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Abstract 

Although an important issue in canonical quantization, the problem of representing the constraint 
algebra in the loop representation of quantum gravity has received little attention. The only 
explicit computation was performed by Gambini, Garat, and Pullin for a formal point-splitting 
regularization of the diffeomorphism and Hamiltonian constraints. It is shown that the calculation 
of the algebra simplifies considerably when the constraints are expressed not in terms of generic 
area derivatives but rather as the specific shift operators that reflect the geometric meaning of the 
constraints. 
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1. Introduct ion 

A key problem of  canonical quantization is the incorporation of  the classical con- 

straints. In general, we have to expect that there are many different and in their outcome 

genuinely inequivalent ways to import classical symmetries into a quantum theory (for 

a recent example, see Ref. [ 1 ] ), and a famous example for the resolution of  such am- 

biguities is the critical dimension of  string theory, How to define and how to regulate 

the constraint operators is directly related to the representation of  the constraint algebra 

in the quantum theory. Typically, the constraint operators are not uniquely determined 

by the classical constraints, and demanding well-definedness of  the quantum constraint 

algebra is an important restriction on the choice of  representation. 
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Here we study the constraint algebra of vacuum general relativity in 3+I  dimensions 

in the framework of Dirac quantization, in which the classical constraints C are elevated 
to quantum operators C" and imposed as operator relations on the wave functions, 
C'~p = 0. Given a definition of the constraint operators, the question is whether there are 

anomalies in the constraint algebra, and if so, how to treat them. Currently there are no 
rigorous results about the constraint algebra of quantum gravity because of difficulties 
to define the constraint operators, e.g., issues of factor ordering and regularization arise. 

In the canonical formulation of vacuum general relativity there are two types of 
constraints, the three-dimensional diffeomorphism constraint D and the Hamiltonian 
constraint H, which satisfy the following algebra: 

{O(v),D(w)}=D(E,,w), 
{D(v),H(N)}=H(E,,N), 

{ H ( M ) ,  H ( N )  } = D (gabwt,), 

(1) 

(2) 

(3) 

where rob = MObN-Nc~bM, g~,h is the inverse three-metric, v and w are vector fields, and 

M and N are scalar densities of weight - 1 ,  all on a three-manifold which we choose 
to be compact. 

The constraint algebra of general relativity has two important features. First, the 

algebra closes but only for structure functions containing one of the geometric variables 

in (3). And second, neither D nor H form an ideal, and therefore one cannot construct 

a reduced phase space with respect to just one of the constraints. For example, the 
diffeomorphism constraint would form an ideal if the constraint on the right-hand side 

of (2) was D, but as it stands, there are no invariant subspaces that are necessary for 
phase space reduction. 

For canonical quantization of general relativity a very fruitful approach has turned 

out to be the Rovelli-Smolin loop representation [2] based on the Ashtekar variables 

[3,4]. For a motivation of the loop representation and a discussion of its strong and 

weak points, see for example Ref. [5]. In this paper we locus on the technical problem 
of how to construct the quantum constraint operators in the loop representation, and 

present a formal calculation of the constraint algebra in the loop representation. 
The loop representation, in which states are functionals of loops, can be obtained 

from the connection representation, in which states are functionals of the Ashtekar 
connection, through the so-called loop transform. We introduce a for our purposes 

particularly convenient form of the constraints via the transform. The level of our 
discussion remains on the same heuristic level as the original attempts to define the 
constraints [2,6-8].  In particular, the loop transform is not defined rigorously. Although 

there now does exist a rigorous definition of the two representations and the loop 
transform based on distributional connections [9], which brings about certain changes 

to the whole formalism, it is not yet known how to treat the Hamiltonian constraint 
rigorously. Note that the constraint operators in the loop representation can also be 
obtained without the loop transform directly from the Wilson-loop variables, with the 

same result [ 10]. 
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The definition of the constraint operators requires a regularization, and we use a 
point-splitting regularization. The problem with point splitting is that it introduces a 
background dependence which breaks diffeomorphism invariance and which survives 
in the limit that the regulators are removed. Further problems are that the constraint 
operators should act on a Hilbert space of states, but we do not have an inner product, 
and that the reality conditions of the Ashtekar formulation have not been implemented, 
and the constraint algebra of complex relativity might differ from that of real relativity. 
There have been important advances on these three issues (see, e.g., Refs. [11-13], 
respectively), but for the above reasons all calculations of the constraint algebra must 
still be called formal. What can be explored, however, is what the current framework 
predicts for the constraint algebra, and in the loop representation this is not a trivial 
task. 

One can distinguish four approaches to the constraint algebra in the loop representa- 
tion: 

(i) Recall that in the connection representation the constraint algebra does close on a 
formal level without regularization [4]. One can hope that this feature is preserved 
by the loop transform (which is as we already pointed out still problematic for 
the Hamiltonian constraint). This justifies the route most commonly taken until 
quite recently, namely to postpone the treatment of the constraint algebra in the 
loop representation. Given the definition of the constraint operators in the loop 

representation, one proceeds to study their kernel, to look for an inner product, 
defines observables, etc., without taking the constraint algebra into account. 

(ii) Given the definition of the constraint operators in the loop representation, the 
constraint algebra is computed explicitly [6,14]. Blencowe [6] computes (2) only, 
using the group action of diffeomorphisms. Gambini, Garat, and Pullin [ 14] give a 
completely explicit computation of ( 1 ) - (3 ) .  The technical difficulties encountered 
explain strategy (i). One problem is that the differential operator on the space 
of loop functionals that appears in the Hamiltonian constraint [6-8],  the area 
derivative, is not very well studied, but now the machinery is available [15] that 
makes [14] possible. 

