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1 I n t r o d u c t i o n  

Let Fo : A4 ~ -* (N =+1, ~) be a smooth immersion of a hypersurface r = F0(A4 ~) in 
a smooth Riemannian manifold (N"+l,~). We study one-parameter families F : .h4 = x 
[0, T] ~ (N "+l, ~) of hypersurfaces J~r = F(., t)(A4") satisfying an initial value problem 

OF 
-~ (p,t) -- - f u ( p , t ) ,  p �9 A4", t �9 [0, T], (1.1) 

F(p,0) = F0, p �9 .h4 n, (1.2) 

where u(p, t) is a choice of unit normal at F(p, t) and f(p, t) is some smooth homogeneous 
symmetric function of the principal curvatures of the hypersurface at F(p, t). 
We will consider examples where f = f ( A l , " - ,  ~ )  is monotone with respect to the prin- 
cipal curvatures Al, '  "-, Am such that (1.1) is a nonlinear parabolic system of second order. 
Although there are some similarities to the harmonic map heatflow, this deformation law 
is more nonlinear in nature since the leading second order operator depends on the ge- 
ometry of the solution at each time rather than the initial geometry. There is a very 
direct interplay between geometric properties of the underlying manifold (N"+l,~) and 
the geometry of tile evolving hypersurface which leads to applications both in differential 
geometry and mathematical physics. 
Here we investigate some of the general properties of (1.1) and then concentrate on the 
mean curvature flow f = - H  = --(Al+. . -+A,,) ,  the inverse mean curvature flow f = H -1 
and fully nonlinear flows such as the the Gauss curvature flow f = - K  = - ( A I ' "  An) 
or the harmonic mean curvature flow, f = - (A]  "1 + . . .  + )~1)-1. We discuss some 
new developments in the mathematical understanding of these evolution equations and 
include applications such as the use of the inverse mean curvature flow for the study of 
asymptotically flat manifolds in General Relativity. 
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In section 2 we introduce notation for the geometry of hypersurfaces in Pdemannian man- 
ifolds and derive the crucial commutator relations for the second derivatives of the second 
flmdamental form. 
In section 3 we study the general evolution equation (1.1) and obtain evolution equations 
for metric, normal, second fundamental form and related geometric quantities. We discuss 
the parabolic nature of the evolution equations, a shorttime existence result and introduce 
the main examples. 
We study the mean curvature flow in scction 4. In this case the evolution law is quasi- 
linear and the knowledge of the flow is more advanced than for all other cases. We give 
some examples of known results concerning regularity, long-time existence and asymptotic 
behaviour. In particular we discuss the formation of singularities and give an update of 
recent new results (joint with C.Sinestrari) concerning the classification of singularities 
in the mean convex case. The section concludes with an isoperimetric estimate for the 
one-dimensional case, ie tile curve shortening flow. 
Section 5 deals with hilly nonlinear flows such as the Gauss curvature flow and the har- 
monic mean curvature flow. Without proof wc review in particular results of Ben Andrews 
concerning an elegant proof of the 1/4-pinching theorem, the affine mean curvature flow, 
and a conjecture of Firey on the asymptotics of the Gauss curvature flow. 
The inverse mean curvature flow is discussed in section 6. We explain the basic properties 
of this flow in its classical form relating it to the Willmore energy and Hawking mass of 
a twodimensional surface. In view of these properties the inverse mean curvature flow 
is particularly interesting in asymptotically fiat 3-manifolds which appear as models for 
isolated gravitating systems in General Relativity. It is briefly explained how in recent 
joint work with T.Ihnanen an extended notion of the inverse mean curvature flow was used 
to prove a Riemannian version of the so called Penrose inequality for the total energy of 
an isolated gravitating system represented by an asymptotically flat 3-manifold. 
While the first part of this article just described stems from lectures given by the first 
author at the CIME meeting at Cetraro 1996, the last section of the article is a previ- 
ously unpublished part of the doctoral dissertation of Alexander Polden. It provides a 
selfcontained proof of shorttime existence for a variety of geometric evolution equations 
including hypersurface evolutions as above, conformal deformations of metrics and higher 
order flows such as the L2-gradient flow for the Willmore functional. 
'Phe author wishes to thank the orgaafisers of the Cetraro meeting for the opportunity 
to participate in this stimulating conference triggering joint work with Tom Ilmanen on 
inverse mean curvature flow, as well as for their patience in waiting for this manuscript. 

2 Hypersur faces  in R i e m a n n i a n  mani fo lds  

Let (N '~+l, g) be a smooth complete Riemannian manifold without boundary. We denote 
by a bar all quantities on N, for example by .~ = {~,,~}, 0 < a, fl < n, the metric, by ~ -- 
{z9 ~ } coordinates, by f' = {r '~} the Levi-Civita connection, by V the covariant derivative 
and by 15dem -- (ISdeln~6} the Riemann curvature tensor. Components are sometimes 
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taken with respect to tim tangent vectorfields (O/Oy~'), 0 < a < n associated with a local 
coordinate chart y -- {ya} and sometimes with respect to a moving orthonormal frame 
{ca}, 0 < a < n, where O(e~,,ea) = 3~.  We write 3 -1 = {9aa} for the inverse of the 
metric and use the Einstein summation convention for the sum of repeated indices. The 
Ricci curvature 15dc = {/~oa} and scalar curvature ft of (N"+I,O) are then given by 

and ttle sectional curvatures (in an orthonormal frame) are given by #a~ = / ~ .  

Now let F : 3d" --~ N "+1 be a smooth hypersurface immersion. For simplicity we restrict 
attention to closed surfaces, ie compact without boundary. The induced metric on Ad n 
will be denoted by g, in local coordinates we have 

OF OF 

�9 OF" OF a .hi". 
= ./)/,,a(l,(p))-~xi(p)-~xj(p) , p e 

l,~lrthermore, {l'}k}, V and llJem = {lt.ukl } with latin indices i , j ,  k, l ranging from I to n 
describe the intrinsic geometry of the induced metric g on the hypersurface. 
If u is a local choice of unit normal for F(.M") ,  we often work in an adapted othonormal 
frame u, e l , . . . , e , ~  in a neighbourhood of F(3/I ") such that e l ( p ) , ' "  ,e,,(p) e Tp.M '~ C 
Tpg  "+1 and 9(p)(ei(p), e~(p)) = (f, i for p e .A4 '~, 1 < i , j  < n. 
The second fundamental form A = {ho} as a bilinear form 

m(p): T p M "  x T,.hd '~ ~ IR 

and the Weingarten map W = {h}} = {9a'hki} as an operator 

w : T . M "  --, T , 3 4 "  

are then given by 
h i j  = ,Q ~ e t l / , e j  > -~ _ < tJ, V e l e  j > . 

In local coordinates {xi}, 1 < i < n, near p e 3d"  and {y~}, 0 < a < n, near F(p) �9 N 
these relations are equivalent to the Weingarten equations 

02 F~" k O F'~ a,~ O Fa O IN 
Ox ~Ox~ r q ~  + I a 6 ~  ~ - h Ou' ,  

Ou" ~ OF~u6 . ~OF '~ 
Ox-- 7 +  p Ox i = hijg J Ox 1. 

Recall that A(p) is symmetric, ie W is sclfadjoint, and the eigenvalues )q (p) , . . . ,  ,~(p) 
arc called the principal curvatures of F(34")  at F(p). Also note that at a given point 
p �9 34n by choosing normal coordinates and then possibly rotating them we can always 
arrange that  at this point 

gij = ~ i j ,  - 7" i = diag(Al, . . .  A,~). Ve, e / =  O, hi~ = h i 
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The classical scalar invariants of tile second flmdamental form are then symmetric homo- 
geneous polynomials in the principal curvatures: 
Thc mcan curvature is givcn by 

H := t r ( W )  = h~ = giJhl j  = )~l + " "  + )~., 

the Gauss-Kroncckcr curvaturc by 

K := d e t ( W )  = d e t { h } }  - d e t ( h , ~ }  
de t {g i~}  - ,~l . . . . .  )~,,, 

the total  curvature by 

]A[2 :=  t r ( W t W )  , ~ ik i, = t t j l~  = h i i h q  = g g hilh~a = ,~  + . . .  + ~ ,  

and the scalar curvature (ill Euclidean space 1R "+l) by 

R = I I  2 - ]A[ ~ = 2(~1A2 + )~Aa + " "  + )~,-~)~,,). 

