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Examples of Newtonian limits of relativistic spacetimes
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Abstract. A frame theory encompassing general relativity and Newton–Cartan theory is
reviewed. With its help, a definition is given for a one-parameter family of general relativistic
spacetimes to have a Newton–Cartan or a Newtonian limit. Several examples of such limits are
presented.

PACS numbers: 0420, 0240, 0450

1. Introduction

The relation between Newton’s theory of space, time, dynamics and gravitation (NG) and
Einstein’s theory of general relativity (EG), which in essence accomodates all of classical
physics, is by now rather well understood. As Cartan [1] and Friedrichs [2] have indicated
and later authors have elaborated [3–7], Newton’s theory can be re-expressed in generally
covariant spacetime language. This reformulation naturally led to a frame theory [8, 9],
the laws of which specialize to those of a slight generalization of Newton’s theory, the
so-called Newton–Cartan theory (NC), and those of Einstein’s theory if a real parameter
λ is restricted to be zero or positive, respectively. Theλ dependence of the laws shows
that the mathematical structure underlying NC is a degenerate limit of that on which EG is
based. (In terms of principal bundles, the degeneracy EG→ NC results from contracting
the restricted Lorentz group to the restricted Galilei group, in the sense of Segal [10]; see
Künzle [6].)

To understand a limit relation such as EG→ NC, it is not sufficient to exhibit thelaws
of the former theory as specializations or limits of those of the latter one; the more difficult
part consists in establishing relations between thesolutionsto these laws, as they represent
testablemodels of real situations. In the present case, one such relation is provided by the
frame theory which gives a rigorous meaning to the statement that ‘a one-parameter family
of EG spacetime models converges to an NC model’ or, in particular, to an NG model [8].

Such a limit relation [11–13] may be used to throw new light on methods designed to
construct ‘nearly Newtonian’ solutions of EG [14, 15] or to interpret Einsteinian solutions.
The frame theory even led to the first existence theorem for stationary, axisymmetric EG
solutions representing rigidly rotating fluid bodies surrounded by an asymptotically flat
vacuum field [16].

The physically plausible heuristic, but mathematically obscure and incomplete, textbook
arguments concerning the Newtonian limit of general relativity may therefore be replaced
by the relations provided by the frame theory. Besides, the latter can be used as a
counterexample to the claim that scientific ‘revolutions’ in the sense of Kuhn [17] are
irrational leaps associated with incommensurability of concepts between the older theory
and its successor (see e.g. [18, 19]).
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The modest purpose of this paper is to illustrate the limit relation by means of a few
simple examples. In section 2, I summarize the frame theory and its specializations to
NG, NC and EG. Then, in section 3, I define the limit relation alluded to above, and the
remaining sections contain some examples.

It was Andrzej Trautman’s elegant paper [5] which initiated my interest in these matters,
and therefore I am happy to contribute the following remarks to this Festschrift, to thank
and honour Andrzej.

2. The frame theory and its specializations

The theory deals with the following collection of fields on a 4-manifoldM, spacetime:

• tαβ , a nowhere vanishing symmetric, 2-covariant tensor field, thetemporal metric;
• sαβ , a nowhere vanishing, symmetric, 2-contravariant tensor field, the (inverse)spatial

metric;
• 0α

βγ , a symmetric, linear connection, thegravitational field;
• T αβ , a symmetric, 2-contravariant tensor field, the mass–momentum–stress, ormatter

tensor.

The laws of the theory contain these fields and two real-valued parameters,λ and 3. To
formulate the laws concisely, it is convenient to define, for arbitrary tensors, index shift
operations,

V ·
α := tαβV β, ωα· := sαβωβ,

even whentαβ or sαβ are not invertible. To avoid confusion it is then necessary to indicate
by dots whether the original object has upper or lower indices, as shown. (The indices may
be considered as ‘abstract’ ones in Penrose’s sense except when, in the examples, special
coordinates are used.)

Here are the (local)laws:

(i) For any timelike vectorV α, i.e. one which obeystαβV αV β > 0, the quadratic form
ωα → sαβωαωβ is positive definite on the subspace{ωα|ωαV α = 0} of the covector
space.