(iii) One attempts a two-step procedure, first solving the diffeomorphism constraint, 
and then defining the Hamiltonian constraint operator only on the diffeomorphism- 
invariant states. This is how sometimes the original Rovelli-Smolin loop repre- 
sentation [2] is interpreted, namely as a theory of operators on knot invariants. 
For example, in the rigorous approach based on measures on the space of connec- 
tions modulo gauge [ 12,16], the measures are constructed to be diffeomorphism 
invariant first, and one later attempts to construct a "diffeomorphism-invariant" 
Hamiltonian constraint operator. An analogous approach is taken in Loll's lattice 
gravity, which has led to important insights for certain geometric operators [ 17]. 

From the perspective of the quantum constraint algebra corresponding to ( 1 ) -  
(3),  we have to observe that one cannot simply first impose the diffeomorphism 
constraint without consequences for the Hamiltonian constraint, since, as men- 
tioned above, the constraints are intertwined such that there are no ideals. Let 
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us give a simple-minded example. Suppose that D(v)~  = 0 and that H(N) 

does not map states out of  the kernel of  D(v),  i.e. D(v)H(N)  0 = 0. Then 

[ D (v ) ,H (N) ]  = 0 ,  and by (2) ,  H(E~,N) =0 ,  which, since it holds for all v and 

N, implies H(N) = 0. 2 That is, if we want to work exclusively on the space 

of  solutions to the diffeomorphism constraint, we have to consider the subspace 

that is invariant under the Hamiltonian constraint, and then the constraint algebra 
implies that this subspace must be the simultaneous kernel of  the constraints. 

I f  we want to define the symmetries of  quantum gravity with the help of  the 

operator constraint algebra, we therefore have to implement the constraint algebra 

before imposing the diffeomorphism constraint. 

In this context it is perhaps worth pointing out that one of  the main attractive 

features of  the loop representation, namely that a few non-trivial (formal) solutions 

to both constraints are known, is not derived from a two-step implementation of  

the constraints. Rather, one attempts to find the intersection of  the kernels of  the 

constraints on the unreduced space of  loop functionals [18].  

(iv) One introduces (almost trivial) matter variables that allow the definition of  a 

preferred time slicing. The Hamiltonian constraint operator then turns into a proper 

Hamiltonian operator, and the Wheeler-DeWitt equation into a proper Schr6dinger 

equation [11].  The main advantage is that the regularized Hamiltonian operator 

is diffeomorphism invariant, which opens up a whole range of  interesting topics 

in diffeornorphism-invariant dynamics. The problem of representing the constraint 

algebra is easily solved because only the diffeomorphism algebra remains to be 

represented, the information about the Hamiltonian constraint is now contained 

in the Schr6dinger equation. In this sense, a preferred time slicing also defines 

a two-step procedure. One should remember, and emphasize, however, that the 

construction of  matter clocks works only locally. The resulting theory is therefore 

only an approximation to what is usually called full quantum gravity. It would 

be very interesting to gain some control over the approximation, for example in 

reduced models. Even so, the prospect of  diffeomorphism-invariant dynamics is 

very interesting, and may be physically quite relevant. 

To summarize, one can either try to implement the classical constraints directly, (i) 

and (ii),  or to give a special treatment to the Hamiltonian constraint, (iii) and (iv). For 

the latter, there are good motivations, like the observation that while the diffeomorphism 

constraint is linear in the momenta and therefore generates a type of  gauge symmetry, 

the Hamiltonian constraint is quadratic in the momenta and does not possess simple 

gauge orbits. Also, to obtain the conventional interpretation of  time in quantum gravity 

a special treatment of  the Hamiltonian constraint may be necessary. 

Here we do not choose to treat the constraints differently, but want to explore as in 

(ii) whether the classical constraint algebra has a complete representation in the loop 

representation of  canonical quantum gravity. To state the outcome of  the calculation, the 

2 We thank A. Rendall for pointing out how a partition of unity allows one to extend the local integral of 
E,.N to the manifold such that any test function M may be written as E~N for some v and N. 
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resulting algebra maintains the structure of  the classical algebra with a particular choice 

of  factor ordering for D(gabwb) ,  which becomes necessary because of  the presence of  

the metric. The level of  rigor is equivalent to that in the connection representation, and 
upon removal of  the point splitting there are no anomalies. Let us point out that the 

formal nature of  the point-splitting regularization does not allow us to decide whether 

there actually are anomalies in the constraint algebra of  quantum gravity. 

Our contribution is to show that starting with a different form of the constraints the 

result of  Ref. [ 14] can be obtained in a simpler manner. The simplification comes about 

by the observation that the constraints are not just based on generic area derivatives, 

but rather on more specialized geometric operators, certain shift operators. This makes 

the algebra manageable to the extent that the point-splitting regularization can now 

be studied further along the lines of  Ref. [19] ,  where the removal of  the regulators 

is examined in detail for the constraint algebra in the connection representation. In 

terms of  shift operators, the constraint operators may in fact be compatible with the 

rigorous regularization techniques coming from distributional connections, with which 

it is particularly hard to represent the field strength of  the Ashtekar connection that 

directly corresponds to the area derivative via the loop transform. 

The paper is organized as follows. In Section 2 we define the constraints in the 

connection and the loop representation and discuss the point-splitting regularization. In 

Section 3 we introduce the basic loop derivative commutators. Section 4 contains the 

calculation of  the constraint algebra in the loop representation. In Section 5 we conclude 

with a few comments. 

2. The constraints and their representation 

The constraints of  quantum gravity in the loop representation have been derived in 

various ways [2,6-8]  with essentially the same result 3 . Since our method to compute 

the constraint algebra depends crucially on the form of the constraint operators, let us 

give a brief derivation via the loop transtorm. 

