs) ⊂ B(a, (1 + κ)s),

0 < λ + δ < 1, �m(‖V ‖�{z : |R(a)(z − a)| ≤ (λ + δ)|z − a|}, a) = 0

by [16, 3.2.16], one infers the existence of 0 < s < (2i)−1 such that

(Q − 1/2)α(m)sm ≤ ‖V ‖(C(S, a, s, s)) ≤ (Q + 1/2)α(m)sm,

‖V ‖(C(S, a, s,5s/4) ∼ C(S, a, s, s/2)) ≤ (1/2)α(m)sm,

‖V ‖(Rn ∩ {z : dist(z,C(S, a, s, s)) < 2s}) ≤ ‖V ‖B(a,4s) ≤ Mα(m)sm,

whenever S ∈ G(n,m) with |S� − R(a)| < δ.
Define A to be the set of all z ∈ U(a, s) ∩ spt‖V ‖ such that

‖δV ‖B(z, t) ≤ (2ε/3)‖V ‖(B(z, t))1−1/m,ˆ
B(z,t)

|R(ξ) − R(a)|d‖V ‖ξ ≤ (2ε/3)‖V ‖B(z, t)

whenever 0 < t < 2s,

O = O∗(n,m) ∩ {π : |π∗ ◦ π − R(a)| < inf{δ, ε/3}},
W = U(a, s) ∩ Xi ∩ Yi ∩ {w : |R(w) − R(a)| ≤ ε/3}, Z = W ∩ A ∩ J ∼ N

where N is the set of all w ∈ W such that one of the following three conditions is
violated:

w ∈ P ′, �m(μ,w) = 0, lim
t→0+ t−m

ˆ
B(w,t)

|h(V ; ξ) − h(V ;w)|d‖V ‖ξ = 0.

Note ‖V ‖(N) = 0 by [16, 2.9.10, 11].
Now, fix π1 ∈ O , S = imπ∗

1 and choose π2 ∈ O∗(n,n − m) with π2 ◦π∗
1 = 0. The

proof will be concluded by showing �m(‖V ‖�Z,a) = Q and constructing g, G, K ,
and T with the asserted properties. For this purpose assume a = 0 and π1 = p and
π2 = q using isometries and identifying Rn � Rm × Rn−m. Define

u(w) = (s − |w − a|)/2 for w ∈ W

and note u(w) > 0. Moreover, define B , f as in 4.1 with δ replaced by ε and
whenever w ∈ W and 0 < t ≤ u(w) define Bw,t , Cw,t , and Dw,t as in 4.1(6), (7)
with additionally a, s replaced by w, t . Since |S� − R(a)| ≤ ε/3 and Z ⊂ A ∩ {z :
�m(‖V ‖, z) = Q}, one infers from 4.1(3) that Z ⊂ graphQ f and

�0(‖f (p(z))‖,q(z)) = Q, (p∗ + q∗ ◦ ηQ ◦ f )(p(z)) = z

whenever z ∈ Z. Using Kirszbraun’s theorem (cf. [16, 2.10.43]) one extends ηQ ◦ f

to a function g : Rm → Rn−m such that

Lipg = Lip(ηQ ◦ f )



750 U. Menne

and defining G = p∗ + q∗ ◦ g, K = p[Z] and T ∈ D ′(Rm,Rn−m) by

T (θ) =
ˆ

〈
Dθ(x),D�

§
0 (Dg(x))

〉
dL mx for θ ∈ D(Rm,Rn−m),

the properties (1), (2), and (4) are evident noting 4.1(4).
Next, it will be shown

Bw,t ⊂ U(a, s) ∩ (spt‖V ‖) ∼ A ⊂ Ci ∪ Di(w)

whenever w ∈ W , 0 < t ≤ u(w). The first inclusion is readily verified noting
|S� − R(a)| ≤ ε/3. If z ∈ U(a, s) ∩ (spt‖V ‖) ∼ A, then

either ‖δV ‖B(z, t) > (2ε/3)‖V ‖(B(z, t))1−1/m for some 0 < t < 2s,

or
ˆ

B(z,t)

|R(ξ) − R(a)|d‖V ‖ξ > (2ε/3)‖V ‖B(z, t) for some 0 < t < 2s.

In the first case, this implies z ∈ Ci , in the second case,

(2ε/3)‖V ‖B(z, t) <

ˆ
B(z,t)

|R(ξ) − R(a)|d‖V ‖ξ

≤
ˆ

B(z,t)

|R(ξ) − R(w)|d‖V ‖ξ

+ |R(a) − R(w)|‖V ‖B(z, t),

(ε/3)‖V ‖B(z, t) <

ˆ
B(z,t)

|R(ξ) − R(w)|d‖V ‖ξ

≤ ‖V ‖(B(z, t))1−1/q

(ˆ
B(z,t)

|R(ξ) − R(w)|q d‖V ‖ξ
)1/q

,

hence z ∈ Di(w), and the second inclusion and hence the claim are proven. The
inclusions imply the density estimate

�m+αq(‖V ‖�B,w) = �m+αq(‖V ‖�(U ∼ A),w) = 0 whenever w ∈ W.

