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Examples of Newtonian limits of relativistic spacetimes
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Abstract. A frame theory encompassing general relativity and Newton—Cartan theory is
reviewed. With its help, a definition is given for a one-parameter family of general relativistic
spacetimes to have a Newton—Cartan or a Newtonian limit. Several examples of such limits are
presented.

PACS numbers: 0420, 0240, 0450

1. Introduction

The relation between Newton’s theory of space, time, dynamics and gravitation (NG) and
Einstein’s theory of general relativity (EG), which in essence accomodates all of classical
physics, is by now rather well understood. As Cartan [1] and Friedrichs [2] have indicated
and later authors have elaborated [3—7], Newton’s theory can be re-expressed in generally
covariant spacetime language. This reformulation naturally led to a frame theory [8, 9],
the laws of which specialize to those of a slight generalization of Newton's theory, the
so-called Newton—Cartan theory (NC), and those of Einstein’s theory if a real parameter
A is restricted to be zero or positive, respectively. Thdependence of the laws shows
that the mathematical structure underlying NC is a degenerate limit of that on which EG is
based. (In terms of principal bundles, the degeneracy-E®IC results from contracting

the restricted Lorentz group to the restricted Galilei group, in the sense of Segal [10]; see
Kunzle [6].)

To understand a limit relation such as E& NC, it is not sufficient to exhibit théaws
of the former theory as specializations or limits of those of the latter one; the more difficult
part consists in establishing relations betweenstlationsto these laws, as they represent
testablemodels of real situationsin the present case, one such relation is provided by the
frame theory which gives a rigorous meaning to the statement that ‘a one-parameter family
of EG spacetime models converges to an NC model’ or, in particular, to an NG model [8].

Such a limit relation [11-13] may be used to throw new light on methods designed to
construct ‘nearly Newtonian’ solutions of EG [14, 15] or to interpret Einsteinian solutions.
The frame theory even led to the first existence theorem for stationary, axisymmetric EG
solutions representing rigidly rotating fluid bodies surrounded by an asymptotically flat
vacuum field [16].

The physically plausible heuristic, but mathematically obscure and incomplete, textbook
arguments concerning the Newtonian limit of general relativity may therefore be replaced
by the relations provided by the frame theory. Besides, the latter can be used as a
counterexample to the claim that scientific ‘revolutions’ in the sense of Kuhn [17] are
irrational leaps associated with incommensurability of concepts between the older theory
and its successor (see e.g. [18, 19]).
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The modest purpose of this paper is to illustrate the limit relation by means of a few
simple examples. In section 2, | summarize the frame theory and its specializations to
NG, NC and EG. Then, in section 3, | define the limit relation alluded to above, and the
remaining sections contain some examples.

It was Andrzej Trautman’s elegant paper [5] which initiated my interest in these matters,
and therefore | am happy to contribute the following remarks to this Festschrift, to thank
and honour Andrzej.

2. The frame theory and its specializations

The theory deals with the following collection of fields on a 4-manifafd spacetime

148, @ Nowhere vanishing symmetric, 2-covariant tensor field teéhgporal metri¢
s*f, a nowhere vanishing, symmetric, 2-contravariant tensor field, the (invepstpl
metrig
e I, asymmetric, linear connection, tigeavitational field
T*f, a symmetric, 2-contravariant tensor field, the mass—momentum-stressitier
tensor

The laws of the theory contain these fields and two real-valued parametars] A. To
formulate the laws concisely, it is convenient to define, for arbitrary tensors, index shift
operations,

Vo= to,,gVﬂ, % = s“ﬁwﬂ,

o

even wherr,g or s*? are not invertible. To avoid confusion it is then necessary to indicate
by dots whether the original object has upper or lower indices, as shown. (The indices may
be considered as ‘abstract’ ones in Penrose’s sense except when, in the examples, special
coordinates are used.)

Here are the (locallaws

(i) For any timelike vectorv®, i.e. one which obeys,;V*V# > 0, the quadratic form
wy — s*Pw,wg is positive definite on the subspa¢e,|»,V* = 0} of the covector
space.

(ii) topsP” = —28%.

(i) g, = 0. 5., =0,

(iv) Rﬂ,a =R 5ep"

(V) Rop =87 (T, — 5tapT? ) — Alagp.

(vi) T7%¢.5 = 0.