The Ashtekar variables are a connection Ai~(x) and a vector density Eai(x) of weight 

one, both complex, on a compact three-manifold 2;. Tangent space indices are denoted 

by a, b . . . . .  internal indices are denoted by i , j  . . . . .  The internal gauge group is SU(2) ,  

and following Ref. [2] we choose generators r '~ such that 

[ r  i, r j ] = ei.JkT k. (4) 

The algebra-valued variables are obtained by contraction, e.g., A, = Aia7 "i. The inverse 

metric is given by 

3 Based on Ref. [ 2 ], the constraints can be obtained through the loop transform or directly from the loop 
operators. In Ref. [ 7 ] the transform is used. In I 8 ] the constraints are derived from the loop operators and 
shown to be equivalent to Ref. [ 7 I. The very first derivation of the constraints in closed form in 161 can be 
understood as a hybrid of the two methods, giving the same result 1101. 
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ggat, = EaiEbi ' (5) 

where g is the determinant of g,,b (insuring the correct density weight). 
The constraints of general relativity which satisfy the algebra (1 ) - (3 )  are 

= / d3x vaEhiFab + G(v), (6) D ( u) 

H (N)  = f d 3 x Ne ~ik EaiE I~i F~ b . ( 7 ) 

The vector constraint f d3x vaEbiF~d~ generates  diffeomorphisms up to an internal gauge 
transformation, which is compensated by the term G(v),  and a gauge-depending term 
also appears in (3).  (The sign convention for the Poisson brackets in ( 1 ) - ( 3 )  is 
opposite to that of Ref. [4].)  

In the connection representation, wave functions are functionals of the Ashtekar con- 
nection, ~/,[A], and the operators corresponding to the connection and the triad are 
represented by 

~A~,(x) '  (8) 

where h = 1 and a complex i has been absorbed in the definition of/~,i. 
The first non-trivial issue we have to face is regularization. While the type of point 

splitting that we use has been commonly applied in many places, let us proceed slowly 
since there are different prescriptions for the order in which the various regulators have 
to be removed. 

The necessity lor regularization arises at this point because the metric and the con- 
straints are products of operators at the same point. We introduce a point splitting based 
on a background metric and a regulator f , ( x ,  y) satisfying 

lira f~ (x, y) = 83 (x, y).  (9) 
e~0 

For the calculations that tbliow we fix a coordinate system and require that f~(x ,  y) is 
a smooth function of x - y. 

As discussed in Refs. [20,21], which refer explicitly to the constraint algebra, a 
'full' point splitting should be applied, that is, all points that appear in an operator 
product should be split. See also Ref. [22], where it is shown that only in a particular 
factor ordering is the connection representation related to the loop representation, and 
that the vector constraint in this factor ordering only gives rise to diffeomorphisms 
in the connection representation if a symmetric point splitting, f~(x ,  y) = f~ (y , x )  is 
employed. Following these considerations we define the operators 

& ~ , ( x ) ;  d3y d 3 z ' f ~ ( x ' Y ) f ~ ' ( x ' Z ) S a ~ , ( y ) S a ~ ( z ) '  (10) 

D~(e) = -  d3x d 3 y f ~ ( x , y ) v  (x)~,~;77-7, F~l,(y) + G ( v ) ,  (11) 
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f f f  H++,(N) = d3x d3y d3z fE(x ,y) f , , (x , z )N(x)e i#6aia(y  ~ ~aj(z~ 

(12) 

For the particular calculations that follow, some of the regulators can be removed 
since there do not arise singularities that require them. (As just recalled, this is not true 
for the vector constraint algebra in the connection representation.) 

The transition to the loop representation is made via a formal transform, the loop 
transform 

~/,[r/] = J DA tr U,70 [ A ] , (13) 

where Un is the holonomy matrix of AI, around the loop r/, 

u,7 = P exp f ds~"(s)A+,(~(s) ). (14) 

In order to transfer the operators that we are interested in in the connection repre- 
sentation, Oc, to operators in the loop representation, OL, one performs a formal partial 
integration for any occurrence of a functional derivative with respect to A~, so that 

OL0[r/]---  J D A t r U ~ O c ~ [ A ] =  JT)A  (O~trU~)O[A]. (15) 

All that is needed for an explicit definition of OL as loop operator is a transfer relation 
of the operators on the Wilson loops that expresses the operation on the connection 
dependence of the Wilson loop purely as an operation on its loop dependence, 

O+tr U~ = OLtr U~j. (16) 

This construction is directly applicable to the metric and the constraints. The Wilson 
loop satisfies 

+ ] ~Ai,(x----~trU~+ = ds~3(x, rl(s))'O~(s)tr(U~.~-ri), (17) 

6 
6rl~,( s-----~tr U~ =~)b ( s) F~,b( rl( s) )tr( U,.,ri), (18) 

where Uss denotes the holonomy from rl(s) once around the loop. Variations of the 
Wilson loop with respect to the connection and the loop are not completely unrelated, 
and for the operators under considerations there exist transfer relations precisely because 
of that. In fact, (18) is the one transfer relation we need, relating the loop derivative on 
the loop representation side with the multiplication and insertion of a field strength on 
the connection representation side. 

At this point it turns out to be quite advantageous to introduce a new piece of 
notation. Let T~ be the loop operator that inserts a generator at parameter value s into 
the holonomy, 

T~trU = tr U,,r  i. (19) 
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Partial integration as in (15) and evaluating the functional derivative with respect to the 

connection as in (17) leads to 

D(~')J,[~]= f13A ( f  dsv"OT(s))iTb(s)F~,,OT(s))T~trUn)~,[A], (20) 

H~'(N)~[~7]=/79A ( f  d3x f ds /dtfE(x,q(s))fE(x,~7(t))N(x) 

×il~'(s)ilt'(t)eiJ~Z~T/F,~h(x)trU~) ~ [ A ]  , (21) 

×~'(s)i?h(t)T;!TTtrU~) ~b[A]. (22) 

We have removed the regulator in D (v),  and G (v) does not contribute since the Wilson 
loops are gauge invariant. 

