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H. Nicolai*

Institut fur theoretische Physik, Universitat Karlsruhe,
D-7500 Karlsruhe, Federal Republic of Germany

Abstract. It is shown that for certain classes of Euclidean fermion-boson
systems on a lattice vacuum expectation values of scalar fields increase if a
Yukawa-interaction is turned on. Applicability and possible extensions of
this result in the framework of constructive quantum-field-theory are discussed.

1. Introduction

In recent times much of the progress made in constructive field theory has been
due to the extensive use of correlation inequalities such as the Griffiths and
Lebowίtz inequalities ([1,2] where original work is quoted). However, until now,
the range of applicability of this powerful tool appears to have been limited to
purely scalar theories. In this paper I want to show that by applying Griffiths'
inequality one can derive an inequality for systems containing not only a scalar
or1 a pseudoscalar field but also a Majorana- or1 Dirac-spinor.

To state the main result some notation must be introduced that will be used in
the sequel. As the UV-limit will not be considered in this article the models are
formulated on a periodic Euclidean space-time lattice 2Γ 2 with lattice-spacing a
whose elements will be denoted by /c, m, rc, ... where n = (n0,nl9n2,n3)ι because of
periodic boundary conditions there exists N eN such that nμ and nμ + N are to be
identified. Then the type of theory I will consider contains the following parts :

1) Bosonic part of the action

=«4 Σ

* Supported by Studienstiftung des deutschen Volkes
1 Exclusive "or"
2 For simplicity, I restrict myself to the case d = 4. Most of the results of this paper can be recovered
for d = 2 and d = 3 in a straightforward manner
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where A is scalar and B is pseudoscalar Z0 > 0 (wave-function-renormalization
parameter), w^eR and /l>0. Vacuum-expectation-values with respect to either of
the above theories will be denoted by < ..>0 Observe that this measure obeys
Griffith's inequalities : it is an even ferromagnet [2].

2) Fermionic part of the action4

s1μ,φ<2>,v

(1))=fl4 Σ {^i^y^^^m^l^^^Λ^V^}
(1.2)

^(βW'Hα4 £ {

where ψ(2\ ψ(

n

1} are Osterwalder-Schrader Euclidean Fermi-fields [3] ;Zί>09 m1?

0eR One can also take ψ(

n

2) and ιp(

n

1} to be Euclidean Majorana-spinors, i.e.
ψ(^ = (^ψ(

n

1) where # is the charge-conjugation matrix [4]; in this case Z1? m l 5 #
have to be replaced by ^Z1? |ml5 |#. Vacuum-expectation-values with respect to
SQ + SI will be denoted by <...>!.

Then the main result may be stated as follows.

Theorem. Let G, H be any functions of A (or B) fulfilling the assumptions for
Griffiths inequalities to hold [2]. Then, with the above assumptions

<Gίf X ^ <GX <tf >0 ̂  <G>0 <#>0 . (1.3)

Taking H = l, it follows in particular that

<G>^<G>0^0. (1.4)

In Section 2, a preliminary lemma giving sufficient conditions for (1.3) and (1.4)
to be satisfied will be proven. In Section 3, the proof of the theorem will be given
by verifying the assumptions of this lemma. Finally, in Section 4, possible
applications and extensions of the main theorem will be discussed.

2. Some Preliminary Remarks

Since only vacuum-expectation-values of (pseudo) scalar fields will be considered
the fermions can be "integrated out"-explicitly by treating them as elements of a
Grassmann-algebra and using Berezin's integral on Grassmann-algebras [5]. The
result is

Lemma 2.1. (Matthews-Salam-Formula [6]).
(i) // t/^1}, ψ(

n

2} is a Dirac-spinor

> 5 (2-1)

and analogously for a pseudoscalar.

4 I choose the following representation of y-matrices:

10 * " °)~(τT
\σμτ ϋ/ \0 —if

1
= —(δk+μ n — &k-u ») (matrίx element of Fμ)

2α
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ii) // ψ(2} =^>\p(^ is a Euclidean Major ana-spinor and if the replacement
Z1-^^Z1, etc. is made in (1.2)

= αW [det{Z1yϊflF£, + Vteίw! +^n)}]
1/2 (2.2)

analogously for a pseudoscalar.

