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To remedy a cert ain confusion in the literature, we stress the dist inct ion

between local and global light bending. Local bending is a purely kine-

m at ic eŒect between mutually accelerat ing reference fram es t racking the

same signal, and applies via Einstein’ s equivalence principle exact ly and

equally in New ton’ s, Einstein’ s, Nordst r Èom ’s and other gravit at ional the-

ories, independently of all ® eld equat ions. Global bending, on the other

hand, arises as an integral of local bending and depends crit ically on the

conformal spacet ime st ructure and thus on the speci® c ® eld equations of

a given theory.
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1. INTRODUCTION

The present paper is written in reaction to a false rumor that has a certain

currency in the literature. This asserts that , since Einstein’ s equivalence

principle is somewhat vague and heurist ic, none of it s conclusions can be

fully trusted. In part icular, its conclusion about light bending is held to be

contradicted by Nordst r Èom’ s second theory [1] (for a modern account see

Ref. 2) which contains the equivalence principle and is in eŒect based on

conformally ¯ at spacet ime: it is alleged that because of the latter there can
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be no light bending in that theory.3 Even Wolfgang Pauli, in his celebrated

1921 encyclopedia art icle on Relat ivity [4] makes statements that could be

construed in the above sense.4

To clarify the situat ion, it is essential to make the dist inct ion between

two types of light bending, local and global . However obvious, this dist inc-

tion has rarely been su� ciently stressed,5 and this omission may lead to

confusion.

2. LOCAL AND GLOBAL BENDING DISTINGUISHED

To specify local bending, we suppose a freely moving part icle (which

could be a photon) to be tracked from two relat ively accelerated, nearly

rigid, non-rotating frames of reference, F and ÄF , instantaneously at rest

with respect to each other. Then, if the part icle moves uniformly and on

a straight line in F , it s spat ial path in ÄF is curved, the curvature being

determined by the accelerat ion of ÄF with respect to F and by the velocity

of the part icle with respect to ÄF . This eŒect, ® rst pointed out by Einst ein

in his famous review article on special relat ivity in 1907 [7], is local ; it refers

to an arbit rarily small neighbourhood of an event. It holds in Newtonian as

well as in (special and general) relat ivist ic kinemat ics and is independent

of spacet ime curvature. The connect ion of this kinematical eŒect with

gravity and light is through Einstein’ s equivalence principle as applied to

light : at all events in spacetime there exist local inertial frames (freely

falling nonrotating ª Einst ein elevatorsº ) in which light travels un iformly

at velocity c. In any theory accepting this principle there is local light

bending in all reference frames that accelerate relat ive to the elevators, in

part icular in frames that are ® xed in a stationary gravitational ® eld. And

this bending is in principle measurable.

3 For example, one can hardly interpret N. Straum ann’ s remarks in Ref. 3, Sect ion

1.2.3, p. 86, otherwise.
4 Actually, Pauli got it right. In his comm ent s on Nordst r Èom’ s theory, Pauli writes

( loc. cit ., p. 179) that in that theory ª eine Strahlenablenkung im Schwerefeld ® ndet

nicht statt º Ð no de¯ ect ion of light ray s in a grav itat ional ® eld takes place. Lat er, he

writes (p. 180) that the theory cont radicts exp erience since it gives no ª Kr Èummung

der Lichtst rahlenº Ð curvat ure of light ray s. The last expression lends itself to

m isinterpret at ion, though from the contex t (ª exp erienceº ) it seem s clear that Pauli

all along refers to global bending, and then there is no problem .
5 One of the few writers who have stressed this point is C. M. W ill [5]. He writes

(p. 111) : ª T he ® rst [local] contribut ion to the de¯ ect ion is universal: it is the same in

any theory com pat ible with the equivalence principle. . . º Another is one of us, W .R.

Cf. penult imat e paragraph on p. 21 of Ref. 6.
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F ig u r e 1 ( i) .

F ig u r e 1 ( ii ) .