A single insertion operator could be transferred to the loop representation by intro- 

ducing functionals of  loops with a marked point, T~p['r/]. Such an extension is not 

necessary if the insertion operator T / is combined with a field strength as in D(v), or if 
there are two insertions as in g~a,, or if there are two insertions and a field strength as in 

H ( N ) .  The double insertions that arise combine due to the trace identities for SL(2, C) 

matrices to the following rerouting operations: 

Tir/tr v = ¼tr V - ' tr  V,,tr U~,, (23) 

e i]k TtsTJtr U = ½ ( tr U,,.,tr U,.,.r ~ - tr U,, rktr U,.~ ) , (24) 

where U~.t denotes the parallel transport from s to t going around the loop in the positive 

direction. That is, if s > t, U,, = UslUo,. Note that the resulting holonomies in (21),  

(22),  e.g. tr U,.t, in general refer to open paths, which however reduce to closed loops 

in the limit that the regulator is removed. 

As demonstrated, taking two derivatives with respect to AI, leads to the well-known 

rerouting of  the loop at intersections in the loop representation. The rerouting in g~'*' and 
H(N) is by no means a trivial side effect but actually crucial for the definition of  the 

operators and the closure of  the constraint algebra. The Hamiltonian constraint includes 

differentiation as well as rerouting. The trace identities capture the fact that the internal 

gauge group is complexified SU(2) and not some other group. 
The rerouting has to be denoted in some way, and we find it simplest to not resolve 

the insertion operators into rerouted loops whenever possible. For example it is then 

irrelevant whether s < t or t < s, and where the parameter origin of  the loop is (as 

opposed to Ref. [14] ) .  This turns out to be an important technical point, since the 

use of  insertion operators allows us to separate the rerouting operations from the other 

calculations and lead to a significant simplification. 

Whether we work with reroutings or insertion operators, we have to deal with the 

case s = t. Note that for a given s, trU,.,riU,tr k is a function in t with a finite step 
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discontinuity at t = s. The integrations in the metric and the Hamiltonian constraint 

are evaluated by considering left- and right-sided limits, f ds f dt = f ds fo r̀  dt + 

f d, L', 
Note also that the product T~T~itrU has no intrinsic meaning, since it is not clear 

where the second insertion has to take place, before or after the first, but the left- and 
right-sided limits T~T;!+ are well defined. Therefore, we define insertion operators on 

general loop functionals that produce functionals of loops with a marked point, TjO[r/], 

and that inherit certain trace identities from the 7 -i. In particular, 

[T~,Tj] = 0,  for s 4: t, (25) 

[ T~, Ti( ] := T~_ T~(, - T~ T~I , (26) 

[ Tj, T~! ] = eiJkT~. (27) 

The transfer relation (18) can be directly applied for D(v)  and g~ , (x ) .  For H ( N )  
there remains the problem that, as given in (2 l ) ,  the field strength is evaluated at x and 

not on the loop as required in (18). One can either introduce at this point a more general 
type of loop derivative, namely a path-dependent area derivative (cf. Section 3.1), or 

use that in the integrand 

F],b(X ) = F,'ib(r/(t)) + O(e ' )  ~ F{,t, OT(t)).  (28) 

All our calculations (and those of Ref. [14]) are performed only to leading order in 

the point splitting. 
The transfer relation (18), the commutator (27), and attaching the field strength to 

the loop (28), allow us to arrive at our final form for the metric and the constraints, 

f ,, 6 
D(v)  =Jds~, ( n ( s ) )  an,7~ s ) , (29) 

/5 
× f~, ( x, ~7( t ) )ila( s) N( ~7( t ) )Ti![ ~ ,  TIC], (30) 

g~ , t x )  = ds dt f~(x ,  r l (s ) ) f~ , (x ,  rl(t)l~)~Z(s)~)l'(t)TiJTi j, (31) 

where in (30) we have assigned the marked point property also to the loop derivative. 
The constraints in the loop representation that we have derived are equivalent to the 

standard result [6-8] .  Apart from notational differences for the rerouting, and order of # 
differences in the regulators, there is, however, one very important technical difference. 

The loop derivative that we introduce for the transfer is not the area derivative, but just 
a special case thereof, the ordinary functional derivative with respect to the loop, which 

has the geometric interpretation of an infinitesimal shift operator. Considering the other 

approaches, it is not clear why the functional derivative should suffice, and we show 
below that for the removal of the regulator one is forced to introduce the area derivative 
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at generic kinks of  the loop. In order to arrive at the above form we had to take special 

care that the tangent vector to the loop is always at the same point as the field strength 
as in (18).  

3. Loop derivatives and some basic commutation relations 

Before moving on to the computation of  the commutators of  the constraints, we take 

a more detailed look at the loop derivatives that appear in the constraints, and analyze 

the basic commutators of  the derivatives and the rerouting operators. 

3.1. Commutators of loop derivatives for smooth loops 

The basic commutator for the computation of  the constraint algebra is that of  two 

functional loop derivatives, 

8 8 
[ - -  - - 1  = 0 .  (32) 

gr/" (s) ' 8r/b(t) 

While this commutator vanishes, the commutator of  two area derivatives does not vanish, 

which is a good reason to attempt to rewrite the Hamiltonian constraint in terms of  

functional derivatives. Let us discuss this important point in more detail. 

The area derivative of  a loop functional ~/,[r/] is defined by appending to r/ an 
infinitesimal loop yS with area element o '"b(y s) = O(1/82) .  In its general form, the 

area derivative depends on a path rr~ (and its inverse 7"r'x) from the point o at which all 

loops r/ are supposed to be based to the point x where ys is attached. The definition of  

the path-dependent area derivative is 

~ [ ~ y % - , ~ ]  - ~ , [ ~ ]  
A~#'(~')~'[~/] = s-,01im o.,Zb(yS) , (33) 

where juxtaposition of  loops denotes attachment of  the loops at the base point (see 

Ref. [23] for a rigorous discussion). 