Noting a ∈ W and �m(‖V ‖�U ∼ (W ∩ J ), a) = 0, one infers in particular

�m(‖V ‖�U ∼ Z,a) = 0, �m(‖V ‖�Z,a) = Q

and it remains to verify that g, G, K , and T satisfy (3), (5), and (6).
In preparation for this, the following tilt estimate will be shown with �1 = (1 +

L2)1/2(1 − L2)−1/2m1/2

Q−1/2
(ˆ

B(p(z),t)∩dmnf

| apAf (x)(+)(−τ)|r dL mx

)1/r

≤ �1

(ˆ
C(S,z,t,δ4t)

|R(ξ) − τ�|r d‖V ‖ξ
)1/r
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whenever 1 ≤ r < ∞, z ∈ Z, 0 < t ≤ u(z), τ ∈ Hom(Rm,Rn−m) with ‖τ‖ ≤ L (here
the identification τ ⊂ Rm × Rn−m � Rn is used); in fact, recalling L ≤ 1/8 and z ∈
graphQ f , one notes

graphQ f |B(p(z), t) ⊂ C(S, z, t, δ4t) ⊂ C(S, a, s, s),

hence for 0 < γ < ∞

B(p(z), t)) ∩ {
x : Q−1/2| apAf (x)(+)(−τ)| > γ

}

is H m almost contained in

p
[
C(S, z, t, δ4t) ∩ {ξ : �1|R(ξ) − τ�| > γ }]

by 4.1(4), (5) and Allard [3, 8.9(5)]. For x ∈ K , taking z = G(x) and τ associated
with imR(z), one infers, noting �m+αq(L m �Rm ∼ dmnf,x) = 0 by the density
estimate for B and 4.1(6) and �1 ≤ 2m1/2,

lim sup
t→0+

t−β−m/r

(ˆ
B(x,t)

|Dg(ζ ) − τ |r dL mζ

)1/r

≤ 2m1/2 lim sup
t→0+

t−β−m/r

(ˆ
B(z,t)

|R(ξ) − R(z)|r d‖V ‖ξ
)1/r

whenever x ∈ K , 0 < β ≤ 1, 1 ≤ r < ∞, and βr ≤ αq , hence in particular, taking
β = α inf{1, q/r} and noting that the right-hand side in this case is finite by [16,
2.4.17] as z ∈ P ,

lim
t→0+

( 
B(x,t)

|Dg(ζ ) − τ |r dL mζ

)1/r

= 0 for 1 ≤ r < ∞

and g is differentiable at x with Dg(x) = τ by the argument in [15, Theorem 6.2.1].
Since Z ⊂ imG, K is L m measurable, hence (3) and (5) are now proven and it
remains to prove (6).

Choose η ∈ D0(Rn−m) such that

0 ≤ η(y) ≤ 1 for y ∈ Rn−m,

sptη ⊂ U(0,1/4), B(0,1/8) ⊂ Int(Rn−m ∩ {y : η(y) = 1})

and define Tx for x ∈ K as in (6). Fix x ∈ K , let z = G(x), note p(z) = x and abbre-
viate

θt = t−mθ ◦ μ1/t ◦ τ−p(z), ηt = η ◦ μ1/t ◦ τ−q(z)

whenever 0 < t ≤ u(z) and θ ∈ D(Rm,Rn−m). The remaining estimate will be car-
ried out by showing that
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QTx(θt ) − (δV )((ηt ◦ q) · (q∗ ◦ θt ◦ p)),

(δV )((ηt ◦ q) · (q∗ ◦ θt ◦ p)) − Q

ˆ
〈
Dθt(ζ ),D�

§
0 (Dg(ζ ))

〉
dL mζ

both tend to 0 as t → 0+ uniformly with respect to θ ∈ D(Rm,Rn−m) such that
spt θ ⊂ U(0,1) and |Dθ |∞;0,1 ≤ 1.