F ig u r e 1 . The geomet ry of local path bending in ( i) Newtonian and (ii) relat ivist ic

kinematics.
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A four-dimensional view of local bending Ð in Newton’ s theory and in

general relat ivity, respectively Ð is shown in Figure 1. A part icle or photon

has a (geodesically ) straight worldline p, while an accelerated observer has

a curved worldline Äl . The hyper-ª planesº P0 , P1 , P2 are orthogonal to Äl

and represent closely successive instants relat ive to Äl. They are parallel in

Newton’ s theory, but not in relat ivity. The intersection point P of p with

P (now regarded as a single plane moving in time) traces out a curve q in P
whose curvature relat ive to P is the measure of what we call local bending.

In relat ivity the situat ion is apparent ly complicat ed by the non-parallelism

of the P ’ s, which Einstein allowed for in a ª tortured, yet sophist icatedº

(Ref. 8, p. 180) approximate argument without the bene® t of 4-geometry

in his 1907 paper [7]. But this turns out to be a ª third orderº correction

having no eŒect on the result .

Fig u r e 2 . Global light bending in Schwarzschi ld spacet ime

The second type of bending occurs when a light ray from a distant

source traverses the gravitational ® eld of a massive body and proceeds to

a distant observer. Then, in general, the direct ion of the outgoing ray

will diŒer from that of the incoming ray by some angle D w . In order to

de® ne this de¯ ection angle invariant ly in curved spacet ime, we consider

® rst Schwarzschild spacet ime. In that case, the spat ial path of a light ray

is well de® ned and has asymptotic ª inº and ª outº direct ions, de® ned in

terms of the limiting posit ions of radial geodesics ending at point s on the

light path as the point s are pushed towards in® nity; see Figure 2. The

de¯ ect ion angle depends on the mass of the gravit ating object and the

distance of the light path from that object.

The de® nit ion of D w can be generalized to those (not necessarily sta-

tionary or symmetrical) weakly asymptotically ¯ at spacet imes as de® ned

in Ref. 9, sec. 9.6, which admit a unique, continuous null cone at spat ial

in® nity.
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This bending is clearly global and depends crit ically on gravity, namely

on the conformal curvature of spacet ime implied by the ® eld equat ion of

a given gravit ational theory. Nonvanishing conformal curvature is also

necessary for null cones to develop caust ics and thus for the occurence of

gravitational lensing, which is another important manifestation of global

bending.

While in static ® elds global bending can be regarded as result ing from

a ª pat ching togetherº (integrat ion) of all local bendings along the path of

a light signal, the patching itself depends on the ® eld equat ions, i.e. on

how the local frames ® t together (space curvature!) .

In Nordst r Èom’ s or any other conformally-¯ at-spacet ime theory global

bending is absent . It is for this reason that Nordstr Èom’s theory has been

recognized (perhaps ® rst by Roman Sexl) as a counterexample to the old

and by now well discredit ed claim that the equivalence principle by it self

(without ® eld equat ions) implies the general-relat ivist ic and empirically

con® rmed global bending of light .

3. LOCAL BENDING FROM THE ELEVATOR ARGUMENT

To discuss the local bending quant itatively, we introduce some stan-

dard geometric machinery. The center O of the freely falling elevator F is

represented in spacet ime by a geodesic worldline l (not shown in Figure 1),

while the origin ÄO of the accelerated frame of reference ÄF is represented

by an arbit rary worldline Äl that is tangent to l at the event E in quest ion.

At that event, ÄO shall have proper accelerat ion g, which can be inter-

preted in ÄF as a gravit ational ® eld ± g. Both frames are coordinat ized by

Fermi-transport ed (Ref. 10, Ch. II, sec. 10) (spat ially normal) coordinat es,

say x, y, z, t and Äx, Äy, Äz, Ät, centered on l and Äl respectively. We choose the

spat ial coordinat es so as to coincide in the hyperplane Ät = t = 0 through

E , with the y-axes in the direct ion of g there. Then x, y, z, t are as close

to inert ial coordinat es as one can get in a curved spacet ime while Äx, Äy, Äz, Ät

are nonrotating and nearly rigid; it is for this reason that we shall ® nd

it possible to use essentially Newtonian kinematics with small correction

terms.