More general, the mixcd mean curw~turcs S , , ,  1 _< m __< n, arc given by thc clcmcntary 
symmetric flmctions of the A~, 

i l ( " ' ( i m  

such that  $1 = H, 5'2 = (1/2)R, S,, = G. Other interesting invariants include the 
harmonic mean curvature 

f l  := (~i -I + . . .  + ~ 1 ) - 1  = S , / S , _ I  

as well as other symmetric functions of the principal radii )~-1. All the invariants men- 
tioned or powers thereof are candidates for the speed f in our evolution problem (1.1). 

For the purposes of analysis it is crucial to know the rules of computat ion involving the 
covariant derivatives, the second fundamental form of the hypersurface and the curvature 
of the ambient space. We assume the reader to have some background in differential 
gcometry, but  rcstate the formulas used in this article for convenience (in an adapted 
orthonormal frame). 
The commutator  of second derivatives of a vectorfield X on Ad '~ is given by 

V ~ V j X  k - V j V ~ X  k = P~zmg~aX "~, 

and for a one-form w on .h.4 '~ by 

V~Vjwk - V j V i w k  = l~jcagZmwrn. 

More generally, the commutator  of sccond derivatives for an arbi t rary  tensor involves one 
curvature term as above for each of the indices of the tensor. The corresponding laws of 
course also hold for the metric ~. 
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The curvature of the hypersurface and ambient manifold are related by the equations of 
Gauss 

l ~ t  = [ ~ t  -k hikltjt - h a h j k ,  1 < i , j , k , l  < n, 

R4~ = fla~ - [~o~o~ + Hhi~ - hahn, 1 < i, k < n, 

1r = /-~ - 2/-~oo + H ~ - IAI ~, 

and the equations of Cod~zi-Mainardi 

Vilt,~ - V~H = /~o~. 

The following commutator identities for the second derivatives of the second fundamental 
form were first found by Simons [48] and provide the crucial link between analytical 
methods and geometric properties of A4" and N n+~. See also [47] for a derivation of thc 
following facts from the structure equations. 

T h e o r e m  2.1 Thc sccond dcrivativcs of A satisfy the idcntitics 

V~V~h,~ V~V~h~ + hkjh~..h,,,~ - ht~,hah. , j  + hk~h~,,,h.a 

-h~,~h~ih.a + [~a,,.h,,,1 + [l~i,,,h,,a 

+/~,~nh~,,, + P ~ o j h ~  - [ ~ h ~  + Tl,,a~h~m 

The trace of these identities plays an important role in mimimal surface theory and is of 
particular importance for mean curvature flow and inverse mean curvature flow: 

C o r o l l a r y  2.2 The Laplacian A = ~ i  V,Vl of the second fundamenta l  f o r m  satisfies 

Ah~ 

 AIAI 

= V i V j H  + Hh~,,,h,,,i - h~jlAI 2 + Hft?.~.I 

- Roohi j  -t- [~kit-mhmj § [:~kjkmhirn 

= h i jViVjH + IVAI 2 + H t r ( A  3) - IAI 4 

+ H h i i [ t . ~  1 - /~oolAI  z + 2[tkik,,,h,,~thi j - 2[-lki,,,~hkmhij 

Proo f .  By the Codazzi equations we first get 

VkVlh~j = Vk(V~hlj +/~,jn).  

Then compute from the definition of h O 

Vk(/2o~l) = V k R o j ,  + h k m [ ~ i ~  
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and commute V~ and Vk to derive 

VkVl l~, j  = V~Vfl~ 0 -I- Rku,,,h,,, 1 + Rko.,h.a 

Then use the Codazzi equations again to get 

V~Vkh o = Vi(V~/~k~ + [la3k) 

Employing the Gauss equations we finally conclude 

VkVlhij  = ViVjhkl + [~a.J~i  + Rkijrnhma 

-t-f~,,ajkhi,n- [~o~okt~ij - Roijoh.or 

-t-Vk ~ojil -t- Vi[~oUk 

and the conclusion follows from the symmetries o f / ~ o ~ .  

3 T h e  e v o l u t i o n  equat ions  

Let Fo : .Ad '~ --+ IR ~'+1 be a smooth closed hypersurfaceas as in the introduction in a 
smooth Riemannian manifold (N"+l,~), n > 2. Assume for simplicity that N, M are 
orientable and choose a unit normal field v on M .  If .Ad" C llV '+~, we choose the exterior 
unit normal such that the mean curvature of a sphere is positive. We then consider the 
initial value problem (1.1), where f is a smooth, homogeneous function of the principal 
curvatures A~. 
Shorttime existence for (1.1) can in general only be expected when the system is parabolic. 
to investigate the linearisation of (1.1), notice that due to the symmetry of f in an 
equivalent setting wc may consider f as a function ] of the Weingartcn map W or a s a 
fimction ] of the second fimdamental form A: 

] (W)  : / ( { h ~ } )  = ](m) = ]({h,~}) = f ( A , . . .  A,). 

In view of the Weingarten equations the linearisation of (1.1) is then an equation of the 
form 

^ 

O G -  - O f  g'kg ~z " 02G v) v+lowerorder. 

Thus the "symbol" 
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of the RtlS is always degenerate in tangential directions, reflecting the invariance of 
the original equation undcr tangential diffeomorphisms. It is strictly positive definite in 
normal direction if 

or equivalently 

o/ 
o-~,j(p) r162 > 0 v 0  r  e n~-, p e M",  

ol 
0,~ (p) > 0 V l < i < n ,  p c . M " .  (3.1) 

The problem with the degeneracy ill tangential direction can be overcome in various 
ways: In [30] Hamilton solves degenerate parabolic equations satisfying an integrability 
condition. In our case the normal projection II N : TpN n+l --* TpAd" yields an integrability 
condition since 

O F = f v E Kernel fiN, 
ot 

such that IIamilton's result apt)lies when (3.1) holds. The other approach consists in 
the choice of some vectorfield transversal to tile initial surface. This breaks the gauge 
invariance of the equation and changes (1.1) to a scalar uniformly parabolic equation 
provided (3.1) holds. This approach was originally used by DeTurck [14] for the Ricci 
flow and has been used for the evolution of hypersurfaces in [33], [16]. In the last chapter 
of the present paper the second author gives a selfcontained proof of shorttime existence 
for a large class of geometric evolution equations including equations of higher order. For 
our purposes we note: 

T h e o r e m  3.1 If Fo : .A4'* --~ (N"+I,.~) is a smooth, closed hypersurface such that 

of 
0A, (p) > 0, 1 < i < n, (3.2) 

holds everywhere on Fo(.h4"), then (1.1) has a smooth solution at least on some short 
time interval [0, T), T > 0. 