To prove the first estimate, one notes that the conditions �m−1(‖δV ‖, z) = 0,
�m(‖V ‖, z) = Q and z ∈ P imply, for example, using Allard [3, 6.4, 5] and [23,
3.1],

t−m

ˆ
φ(t−1(ξ − z), imR(ξ))d‖V ‖ξ → Q

ˆ
imR(z)

φ(ξ, imR(z))dH mξ

as t → 0+ whenever φ ∈ K (Rn × G(n,m)). Since also, noting

(ηt ◦ q) · (q∗ ◦ θt ◦ p) = t−m
(
(η ◦ q) · (q∗ ◦ θ ◦ p)

) ◦ μ1/t ◦ τ−z,

C(T ,0,1) ∩ Tanm(‖V ‖, z) ⊂ C(T ,0,1,1/8)

as L ≤ 1/8 and z ∈ graphQ f , one readily uses the conditions on δV and h(V ; ·)
imposed by the fact that z /∈ N to infer

lim
t→0+(δV )((ηt ◦ q) · (q∗ ◦ θt ◦ p))

= −Q

ˆ
imR(z)

h(V ; z) • (η ◦ q)(ξ)(q∗ ◦ θ ◦ p)(ξ)dH mξ

= −Q

ˆ
�

§
0 (Dg(x))h(V ; z) • (q∗ ◦ θ)(ζ )dL mζ = QTx(θt )

and the convergence is uniform with respect to θ ∈ D(Rm,Rn−m) such that spt θ ⊂
U(0,1) and |Dθ |∞;0,1 ≤ 1 as this family of functions is compact with respect to
| · |∞;0,1 by [16, 2.10.21] and �∗m(‖δV ‖, z) < ∞.

To prove the second estimate, define

γ1 = sup‖D2�
§
0‖[B(0,m1/2L)], γ2 = Lip

(
D2�

§
0 |B(0,3m1/2L)

)
.

Apply 4.1(7) with τ = Dg(x) and 0 < t ≤ u(z) to obtain
∣
∣
∣
∣Q

ˆ
〈
Dθt(x),D�

§
0 (Dg(x))

〉
dL mx − (δV )((ηt ◦ q) · (q∗ ◦ θt ◦ p))

∣
∣
∣
∣

≤ γ1Qm1/2L

ˆ
Cz,t

|Dθt |dL m

+ γ2

ˆ
Ez,t∼Cz,t

|Dθt(ζ )|| apAf (ζ )(+)(−Dg(x))|2 dL mζ

+ m1/2
ˆ

Dz,t

|D((ηt ◦ q) · (q∗ ◦ θt ◦ p))|d‖V ‖.
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The first and the third summand on the right-hand side may be estimated by use of
4.1(6) as follows:

ˆ
Cz,t

|Dθt |dL m ≤ t−m−1L m(Cz,t ) ≤ �2t
−m−1‖V ‖(Bz,t ),

ˆ
Dz,t

|D((ηt ◦ q) · (q∗ ◦ θt ◦ p))|d‖V ‖

≤ t−m−1(1 + |Dη|∞;0,1)‖V ‖(Dz,t ) ≤ �2t
−m−1(1 + |Dη|∞;0,1)‖V ‖(Bz,t )

where �2 = �4.1(6)(Q,m), hence the density estimate for B applies recalling αq ≥ 1.
To estimate the remaining summand, one computes

ˆ
Ez,t∼Cz,t

|Dθt(ζ )|| apAf (ζ )(+)(−Dg(x))|2 dL mζ

≤ t−1−m

ˆ
B(x,t)∩dmnf

| apAf (ζ )(+)(−Dg(x))|2 dL mζ,

uses the tilt estimate, and recalls that z ∈ P ′. �

Remark 4.5 In 5.2 it will be shown that ‖V ‖(U ∼ P) = 0 if q = 2 and (m,p,α) �=
(2,1,1). The author knows of no m, n, p, q , α, U , and V satisfying the hypotheses
of 4.4 such that ‖V ‖(U ∼ P) > 0 for the associated set P .

Remark 4.6 It would significantly simplify the treatment in 3.14–3.18 if one could
obtain an estimate in |·|−1,r;a,s in (6) for some r > 1. However, in this case it seems
to be unclear how to control the integral over Dz,t in the last paragraph as this set
may contain arbitrarily steep parts of the varifold; see Brakke’s example in [9, 6.1].

4.7 If f : Rm → Rn−m is a linear map, v ∈ Rn is orthogonal to im(p∗ + q∗ ◦ f ) then
v ∈ ker(p∗ + q∗ ◦ f )∗, p(v) = −(f ∗ ◦ q)(v) and

(q∗ − p∗ ◦ f ∗)(q(v)) = v.

Now, the preceding results are readily combined to obtain the main theorem.

Theorem 4.8 Suppose m,n ∈ P , m ≤ n, U is an open subset of Rn, V ∈ IVm(U),
and ‖δV ‖ is a Radon measure.

Then there exists a countable collection C of m-dimensional submanifolds of Rn

of class 2 such that ‖V ‖(U ∼ ⋃
C) = 0 and each member M of C satisfies

h(V ; z) = h(M; z) for ‖V ‖ almost all z ∈ U ∩ M.