From that definition follows the basic commutator used in Ref. [14],  

[ , a , , b ( r r~  ' = ),A~a(Tr-o)] A~,~(7"r~)[Aca(rr{i)], (34) 

where the brackets on the right-hand side indicate action on the path dependence in 7"r~i 

only and not on the loop functionals. Note the peculiar form where the commutator of  

two derivatives is the derivative of  a derivative. 

The area derivative that typically appears in the derivation of  the Hamiltonian con- 

straint does not depend on arbitrary paths but on portions of  the loop on which the area 
A X derivative acts. From definition (33) with 7r o = r/,,, x = r/(s)  we have a definition for 

the parameter-dependent area derivative, 

A,,h(S)~(r/) := A,,h(r/~(s))~/,(r/) = lira ~O[TS o~ "r/] -- ~['r/] (35) 
s~o cr,,O ( ys ) 
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Fig. 1. Parameter-dependent area derivatives that act on different points of the main loop commute since it 
does not matter in which order the infinitesimal loops are inserted. 

Fig. 2. Two area derivatives at the same point do not commute since there is a non-vanishing contribution 
when one of the small loops is inserted onto the other. 

As remarked in Ref. [ 15], the parameter-dependent area derivative is naturally more 

restricted in its applicabil i ty than the generic, path-dependent area derivative, but let 

us point out that nevertheless it is all we need for the commutators of  the constraints. 

To be more specific, explicit  calculation of  the infinitesimal loop variations shows that 

[A,#,(s) ,  A~.a(t)] is not expressible in terms of  a parameter-dependent area derivative, 

but we also find that 

d A . "0~'(s)// ' l(t)  [Aab(s) ,  Aca(t)  ] = - -5 (s ,  t)-~s ac(S) (36)  

One can peel off one of  the tangent vectors obtaining a so-called covariant loop derivative 

of  an area derivative, but removing both tangent vectors does not leave a single area 

derivative. 

In pictures, parameter-dependent area derivatives commute if the infinitesimal loops 

are inserted at different parameters of  the main loop, Fig. 1, but there is a non-trivial 

contribution if  one of  the small loops is inserted onto the other, Fig. 2. 

To motivate the relation between the parameter-dependent area derivative and the 

ordinary functional derivative with respect to a loop, compare the transfer relation (18) 

with the Mandelstam equation, 

A~,b(s)tr U n = Fib(r l ( s )  )T~tr U~. (37)  

All  that is missing is the contraction with a tangent vector, and one can show that for 

smooth loops 

fi = / / b ( s )  Aat,(s). (38)  
6fly'(s) 



260 B. Briigmann/Nuclear Physics B 474 (1996) 249-268 

And as we already pointed out, the commutator of  two functional derivatives vanishes. 

To summarize, the three types of  derivatives that we consider are in increasing order 

of  generality the functional loop derivative, the parameter-dependent area derivative, 
and the path-dependent area derivative. They are related by (35) and (38).  The basic 

commutators are the more complicated the more general the derivative is, cf. (32),  

(36) ,  and (34).  

This suggests that using parameter-dependent area derivatives already offers a sim- 

plification over path-dependent area derivatives, but using functional loop derivatives 

is even simpler. In Section 4 we compute the commutators of  the constraints. It turns 

out that most of  the calculations can be pertbrmed on the level of  the functional loop 

derivatives, but at one point we fall back onto parameter-dependent area derivatives. 

While it is not proven that it is not possible to perform the calculation exclusively in 

terms of  functional derivatives, it is a convenient approach. 

As already emphasized, however, the Hamiltonian constraint is not just a derivative 

operator, but contains a rerouting as an additional complication, which we address in 

Section 3.2. 

3.2. Commutators of loop derivatives on piecewise smooth loops 

The loop representation allows continuous, piecewise smooth loops, which means 

there may be kinks, il"(s - )  4: ~ ( s + ) .  The area derivative is obviously well-defined 

at kinks, e.g. (37) (that is, kinks do not prevent a loop functional from being area- 

differentiable). As evident from 8/Sr /"(s)  = / f ' ( s )  Aah(s), the functional loop derivative 

is ill defined at kinks where 0h(s)  does not exist. 

For loops with kinks, integration around the loop as in f ds il"(s) is defined in terms 

of  left- and right-handed limits the same way we resolved the ambiguity in TjTi ~ for 

s = t. Even if one assumes that the loop argument of  ¢ [ ' q ]  is smooth, action by the 

metric or the Hamiltonian constraint introduces kinks at intersections. Recall that 

8 .j ~ T/ 8 
[ 8~7"(t~--~ 'T~ ] "- 8~7"(t-) 8~U(t+) T/" (39) 

and hence the loop derivative is kept away from the kinks introduced by the rerouting. 

But notice that there are now two limits involved. Suppose that there is a kink at to. 

In the limit that the regulators are removed, one of  the terms in the Hamiltonian arises 

lbr t in (30) close to to. We impose that the limit in the t + has to be taken before the 

limit of  t --~ to. This means that always eithcr t -  < t < t + < to or to < t -  < t < t +. 
This definition of  the integrals in the metric and the Hamiltonian constraint together 

with the point-splitting regularization, which led to our prescription for the positioning 

of  the loop derivative, insure that the constraints are unambiguously defined for kinks. 