E x a m p l e s .  i) In the case of mean curvature flow f = - H  we have - (Of /OAi)  = 1 and 
the flow admits a shorttime solution for any smooth initial data. 
it) For Gauss curvature flow f = - G  we get -(Of/O)~,) = )~'(IG and we have short- 
time cxistcnce if the initial data are convex. More generally, the elementary symmet- 
ric functions - f  = S,~, 1 < m _< n, satisfy -(Of/O)~i) > 0 on the convex cone 
F,,, = {)~ E lR'*lSl(A ) > 0, 1 < l < m}, yielding shorttime existence for correspond- 
ing initial data. 
iii) The quotients Qk., = Sk/Sl for 1 _< l < k _< n again satisfy (3.1) on Fk. In particular, 
this yields a shorttime existence result for the harmonic mean curvature flow on convex 
initial data, since - f  = [t  = S,,/S,,-t. 
iv) The inverse mean curvature flow with f = H -~ satisfies -(0f/0,k~) = H -2, yielding 
shorttime existence of a classical smooth solution for any initial data of positive mean 
curvature. 
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Working in the class of surfaces where shorttime existence is guaraalteed, tile interesting 
task is now to understand the longterm change in the shape of solutions, and to char- 
actcrise their asymptotic behaviour both for large times and near singularities. For this 
purpose evolution equations have to be established for all relevant geometric quantities, 
in particular for the second fundamental form. 

T h e o r e m  3.2 On any solution ~4"~ = F(., t)(.M") of ( I . I )  the following equations hold: 

(i) -~g~i~ = 2 fh~,  

(ii) a(d#)  = fU(d#),  

(iii) a v  = - V  f ,  

(iv) ~ = - V , V j f  -t- f(h,kh~ - Rowj), 

(v) ~ I f  = - A f  - f(tml 2 + ~ c ( . ,  L.)). 

llcrc dlz is the induced mcasure on the hypcrsurface and A is the Laplace-Beltrami oper- 
ator with respect to the time-dependent induced metric on the hypersurface. 

Notice that  - A f  - f ( lAI  2 + l~ic(~, ~)) = J f  is the Jacobi operator acting on f ,  as is 
wellknown from the second variation formula for the area. 
P roof .  The computations are best done in local coordinates {x ~} near p E .A4'* and 
{y~} near F(p) in N. Arranging coordinates at a fixed point p such that g~j(p) = ~,j, 
(O/Ox')gjk(p) = O, ~,a(F(p)) = ~,,a, (O/Oy~')ga6(F(P)) = 0 all identities are straightfor- 
ward consequences of the definitions and the Gauss-Weingarten relations. The computa- 
tions have been carried out in detail for f = - U  in [34], [35] and [4]. A short derivation 
by the second author is also contained in the last section of this article. 
We will now use the commutator identities in Theorem 2.1 to convert the evolution equa- 
tions for the curvature into parabolic systems on the hypersurface. For this pupose we 
introduce for each speed function f the nonlinear operator L / b y  setting 

LIU = L~iV~Viu : - Of 0--~j V~V~ u , 

where ] as before is the symmetric function f considered as a function of the h~i. Notc 
that for mean curvature flow LH = A is the Laplace-Beltrami operator, for inverse mean 
curvature flow with f = H -1 we have L/ = (1/H2)A and in general L1 is an elliptic 
operator exactly when f is elliptic, ie satisfies (3.1). The following form of the evolution 
equations exhibits their parabolic nature. 

C o r o l l a r y  3.3 On any solution .h4'~ = F(., t)(2k4 '~) of (1.1) the second fundamental form 
hi! and the speed f satisfy 

0 L~tVkVthij 02f VihtaVjh~ 
-~ h~ i = O h, kl O h~ 
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0 
~f 

0f 

""  " 0  

Proo f .  From V~f = (Of/Ohkl)Vd~kl we see that 

02/ 
Oh~Oh~ 

0f 
V~Vjf  = zy--ViV~hkt + - -  

u l l ,  k! 
VihktVih A. 

This yields the first identity ill view of Theorem 2.1 and Theorem 3.2(iv). Similarly we 
get 

o__: _ o ] o  o]  o 
at  gl,} = g,,g (g'kl,kj) 

0/ 01 0, 
= -2:h, + 

= L)~V, V i f  _ f Of (h,kh~ + ['Qo'j), 
Oh~j 

as required. 
The curvature terms in this nonlinear reaction-diffusion system provide the key for un- 
derstanding the interaction between geometric properties of the hypersurface and the 
ambient manifold. They are the tool to study these geometric phenomena with analytical 
means. For some choices of f we will now describe recent developments. 

4 M e a n  c u r v a t u r e  f low 

In the case of mean curvature flow f = - H  it is well known [34] that for closed initial 
surfaces the solution of (1.1)-(1.2) exists on a maximal time interval [0,T[, 0 < T < co. In 
some cases the behaviour of the flow has been completely understood: For closed convex 
surfaces in IR "+1, n > 2, it was shown in [34] that the solution contracts smoothly 
to a point, becoming more and more spherical at the end of the evolution. In [35] this 
was extended to general Riemannian manifolds under the assumption that the initial 
hypersurface is sufficiently convex: Each principal curvature )% of the initial surface has 
to be bounded below by a constant depending on the curvature and the derivative of the 
curvature in the ambient manifold. While the constants are optimal in locally symmetric 
spaces, the dependence on the derivatives of curvature in the general case is not desirable 
form a geometric point of view. Some of the fully nonlinear flows discussed in the next 
section have a better behaviour from this point of view. 
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Regularity and longtime existence was also obtained for surfaces that can be written as 
graphs, compare the joint work of the first author with Ecker in [16] and [17]. 
In the one--dimensional case Grayson proved that any embedded closed curve on a 2-  
surface of bounded geometry will either smoothly contract to a point in finite time or 
converge to a geodesic in infinite time, compare [25], [26] and earlier work of Gage and 
IIamilton in [22]. 
In higher dimensions it is well known that singularities will in usually occur before the 
area of the evolving surface tends to zero. If T < (x), as is always the case in Euclidean 
space, the curvature of the surfaces becomes unbounded for t --* T. One would like to 
understand the singular behaviour for t --* T in detail, having in mind a possible controlled 
extension of the flow beyond such a singularity. See [37] for a review of earlier results 
concerning local and global properties of mean curvature flow azid its singularities. We 
will not discuss singularities in weak formulations of the flow, a good reference in this 
direction is [54] and [43]. 

Since the shape of possible singularities is a purely local question, wc may restrict attention 
to the case where the target manifold is Euclidean space. Nevertheless, in the light of 
an abundance cvcn of homothctically shrinking examples with symmetries, the possible 
limiting behaviour near singularities seems ill general beyond classification at this stage. 
In recent joint work of C. Sinestrari and the author [41], [42] the additional assumption 
of nonnegative mean curvature is used to restrict the range of possible phenomena, while 
still retaining an interestingly large class of surfaces. We derive new a priori estimates 
from below for all elementary symmetric functions of the principal curvatures, exploiting 
the one-sided bound oll the mean curvature. The estimates turn out to be strong enough 
to conclude that any rescaled limit of a singularity is (weakly) convex. 
Recall that  

l <_il < i2<... <ik <_n 

are the elementary symmetric functions of the principal curvatures with $1 = H. Then 
[42] establishes the estimates 

T h e o r e m  4.1 (H.-Sinestrari) Suppose Fo : A4 ~ IR n+l is a smooth closed hypersurface 
immersion with nonnegative mean curvature. For each k, 2 < k < n, and any 77 > 0 there 
is a constant C,,k dependin 9 only on n, k, 71 and the initial data, such that everywhere on 
M x [0, T[ the estimate 

Sk > - r I H  k - C,,k (4.1) 

holds uniformly in space and time. 

The proof proceeds by induction on the degree k of Sk and relies heavily on the algebraic 
properties of the elementary symmetric functions, the structure of the curvature evolution 
in this particular flow and the Sobolev inequality for hypersurfaces. In each step of the 
iteration an a priori estimate is proved for a quotient 

Sk Q k -  
Sk-i 
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of consecutive elementary symmetric polynmials, making use of the concavity properties 
of this function. Using techniques in [35] and [49] the result can be extended to starshaped 
surfaces in ]R "+1 and to hypersurfaces in Riemannian manifolds. 
Similarly as in the theory of minimal surfaces the structure of singularities is then studied 
by blowup methods, in this case by parabolic rescaling in space and time, compare [28], 
[36], [41]. Since 7/ is arbitrary in tim above estimate and the mean curvature S~ = H 
tends to infinity near a singularity, the scaling invariance is broken in inequality (4.1) and 
implies that near a singularity each Sk becomes nonnegative after appropriate rescaling: 

C o r o l l a r y  4.2 (If.-Sinestrari} Let A/It be a mean convex solution of mean curvature f low 
on the maximal  t ime interval [0, T[ as in Theorem 1.1. Then any smooth rescaling of the 
singularity for  t ~ T is convex. 