Proof Assume m < n.
First, note that for ‖V ‖ almost all z ∈ U there holds Tanm(‖V ‖, z) ∈ G(n,m) and

lim
r→0+ r−1/2−m/2

(ˆ
B(z,r)×G(n,m)

|S� − Tanm(‖V ‖, z)�|2 dV (ξ,S)

)1/2

= 0
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by Brakke [9, 5.7, 5] or [24, 10.6]. Let � denote the area integrand, abbreviate � =
�

§
0 and note D2�(0) = ϒ with ϒ as in 3.1 by [16, 5.1.9]. Define ε = ε3.18(m,n),

� = �3.21(m(n − m),2), s = ε/�, and choose 0 < δ < ∞ such that

‖D2�(σ) − D2�(0)‖ ≤ s whenever σ ∈ Hom(Rm,Rn−m) ∩ B(0, δ).

Applying 3.21 with H , k, l, a replaced by Hom(Rm,Rn−m), 2, 3, 0, one obtains
F : Hom(Rm,Rn−m) → R of class 3 such that

DiF(σ) = Di�(σ) for i = {0,1,2}, σ ∈ Hom(Rm,Rn−m) ∩ B(0, δ/2),

‖D2F(σ) − D2�(0)‖ ≤ �s = ε whenever σ ∈ Hom(Rm,Rn−m),

D3F has compact support,

hence LipD2F < ∞. Define L = m−1/2δ/2 and apply 4.4 with p, q , α replaced by
1, 2, 1/2 to obtain P and H with the properties listed there. Fix Z ∈ H and take
π1 ∈ O and π2, g, G, K as in 4.4 to infer from 3.18, 3.19, and 4.4(6), noting 4.4(5)
with β = 1/2 and r = 2, the existence a sequence of functions ui : Rm → Rn−m of
class 2 such that with Ai = K ∩ {x : g(x) = ui(x)} for i ∈ P

〈D2ui(x),CF (Dui(x))〉 = �(Dui(x))π2(h(V ;G(x)))

for L m almost all x ∈ Ai . Defining Mi = im(π∗
1 + π∗

2 ◦ ui) and noting

〈D2ui(x),C�(Dui(x))〉 = �(Dui(x))π2(h(Mi; (π∗
1 + π∗

2 ◦ ui)(x)))

for x ∈ Rm where C� is as in 3.1 and

C�(σ) = CF (σ) for σ ∈ Hom(Rm,Rn−m) ∩ B(0, δ/2),

|Dui(x)| = |Dg(x)| ≤ Lm1/2 = δ/2 for L m almost all x ∈ Ai

by 4.4(2), one concludes

π2(h(V ;G(x))) = π2(h(Mi;G(x))) for L m almost all x ∈ Ai,

hence by 4.7, since h(V ; z) ∈ Norm(‖V ‖, z) for ‖V ‖ almost all z by Brakke [9, 5.8],

h(V ;G(x)) = h(Mi;G(x)) for L m almost all x ∈ Ai.

Finally, recall ‖V ‖(U ∼ P) = 0. �

Remark 4.9 One could also prove Brakke [9, 5.8] instead of using it. Since the proof
then still yields a collection C with all properties except of the last one, one can
define a ‖V ‖ measurable function h such that for ‖V ‖ almost all z ∈ U there holds
h(z) = h(M; z) whenever z ∈ U ∩ M and M ∈ C. Following the above proof, one
obtains

π2(h(V ;G(x))) = π2(h(G(x))) for L m almost all x ∈ Ai
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whenever π1 ∈ O , π2 ∈ O∗(n,n − m) with π2 ◦ π∗
1 = 0, and, as O is open and

nonempty, this suffices to conclude

h(V ;G(x)) = h(G(x)) ∈ Norm(‖V ‖,G(x)) for L m almost all x ∈ Ai.

Remark 4.10 Noting [16, 2.10.19(4)], one infers that the function mapping ‖V ‖ al-
most all z onto Tanm(‖V ‖, z)� ∈ Hom(Rn,Rn) is (‖V ‖,m) approximately differen-
tiable at ‖V ‖ almost all z.

Therefore, combining 4.8 with Mantegazza [21, Theorem 5.4], one obtains the fol-
lowing proposition on curvature varifolds with boundary in the sense of Mantegazza
[21, Definition 3.1, p. 811]: If V is a curvature varifold with boundary in an open sub-
set U of Rn then there exists a countable collection C of m-dimensional submanifolds
of Rn of class 2 such that ‖V ‖(U ∼ ⋃

C) = 0 and such that for each member M of
C the second fundamental forms of V and M agree at ‖V ‖ almost every z ∈ U ∩ M .
Clearly, this includes curvature varifolds in the sense of Hutchinson [19, 5.2.3].

The construction in the following example is included for completeness.