(ii) tαβsβγ = −λδ
γ
α .

(iii) tαβ;γ = 0, sαβ ;γ = 0.
(iv) R

α γ

β·δ = R
γ α

δ·β .

(v) Rαβ = 8π
(
T ··

αβ − 1
2tαβT

γ·
γ

) − 3tαβ .
(vi) T αβ ;β = 0.

The covariant derivatives refer to the connection0, andRαβ = R
γ

αγβ denotes the Ricci
tensor associated with the curvature tensor of0.

In addition to the general laws,models of matterhave to be specified. Here I consider
only the cases of vacuum,T αβ ≡ 0, andperfect fluid,

(vii) T αβ = (ρ + λp)UαUβ + psαβ, wheretαβUαUβ = 1, ρ > 0, ρ + λp > 0.

ρ = T αβU·
α U·

β is the mass density,p is the pressure of the fluid. Note that the parameter
λ appears in onlyone of the general axioms and in the perfect fluid matter tensor, and in
the simplest possible manner.

If a set

(M, tαβ, sαβ, 0α
βγ , T αβ, ρ, p, Uα, λ, 3) (1)
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satisfies the laws (i)–(vii), iff : M → M̄ is a diffeomorphism which mapstαβ into t̄αβ etc,
and if α, β are positive numbers, then the set

(M̄, α−2t, β2s, 0, α4T , α2ρ, α4β−2p, αU, α−2β2λ, α23) (2)

also satisfies those laws. This, of course, expresses the general covariance and the
arbitrariness of the choice of units for duration and length. In order to dispense with physical
dimensions and units (and in order to simplify the physical interpretation of the limit relation
to be given in section 3), I adopt the view that all quantitative physical predictions are to
be expressed in dimensionless form, e.g. as ratios of lengths. In accordance with this
convention, a set (1) obeying the laws will be said torepresent a modelor solution of the
frame theory, and representations of models related like (1) and (2) will be calledphysically
equivalent; they may be interpreted as representing the same physical situation with respect
to different units of time and length, keeping Newton’sG equal to 1. With this terminology,
the numerical values ofλ and3 have no physical significance, only their signs do.

The following facts can be inferred from [3–9].
If λ > 0, the frame theory reduces to general relativity, EG. In this case, one may

chooseλ = 1, gαβ ≡ −tαβ, gαβ ≡ sαβ , in which case the laws give those of EG with
natural units(c = 1, G = 1) and spacelike signature(−+++). (Some of the laws then
become redundant.) For the purpose of this paper, however, it proves preferablenot to fix
the scaling and to work withtαβ = −λgαβ, sαβ = gαβ and arbitraryλ > 0.

If λ = 0, the frame theory reduces to what is called the Newton–Cartan theory, NC.
In this case, the temporal metric can be expressed in terms of a scalarabsolute timet , as
tαβ = t,αt,β , and it is possible to choose (local) coordinates(t, xa) such that

tαβ = diag(1, 0, 0, 0), (3a)

sαβ = diag(0, 1, 1, 1), (3b)

0α
βγ = 0 except 0a

tt = −ga and 0b
ta = sbcεacdω

d. (3c)

With respect to such a coordinate system, the field equations show that the spatial vector
fields Eg(t, Ex) and Eω(t, Ex) play the part of a gravitational acceleration and Coriolis angular
velocity, respectively.

To reduce this theory to Newton’s, one has to add a condition which ensures thatEω
depends on time only; then the coordinates can be specialized further to ‘non-rotating’ ones,
with Eω = 0, and then

0α
βγ = t,β t,γ sαδU,δ, (4)

where the Newtonian potentialU appears in the role of a connection potential. The simplest
such condition, due to Trautman [3], reads

R
αβ·γ δ

= 0 (5a)

or, equivalently,

t,[αRβ
γ ]δε = 0. (5b)

Equation (5b) says that parallel transport of spacelike vectorsV α, which are
characterized byt,αV α = 0, is integrable, i.e. path independent, a well known property
of Newton’s theory.