Suppose now that some part icle, e.g. a photon, passing through E ,

has zero accelerat ion relat ive to the elevator at E , and a velocity, say of

magnitude c, in the plane of x and y. Then we can specify its worldline p
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near E by the equat ions

x = ct cos q + O( t
3
),

y = ct sin q + O(t
3
),

z = O(t
3
) ,

(1)

q being the inclinat ion of the path to the ª horizontalº in ÄF .

Now from the standard theory of Fermi coordinat es (see, for example,

Ref. 10) we have, on l

gab = gab , Ca
b c = 0, (2)

and, on Äl,

g Äa Äb = g Äa Äb , C
Äy
Ät Ät

= g,

C
Ät
Äy Ät = g, C

¢
¢ ¢ = 0 otherwise. (3)

The transformation law of the C 9 s then shows that at E , where

¶ Äxa / ¶ xb = d a
b , we have

C
Äa
Äb Äc

= ±
¶ 2x Äa

¶ xb ¶ xc
, (4)

whence
¶ 2 Äxa

¶ xb ¶ xc
= 0 except

¶ 2 Äy

¶ t2
= ± g. (5)

And this, in turn, implies the validity of the quasi-Newtonian coordinat e

transformation at E :

Äx = x

Äy = y ± 1
2 gt2

Äz = z

ü 
ý þ

+ terms of third and higher order in x, y, z, t. (6)

The transformation of Ät will not be needed. Observe that the relat ivist ic c

does then not enter the argument. From (1) and (6) we ® nd for the path

of the part icle in ÄF

Äy = Äx tan q ± 1
2 c- 2 g Äx2 sec2 q + O( Äx3 ) (7)
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and thus for its curvature k at E ( Äx = Äy = Äz = 0)

k =
d2 Äy/ d Äx2

(1 + (d Äy/ d Äx)2 )3 / 2
= ±

1

c2
gcos q , (8)

exactly . So if the proper accelerat ion of ÄO is int erpreted in ÄF as the

negat ive of a gravitat ional ® eld (as it would be, for example, for a point

ª at restº in a stationary ® eld) then eq. (8) tells us that the curvature

vector kn (n = unit principal normal) of the spat ial path of a free part icle

or a photon as observed in ÄF equals c- 2 times the component of the ® eld

normal to the path.

This is what Einstein showed (almost rigorously) in 1907, except that

we have had the bene® t of 4-geometry and Fermi-coordinat e theory to

estimate the correct ion terms.

Note, incidentally, that one characterisat ion of a local inert ial frame

is now seen to be that light paths in all direct ions have zero curvature.

Conversely the curvature of a curved light signal in a frame ÄF serves as a

measure of the proper accelerat ion of ÄF .

The formula (8) and its derivat ion also hold rigorously for local light

bending in Newtonian static gravit ational ® elds, if the kinemat ic assump-

tion is made that in the one elevator that is momentarily at rest in absolut e

space ª light corpusclesº always travel with speed c. Dynamically , this con-

stancy of c would violat e Newtonian energy conservat ion unless we enrich

the model with hu = m c2 and allow m to vary.

But, as we already said, eq. (8) holds independent ly of gravity and

of light . It applies to the motion of all free ª part iclesº as observed in

accelerat ing reference frames, whether it be Newton’ s theory, Special Rel-

ativity, General Relat ivity, or indeed any metric theory of gravity such as

Nordstr Èom’ s.

4. GLOBAL LIGHT BENDING REVISITED

To see intuit ively how local bending is related to global bending in

what are perhaps the three most interest ing cases Ð the Newtonian, the

Einsteinian, and the Nordstr Èomian Ð we can proceed as follows.