Example 4.11 It will be shown, if m > 1 then there exists an L m measurable set
A such that ∂(Em �A) is representable by integration and spt ∂(Em �A) = Rm; see
[16, 4.1.5, 4.1.7]. In particular, since A cannot be L m almost equal to an open set,
considering V ∈ IVm(Rm) characterized by ‖V ‖ = L m �A proves that the collection
C in 4.8 cannot be required to satisfy

�m(‖V ‖, z) = card{M : z ∈ M ∈ C} for H m almost all z.

To construct A, choose a sequence (xi, si) in Rm × R such that {xi : i ∈ P} is
dense in Rm, with 0 < si ≤ 1 and inf{sj : xi = xj } = 0 for i ∈ P . Inductively select
εi , ri , Ai , Si , and Ti , satisfying

ε1 = 1, r1 = s1, A1 = B(x1, r1), S1 = T1 = Em �B(x1, r1)

and, for i > 1, subject to the conditions 0 < ri ≤ si , rm−1
i ≤ 21−i , and

B(xi, ri) ⊂ IntAi−1 and εi = −1 if xi ∈ IntAi−1,

εi = 0 if xi ∈ BdryAi−1,

B(xi, ri) ⊂ Int(Rm ∼ Ai−1) and εi = 1 if xi ∈ Int(Rm ∼ Ai−1)

and let Si = Em �B(xi, ri), Ti = Ti−1 + εiSi , and Ai = sptTi . Noting

Ti = Em �Ai, BdryAi = spt ∂Ti,

∞∑

j=1

M(Sj ) + M(∂Sj ) < ∞, T = lim
j→∞Tj =

∞∑

j=1

εjSj ,

M(T − Tj ) + M(∂T − ∂Tj ) → 0 as j → ∞,



756 U. Menne

‖∂Ti‖ ≤ ‖∂Tj‖, ‖∂Ti‖ ≤ ‖∂(Tj − T )‖ + ‖∂T ‖ for i ≤ j ∈ P,

‖∂Ti‖ ≤ ‖∂T ‖, spt ∂Ti ⊂ spt ∂T ,

dist(xi, spt ∂Ti) ≤ si , spt ∂T = Rm,

for i ∈ P , one may take A = Rm ∩ {x : �m(‖T ‖, x) ≥ 1}, since T = Em �A.

5 Applications to Decay Rates of Tilt-Excess for Integral Varifolds

Overview The present section discusses some consequences of 4.8 in terms of decay
and differentiability of tilt quantities.

These results depend on [24] mainly through the following lemma. It is the re-
sult of combining a coercive estimate with an interpolation inequality by use of an
approximation by QQ(Rn−m)-valued functions.

Lemma 5.1 Suppose m,n,Q ∈ P , m < n, either p = m = 1 or 1 < p < m = 2 or
1 ≤ p < m > 2 and mp

m−p
= 2, 0 < δ ≤ 1, and 1 ≤ M < ∞.

Then there exist positive, finite numbers ε and � with the following property.
If a ∈ Rn, 0 < r < ∞, V ∈ IVm(U(a,6r)), ψ and p are related to V as in 4.3,

T ∈ G(n,m), Z is a ‖V ‖ measurable subset of C(T , a, r,3r),

(Q − 1/2)α(m)rm ≤ ‖V ‖(C(T , a, r,3r)) ≤ (Q + 1/2)α(m)rm,

‖V ‖(C(T , a, r,4r) ∼ C(T , a, r, r)) ≤ (1/2)α(m)rm,

‖V ‖U(a,6r) ≤ Mα(m)rm, ‖V ‖(C(T , a, r/2, r/2)) ≥ (Q − 1/4)α(m)(r/2)m,

‖V ‖(C(T , a, r,3r) ∼ Z) ≤ εα(m)rm,

(ˆ
|S� − T�|2 dV (z,S)

)1/2

≤ εrm/2,

then
(

r−m

ˆ
C(T ,a,r/4,r/4)×G(n,m)

|S� − T�|2 dV (z,S)

)1/2

≤ δ

(

r−m

ˆ
C(T ,a,r,r)×G(n,m)

|S� − T�|2 dV (z,S)

)1/2

+ �

(

r−m−1
ˆ

Z

dist(z − a,T )d‖V ‖z + r1−m/pψ(U(a,6r))1/p

)

.

Proof See [24, 9.5]. �

Theorem 5.2 Suppose m, n, p, U , and V are as in 4.3, V ∈ IVm(U) and

φ(a, r, T ) =
(

r−m

ˆ
U(a,r)×G(n,m)

|S� − T�|2 dV (z,S)

)1/2

whenever a ∈ Rn, 0 < r < ∞, U(a, r) ⊂ U , and T ∈ G(n,m).
Then the following two statements hold:
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(1) If either m = 2 and 0 < τ < 1 or sup{2,p} < m and τ = mp
2(m−p)

< 1 then

lim
r→0+ r−τ φ(a, r, T ) = 0 for V almost all (a, T ) ∈ U × G(n,m).