Equation (5a) cannot, of course, be added to the general laws of the frame theory since
for λ 6= 0 it implies flatness. If one restricts the solutions of the frame theory to spatially
asymptotically flat ones, i.e. considers isolated systems only, then in the case whenλ = 0
equations (5) follow [8]. In this case, EC= NC, and the connection can be split uniquely
into a flat connection and a tensorial gravitational field.
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3. Definition of Newtonian limits of Einsteinian spacetimes

The facts reviewed in the preceding section suggest the following.

Definition. Let M(λ), 0 6 λ < a, be a family of (representatives of) models (1)
parametrized byλ (i.e. tαβ(λ), sαβ(λ), . . .), all defined on open submanifoldsM(λ) of a
fixed manifoldM. Then, by definition,

lim
λ→0

M(λ) = M(0) (6)

means that the members ofM(λ) as well asRα
βγ δ(λ) converge pointwise to those of

M(0) and Rα
βγ δ(0), respectively. (One could generalize Geroch’s definition of limits of

spacetimes [20] to the present situation to formulate a more general limit definition, but this
will not be pursued here.)

One would like to have a criterion which ensures that a familyM(λ) of EG models,
0 < λ < a, does havean NC (or, in particular, an NG) limit. One such condition is easily
verified:

Lemma. A family M(λ), 0 < λ < a, converges to an NC modelM(0) if

(i) the members ofM(λ) and their first covariant derivatives with respect to some
arbitrary, fixed symmetric connection converge, locally uniformly onM, to fields
tαβ(0), . . . , T αβ(0);

(ii) sαβ(0) has rank 3;
(iii) lim λ→0(λ

−1 detsαβ(λ)) exists and is negative.

The limit whose existence is asserted in the lemma will, in general, only be a Newton–
Cartan model. In view of the last remark in the foregoing section one may expect the limit
to be strictly Newtonian if the members ofM(λ) are uniformly spatially asymptotically flat
in a suitable sense, still to be made explicit. Examples confirm this expectation.

The limit definition in terms of ‘dimensionless’ models which may be rescaled without
change of their physical meanings has the advantage that it avoids taking the physically
meaningless limitc → ∞ of a dimensional constant. Also, it ensures that ifM(0) is the
limit of {M(λ)} and if the convergence is uniform on a compact domainD of M, then
the values of corresponding observables of the physical models represented by theM(λ)

will converge to those ofM(0), provided those observables, e.g. proper times of segments
of world lines representing particles or angles between light rays connecting such particles,
refer to ‘figures’ and fields inD, and provided the identification of events in the different
modelsM(λ) via points of their common manifoldM (point identification gauge) has been
chosen such that figures interpreted as ‘the same objects’ in theM(λ) are represented by
the same sets ofM. (This, of course, restricts the freedom of applying diffeomorphisms
f (λ) to the M(λ), just as in physical applications of perturbation theory, but it does not
restrict rescalings). Physical interpretations of the limit relations have been discussed in
[9, 14].

4. Limits of the Schwarzschild and Kerr black holes

A dimensionless, parametrized representation of the metric of theSchwarzschild black hole
is given by†

ds2 = −λ−1

(
1 − 2λ

r

)
dt2 + dr2

1 − 2λ/r
+ r2(dϑ2 + sin2 ϑ dϕ2) (7)

† For convenience I use the old-fashioned notation ds2 for gαβ dxα ⊗ dxβ .
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where 0 < 2λ < r and t, ϑ, ϕ have their usual ranges. The familyM(λ) =
{−λgαβ(λ), gαβ(λ), 0α

βγ (λ)} with 3 = 0 converges to the field of a mass point at the
spatial origin, the horizon at 2λ shrinks to a point in the limitλ = 0.

The reason for displaying this trivial example is only to show how the description in
terms of the frame theory provides, simply and rigorously, the Newtonian spacetime metric
(tαβ, sαβ) of equations (3a, b) along with the gravitational field

0r
tt (0) = 1

r2
, 0α

βγ = 0 otherwise

of a Newtonian mass point (cf equation (4)), as limits of the relativistic fields.
Enriching the relativistic models by test particles, the world lines of which also have

Newtonian limits, one can compute observables such as ratios of proper times or frequencies
or angles associated with these particles, and find out how relativistic relations between
such observables tend to those of the Newtonian limit model, provided the test objects keep
some distance from the horizon. Replacing such (analytic) relations by low-order Taylor
polynomials inλ then gives post-Newtonian approximations.