We therefore have Ibr the commutators between reroutings and functional loop deriva- 

tives for integrations of  the type that appears in the constraints (i.e. with the appropriate 

left- and right-sided splits in the range of  integration) 
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/ /  , ,  ds dt f ( s , t ) [ T , . , T i  ] = 0 ,  (40) 

J r /  a T~ ' [ ~ 
- - ,  - -  79]]  = 0 ,  (41)  ds dt  d u g ( s , t , u ) [  &l~,(u ) , &la ( t )  , t 

, ~ ,  , ar / , , (L , ) ,T , ( ] ]=0  ( 42 )  

for continuous functions f ,  g, and h that maintain reparametrization invariance. For 

example, (40) follows from [T~,Ti i] = 6,,eiJ~T~k as long as f ( s , t )  is assumed to be 

continuous. That is, there are contributions from the commutators defined by the left- and 

right-sided limits, but the integral is zero as long as these contributions are finite and have 

support only on sets of  measure zero. Of course, the reason why the commutators of  the 

constraints are not trivially zero because of  ( 4 0 ) - ( 4 2 )  is that functional differentiation 

can lead to distributional coefficients f ,  g or h. 

Now we are ready to compute the constraint algebra. In Section 2 we promised 

a demonstration that the unusual form of the Hamiltonian constraint, namely that it 

involves only functional derivatives, reduces to the standard form with area derivatives 

at kinks when the regulator is removed. We do not actually remove the regulator in this 

paper, since this would involve several case distinctions for smooth portions of  the loop, 

kinks and intersections, but as an important exmnple consider the Hamiltonian constraint 

for a loop with intersections. Suppose r/(so) = r/(t0) for so < to. One of  the terms that 

arises due to the rerouting refers to g,{'r/.,.,,,~,], i.e. for a generic intersection there is a 

kink at so, to. First notice that Auh(SO)¢[~7.,.,,t,, I is well defined, in fact, 

&,,(So)g'[~7.,.,,,,,] = A,,t,(t0)&[r/,~,,,,]. (43) 

Our definition of the Hamiltonian constraint gives rise to four terms with a functional 

derivative given by the four orderings of  to, t, and t ±. For example, for to < t -  < t < 

t+,  

lim - - ¢ [ r / . ~ , , 0 r / , o ,  rh t] = f//'(t~)4,t,(t0)~p[r/,,,,,,]. (44) 
'>tl,,t~to 6~  ~' ( t -  ) 

The point is that in the limit that the regulator is removed we recover the standard 

result (see, e.g., Ref. [8] ) that in the generic case, when the loops do not run smoothly 

through the intersection but the tangent vectors ~a(So) ,  f/"(s0-), ¢/~'(to), and f l " ( t~ )  
are all different, there are terms for which ~a(S)~lb( t )Aab( t )  cannot be combined into 

loop derivatives since the area derivative and tangent vectors are located on different 

legs of  the intersection. 
The form of the Hamiltonian constraint (30),  and the prescription for the order in 

which to take the two limits related to reroutings, is adopted precisely because it allows 
us to always keep the area derivative and one tangent vector on the same leg so that 

they combine to a functional loop derivative. 
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4. The constraint algebra in the loop representation 

4.1. Commutator of D(u) with D(w) 

Given (32), we immediately have that 

[ D(v),D(w) ]O[rl] 

= f as /atv"(,7(s)) a  ¢,I,tl 
8 ] 

- f ds /dtwa(rl(s)  ) ( ~ u b ( r l ( t )  ) ) -g~-~O[rl (45) 

=/ds(J(r l (s) )Oowb(rl (s) ) -w"(V(s))c~aul ' (r l (s) ) )~O[~7] (46) 

= D ( E , . w ) .  (47) 

The same calculation can be performed after replacing 8/8~7 (s) by ~ ' ( s )  A,,b(s), where 
the non-vanishing commutator of the area derivatives cancels the contribution from the 

variation of the tangent vectors. Much more involved is the direct use of path-dependent 
area derivatives [ 14], where the non-vanishing basic commutator cancels together with 

the variation of the tangent vectors and the path dependence in the area derivative when 

the Bianchi identity for area derivatives is used. The basic structure in all three cases 

is that the variation of the smearing vector fields gives rise to the relevant term in the 

commutator without contribution from the other variations. 

4.2. Commutator of D(u) with HE~,( N) 

By definition of the constraints and (41) we have 

[D(v),H~,,(N)] 

6 × 6 (f,(x, 77(s)) f~ , (x ,~7( t ) )Oh(s))T{[~,T/]  
8~"(u)  

8 I, 8 
8rfl, ( u ) " 

The functional differentiation of the tangent vector gives 

/ du ca(rl(u) ) --9 '-~ 

(48) 

(49) 

while for the vector field 
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f du--'c~,q~(t)l~b(~(.) ) ~b(t,----- ~ OaVb(Tl(t))t~b(t ~ (50) 

Since in the limit that the regulators are removed r/(s) _~ r/(t), these two terms cancel 
in the commutator, 

[D(v),He,,(N)] m f d 3 x / d s / d t / d u N ( x ) v ° ( ~ 7 ( u ) )  

8 8 
×Sr/a(u ) ( f~(x ,r / (s) ) f , , (x ,  rl(t)))~l'(s)T~![ - T/]. (51) 

6rll' ( t ) ' 

For the functional differentiation of the regulators we obtain 

f d3x f duN(x)v"(rl(.))~(f~(x, rt(s))f~,(x,~(t))) 
f d3x N(x) I - #'(rl(s) )f~, (x, rl(t) )O,,fE (x, rl(s ) ) 

-v"(rl(t) ) f~(x, rl(s) )O,,f~, (x, r/(t) )] (52) 

= ./d3x [t/'(~7(s))fe(x, rl(s))a,,(N(x)f , ,(x,  rl(t))) 

+v°(~7(t) ) f~,(x, rI(t) )a,,( N(x) f~(x, rj(s) ))] (53) 

~_ / d 3 x  [c'"(x)f~(x, rl(s))O,,(N(x)f~,(x,r~(t))) 

-c~,,(t,"(x)f~, (x, 'q(t) ) ) N(x)f~(x,  rl(s) )] (54) 

tx)c?,N(x) " -N(x)Oav"(x)) fe(x ,  rl(s))fe,(x, rI(t)). (55) 

We performed two partial integrations in order to remove the derivative from the 
regulators, and we moved the vector field from the loop to x. Note that in general 
vO(y)O,,aB(x- y) 4= v"(x)4,a3(x-  y), and that we first removed the partial derivative 
from the regulator before concluding v"(r/(s)) ~_ v"(x). 