First we note that even in Newton’ s theory, with ª light corpusclesº

moving only approxim ately at speed c, formula (8) will be of su� cient

accuracy in ª weakº ® elds like that of the sun. For example, for a corpuscle

to get to in® nity with speed c from near the sun it must start with velocity

c 9 = c Ö 1 + v 2
K / c2 , where v K = Ö 2GM K / R K is the escape velocity from

the sun. But this makes c 9 ¼ c to rather high accuracy.



5 2 6 E h le r s a n d R in d le r

Now imagine the following drawing: In the middle there is a circle

representing the sun, somewhat as in Figure 2. At the top of this circle we

draw a small piece of a tangent line Ð it will represent a light path grazing

the sun. Then we continue this line in both direct ions by computation:

using formula (8) for k and the fact that k, by de® nit ion, is the arc rate

of turning of the tangent , k = d w / dl, we can compute w (l) = ò l

0 kdl

for the angle the curve makes with the horizont al at distance l from the

center. The result ing path turns out to be essentially made up of two

straight -line segments joined near the sun by an arc, somewhat like one

branch of a hyperbola. The angle between the asympt otes, when we use

the data for the sun, is 0 9 9 .87 (see Appendix for the calculat ion) . This is

the ª Newtonianº global bending of light : it is simply the int egral of the

local curvature.

In the case of a static spacet ime in general relat ivity, the curvature of a

light path as given by (8) equals the geodesic curvature of that path with

respect to the spat ial Riemannian metric of a t = const. hypersurface,

since in such a spacet ime one can choose coordinat es ( Ät, Äxa ) such that

at an arbit rary ® xed point Äxa = 0 and gÄt Ät = 1, and such that Äxa are

normal coordinat es with respect to the spat ial metric. Then ( Ät, Äxa ) de® ne

an accelerated frame of reference for that ® xed point . Thus, one again

obtains the ª Newtonianº contribut ion to the global de¯ ect ion angle due

to the integrated curvature. There is, however, a second contribut ion:6 We

consider the bent Newtonian light path to be the central line of a narrow

strip which we imagine to be cut out of the plane. This strip we now

glue onto what is known as Flamm’ s Paraboloid (see, for example, Ref. 6).

This is essentially an in® nite plane with a circular funnel-shaped hole in

the middle, somewhat like the wide end of a trumpet, and it represents

the real geometry of the central plane of the sun’ s ® eld in which the ray

lies. A lit tle experiment ing with such a curved strip will quickly convince

the reader that the depression in the middle will impart an extra amount

to the total de¯ ection of the path ª from in® nity to in® nityº . In fact, the

Newtonian de¯ ection is exactly doubled to 1 9 9 .74.

In Nordstr Èom’ s theory, the real geometry of such a central plane can-

6 W hen Einstein in 1911 ® rst recogn ized the possibility of observ ing global light bending

by the solar grav itat ional ® eld [11], he was well aware that this eŒect does n ot follow

from his equivalence principle alone, which originally referred to stat ic, homogenous

® elds only. To obtain the observab le de¯ ect ion angle he used and exp licit ly stated

the addit ional assum pt ion that the local bending formula applies pointwise also in an

inhomogenous ® eld, and he assumed implicit ly that the spat ial metric is euclidian.

T his last assumption he ª correct edº without com ment , alm ost in passing, in 1915,

using his ® eld equation [12].



Lo c a l an d G lob a l Lig h t B e n d in g 5 2 7

not be represented by a surface of revolut ion. (Instead of having too much

space near the center, which can funnel out, we now have too lit tle.) Of

course, we know the result in advance from conformal ¯ atness: the global

bending is now zero. More experiment ing with the paper strip (holding

its ends to one straight line on a table) will make it plausible that the

Nordstr Èom 2-geometry of a central ª planeº indeed correspons to (part of)

an in® nite plane far from the sun, but that near the sun there is a de® cit

rather than an excess of area.