(The time-dependent, interior part of the Kruskal extension, given by 0< r < 2λ, does
not admit a Newtonian limit in this parametrization, and probably also not in any other
parametrization.)

The following considerations extend straightforwardly if one adds a cosmological term
3 to the metric (7).

A parametrization of theKerr metric analogous to (7) is

ds2 = −λ−1

(
1 − 2λr

6

)
dt2 + 6

r2 − 2λr + k2
dr2

+6 dϑ2 + sin2 ϑ

(
r2 + k2 + 2λr

6
k2 sin2 ϑ dϕ2

)
+ 4k

√
λ

6
sin2 ϑ dt dϕ, (8)

where6 = r2 + k2 cos2 ϑ, 0 < r < ∞, t, ϑ, ϕ as usual.
The λ-family of spacetime models determined by (8) has an NC limit if and only if

limλ→0 k(λ) = k0 exists [14]. If k0 6= 0, the angular momentum of the model diverges if
λ → 0, for sufficiently smallλ the spacetime contains closed timelike lines, and the limit
spacetime (which was also constructed in a different way by Keres [21]) does not correspond
to a physically acceptable, non-negative mass distribution. If all members of the family are
assumed to be black holes—i.e. regular up to their horizons—thenk0 = 0, and the limit
is the same as that of the Schwarzschild black hole. These results are compatible with the
still unproven conjecture that the Kerr field does not admit a physically acceptable material
source.

5. Newtonian limits of fluid balls

Let us again take the Schwarzschild metrics of equation (7), but restrict their domain to the
regionr > 1. Within the ballr 6 1, we take Schwarzschild’s interior metric

ds2 = −1

4λ
(3

√
1 − 2λ −

√
1 − 2λr2)2 dt2 + dr2

1 − 2λr2
+ r2 dω2 (9)

with its perfect fluid matter tensor as in (vii), where

ρ = 3

4π
,

λp

ρ
=

√
1 − 2λr2 − √

1 − 2λ

3
√

1 − 2λ − √
1 − 2λr2

(10)
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and where dω2 denotes the standard metric ofS2, the angular part of (7). (The 4-velocity
is the normalized tangent of thet-lines.) In this way we get a one-parameter family
of ‘star’ models surrounded by their vacuum fields. The parameter 2λ equals the ratio
of the Schwarzschild radius/geometrical radius of the star, its range has to be restricted
to 0 < 2λ < 8

9 in order for the pressure to be finite. This family has as its limit a
Newtonian fluid ball of constant density with its field. Rendall and Schmidt have shown
that corresponding limits exist for static, spherical fluid balls for a large range of equations
of state [22].

6. The limit of a plane gravitational wave

While the two preceding examples give what one expects, it is perhaps a little surprising
that even a plane gravitational wave admits a Newtonian limit [8]. The metric of such a
wave may be written in Kerr–Schild form, as

ds2 = −λ−1 dt2 + dx2 + dy2 + dz2 + 2U(dt −
√

λ dz)2, (11)

where

U = 1
4(x2 − y2)A(t − z

√
λ) + 1

2xyB(t − z
√

λ) (12)

depends on two amplitudesA, B. This λ-family has, in fact, a Newtonian limit the
connection of which corresponds, via (4), to the time-dependent quadrupolar potential
obtained by puttingλ = 0 in (12). (Note that, in contrast to all other examples given
in this paper, the temporal metric−λgαβ(λ) is smooth in

√
λ, not inλ.) The Newtonian test

particle motions indeed imitate the action of a ‘slow’ gravitational wave on the particles.