Remark. The proof of (i) is rather straightforward. The proof of (ii) is a little more
complicated the validity of (2.2) depends on the antisymmetry of the matrices
(^yμ)aβ^kn^aβ^kn and (^y5)aβδkn (pscudoscalar case) in an essential way. Up to a
numerical factor this formula can be found e.g. in [7]. Writing Z1xn: = m1+gAn

and Zίyn: = gBw I now consider the following functions

n + δolβδknxn}, X.6R, (2.3)

ηn + yίβδknyn}, yne!R. (2.4)

When dealing with Major ana-spinor s the relevant quantities are F{12 and F2

/2.
Since the lattice 2Γ is finite it is clear that the functions Fί and F2 are polynomials
in xπ, ne^ where each xn occurs at most four times in each monomial. Thus

7i({*.})= Σ r Σ c ^ <™Π Π
Γ l nΓj = φif iΦ j

4

and similarly for F2({yn}) [in (2.5) the term with ρ = 0 vanishes because

From (2.3) and (2.4) it may not be seen that F\12 and F^2 are also polynomials
but this follows from the representation formula (2.2), so in that case an expression
similar to (2.5) can be written down. The following identity is an immediate
consequence of (2.1).

na(2.6)

As will be shown below, <F>0>0, so (2.6) is well defined. Note that I have
introduced the shorthand notation

F=Σc(ri}M(Γi}, (2.7)
(Λ)

4

where F = F1 or F2 is understood and M{Γt)({xn}) is the monomial ]~J Y\ xj,.
i = l neΓί

Lemma 2.2. // c{rj^06 /or αH {ΓJ and if G and H are functions of A (or B)
fulfilling the assumptions for Griffiths' inequalities

. (2.8)
6 In the scalar case Zίxn = m1+gAn and one has to require m1g>Q (consider mltg>Q and <0
separately); the case m 1gf<0 is equivalent to mίg>0 by A-+ — A symmetry
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Proof. Because of Griffiths' inequality

^ Σc{Γί}<GM{Γι}>0<//>0^<GF>o<H>0 (2.9)
{Γi}

(M{Γί} obeys Griffiths' inequality being a monomial).
Thus

<H>0 = <G>1<H>0 . (2.10)

The second inequality in (2.8) is obtained by repeating this estimate. Also, by
Griffiths' inequality, <F>0 ̂ 0 and, observing that c(φ }φ >φ ̂ } >0, in fact <T>0 >0. It
is remarkable that F({xw})^0 is not necessary to derive the latter inequality.

The bulk of the proof therefore consists in proving c{Γι} ^0 for all {ΓJ. This will
be done in the next section.

3. Proof of Positivity of Coefficients

To make this proof more transparent only the case (2.3) will be considered in
detail. To do so, I introduce a function P({xn J) of 4|«^"| variables xn αeIR

^ + Saβδ^xkfΛ} . (3.1)

If the assumptions made in Lemma 2.2 can be proven to hold for P({xn α}) they are
true a fortiori for F({xn}) = P({xnδxβ })•

Proposition 3.1. For {x^JeR^'Ptfx,^}) is real.

Proof.

P*({xn>α}) = det { - ̂  F£ + Vfax*..}

= det {(/7

5y - y^F^ + <5fiAA,Γ) (^'X^

= det {y^n+δaβδknxktX} = P({xn>α}) . (3.2)

In the first line use was made of the fact that yμ is hermitean and V£n is
antihermitean to go from the second to the third line it is essential that iy5

aβ and
xn,*δaβ commute (being diagonal matrices).

To formulate the next proposition the open set G is introduced.

G:={{xn α}eIR4 1^ and xn^>0 for all ne^,α = l,...,4} . (3.3)

Proposition 3.2. P({xπα})>0 for all {xna}eG.

Proof. Assume that there exists {yn jCJ e G such that P({yn>α}) ̂  0. For large t > 0 the

dominating term in P({tyn>a}) is f4'^1 fl) ;w,α>0j tnus tnere exists ί0^l such that
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and P({z

n,«})=° which is equivalent to

A->W=0 (3.4)

the factor i is inserted so as to make iy^^n a hermitean matrix). Multiplying by
the positive matrix (zM)~1/2<5fcnc)αjβ from left and right, it follows from (3.4) that

det(_L (WM) * + is*\ = o? (3.5)

which is a contradiction as — i cannot be eigenvalue of a hermitean matrix!
In complete analogy to (2.4) one can write

p({χn..})=4Σ Σ (3-6)

where now, in contradistinction to (2.5), each xn α appears once at most in each
monomial.

Proposition 3.3. For all Aa C P (α = 1, . . . , 4)

<W^O. (3.7)

(Actually, one can even show that c{Joj = 0 if

Proo/ Choose ^αC^~ arbitrarily. Define

Then

J°({ .̂}) = cMjt
|J1 + 0(t'J'-1)8. (3.9)

To prove (3.9), one has to distinguish the following cases :

0,A<tA and ΔζΔ but

It then follows easily that the only term that contributes to the coefficient of ί' J' is
c{j}. Assuming c{2Ϊ}<0 one arrives at a contradiction upon choosing t sufficiently
large because for all ί<oo P({x£α})>0. This completes the proof of the pro-
position and thus, by Lemma 2.2, of the main theorem for scalar fields and Dirac-
spinors.