The structure of the rescaled limit depends oil the blowup rate of ttle singularity: If the 
quantity s u p ( T -  t)lAI ~ is uniformly bounded (type I singularity), the rescaling will yield 
a sclfsimilar, homothetically shrinking solution of the flow which is completely classified 
in the case of positive mean curvature, s ~  [36] and [37]. If the quantity s u p ( T -  t)]m] 2 is 
unbounded (type II singularity), the rescaling of the singularity can be done in such a way 
that an "eternal solution" (ie defined for all time) of mean curvature flow results where the 
maximum of the curvature is attained on the surface. In the convex case such solutions 
were shown by ttamilton to move isometrically by translations, [29]. Hence, combining 
the classification of type I singularities in [37], the result of Hamilton and the convexity 
result in Corollary 4.2, one derives a description of all possible singularities (type I and 
type II) in the mean convex case, compare [42]. 
Open problems which have to be adressed for the future goal of continuing the flow 
by surgery concern the classification of convex translating solutions, Harnack estimates 
for the mean curvature, more precise estimates on the rate of convergence as well as 
higher order asymptotics near singularities. Some guidance on the possible higher order 
bchaviour near singularities can be taken from the degenerate examples constructed in 
[7]. A Harnack estimate for the mean curvature has so far only been obtained in the 
convex case [29], which is too restrictive for many applications. The work of Hamilton on 
the Ricci flow [28] has a close relation to the mean curvature flow and indicates a strategy 
for the extension of the flow past singularities once stronger estimates are available [31]. 

Wc conclude this section with the one-dimensional case, where an embedded curve is 
evolving in the plane or on some smooth surface by the curve shortening flow. The 
remarkable articles of Grayson on this flow [25],[26] show by a number of global arguments 
that for embedded curves no finite time singularity can occur unless the whole curve 
contracts to a single point. 
The structure of all possible singularities in this case is now well understood: There are no 
embedded type I singtflarities except the shrinking circle, which is the desired outcome, 
and the only possible rescaling of a type II singularity is a so called grim reaper curve given 
by y = logcosx. To prove Graysons result it is therefore sufficient to give an argument 
excluding this last curve as a possible limiting shape. Such an argument is provided both 
by Hamilton in [32], where an isoperimetric estimate for the area in subdivisions of the 
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enclosed region is shown, and by the first author in [38], where a lower bound for the ratio 
between extrinsic and intrinsic distances on the evolving curve is proved. 
To describe the last result, let F:  S l • [0,T] ~ IR2 be a closed embedded curve moving by 
the curve shortening flow. If L = L(t) is the total  length of the curve, the intrinsic distance 
function l along the curve is smoothly defined only for 0 < I < L/2,  with conjugate points 
wherc l = L/2. We therefore define a smooth function r  S l x S 1 x [0,T] --+ IR by setting 

With this choice of r  and with d being the extrinsic distance between two points on the 
curve, the isoperimetric ratio d / r  approaches 1 on the diagonal of S 1 • S l for any smooth 
embedding of S l in ]R 2 and the ratio d / r  is identically one on any round circle. 

T h e o r e m  4.3 Let F: S l • [0,T] --* IR 2 be a smooth embedded solution of the curve short- 
ening flow (1.1). Then the minimum of d / r  on S t is nondecreasing; it is strictly increas- 
ing unless d / r  - 1 and F ( S  l) is a round circle. 

Clearly the est imate prevents a grim reaper type singularity. The proof uses the maximum 
principle on the cross product  of the curve with itself. It is an open problem whether 
similar lower order estimates can be used for the study or exclusion of certain singularities 
in higherdimensional flows. 

5 Fully nonl inear  flows 

Tile Gauss curvature flow, where the speed f = - K  = - ( ) h " "  X,) is the product  of 
the principle curvatures, was first introduced by Firey [20] as a model for the changing 
shape of a tumbling stone being worn from all directions with uniform intensity. The 
flow is parabolic only in the class of convex surfaces and much more nonlinear in its 
analytic behaviour than the mean curvature flow. Tso [52] proved existence, uniqueness 
and convergence of closed convex hypersurfaces to a point for this flow without however 
determining the limiting shape of the contracting surface. The conjecture of Firey (1974) 
that  the limiting shape is that  of a sphere regardless of the initial data,  was only recently 
confirmed by Andrews [2]: 

T h e o r e m  5.1 (Andrews) Let M~o be a smooth closed strictly convex initial surface in 
IR a. Then there is a unique smooth solution o/(1.1)  with f = - K  on the time interval 
[O,T[, where T = V(Mo~)/4~r is determined by the enclosed volume of the initial surface, 
and the surfaces converge to a round sphere after appropriate rescaling. 

The corresponding result for mean curvature flow was obtained earlier by the author in 
[34] and for a large class of speed functions f including the harmonic mean curvature 
flow by Andrews in [1]. If the Gauss curvature K is replaced by some power K'*, a whole 
new range of interesting phenomena appears. If the homogeneity is 1, ie a = 1/n, Chow 
proved contraction to a point and roundness of the limiting shape, [12]. In [5] Andrews 
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shows that  in the interval I / (n  + 2) < ~ < 1/n there is at least some smooth limiting 
shape at the end of the contraction, while for small values of r a degeneration of the 
surface near the end of the contraction is expected. 
In the special case c~ = 1/(n + 2), the evolution equation (1.1) becomes affine invariant. 
In line with the results just mentioned Andrews [3] proves by an extension of Calabi's 
estimate on the cubic ground form that convex initial data contract smoothly to a point 
in finite time, with ellipsoids as the natural unique limiting shape. As a consequence he 
dcrivcs an clcgant proof of the affinc isopcrimctric incquality. Comparc also thc work of 
Sapiro and Tannenbaum [46] on the affine evolution of curves, which has applications in 
image processing. 
For convex hypersurfaces in general Ricmannian manifolds speedfunctions f such as the 
harmonic mean curvature or other quotients of elementary symmetric functions seem to 
have the best algebraic behaviour. In mean curvature flow the derivatives of the ambient 
curvature in the evolution equations of Corollary 2.2 are analytically hard to control, 
compare the dependance of the main result in [35] on these terms. For harmonic mean 
curvaturc flow and flows of similar structure Andrews derives an optimal convergence 
result for hypersurfaces having sufficiently positive principal curvatures in relation to the 
ambient curvature, [~l]. In particular, he shows that such flows contract convex hypersur- 
faces in manifolds of positive sectional curvature to a point and gives a new argument for 
the classical 1/4-pinching theorem. 
All speedfunctions considered so far were pointing in the same direction as the mean 
curvature vector, corresponding to contractions in the case of convex surfaces. In the last 
section we consider an expanding version of the flow. 

6 T h e  i n v e r s e  m e a n  c u r v a t u r e  f low 

The inverse mean curvature flow f = H -1 is well posed for surfaces of positive mean 
curvature and characterised by its property that the area element is growing exponentially 
at each point: From Theorem 1.1(i) we have O/Ot(d#) = d#. In particular, the total area 
of a smooth closed evolving surface is completely determined by its initial area: 

IMp] = IM~'lexp(O. 

The standard example for this behaviour is the exponentially expanding sphere of radius 
R(t) = R(O) exp(t /n) .  I~urther interesting properties of the flow follow from the evolution 
equation for the mean curvature H, which we derive from the evolution equation for the 
speed f = H -1. 