Since N is a scalar density of weight - 1, £,,N = v%,N - N4,v", and inserting (55) 
into (51) we obtain the operator version of the classical Poisson bracket, 

[ D(v),Hee,( N) ] ~_ Hee,( E,N). (56) 

4.3. Commutator of H6a, ( M) with HEe, ( N) 

By definition of the constraints and (42) we have 

[ H~a, (M),  HEE, (N) l 

× fa(x, rl(s) )fa,(x, rl(t) )il"( s)Ti( 
6 6 

, T i ]T~ [ 6rib ( × [ ~  (fe(y,~7(u))fe,(y, 71(v))iT~,(u)) i k v),T,k ] 
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- (  M ~ N, 8 ~ e,81 ~ el). (57) 

Functional differentiation of the tangent vector gives 

r l t t )  dt f~(y, rl(t))T[)8~ (58) 

t) ~ T k,st' d Tk s~' = ilc(t)3cfE(Y, rl( , ' ,  ~a -- re(Y, rl(t)) dt.t  a" 

(59) 

The second term does not contribute to the commutator since 

M(x)  N(y)fa(x ,  rl(s) ) f  a, (x, r/(t) )f~ (y, r/(t)  )f~, (y, r/(c) ) 

- N ( x ) M ( y ) f ~ ( x ,  rl(s))fe,(x,  rl(t))fa(y, rl(t))f~,(y, rl(v)) ~--0. (60) 

Therefore, the functional differentiation of the tangent vector in the commutator gives 

f d3x f d3y / d s  / d t  } d u M ( x ) N ( Y ) f a ( x ,  rl(s))f~'(X, rl(t)) 

×aaf~ (y, rl(t) ) f , ,  ( y, rl(u) )il~'( s)fl"( t)Tii[T[, 7'/] [ 6rib(u------- ~ 

- (  M +-* N, 8 ~-~ e,8' .-~ E'). (61) 

To remove the partial derivative from the regulator, we perlbrm a partial integration in 

y, and with approximations similar to (60) ,  

} d3 x / d3 y M(x)N(y)  f,s(x, rl(s) ) f,~,(x, rl(t) )SafE(y, rl(t) ) fE'(Y,~7(u) ) 

- f d3x f d3yN(x)M(y)f (x,v(s))f ,(x, 
~--fd-~xfd3yo~,,(x)fa(x,~(s))f~,(x,~(t))f,(y, rl(t))f~,(y,~(u)) 

(62) 

(63) _~ -oo,, (,q ( u ) ) f a ( r l ( u ) ,  rl(s) ) fdr l (u) ,  rl(t) ), 

where 

~o,(x) = M(x)&N(x)  - N(x)O,M(x).  (64) 

(w,, is a covector density of weight - 2 ,  and w,f~f~ has weight 0.) In (63) we 
integrate over x and y keeping terms to leading order. Note that already in the definition 

(30) of the Hamiltonian constraint one of the regulators can be removed without any 
renormalization, say f~, (x, "r/(t) ) ~ 8 s (x, r/(t) ). But after integrating over x, it is then 

not quite clear how to perform the necessary partial integrations in the commutator 

algebra. 
Functional differentiation of the regulators in the commutator (57) leads directly to 

partial derivatives of regulators, which can be removed analogously, and we obtain for 
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the full commutator (after appropriate renaming of integration variables and contracted 
indices) 

[ Haa, ( m ) ,  Ha~, (N) ]  

( × [Tk,T;!]T/[fi~,(u),T,~] + T~JtTk,g][fi--~T~u),Tk] 

) +T;{Tk[[ fir/b(u------- ~, T,~],T/{] . (65) 

A priori it is not obvious how the right-hand side of the classical Poisson bracket (3) ,  
D(gabwb), should be represented in the loop representation because of the operator 
product of  the metric with the generator of diffeomorphisms. Comparing the above with 
the loop operators for the diffeomorphism constraint (29) and the metric (31 ), a natural 
guess is that the reroutings in (65) combine to T~iTiif/sr/b(u). This is indeed the case. 

The first two terms in (65) cancel since with (27),  

6 fi 
[Tk' T~i]Tii[ 8r/"(u~---)-' 7k] + Ti{[Tk' T[] [  8 r / " (u ) '  T~] 

,cikJTiTJTk 4- ~:ikJTJTiTk = [ ~ , ~  - ~ - , - u - -  - i - , - . ]  (66) 

= 0, (67) 

Note that the cancellation does not depend on whether 6/Sr/b(u) is located at u -  or 
II ÷. 