(2) If either m = 1 or m = 2 and p > 1 or m > 2 and p ≥ 2m/(m + 2) then

lim sup
r→0+

r−1φ(a, r, T ) < ∞ for V almost all (a, T ) ∈ U × G(n,m).

Proof of (1) From 4.8 one obtains a sequence of maps Ri : U → Hom(Rn,Rn) of
class 1 such that the sets Ai = U ∩ {z : Ri(z) = Tanm(‖V ‖, z)�} cover ‖V ‖ almost all
of U . By [24, 10.6] and [22, 3.7(i)] one infers

lim
r→0+ r−τ−m/2

(ˆ
B(z,r)×G(n,m)

|Ri(z) − S�|2 dV (ξ,S)

)1/2

= 0

for ‖V ‖ almost all z ∈ Ai and the conclusion follows. �

Proof of (2) Assume that either p = m = 1 or 1 < p < m = 2 or 1 ≤ p < m > 2 and
mp

m−p
= 2. Suppose ψ is related to p and V as in 4.3. Choose C as in 4.8. Then by 4.8

and [16, 2.10.19(4), 2.9.5] for ‖V ‖ almost all a ∈ U there holds for some Q ∈ P ,
T ∈ G(n,m) and some M ∈ C

T = Tan(M,a), �m(‖V ‖�U ∼ M,a) = 0,

lim sup
r→0+

r−m/pψ(B(a, r))1/p < ∞,

r−m

ˆ
φ(r−1(z − a), S)dV (z,S) → Q

ˆ
T

φ(z,T )dH mz as r → 0+

whenever φ ∈ K (Rn × G(n,m)). Note that

lim sup
r→0+

r−m−2
ˆ

C(T ,a,r,3r)∩M

dist(z − a,T )d‖V ‖z < ∞

as M is a submanifold of class 2. It follows with δ = 2−m−3, �1 = 7mQ that there
exist 0 < R < ∞ and 0 ≤ γ < ∞ such that U(a,6R) ⊂ U ,

r−m−1
ˆ

C(T ,a,r,3r)∩M

dist(z − a,T )d‖V ‖z + r1−m/pψ(U(a,6r))1/p ≤ γ r

for 0 < r ≤ R, and V satisfies the hypotheses of 5.1 for each 0 < r ≤ R with ε =
ε5.1(m,n,Q,p, δ,�1) and M , Z replaced by �1, C(T , a, r,3r) ∩ M . With f (r) =
r−m/2(

´
C(T ,a,r,r)×G(n,m)

|S� − T�|2 dV (z,S))1/2 for 0 < r ≤ R one defines

�2 = �5.1(m,n,Q,p, δ,�1), �3 = sup
{
2m+3�2γ,2m+2R−1f (R)

}
,

one inductively infers from 5.1

f (r) ≤ �3r whenever 0 < r ≤ R;
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in fact it holds for R/4 ≤ r ≤ R and, provided it holds for r ,

f (r/4) ≤ 2m(δ�3r + �2γ r) ≤ �3(r/4)

by 5.1. The conclusion is now evident. �

Remark 5.3 Having 4.8 at one’s disposal, the proof of (2) follows Schätzle in [32,
Theorem 3.1] where the case p ≥ 2 is treated. In extending the result to the present
case, the main difference is the use of the coercive estimate in [24, 4.10] in the proof
of 5.1 replacing the use of the corresponding estimate in Brakke [9, 5.5] (see also
Allard [3, 8.13]).

Remark 5.4 For both parts the family of examples provided in [22, 1.2] shows that if
m > 2 then p cannot be replaced by any smaller number; see [24, 10.7].

Remark 5.5 In the case of (2) combining this result with [22, 3.9], one obtains
 

B(a,r)

(|R(z) − R(a) − 〈R(a)(z − a), apDR(a)〉|/|z − a|)2 d‖V ‖z → 0

as r → 0+ for ‖V ‖ almost all a where R(z) = Tanm(‖V ‖, z)� and the approximate
differential is taken with respect to (‖V ‖,m).

Remark 5.6 Clearly, one can also obtain decay results for height quantities from this
result by use of [23, 4.11].

Acknowledgements The author offers his thanks to his PhD advisor Professor Dr. Reiner Schätzle who
lead him towards the study of this problem. The author also thanks Professor Dr. Tom Ilmanen for several
related discussions.

Appendix: Lebesgue Points for a Distribution

Overview In this Appendix the part q = 1 of Theorem 4 of the Introduction is pro-
vided. Its purpose is to clarify the relations of the sets A1 and A2 occurring in 3.18.

The result is obtained translating techniques from the differentiation theory of
functions and measures to the present setting of distributions.