To look at Nordstr Èom’ s theory a lit tle more closely, we recall [2] that

its spacet ime has a metric of the form

ds
2

= e
2 F / c

2

(c
2
dt

2 ± dx
2 ± dy

2 ± dz
2
) = : e

2 F / c
2

d Äs
2
, (9)

where F is essentially the Newtonian potential. (In fact, in the case of

spherical symmetry, e F / c
2

= 1 ± Gm / r c2 .) By a well-known theorem,

the null geodesics of conformally equivalent spaces coincide. And since

they are straight lines in d Äs
2
, there is no global bending in ds

2
, i.e. in

Nordstr Èom’ s theory. But local bending there is! Suppose (9) refers to a

static ® eld, with F independent of t. Since light travels straight in d Äs
2
, its

spat ial tracks are the straight lines in the metric d Äl2 = dx2 + dy2 + dz 2 ,

and thus satisfy three equat ions like

x = a Äl + b. (10)

But these tracks are not geodesics in the spat ial latt ice of (9) which has

metric dl2 = e2 F / c
2

(dx2 + dy2 + dz 2 ). Geodesics in this lattice must satisfy

three Euler± Lagrange equat ions like

( ¶ L
¶ Çx ) ¢

±
¶ L
¶ x

= 0, (11)

where L = e2 F / c
2

( Çx2 + Çy2 + Çz2 ) and ª .º = d/ dl = e- F / c
2

d/ d Äl; and it is easily

seen that this will not be the case for (10) unless F = constant, i.e. unless

there is no gravity. Hence in general the tracks have nonvanishing geodesic

curvature; its exact value is given by our eq. (8) .

Finally, a few numerical values may be of interest. As is well known,

the value of g on earth in unit s of years and light -years is ¼ 1. By (8),

therefore, the radius of curvature of a horizontal light path at the earth’ s

surface is k- 1 ¼ 1 light year; for a ray grazing the sun the value is smaller

by a factor of ¼ 1/ 30. Measuring such a minut e curvature locally is,

of course, out of the quest ion. That the integrated eŒect nevertheless

leads to the observable Einstein angle D w = 1 9 9 .74 ¼ 10- 5 is due to the

considerable length d, of a few solar diameters, of that part of the path

which contributes eŒectively to ò kdl. For d ¼ 107km we get D w ¼ kd ¼
10- 12 £ 107 = 10- 5 , the right order of magnitude.
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5. CONCLUSION

In conclusion we note that the local bending of light Ð though it can

probably never be observed direct ly because of its smallness Ð is never-

theless one of only two in principle measurable non-classical gravit ational

eŒects that spring direct ly and rigorously from the equivalence principle,

without use of ® eld equat ions. The other is, of course, the by now well-

validat ed local gravitational frequency-shift (Pound± Rebka± Snider Har-

vard Tower experiment .) Both eŒects are free of the frequent ly discussed

di� cult ies one faces when trying to formulate the equivalence principle

generally and rigorously, as should be clear from our use of the elevator

argument which refers only to a restricted form of the principle. It is the

® eld equat ion that determines the spat ial geometry of the spat ial lattice

in static spacet imes and thus, in conjunct ion with asymptotic ¯ atness and

local bending, the global de¯ ection of light .
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APPENDIX

To calculat e the global ª Newtonianº de¯ ection of light , we ® rst ap-

proximate the light path with a straight tangent line to the circle repre-

senting the sun. If q is the angle between that line and the direct ion of

the ® eld g at any of its point s, then g = M K sin
2 q / R2

K in unit s making

c = G = 1. Also, from (8), k = gsin q and the distance along the line from

the point of tangency is l = R K cot q , whence dl = R K cosec2 q d q (omitting

signs all along) . Thus the Newtonian global bending angle is given by

D w =

+ ¥

s
- ¥

kdl =
2M K

R K

p / 2

s
0

sin q d q =
2M K

R K
. (A.1)

This is just half of the general-relat ivist ic value.
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