OH A l t  2[VHI 2 ]AI 2 Ric(v ,v)  
Ot H 2 H 3 H H 

Due to the negative sign of the tAI2-term we get from this equation by a simple application 
of the parabolic maximum principle the remarkable property that the mean curvature H 
is uniformly bounded in terms of its initial data and the Pdeei curvature of the ambient 
manifold. This is in strong contrast to the mean curvature flow, where the blowup of 
the mean curvature causes the singularities studied in section 2. For the inverse mean 
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curvature flow the critical behaviour occurs where H --4 0 and the speed becomes infinite�9 
In Euclidean space it is clear that  the maximum of the mean curvature is decreasing and 
tile same is true for any / / ' - no rm.  
In case n = 2 this property of the flow can be extended to closed surfaces in arbi t rary 
three-manifolds of nonnegativc scalar curvature: For any two-surface ]E 2 C (N a, 9) the so 
called Hawking quasi-h)cal mass of Z 2 is defined as the geometric quantity 

[Z2[~/2 (167r_ s tt2 d @ mu(E 2) := (16rr)a/2 

and a computat ion based on the evolution equation for the mean curvature, the area 
element of the surface and the Gauss-Bonnet formula shows that  for a solution M~ of the 
inverse mean curvature flow 

_21VH[2 1tt u 1 dfM?ll2dl'=4rrx(M~)-t-fM ' it ~ - ~('~l - '~2)~ - / ~  d# �9 

llence, if the surface Mt 2 is connected and tile scalar curvature/~ of the three-manifold is 
nonncgative, wc have 

and the Hawking quasi-local mass is nondecreasing along the inverse mean curvature flow: 

d 2 
-j~tmH(M, ) > O. 

A major reason for the interest in the inverse mean curvature flow comes from the in- 
tcrprctat ion of this purely geometric fact in General Relativity: The spatial part  of the 
exterior of an isolated gravitating system (like a star, black hole or galaxy) is modelled 
by the end of an asymptotical ly flat Riemannian 3-manifold with nonnegative scalar cur- 
vature as above. Here an end of a Riemannian 3-manifold (N z, g) is called asymptotically 
flat if it is realized by an open set that  is diffeomorphic to the complement of a compact 
set K in IR z, and the metric tensor 9 of M satisfies 

C C C9 
10~j - ~,~1 -< ~ ,  10,~,~1 -< ixl--Z, ~ic >_ -ixl-- q ,  

as Ixl ~ ~ ,  The derivatives are taken with respect to the Euclidean metric ~ = {~ij} on 
IR a \ K. On such asymptotically fiat ends a concept of total  mass or energy is defined by 
a flux integral through the sphere at infinity, 

�9 1 f o u ~ ( o ) ( ~ . , j  - d#~, m := Jim ~ O,j,,)~' 

which is a geometric invariant, despite being expressed in coordinates. It is finite precisely 
when the scalar curvature/~ of 0 satisfies 

fN. I-~1 < gX3~ 
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and from a physical point of view it is meant to measure both matter content and grav- 
itational energy of the isolated system. Compare the joint papers [39][40] of the author 
and T. Ilmanen for references to these facts. The Hawking quasi-local mass defined above 
is used as a geometric concept for the energy of a three-dimensional region contained in- 
side a two-dimensional surface, motivated by the fact that for large approximately round 
spllcrcs S~ it is true that mH(S~) --* m. ~r thermore ,  since in the physically simplest 
case the outer boundary of a black hole can be represented by a minimal two-surface 
inside the given three-manifold, the inverse mean curvature flow can provide a relation 
between the size of the black hole and the total energy m: If there is a smooth connected 
solution of the inverse mean curvature flow starting from a minimal surface M02 C N 3, 
(the apparent horizon of the black hole) and expanding smoothly to large round spheres 
where mH(M2t) ~ m, then by the monotonieity result above we have the inequality 

1 = < 4~/~,'"ol 

This relation between the size of the outermost black hole and the total energy of an 
isolated gravitating systcm is the l~icmannian Penrose inequality, which sharpcns thc 
positive mass theorem. The argument just described was first put forward by Geroch, 
[24]. Also note the many other contributions to this approach which are refered to in [39]. 
The crucial question concerns of course the existence of such a solution to the flow by 
inverse mean curvature. For starshaped surfaces of positive mean curvature in IR n+l 
Gerhardt [23] and Urbas [53] show that the necessary estimates for complete regularity 
of the flow can be established and they prove longterm existence as well as asymptotic 
roundness in this class. 
Without an assumption like starshapedness it is quite clear that  singularities have to 
occur in certain situations. For example, the solution evolving from a thin symmetric 
torus can not exist forever, due to the upper bound on H some blowup in the speed H - l  
must occur for such initial data. Similar examples can be constructed in the class of 
two-spheres making it clear that  there cannot be a smooth solution for the flow in the 
general situations that arc of natural interest in physics. 
To overcome these difficulties, [39] introduces a weak concept of solution for the flow 
which still retains the crucial monotonicity of the Hawking mass. The weak concept is a 
level-set formulation of (1.1), where the evolving surfaces are given as level-sets of a scalar 
fimction u via 

i 2 = O(xlu(x ) < t}, 

and (1.1) is replaced by the degenerate elliptic equation 

where the left hand side describes the mean curvature of the level-sets and the right hand 
side yields the inverse speed. This formulation in divergence form admits locally Lipschitz 
continuous solutions and is inspired by the work of Evans-Spruck [19] and Chen-Giga-Goto 
[11[ on the mean curvature flow. Using elliptic regularisation and a minimization principle 
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we show existence of a locally Lipschitz-continuous solution with level-sets of nonnegative 
mean curvature of class C 1'~, still satisfying monotonicity of the Hawking quasi-local 
mass, compare [39]. The solution allows the phenomenon of fattening, which corresponds 
to jumps of the surfaces and is desirable for our main application. We thus succeed in 
adapting Geroch's original argument and dcrive the following sharp lower bound for thc 
ln [hulS:  

T h e o r e m  6.1 (H.-Ilmanen) Let N s be a complete, connected 3-manifold. Suppose that 

(i) N s has nonnegative scalar curvature, 

(ii) N s is asymptotically flat in the sense above with A D M  mass m, 

(iii) The boundary of N a is compact and consists of minimal surfaces, and N 3 contains 
no other compact minimal surfaces. 

Then m > O, and 
167rm 2 >__ [E21, 

whcre [E21 is lhc area of any conncclcd component of ON 3. Equalily holds if and only if 
N 3 is one-half of the spatial Schwarzschild manifold. 

The spatial Schwarzschild manifold is the manifold IR a \ {0} equipped with the metric 
:= (1 + m/2]x])45, representing the spatial exterior region of a single static black hole 

of mass m. 

7 S h o r t - T i m e  E x i s t e n c e  T h e o r y  

Classically, the existence theory for nonlinear parabolic equations is treated in two stages: 
first, the use of linearisation techniques to prove that a solution may be found for a short 
interval of time; and second, derivation of the all-important a priori estimates which 
enable us to extend the short-time solution to a maximal time interval. In this chapter, 
wc carry out the first half of the process. 

7.1 E v o l u t i o n  E q u a t i o n s  for Mani fo lds  and  H y p e r s u r f a c e s  

This section introduces the primary concern of this work: evolution equations for geo- 
metric structures. Typically, we considcr motions of manifolds and submanifolds drivcn 
by forces which stem from their curvature. 
Specifically, we address two problems: 

Conformal Deformation of a Manifold: Let (M'*,g) be a smooth Riemannian manifold, 
and consider the deformation process 

0 ~ g  = ~(x,t) �9 g, (7.1) 

for some function ,k. This defines a continuous, conformal change in the metric - -  con- 
formal because the metric changes only by a scaling factor; angles are not affected. The 
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best-known examples of this are tile Kicci flow on a compact 2-surface (described and 
solved completely in [27]) and the Yamabe flow on a manifold of dimension at least three 
[33]; in both thcsc cases, the defining equation is _Og = - R  �9 g, where R is the scalar Ot 
curvature of g. 