The covariant derivatives refer to the connectidrandR,s = R’,, ; denotes the Ricci
tensor associated with the curvature tensor of

In addition to the general lawspodels of mattehave to be specified. Here | consider
only the cases of vacuurd*® = 0, andperfect fluid

(Vi) T% = (p + Ap)U*UP + ps*#, wheret,sU*U? =1, p >0, p+ip > 0.
p=T*U, Uf; is the mass densityy is the pressure of the fluid. Note that the parameter
A appears in onlyone of the general axioms and in the perfect fluid matter tensor, and in

the simplest possible manner.
If a set

(M, 1,5, T4, T, p, p, U, %, A) (1)
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satisfies the laws (i)—(vii), iff: M — M is a diffeomorphism which mapsg into 7,4 etc,
and if o, B are positive numbers, then the set

M, ofzt, ﬂzs, T, a’T, azp, 044,372[9, aU, 0572/32)\, aZA) (2)

also satisfies those laws. This, of course, expresses the general covariance and the
arbitrariness of the choice of units for duration and length. In order to dispense with physical
dimensions and units (and in order to simplify the physical interpretation of the limit relation

to be given in section 3), | adopt the view that all quantitative physical predictions are to
be expressed in dimensionless form, e.g. as ratios of lengths. In accordance with this
convention, a set (1) obeying the laws will be saidepresent a modebr solution of the

frame theory, and representations of models related like (1) and (2) will be gdijeically
equivalent they may be interpreted as representing the same physical situation with respect
to different units of time and length, keeping Newtog'sequal to 1. With this terminology,

the numerical values of and A have no physical significance, only their signs do.

The following facts can be inferred from [3-9].

If » > 0, the frame theory reduces to general relativity, EG. In this case, one may
chooser = 1, gug = —tug, g*? = s*f, in which case the laws give those of EG with
natural units(c = 1, G = 1) and spacelike signature-+++). (Some of the laws then
become redundant.) For the purpose of this paper, however, it proves prefeoatdefix
the scaling and to work witl,s = —Ages, s*# = g*f and arbitraryr > 0.

If » = 0, the frame theory reduces to what is called the Newton—Cartan theory, NC.
In this case, the temporal metric can be expressed in terms of a staalute timer, as
tap = tqt g, and it is possible to choose (local) coordinatesc*) such that

typ = diag(1, 0, 0, 0), (3a)
s? = diag0, 1, 1, 1), (3b)
ry, =0 except I'y = —¢g* and T, =s"ggq0". (30)

With respect to such a coordinate system, the field equations show that the spatial vector
fields g(z, X) andw(z, X) play the part of a gravitational acceleration and Coriolis angular
velocity, respectively.

To reduce this theory to Newton'’s, one has to add a condition which ensure& that
depends on time only; then the coordinates can be specialized further to ‘non-rotating’ ones,
with @ = 0, and then

ng = l,'gl’},SaSU’g, (4)

where the Newtonian potentiél appears in the role of a connection potential. The simplest
such condition, due to Trautman [3], reads

o _
R =0 (52)
or, equivalently,
t,[aR’Sy],sg =0. (5b)

Equation (B) says that parallel transport of spacelike vectdr§, which are
characterized by ,V* = 0, is integrable, i.e. path independent, a well known property
of Newton'’s theory.

Equation (&) cannot, of course, be added to the general laws of the frame theory since
for A # 0 it implies flatness. If one restricts the solutions of the frame theory to spatially
asymptotically flat ones, i.e. considers isolated systems only, then in the case.whén
equations (5) follow [8]. In this case, E€ NC, and the connection can be split uniquely
into a flat connection and a tensorial gravitational field.
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3. Definition of Newtonian limits of Einsteinian spacetimes

The facts reviewed in the preceding section suggest the following.

Definition Let M(1),0 < A < a, be a family of (representatives of) models (1)
parametrized by (i.e. t,5(%), s*# (1), ...), all defined on open submanifoldd (1) of a
fixed manifold M. Then, by definition,

yLnOM(x) = M(0) (6)

means that the members @#((1) as well asR% (1) converge pointwise to those of
M(0) and R%,;(0), respectively. (One could generalize Geroch’s definition of limits of
spacetimes [20] to the present situation to formulate a more general limit definition, but this
will not be pursued here.)

One would like to have a criterion which ensures that a famify.) of EG models,
0 < A < a, does haveaan NC (or, in particular, an NG) limit. One such condition is easily
verified:

Lemma A family M(1), 0 < A < a, converges to an NC modgl1 (0) if

(i) the members ofM(1) and their first covariant derivatives with respect to some
arbitrary, fixed symmetric connection converge, locally uniformly &h to fields
1a8(0), ..., T*(0);

(ii) s*#(0) has rank 3;

(iii) lim ,_o(x "1 dets®? (1)) exists and is negative.

The limit whose existence is asserted in the lemma will, in general, only be a Newton—

Cartan model. In view of the last remark in the foregoing section one may expect the limit

to be strictly Newtonian if the members @f( (1) are uniformly spatially asymptotically flat

in a suitable sense, still to be made explicit. Examples confirm this expectation.