Lemma A.1 Suppose m,n ∈ P , m < n, A is a closed subset of Rm, R ∈
D ′(Rm,Rn−m), dist(sptR,A) > 0, 0 ≤ γ < ∞, and 0 < r < ∞ such that

|R|−1,1;x,� ≤ γ �m+1 whenever 0 < � < 5r , x ∈ A.

Then

|R|−1,1;a,r ≤ �γ rL m(B(a,4r) ∼ A) for a ∈ A

where � is a positive, finite number depending only on m.
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Proof Assume r ≤ 2
9 , let a ∈ A, θ ∈ D(Rm,Rn−m) with spt θ ⊂ U(a, r), choose 0 <

ε ≤ inf{r,dist(sptR,A)}, define

B = Rm ∩ {x : dist(x, spt(R � θ)) ≤ ε/2}

where R � θ ∈ E0(Rm) is defined by (R � θ)(v) = R(vθ) for v ∈ E 0(Rm), and apply
[16, 3.1.13] to obtain S, vs , and h with � = {Rm ∼ A,Rm ∼ B}; in particular, S is a
countable subset of

⋃
�,

h(x) = 1

20
sup{inf{1,dist(x,A)}, inf{1,dist(x,B)}} for x ∈

⋃
�

and vs for s ∈ S form a partition of unity on
⋃

� with sptvs ⊂ B(s,10h(s)) for s ∈ S.
Noting

⋃
� = Rm, one defines T = S ∩ {s : B ∩ sptvs �= ∅} and infers

∑

s∈S∼T

vs(x) = 0 for x ∈ Rm with dist(x, spt(R � θ)) < ε/2,

hence (R � θ)(
∑

s∈S∼T vs) = 0 and

R(θ) = R

((∑

s∈T

vs

)

θ

)

=
∑

s∈T

R(vsθ).

Choose ξ(s) ∈ A for each s ∈ T such that |s − ξ(s)| = dist(s,A). If s ∈ T then
there exists y ∈ B ∩ sptvs ⊂ B(a, r + ε/2) and one observes

dist(y,A) ≤ |y − a| ≤ r + ε/2 ≤ (3/2)r ≤ 1

3
< 1, h(y) = 1

20
dist(y,A),

|s − y| ≤ 10h(s) ≤ 10h(y) + 1

2
|s − y|, |s − y| ≤ 20h(y) = dist(y,A) ≤ |y − a|,

dist(s,A) ≤ |s − y| + dist(y,A) ≤ 2 dist(y,A) ≤ 3r ≤ 2

3
< 1,

B ∩ B(s,10h(s)) �= ∅,
1

20
dist(s,B) ≤ 1

2
h(s), 0 < h(s) = 1

20
dist(s,A),

|s − ξ(s)| ≤ |s − a| ≤ |s − y| + |y − a| ≤ 2r + ε ≤ 3r ≤ 2

3
,

B(s, h(s)) ⊂ B(a,4r) ∼ A.

Moreover, for any x ∈ B(s,10h(s)), s ∈ T

|x − ξ(s)| ≤ |x − s| + |s − ξ(s)| ≤ (3/2)|s − ξ(s)| < 5r,

sptvs ⊂ B(ξ(s), (3/2)|s − ξ(s)|),

dist(s,A) ≤ dist(x,A) + |x − s| ≤ dist(x,A) + 1

2
dist(s,A),

|s − ξ(s)| = dist(s,A) ≤ 2 dist(x,A),
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dist(x,A) ≤ dist(s,A) + |x − s| ≤ 3

2
dist(s,A) ≤ 1,

h(x) ≥ 1

20
dist(x,A) ≥ 1

40
|s − ξ(s)|.

Using the estimates of the preceding paragraph and the estimates of |Dvs | given
in [16, 3.1.13], one infers for s ∈ T , since θ has compact support in U(a, r),

|(Dvs)θ |∞;a,r ≤ 40�|s − ξ(s)|−1r|Dθ |∞;a,r ,

|D(vsθ)|∞;a,r ≤ 40�(|s − ξ(s)|−1r + 1)|Dθ |∞;a,r

where � is a positive, finite number depending only on m with 40� ≥ 1, hence

|R(vsθ)| ≤ γ (3/2)m+1|s − ξ(s)|m+140�(|s − ξ(s)|−1r + 1)|Dθ |∞;a,r

= γ (3/2)m+140�|s − ξ(s)|m(r + |s − ξ(s)|)|Dθ |∞;a,r

≤ γ 160�(3/2)m+1α(m)−1(20)mr L m(B(s, h(s))) |Dθ |∞;a,r .

Recalling from [16, 3.1.13] that the family {B(s, h(s)) : s ∈ S} is disjointed, one con-
cludes

|R(θ)| ≤ � γ r L m(B(a,4r) ∼ A)|Dθ |∞;a,r

where � = 8(30)m+1�α(m)−1. �

Remark A.2 Some ideas of the proof were taken from Calderón and Zygmund [11,
Theorem 10] and [16, 2.9.17].