Normal Deformation of a ltypersurface: Let F : M'* "--* (N "*+l, g) be a smooth immersion 
of a hypersurface in a Riemannian manifold. M'* is assumed orientable, so that there 
is a smoothly varying, globally defined unit normal vector. In this case, we consider 
deformation of F according to the equation 

0 
- - F  = ; ~ ( z , t ) .  n .  (7.2) 
0t 

The best-known example of this is the mean-curvature flow of hypersuffaces, where the 
speed is (up to a sign) the mean curvature of F. This was first introduccd by Mullins 
in [45] (an unjustly little-known work); it was later found independently by Brakke, who 
cxpresscd the equation in the languagc of gcomctric measure theory in [9]. 
These are the standard examples of such problems, and they share a common structure. 
In both cases, the dcformation process can be shown to be equivalent to a quasilinear 
scalar partial differential equation on M '~. When the impetus comes from the curvature, 
as in these examples, the scalar equations are strictly parabolic and of second order. Such 
are known to possess solutions under very general conditions, at least for some short 
period of time. 
The total curvature problems we wish to study in this work also lead to quasilinear 
parabolic scalar equations, but of fourth or higher order. It will surprise nobody that such 
equations still admit short-time solutions. Nevertheless, when the setting is a manifold 
rather than a euclidean domain, this does not belong to the standard theory and requires 
proof. 
The question of existence will be taken up in later sections; the question of how solutions 
actually behave will be taken up in later chapters. For the remainder of this section, we 
assume that we already have a solution to (7.1) or (7.2), and derive a handful of basic 
properties. 
(7.1) and (7.2) imply evolution equations for the curvature and other geometric attributes 
of g and F. Consider first the conformal deformation. 

L e m m a  7.1 Let M'* be a smooth manifold; let g~ be a one parameter family o/metrics 
on M '~ varying according to (7.1). Then, gt can be written as exp2u(x, t ) 'go ,  where the 
function u evolves by the equation ~uat = ~A.l 

Proof .  It is obvious that gt may be so represented. It follows that 

0 0 (exp 2u.  go) = 20u cOu 
~ g  =- O-t Ot " exp2u,  go = 2 - ~ .  g 

and this provides the equation for u. 
Any other metric g~ in the same conformal class could take the place of go in this lemma. 
The equation for the conformal factor is unaffected. 
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Notation: In what follows, we drop the subscript t from the time-dependent metric. The 
calculations will relate g to a fixed background metric; for convenience, we take this to be 
go. The covariant derivative and laplacian operators of g and go will be represented as V, 
A and V ~ A~ the curvatures will be represented in the same way. The zero may appear 
as a subscript or a superscript, whichever happens to be more convenient for typesetting; 
the mcaning remains clear. This accords with the usage in subsequent chapters. 

L e m m a  7.2 The Christoffel symbols and curvature of g may be expressed in terms of 
those of go and the conformal factor u: 

r,~ (ro),~ + (~,~v~ + k o o k , -o ,  = 5jV~u - g~go v~u) 

_ o o o o _ (  ).g,~ ~,  = n ~ (n - 2) ( v ,  v ?  - v ,  u v ? )  ~ o u + ( n _ 2 )  VOu ~ o 

= e - ' "  (R  ~  2 ( n -  I)A~ - ( n -  l ) ( n -  2) V ~  R 

Similarly, the laplacian operator corresponding to g can be related to that of go: for any 
smooth function r : M" --* R, 

A r  = e-2"A~162 + (n - 2)g~176 V~162 

P roof .  The first three equations may be found in the discussion of the Yamabe problem 
in [8]; the fourth follows easily. Let r be a fixed smooth function on M"; then, in local 
co-ordinates, 

Am = g'~ \ O z ' O z J  r , j~ /  
f 

= 

t' k Ou k Ou o ~ Ou ~ 0r 
= e - "~~  ~'~x~ + 6 ~  -g'jg~ ~ )  0~' 

k, Ou 0r 
= e-2"A~162 + (n - 2) go ~xSx ~ 0x ~ 

and this establishes the final equation. Combining the previous two lemmas gives the 
variation of the curvature under (7.1): 

L e m m a  7.3 The change (7.1) produces in the curvature o f t  is given by: 

O _ R =  0-t0/~i = - ~1 (AA �9 gij 4- (n - 2)V,V3A) and Ot - ( n  - 1)AA - RA. 

Proof .  Differentiating the equation above for the Ricci curvature and substituting A = 

a 1 o (_ + ( ._   )vovo ) + V~ 
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However, for any C a function f ,  

A f . g , j + ( n - 2 ) V , V j f = A ~ 1 7 6  + ( n - 2 ) V ,  o + L I  

in which the error term is given by 

LI ((Fo ,,~k , o,,,, o : - ,  j , , .~ , j  j g , j  + ( n  - 2 ) ( r  ~ - r ) , ~ )  �9 V~ 

and using the transformation rule for the Christoffel symbols of Lcmma 7.2, this simplifies 
to 

L!  : 2(n - 2)(g~176 V~ �9 gO _ V~AVOu). 

But this matches precisely the final term in the evolution of R~j, and so, cancelling, 

0 1 (AA. + (n - 2 ) V , V ~ )  ~P~J  : - 5  g'J 

which proves the first claim of the lemma. The evolution of the scalar curvature is simpler: 

~ n = g 

= - ( n -  I ) A A -  RA. 

and this proves the second claim. This is as much as we need say for now about the 
con formal problem. 
Now let Ft be a one-parameter family of immersions M ,) ~ N ,`+I which vary in accordance 
with (7.2). Let gt denote the induced metric Ft*~. As above) we shall drop the t subscripts 
wherever this would not lead to confusion. 
From (7.2), we compute evolution equations for the geometric features of F. This is 
simplified immensely by the use of well-chosen co-ordinates. 
These calculations are purely local in nature; so we focus on some point (x*, t*) in space- 
time. Let y* be the image of x* under Ft.. We may assume that the co-ordinates on N n+l 
are normal at y*, and that those on M n are normal at x* relative to the metric induced 
at this one instant of time. In particular, the Christoffel symbols F ~ ( y  -~ *) and F~(xk *,t*) 
all vanish, and the Gaul] and Weingarten equations reduce to 

02F~ One" * *" OF~ x* t* 
ox, o~ j (~ ' , t ' )  = -h,A~',t*). n~ -5-ir~Cz ,t  ) = h~(z*,t*).-5~-~ ( , ). 

L e m m a  7.4 Under (7.2), the induced metric on M '~ evolves according to 

0 

It follows directly that the inverse of the metric and the measure evolve by 

0 ~i 0 d/t = AHd#.  ~ g  = -2Ah  ~ and 0--t 
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Proof .  Let (x*, t*) be a given point of spacetime, and assume the co-ordinate systems on 
M" and N '~+1 are normal at  (x*, t*) and Ft. (x*), as above. We compute the evolution of 
g~i at the point (x*,t*). 
The induced metric is by nature given by 

go = r , , 

and hcnce, noting that  .~ is symmetric and has no covariant derivative of its own, 

~ ~ g o = 2 ~  N ~ ' ~  = 2 ~  ~xTx ~ ' ~ x J  ' 

Now expand the product derivative. The derivative term in A clearly vanishes because of 
orthogonality, and all that  remains is 

0 ( 0 n  0 F )  

and it follows directly from the rcduccd Wcingarten equation at (x*,t*) that  the final 
factor is simply ho; with that,  the first claim of the lemma is proved. The rest is easy. To 
compute the evolution of the inverse of the metric, we differentiate the equation gik. g~ = 
~: 

0 - b(gik" gkt) Og ~k ,kOg~ Og ik 
Ot - cot gk~ + g ~[ - cOt g~ + 2Ah~" 

'lYacing with gO gives OgO -2Mr  O, which establishes the the second claim. The final 
O t  ~ -  

part  follows from the rule for differentiating a determinant: 

0 0 0  , -~d t t=  ~ (  d ~ d x )  = 1 ~ d ~ . g  ~ g . j d x = ) ~ H d # ,  

and this completes the proof. 
Next we derive the variation of the normal vector: 

L e m m a  7.5 The change in the normal is given by 

On 
- F, (gradM"A). 