The limit definition in terms of ‘dimensionless’ models which may be rescaled without
change of their physical meanings has the advantage that it avoids taking the physically
meaningless limit — oo of a dimensional constant. Also, it ensures thatAf(0) is the
limit of {M(})} and if the convergence is uniform on a compact domairof M, then
the values of corresponding observables of the physical models represented. bi(the
will converge to those of\1(0), provided those observables, e.g. proper times of segments
of world lines representing particles or angles between light rays connecting such particles,
refer to ‘figures’ and fields inD, and provided the identification of events in the different
modelsM (1) via points of their common manifold/ (point identification gauge) has been
chosen such that figures interpreted as ‘the same objects’ inthe) are represented by
the same sets aff. (This, of course, restricts the freedom of applying diffeomorphisms
f () to the M(1), just as in physical applications of perturbation theory, but it does not
restrict rescalings). Physical interpretations of the limit relations have been discussed in
[9, 14].

4. Limits of the Schwarzschild and Kerr black holes

A dimensionless, parametrized representation of the metric db¢hevarzschild black hole
is given byt

2 -1 2h 2 dr? 2,492 : 2
ds? = —a 1—7 dr +m+r (d9? + sir? ¥ dp?) 7

t For convenience | use the old-fashioned notatiof for g,s dx® ® dx?.
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where 0 < 20 < r andt, ¢, ¢ have their usual ranges. The famiyt(n) =
{—xgaﬂ(x),g“ﬂ(k), g, (M)} with A = 0 converges to the field of a mass point at the
spatial origin, the horizon atA2shrinks to a point in the limia = 0.

The reason for displaying this trivial example is only to show how the description in
terms of the frame theory provides, simply and rigorously, the Newtonian spacetime metric
(ta, s*P) Of equations (&, b) along with the gravitational field

;0 = 2 Iy, =0 otherwise

of a Newtonian mass point (cf equation (4)), as limits of the relativistic fields.

Enriching the relativistic models by test particles, the world lines of which also have
Newtonian limits, one can compute observables such as ratios of proper times or frequencies
or angles associated with these particles, and find out how relativistic relations between
such observables tend to those of the Newtonian limit model, provided the test objects keep
some distance from the horizon. Replacing such (analytic) relations by low-order Taylor
polynomials inx then gives post-Newtonian approximations.

(The time-dependent, interior part of the Kruskal extension, given byrO< 2), does
not admit a Newtonian limit in this parametrization, and probably also not in any other
parametrization.)

The following considerations extend straightforwardly if one adds a cosmological term
A to the metric (7).

A parametrization of th&err metric analogous to (7) is

2Ar )
ds? = -2 Y 1- =2 Y24 & g2
y < E) +r2—2kr+k2 d

A/ 1

S sif 9 drdp,  (8)

. 2ur , .
+3 dv? + sir? z?(rz + k% + %kz Sir? o dgoz) +

whereX =r2 +k?cog 9, 0<r < oo, t, ¥, ¢ as usual.

The A-family of spacetime models determined by (8) has an NC limit if and only if
lim; _ok(A) = ko exists [14]. Ifky # O, the angular momentum of the model diverges if
A — 0, for sufficiently smallx the spacetime contains closed timelike lines, and the limit
spacetime (which was also constructed in a different way by Keres [21]) does not correspond
to a physically acceptable, non-negative mass distribution. If all members of the family are
assumed to be black holes—i.e. regular up to their horizons—#tbea 0, and the limit
is the same as that of the Schwarzschild black hole. These results are compatible with the
still unproven conjecture that the Kerr field does not admit a physically acceptable material
source.

5. Newtonian limits of fluid balls

Let us again take the Schwarzschild metrics of equation (7), but restrict their domain to the
regionr > 1. Within the ballr < 1, we take Schwarzschild’s interior metric
-1 dr?
d2= _~@BVi- 2% —V1-202d2+ - +r%de? )
4), 1—2xar2
with its perfect fluid matter tensor as in (vii), where
3 Aap V120212

=, = = 10
4r P 3120 —V1-2u2 (10)

0
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and where @? denotes the standard metric 8%, the angular part of (7). (The 4-velocity

is the normalized tangent of thelines.) In this way we get a one-parameter family

of ‘star’ models surrounded by their vacuum fields. The parameteedlals the ratio

of the Schwarzschild radius/geometrical radius of the star, its range has to be restricted
to 0 < 2% < g in order for the pressure to be finite. This family has as its limit a
Newtonian fluid ball of constant density with its field. Rendall and Schmidt have shown
that corresponding limits exist for static, spherical fluid balls for a large range of equations

of state [22].