However, the one remaining term cannot be simplified using the SU(2) commuta- 
tor for the insertion operators, because resolving the order of the insertions puts the 
derivative between the insertion operators, 

fi T,~ ], T/~ ] = 8 S Tj ar/,,(,,------7' T'fT'I  - " '  

_ T  j 8 T~ + T I T~ /, 3 
" ar/~' ( u - ~  - fir/ (u+) " (68) 

Of course, there are other identities to work with, but let us first consider the situation 
in the connection representation, i.e. g,[r/] = trU, 7 and 6/Srll'(u) = ilb(u)Fie(r/(u) )T'. 
Then the rerouting simplifies according to 

T;(T) [ [T,'I, T,~ ] ,T,I] = T~(T) eik' eti'"T,', '' = T~T/T,I T~'T/T,',. (69) 

The important observation is that this result cannot be transformed back to a functional 
derivative and some reroutings in the loop representation because in the first term 
F,i,/,(r/(u)) is contracted into an insertion at s, not u. In the limit that the regulators are 
removed in (65) ,  we have r/(u) ~_ r / (s) ,  and 
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T i ( T t ~ [ [  3_ ,T~ ]  T~] = i l C ( u ) A b ~ ( s ) T / T J -  T:/T: / fi 
• 6~Tb(U) , s t fi~Tb(u ) . (70) 

As already discussed in Section 3.2, the reroutings in the Hamiltonian may split a func- 
tional loop derivative into a tangent vector and an area derivative at different parameters. 

While by definition of the loop representation its states have to satisfy the loop 

transforms of all the SU(2) identities of the connection representation, i.e. in particular 
(70), let us also indicate how (70) can be derived using the SU(2) identities in the 

loop representation without resorting to the loop transform. For definiteness, consider 

the case s < t < u. The rerouting operations that appear in (70) are 

T:,?T[~ [ r / ]  = ¼¢[ ' r / ]  - ½ ,d.,[r/.,., U r/ ts] ,  ( 71 )  

T:(, T/, ~['r/.,., U "q,.,.] = ¼0[~7.,, U r/,.,] - ½,d,[r/]. ( 72 )  

Marking the area derivative by the insertion of a small loop y, the claimed relation (70) 

becomes 

¢ , [ m ,  u ~,,,,. u ~, , ,y]  - ¢,[~,,, u ~,,,. u m. ,y ]  + #-,[~,,.,.v,,,m,y] - ¢ , [~ , , ,m,~ , . -y ]  

= 2~  It/,., U r h , . , ~ . , y J  - 2~[~,,, ,  U %.,'r/..,.y] + d.,[ r/.,,r/t,'rh,.,.y] - ¢[~..~r/.,,,r/tHy]. 

(73) 

A simple systematic method to proceed, without introducing the complication of inverted 

loops as in the standard spinor identity, can be found in Ref. [24]. First, use (43) of 

Ref. [24] (there is a factor of two missing on the left-hand side) to resolve any 
¢[otf ly f i]  into a sum of loop states depending on multiloops where a single loop 
contains at most three of the four loops a, /3, y, and & Then use (40) of Ref. [24] 

to rewrite any gt[flcey] in some preferred order ~[a /3y]  plus a sum of loop states 
depending only on multiloops where a single loop contains at most two of the three 

loops. Then our claim becomes 

d t [ y  U "r/,,, O r / , j / . , , ]  - ~ [ 7  U "r/.,, U "q.,r/l,,,.] = 0, (74 )  

which holds because y is inserted on the trivial loop, and the area derivative of a trivial 
loop dependence vanishes. Note that we used (43) for the area derivative at a kink 

several times. 
Given (70), the final observation is that in the commutator ¢lh( t ) i I"(u)At ,  r ( s )  is anti- 

symmetric under exchange of t and u, while the remainder of the integral is symmetric 

under exchange of t and u. Therefore, the term in the integrand that does not reduce to 

a functional loop derivative vanishes under the integral. Hence we have shown that 

[ H ~ s , ( M ) , H E E , ( N ) ]  / ' d u  w . (~7(u )"  ""' ) ~r/,~( ~-- Jgs~(~7(tt) u) " (75) 

The result represents one of the possible factor orderings of the operator version of 

D(~o,g":') ,  which appears in the classical Poisson bracket. 
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5. Conclusion 

We have confirmed the result of Ref. [ 14] that the constraint algebra of 3+1 quantum 
gravity in the loop representation formally closes. There are two reasons for the com- 
parative simplicity of our calculation. We were able to cast the Hamiltonian constraint 
into a form involving only functional loop derivatives instead of area derivatives, and 
we found a simple way to separate the rerouting operations from the other parts of the 

calculation. 
One direction for further research is to analyze the point-splitting regularization in 

more detail, in particular to analyze the next-to-leading order terms [ 19]. This appears 
to be necessary if one decides to take the point-splitting regularization seriously, since 

one cannot remove the regulators in the definition of the constraints before computing 
their algebra without running into inconsistencies related to the background dependence 

of the regularization (also see the comment following (64)) .  Turning this observation 
around, we avoid anomalous background-dependent terms in the constraint algebra by 

postponing the removal of the regulators until the algebra is computed. 
A related point is that if we remove the regulator, the Hamiltonian constraint consists 

of discrete sums over kinks and intersections (no integrals involved) and integrals along 

the loops for the acceleration terms [6,8,19]. The acceleration terms in a sense spoil 

the simple picture that the Hamiitonian constraint only acts on intersections, which are 
invariant under diffeomorphisms, although the background is present as an angle depen- 
dence, and the acceleration terms depend on the background since they contain second 

derivatives of the loop, #" ( s ) .  Sometimes one would like to argue away the acceleration 
terms, but notice that in order to obtain the integral on the right-hand side of the com- 

mutator of two Hamiltonians, (3), and as is also apparent from Section 4.3, it does not 
suffice to just consider the discrete sums corresponding to kinks and intersections. This 

may still be consistent with a diffeomorphism-invariant scheme like that of Ref. [ 11 ], 
in which acceleration terms do not appear, since, as we discussed in the introduction, 

(3) is no longer relevant. 
As a final remark, note that the rigorous framework based on diffeomorphism-invariant 

measures [9,12,16] is well adapted to the generators of diffeomorphisms, but has prob- 
lems with the area derivatives appearing in the Hamiltonian constraint. Therefore it may 
be worthwhile to examine our form of the Hamiltonian constraint (30) in that setting. 
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