Ot 

Proof .  n is a unit normal vector; thus, ~(n,n) = 1 everywhere. Differentiating this 
equation, we see that  the derivative (any derivative) of n must be normal to n itself, and 
hence tangential to F(M'~). It may therefore be represented in the form 

COn .. (On, OF)  COF (7.3) 
co--[ = g'9 \ ot ~ " coxJ" 

Now differentiating the equation 9(n, ~ . F )  = 0, we have 

O = ~ ~, Ot , Ox, ) + ~ n, ot Ox, j = ~ \ Ot Ox, ) + [? n, Ox' ) = g ~, ot ~ +COx -'-~ ' 
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noting here that another term vanishes because n is orthogonal to all its derivatives. This 
allows us to substitute for - o o g(bTn,-s in (7.3), giving 

On ~j OA OF 

0--[ = - g  ~ OxJ' 

and this is cxactly -F.(gradM"A). 

L e m m a  7.6 The variation in the second fundamental form is given by the equations 

0 

0 i -~h~ = - V ~ V ~ A -  A(h~kh k1 + R i e m j , )  

OH 
= - a ~  - (IAI ~ + k-~(n ,  ~)) 

Ot 

O]A] = -2h i iViVi ,~ -  2,~(tr + hUll,iemi,~,) A s 

Proof .  The second fundamental form is, by definition, 

hij = - 3  Ox-----] , n , 

and so, differentiating, 

0 [ -  OF On'~ 

Now we reinstate the assumptions of Lemma 7.4. In the normal co-ordinate system, the 
rightmost term vanishes altogether because On is tangential and the spatial derivative 
normal. So, expressing the remaining covariant derivative in co-ordinates, 

~ h ~ j = - ~  -~ L Ox.Oz j +  ~ .Ox  i OzJ Oy ~' ,n  . 

Expanding the time derivative, and noting that the terms containing I'~.y all vanish, this 
becomes 

~ h , i  = - g  k ~ + Ot t~ '  Ox i Ox~ Oy ~ ] 

[O2()~n) OFeOF ~ O "~ 
= - 3  kOxiOxJ + ~ v . r ~  o~i  o~ ,  ou ~ J 

At the point (x*, t*), the Weingarten equation for the derivative of the normal gives 

On" ~ OF '~ 02n " Oh} OF ~ + h} 02F'~ OF'~ O f  ~ 
Ox i = h i Ox i and OxiOxi - Ox i Ox k Ox~Ox---- ~ ~ ~ n ~. 



66 

It follows that 

This enables us to expand the product derivative in (7.4), which gives 

a o51 lh,~h; + 19 ( ( v  r-o o r ~ 0 F -  - _ OF~ ,~ O , n  ~ 

IIowever, in our normal co-ordinates, the second partial derivative of I coincides with the 
covariant derivative, and the final term is simply the Riemann tensor of N '~+l. Permu- 
tation of the indices in one or other of the summands allows this term to be rewritten 
a s  

and now the first factor matches the definition of the Riemann tensor; the product sim- 
plifies therefore to 

Ih" '~OF~OF'r ~ = ~ . j .  
en~n~ ~ n ~ ~ n 

In view of all this, the evolution equation for hit may be rewritten as 

0 
-~hij  = - V i V i l  - 1(-hikh~ + Pdem,,,j.) (7.4) 

which settles the first claim of the lemma. The equation for h~ follows quickly: 

0 i 0 .ik 9 jk (ViVkl  A(-hah~ + Pderni,,~)) ~-~hi = ~-~(g hik) = - 2 1 .  h~khik - . 

= - v , W t  - ~(h,~h{ + men~&),  

and tracing over i and j gives the equation for H at once. Lastly, 

0 im12 Otfl-~(h~h}) -2hiJVivi)~ - i k i _ = ' = 2,k(hih~h k + hiJRiemi,,j) 
Ot 

which is the final claim. The curvature equations hint at the structure concealed in (7.2) 
and (7.1). In the examples mentioned earlier, where the speed ,k was the curvature itself, 
they are clearly parabolic. 
The speeds which interest us in this work feature the laplacian of curvature as their leading 
term. These too will lead to parabolic equations. 
The assumption of orientability demanded in order to make sense of (7.2) is heavy-handed. 
In real-life examples, it can typically be avoided. The mean curvature flow, for instance, 
may be rewritten using the Weingarten equation simply as 

OF 
- -  -- AF, 
Ot 
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where the laplacian is computed ill the induced metric; and this is now perfectly mean- 
ingful even when the manifold is not orientable. The hypersurface flows we shall consider 
later can be redefined ill tile same way. 
The first step towards understanding these problems is to prove that  solutions can be 
found at all. The strategy here is inherited from the second-order theory. The geometric 
equation is shown to be equivalent to a quasilinear scalar equation, which may be solved 
for some short interval of time using linearisation techniques; this short-t ime solution may 
then be continued as long as it does not beconm singular. 
In the remainder of this chapter, we construct the short-t ime existence theory. In the 
problems of higher order we consider, even the linear theory is incomplete, and we have 
to develop it for ourselves. This is the goal of the following two sections. 

2.2 T h e  l i nea r  p r o b l e m  

In this section, we prove tlle existence of solutions to the linear parabolic equation of 
2p-th order on a closed manifold. There are numerous proofs of the corresponding result 
in a euclidean domain - -  see, for instance, [18] or [50]. But these typically rely on the 
construction of a fundamental solution to the equation, a technique whidl  is not easily 
adapted to the manifold setting. Friedman [21] describes an abstract  approach based on 
a variant of the Lax-Milgram lemma, developing ideas originally due to J. L. Lions [44] 
and F. q'~hves [51]. 
However, Friedman's  account of tlle result is inaccurate. He proves the existence of a 
t ime-W k'2 solution to the linear equation Dtu + Atu  = g, Uo - 0 under the unacceptably 
strong assumption that  g vanishes at time zero along with all its derivatives of order up 
to k - 1. Considering the equation as a physical process, this is tantamount  to assuming 
there are no external forces at time t = 0. This is clearly an undesirable condition, and 
in no way a natural  one. 
This is in itself not a mistake, though it limits the usefulness of the theorem, bS-iedman 
goes on to claim in a remark, however, that  one may prescribe the initial values Uo freely 
by considering the equation for u - Uo. But this gives an equation whose forcing term no 
longer satisfies the vanishing condition; the theorem as Friedman states it  does not apply. 
In this section, we use techniques related to Friedman's to prove a minimal existence 
result. This will be strengthened later when we prove the natural  a priori estimates for 
the linear problem. 