7. Limits of Friedmann–Lemaı̂tre cosmological models

A one-parameter family of Friedmann–Lemaı̂tre models forλ > 0 is determined by three
functions R(t, λ), ρ(t, λ), p(t, λ) and a constantE. The functions have to satisfy the
equations

Ṙ2 − 8π

3
ρR2 = E, (13)

(ρR3)· + λp(R3)· = 0. (14)

(If desired, one could add an equation of state,p = f (ρ, λ).) The metric can be written as

ds2 = −λ−1 dt2 + δab(dXa − (Ṙ/R)Xa dt)(dXb − (Ṙ/R)Xb dt)

(1 − 1
4λER−2 EX2)2

, (15a)

or, more simply, as

ds2 = −λ−1 dt2 + R2 dEξ2

(1 − 1
4λEEξ2)2

, (15b)

where

ξa = Xa

R(t, λ)
(16)

is a λ-dependent coordinate transformation. The fluid has densityρ, pressurep and world
lines given byξa = constant. Again, this family has a Newtonian limit. If one employs the
Eulerian coordinatesXa, the Newtonian connection of the limit model has the form (4) with
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the well known potentialU = 2π
3 ρ EX2. If, on the other hand, one works with Lagrangian

coordinatesξa, the connection is given by

0a
t b = Ṙ

R
δa
b , 0

γ

βγ = 0 otherwise (17)

which doesnot have the form (4) and does not come from a ‘scalar’ potential in the
standard way, although, of course, it describes the same gravitational field asU above. In
the (t, ξ a) description, all ‘Newtonian’ fields(tαβ, sαβ, 0α

βγ , ρ, p, Uα) of the limit model
are independent of the Lagrangian coordinatesξa, and therefore one may consider the 3-
space of the model to be a torusT3 rather thanR3, which is not at all obvious in the
‘Eulerian’ description. These Newtonian toroidal models are useful especially for studying
perturbations (see e.g. [23]).

The spatial Gaussian curvatures of the relativistic models (13)–(16) are given by
K = −λE/R2. A spherical relativistic model(E < 0), for example, can be approximated
by its spatially flat Newtonian limit in any comoving region which is small compared to
the global radius, in which the convergence is uniform—as one would expect.

An elegant account of Newton–Cartan cosmology including perturbations has recently
been given in [23].

8. A limit of the G ödel model

The metric of the stationary, homogenous, rotating, dust-filled, cosmological model of Gödel
can be parametrized in the form

ds2 = −λ−1

(
dt − 2

ω
sinh2

(
1
2ωr

√
2λ

)
dϕ

)2

+ dr2 + dz2 + 1

2λω2
sinh2(ωr

√
2λ) dϕ2, (18)

where (except for dimensions)ω is the angular velocity,ρ = ω2/4π the density,3 = −ρ

the cosmological constant and the coordinatesr, z, ϕ are comoving. This metric and the
fields tαβ = −λgαβ, sαβ = gαβ , etc, determined by it depend analytically onλ at all values
of λ, and one easily verifies that one obtains, forλ = 0, a (strictly!) Newtonian model
with properties analogous to its relativistic progenitor. The metric rotates rigidly relative
to local inertial frames everywhere, and relative to non-rotating coordinates the Newtonian
connection has the standard form (4), and its potential obeys the Poisson equation with a
3 term.

9. A Newton–Cartan limit of the NUT spacetime

The metric of the NUT spacetime can be written as

ds2 = −λ−1V

(
dt + 4λa sin2 ϑ

2
dϕ

)2

+ V −1 dr2 + (r2 + λa2) dω2 (19)

with V = 1 − 2λ(mr + a2)/(r2 + λa2).
m anda are positive constants, 0< r, and dω2 again denotes the standard metric onS2

in terms of(ϑ, ϕ). This family of vacuum spacetimes also depends analytically onλ. As in
the other examples, the limit model has a flat Galilean metric witht as absolute time and
r, ϑ, ϕ as Euclidean polar coordinates. With respect to these coordinates and in the notation
of (3c), however, one finds

U = −m

r
− a2

r2
, Eg = −E∇U =

(
−m

r2
− 2a2

r3

)
∂

∂r
, Eω = − a

r2

∂

∂r
.
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Here, at last, we have atruly Newton–Cartan limitwhose Coriolis fieldEω is not spatially
constant. In fact, near the point singularity, forr → 0, the Coriolis potential dominates. It
is the only case known to me where an EG family has a genuinely NC limit.
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