Defining

vJ) : = det {y£,F£ +ylβδknyk, J , yn,αeIR (3.10)

the proof for pseudoscalar fields runs along the same lines : reality of (3.10) follows
directly because (y5)+ = — y5 positivity for {yn>oc}eG from

Λ,α} (3.H)

7 No summation on indices α, β,k,n\
4

8 \A\:= T \Δλ
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and the hermiticity of the matrix i(y5yμ)ΛβVfn. The proof of Proposition 3.3 is the
same as before.

To make the proof of the main theorem complete, the case of Majorana-
spinors remains to be investigated. To do so, I make a special choice of {xn α}:

(3-12)

Then from the formula (2.2), it follows that [P({xn >α})]1/2 is a polynomial where
each xn, x'n occurs at most once in each monomial !

To see this one has to take -ψn^aβ^njΨn^β as tne "interaction" — term: the
statement then follows from an expansion of the integrand in (2.2) and term by
term integration a la Berezin.

For xn,x'n>Q9 Proposition 3.2 implies that [P({xn>α})]1/2 is strictly positive.
Also

Γ
LP({tn,M

/2= Σ Σ k^2) Σ *n Π <J (3-13)
meΔ2

Proposition 3.4. For all A1,

V^° (3 14)

Proof. As in Proposition 3.3

A similar argument shows that (3.14) also holds in the pseudoscalar case. This
concludes the proof of the main theorem.

Remark. It is tempting to try to obtain a more explicit proof of the above
statements by explicit computation of the coefficients C{AK}, d{Aκ} a la Berezin in
order to do so one has to develop a set of "Feynman-rules" for lattice-
determinants. By performing such a calculation the author has checked positivity
for the first few terms in a "Wilson-expansion" [8] ( = expansion of the kinetic
term), but in higher orders the combinatorics becomes very involved so a proof to
all orders will be extremely tedious if feasible at all.

4. Discussion

The range of applicability of the inequalities (1.3) is not yet clear. In four
dimensions they are possibly not of much use in their present form if the purely
scalar ^-theory does not exist which appears to be likely ([9,10] however, there
is as yet no complete proof of non-existence). In this case the inequalities at least
ensure positivity of (pseudo)scalar Schwinger-functions. Nonetheless, it will be
interesting to see what generalizations are possible and, in particular, whether
similar inequalities exist in presence of both scalar and pseudoscalar interactions.
Such a result would be very desirable for a thorough investigation of the
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supersymmetric φ3 -model in the framework of multiplicative renormalization
along the lines proposed by Schrader 9 [10,11]. Also, the possible existence of
inequalities for lattice-gauge theories in four dimensions is an attractive
speculation.

In less than four dimensions where the corresponding scalar theories are
known to exist [12], the inequalities might be useful for the treatment of the
Yukawa-model plus scalar interactions in two and three dimensions,
respectively — in particular, it should be possible to gain some more insight into
the supersymmetric φ3 -model in two dimensions (which differs from its four-
dimensional counterpart in field-content). To sketch another application that I
have in mind consider a model with spontaneously broken symmetry : adding a
term a4h ]Γ An to the action (1.1) (7ι>0), one should find that in the infinite volume

limit ([2,"l3] V= volume)

lim lim <4>0 h> const >0 . (4.1)
h-> + 0 F^oo X O.* — v /

α>0

On account of inequality (1.3) <>4> l j h^<^4>0 ) h for any h>0 and F<oo.
Consequently, if the limit exists

lim lim (A\ h> const >0 . (4.2)
fc^ + O F^oo 'M— v '

a> 0

Thus, if the purely scalar theory exhibits spontaneous symmetry breaking this
situation persists if the Yukawa-interaction is turned on which, of course, is in
accord with physical intuition.

After I had submitted this paper for publication L. Rosen and the referee
kindly brought the following points to my attention :

1) For d = 2 and Dirac-spinors, essentially the same results were obtained by
Alan McDermot in his PhD-Thesis; his work is definitely prior to mine [14, 15].
In his thesis, A. McDermot also proves the validity of the lattice approximation
in Y2.

2) When the fermions are Wick-ordered, the positivity property proven in
Section 3 may cease to hold. This is not a problem in supersymmetric theories
where Wick-ordering is unnecessary.

Also, I should like to point out that the results of this paper are independent of
what Vfn one chooses for the fermions since all that has to be required is reality and
antisymmetry of the matrix Vgn.

Acknowledgments. It is a pleasure to thank Professor Wess for a useful conversation and
encouragement.
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