6. The limit of a plane gravitational wave

While the two preceding examples give what one expects, it is perhaps a little surprising
that even a plane gravitational wave admits a Newtonian limit [8]. The metric of such a
wave may be written in Kerr—Schild form, as

ds? = —A~1dr? 4 dx? 4 dy? 4 dz? + 2U (dr — v/ dz)?, (11)
where
U =102 y)At — 22 + 2xyB( — zv/M) (12)

depends on two amplituded, B. This A-family has, in fact, a Newtonian limit the
connection of which corresponds, via (4), to the time-dependent quadrupolar potential
obtained by puttingh = 0 in (12). (Note that, in contrast to all other examples given
in this paper, the temporal metrieig,s (1) is smooth inv/A, not in.) The Newtonian test
particle motions indeed imitate the action of a ‘slow’ gravitational wave on the particles.

7. Limits of Friedmann—Lemaitre cosmological models

A one-parameter family of Friedmann—Letima models forr > 0 is determined by three
functions R(¢, 1), p(z, 1), p(t, 1) and a constantt. The functions have to satisfy the
equations

R? — %TpRZ =E, (13)
(PR®" +1p(R®" =0. (14)

(If desired, one could add an equation of states f(p,1).) The metric can be written as
8ap(dX® — (R/R)X% dr)(dX? — (R/R)X" dr)

2 4-14,2

ds® = —A7"dr* + - %AER—Zf(Z)Z , (15a)
or, more simply, as

dS2 = —)\,_1 dtz + Rz%, (13))

(1— FLEE?)
where
X(l
a_ 16
8= “n (16)

is a A-dependent coordinate transformation. The fluid has depsipressurep and world
lines given byé¢ = constant. Again, this family has a Newtonian limit. If one employs the
Eulerian coordinateX“, the Newtonian connection of the limit model has the form (4) with
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the well known potentiall = %”,o)?z. If, on the other hand, one works with Lagrangian
coordinate<?, the connection is given by

R .
Iy = 20 ry, =0 otherwise (17)

which doesnot have the form (4) and does not come from a ‘scalar’ potential in the
standard way, although, of course, it describes the same gravitational fieldahsve. In
the (¢, £*) description, all ‘Newtonian’ fields{taﬁ,s"‘ﬁ, g, 0. p,UY) of the limit model
are independent of the Lagrangian coordindgtésand therefore one may consider the 3-
space of the model to be a tor@@® rather thanR3, which is not at all obvious in the
‘Eulerian’ description. These Newtonian toroidal models are useful especially for studying
perturbations (see e.g. [23]).

The spatial Gaussian curvatures of the relativistic models (13)—(16) are given by
K = —AE/R?. A spherical relativistic modelE < 0), for example, can be approximated
by its spatially flat Newtonian limit in any comoving region which is small compared to
the global radius, in which the convergence is uniform—as one would expect.

An elegant account of Newton—Cartan cosmology including perturbations has recently
been given in [23].

8. A limit of the G 6del model

The metric of the stationary, homogenous, rotating, dust-filled, cosmological modétiet G
can be parametrized in the form

1
2Aw?

where (except for dimensions) is the angular velocityp = w?/47 the density,A = —p

the cosmological constant and the coordinates ¢ are comoving. This metric and the
fields t,s = —Ages, s* = g*f, etc, determined by it depend analytically prat all values

of A, and one easily verifies that one obtains, foe= 0, a (strictly!) Newtonian model

with properties analogous to its relativistic progenitor. The metric rotates rigidly relative
to local inertial frames everywhere, and relative to non-rotating coordinates the Newtonian
connection has the standard form (4), and its potential obeys the Poisson equation with a
A term.

2
ds? = -1t (dt — E sink? (%wr«/ Z)L) d(p> + dr? 4 dz? + sintf(wr+/21) dp?, (18)
a)

9. A Newton—Cartan limit of the NUT spacetime

The metric of the NUT spacetime can be written as
L0\
ds? = —r7tv (dt + 4xra sir? 2d<p> +V7rdr? + (r? 4+ 1d?) do? (29)

with V = 1 — 2x(mr + a?)/(r? + rd?).
m anda are positive constants, 9 r, and d»? again denotes the standard metricSn
in terms of (¢, ¢). This family of vacuum spacetimes also depends analytically.ofss in
the other examples, the limit model has a flat Galilean metric wils absolute time and
r, ¥, ¢ as Euclidean polar coordinates. With respect to these coordinates and in the notation
of (3c), however, one finds

m Cl2

U=—— -~ §=—§U=<—

ror?’ r2 r3 )or’ r2or

m 2a2> ad
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Here, at last, we haveteuly Newton—Cartan limitvhose Coriolis fields is not spatially
constant. In fact, near the point singularity, for~ 0, the Coriolis potential dominates. It
is the only case known to me where an EG family has a genuinely NC limit.
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