Theorem A.3 Suppose m,n ∈ P , m < n, U is an open subset of Rm, T ∈
D ′(U,Rn−m), and A denotes the set of all a ∈ U such that

lim sup
r→0+

r−1−m|T |−1,1;a,r < ∞.

Then A is a Borel set and for L m almost all a ∈ A there exists a unique constant
distribution Ta ∈ D ′(U,Rn−m) such that

lim
r→0+ r−1−m|T − Ta|−1,1;a,r = 0.

Moreover, Ta depends L m �A measurably on a.

Proof The conclusion is local, hence one may assume sptT to be compact and
U = Rm. Since |T |−1,1;a,r depends lower semi-continuously on (a, r), the sets

Ai = Rm ∩ {a : |T |−1,1;a,r ≤ irm+1 for 0 < r < (10)/i}
defined for i ∈ P are closed. Observing A = ⋃{Ai : i ∈ P}, the conclusion will be
shown to hold for L m almost all a ∈ Ai .
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Let 0 < ε < 5/i, choose � ∈ D0(Rm) with
´

�dL m = 1, spt� ⊂ U(0,1) and
define �ε(x) = ε−m�(ε−1x) for x ∈ Rm,

Tε(θ) = T (�ε ∗ θ) =
ˆ

fε • θ dL m for θ ∈ D(Rm,Rn−m)

with fε ∈ E (Rm,Rn−m) given by

z • fε(x) = Ty(�ε(y − x)z) whenever x ∈ Rm and z ∈ Rn−m,

see [16, 4.1.2]. Clearly Tε → T as ε → 0+ and

|fε(x)| ≤ i2m+1|D�|∞;0,1 for x ∈ Rm, a ∈ Ai with |x − a| ≤ ε.

One defines aε to be the characteristic function of Rm ∩ {x : dist(x,Ai) ≤ ε} and
Sε,Rε ∈ D ′(Rm,Rn−m) by

Sε(θ) =
ˆ

aεfε • θ dL m for θ ∈ D(Rm,Rn−m), Rε = Tε − Sε.

Estimating for a ∈ Ai , 0 < � < 5r < 5/i, θ ∈ D(Rm,Rn−m) with spt θ ⊂ U(a,�)

and |Dθ |∞;a,� ≤ 1

spt(�ε ∗ θ) ⊂ U(a, ε + �), |Tε(θ)| ≤ i(ε + �)m+1 ≤ i2m+1�m+1 if ε ≤ �,

(sptRε) ∩ {x : dist(x,Ai) < ε} = ∅, Rε(θ) = 0 if ε > �,

|Sε(θ)| ≤ |aεfε|∞;a,� |θ |1;a,� ≤ i2m+1|D�|∞;0,1α(m)�m+1,

|Rε|−1,1;a,� ≤ γ �m+1 with γ = 2m+1i
(
1 + |D�|∞;0,1α(m)

)
,

Now, A.1 may be applied with A, R replaced by Ai , Rε to obtain

|Rε|−1,1;a,r ≤ �γ rL m(B(a,4r) ∼ Ai) for 0 < r < 1/i.

Since L1(L m,Rn−m) is separable, one can use [14, V.4.2, V.5.1, IV.8.3] to infer
the existence of S ∈ D ′(Rm,Rn−m), f ∈ L∞(L m,Rn−m), and a sequence εj with
εj ↓ 0 as j → ∞ such that

S(θ) =
ˆ

f • θ dL m for θ ∈ D(Rm,Rn−m), Sεj
→ S as j → ∞.

Defining R = T − S and noting Rεj
→ R as j → ∞,

|R|−1,1;a,r ≤ �γ rL m(B(a,4r) ∼ Ai) for 0 < r < 1/i

and [16, 2.9.11] implies

lim
r→0+ r−1−m|R|−1,1;a,r = 0 for L m almost all a ∈ Ai.
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Moreover,
∣
∣
∣
∣

ˆ
(f (x) − f (a)) • θ(x)dL mx

∣
∣
∣
∣ ≤

(ˆ
U(a,r)

|f (x) − f (a)|dL mx

)

r|Dθ |∞;a,r

whenever a ∈ A, 0 < r < ∞, θ ∈ D(Rm,Rn−m) with spt θ ⊂ U(a, r), and [16,
2.9.9] implies that one can take Ta defined by Ta(θ) = ´

θ(x) • f (a)dL mx for
θ ∈ D(Rm,Rn−m) for L m almost all a ∈ Ai in the existence part of the conclusion.

The uniqueness follows from 3.17. �

Remark A.4 The splitting of T into S and R was inspired by a similar procedure for
functions used by Calderón and Zygmund in [11, Theorem 7].
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