Let (M ", g) be a smooth, compact Riemannian manifold. Let A be a linear differential 
operator  of order 2p on M";  that  is, for a 2p-times differentiable function u : M n --* IR, 
we set 

Au(x)  ~ "'='"'~ = A k (z)V,, i~. . .~u(x),  
k<_zp 

in local co-ordinates, where the Ak are smooth tensor fields on M'* of type (0, k). Let A 
be elliptic in the very strong sense that  the leading term can be factorised as 

a~tJl"2~v'"~l~ : Ei lJ~Ei~J2. . .  EirJP, 
�9 t 2 p  

where the 2-form E is strictly positive: E > ,~g for some )~ > 0. In words, the leading 
par t  of A should simply be the p-th power of some second-order elliptic operator.  
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It is possible - -  easy, even - -  to define much weaker notions of ellipticity. However, the 
operators which arise in our geometric problems do turn out to have the structure above; 
moreover, it is a much simpler mat ter  to prove Gs inequality in this class. 
Consider such an operator  in the usual Sobolev-space way as a bilinear form defined on 
WP'2(M"), which we shall also denote by A. Then: 

L e m m a  7.7 (Gtbrling's htcquality for A) For any r E WP'2(M'*), 

Av 2 2 
- I I r  , A(r162  _> -~-IICIIw,.~(M.) Q 

where the constant Q depends on n, A, and the C p-t norms of the of the tensors Ak and 
�9 M n 

Riemiflr149 

P r o o f .  This result is easy; the only point that  requires any explanation is the appearance 
of tile Riemann tensor in the calculation. That  arises through perhaps having to permute 
derivatives in order to ensure that  the leading term is given by 

A(r r -- JM" Ei'J'Ei2J2'" EiPJP~--'m'"'P~" ~ .Vl._,,j2...jpw. ' ~ -a- (errorterms) dlt. 

The very strong ellipticity condition makes it clear at once that  the leading term is at least 
.V' fM- I[VPr 2 d#, and the usual interpolation argument can then be used to est imate each 
of the terms of lesser order between a fraction of this and a large multiple of the L2-norm. 
Now we consider the parabolic problem�9 Let At be a smooth family of elliptic operators of 
order 2p. 'Smooth '  memas simply that  the component tensor fields should vary smoothly 
over M '~ x [0, oo). 
qb prove the existence of a solution to Dtu + A,u = g, we recast the problem in the 
natural  Hilbert  space setting, and solve the resulting operator  equation using the following 
refinement of the Lax-Milgram lemma, which relaxes the continuity assumptions on the 
bilinear form: 

L e m m a  7.8 Let (H, ]['[[H) be a Hilbcrt space and (ep, [['H~) an inner-product space con- 
tinuously embedded in H. r is not assumed to be complete. Let F : H • �9 ---* IR be a 
bilinear form with the properties that 

�9 the mapping h ~ F(h, r is continuous for each fixed r E ,b,and 
�9 F is coercive on 'b: F ( r162  > ,~ I1r for some ~ > O. 

Then any smooth functional L ~ ~* can be realised as a slice through F: there exists 
ut. E H such that L(r = F(UL, r for each r ~ ~. 

P r o o f .  See [21], Chapter  10, Theorem 16. 
For smooth functions f ,  g : M "  x [0, oo) ~ ]R, we introduce the weighted inner products: 

(f ,  g)LL. = e -2at ( f( ' ,  t), g(., t))L,(M~ ) dt 

/: (f, g)LWo = e -~ t  (f(',t), g(',t))wpa(M. ) dt 

(f ,  g)wwo : (f ,  g)LWo d- ( D J ,  Dtg)LL. ; 
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we define LL,, LW,  and W W ,  to be the t t i lbert  spaces formed by completion of C~(M " x 
[0, o~)) in the corresponding norms. Further, let (I) = C ~ ( M  '~ x (0, 0o)) be the space of 
smooth functions which vanish for very large and very small times, and let WW~ denote 
the completion of �9 in WW, .  

T h e o r e m  7.9 Let At be a smooth and uniformly elliptic family of operators of order 2p. 
Then, for suj~ciently large a (which depends only on At), the equation 

Dtu + Atu = g, u(*, 0) - 0 (7.5) 

has a unique weak solution in W W  ~ 

P r o o f .  Note first tha t  u is a solution to (7.5) if and only if e x p ( - M t )  �9 u solves the 
equation Dtw + (At + M .  id)w = gexp( -Mt) .  Choosing M = Q, the weight of the error 
term in the Gs inequality above, we see that  it  suffices to solve equations in which 
the clliptic operator  is strictly coercive. ~ o m  here on, we assume this is the case. 
Define a bilinear form on W W  ~ x (I) by tile formula 

P ( w , r  = (Dtw, Dtr + e-2atAt(w, Dtr 

and a linear functional on (I) by 

5( r  = (g ,  D,r 

These are simply the results of testing the left and right hand sides of (7.5) with the 
function e -mu. Dtr Fixing r P is easily seen to be continuous in w. It is jus t  as obvious 
that  L too is continuous with respect to the WWa-norm. It remains only to show that  P 
is coercive, and Lemma 7.8 will apply. 
This is a simple but  technical matter .  Let r E (P; then 

D 2 f0 ~ e-~*At(r  Dtr dr. P ( r 1 6 2  = II 'r176 + 

Let I denote the second term on the right. Part ial  integration in time shows that:  

) ,  
- " I I r  >_ a ~ -  ~ s u p l D ,  A~[ 

If a is chosen large enough, then, this ensures that  P is coercive on �9 • �9 with respect to 
the WW~-norm; thus, by l ~ m m a  7.7, one can find a w* e W W  ~ for which P(w*, r = L(r 
for any r E (I). 
It might seem at  first that  this is insufficient to deliver a weak solution of (7.5), as our 
test function space is still too small. We are restricted to those functions whose average 
over t ime is zero, which would normally mean only that  w* differs from a solution to (7.5) 
by a t ime-constant function. 
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In fact, this problem does not arise because of the weighting given to the measure. Fix 
some r E ~, and consider the function 

~,(z,  t) = r  t) - r  t + B) .  

For B large enough (so large that the support of the second term does not overlap with 
that of the first), this averages over time to zero, and so it can be represented a s  Dtq~ 
for some r E (P. However, the contributions to P(w*,r  and L(r made by the second 
term are easily seen to diminish to zero as B --+ cr because of the exponential factor; we 
therefore have 

(Dtw*,  ~)) LLo -t- a~O r176 e-2at At(w *, r dt = (g, ~)) LLt, for any r E O, 

and with that, w* is a weak solution to the original equation. 
Several points remain open. The solution above has the minimum of regularity needed 
to make sense of the equation; W t'2 in time and W p'2 in space. Such a function takes on 
thc zero boundary data continuously only in L 2. 
It is possible to accommodate sufficiently smooth nonzero initial data Uo by considering 
the equation for u - uo. To apply the result above, this means that Atuo needs to be in 
LL,, which in turn implies that Uo has to be a W ~v'2 function. 
This last result is less than optimal. In fact, the natural class for the initial values is WP'2; 
this will follow from the estimates proved in the coming section. 
The solution above is unique. This too will follow from the estimates. 

7.3 A P r io r i  E s t i m a t e s  for the  Linear  E q u a t i o n  

This section is concerned with the regularity of the solution obtained above. Crudely, 
the principal results are first, that  the solution is as smooth as the forcing term g allows 
it to be, and second, that the correspondence between solution u and forcing term is an 
isomorphism of appropriately defined Banach spaces. The importance of the second of 
these will become clear in the next section, where we discuss the quasilinear problem. 
First, we define the appropriate Hilbert spaces. Let 

{ I/0 + } LW~ = I : M "  x [0, cr lR e-2~t 2 --' II/llw.,,(M-) dt < c~ 

with inner product (f, g)Lwt = f~  e-2+t (f, 9)W~ dt, and let 

P 2  = { / :  M" • [0, ~ )  ~ ~tlD~/exists and is in LW~ ("+-')p for each i < m}, 

where the inner product is the obvious choice: 

(f, g)pg, = ~ (Dr f ,  Dtg)t, w2.(--,),. 
i<_rn 

The description may appear unwieldy, but P~  is the natural space forced upon us by 
the scaling properties of the problem. Accepting the parabolic mantra that one time 
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derivative corresponds to 2p derivatives in space, this somehow describes the space of all 
functions which are in total 2rap times differentiable. 
The natural regularity of the boundary values of such a function (and, because M n has no 
boundary of its own, we can use the word without ambiguity to refer to the time boundary 
t = 0) is W~('~-�89 ),2. The principal result of this section, which we prove below, is this: 
for any rn, the map 

F ( u )  = (,,,,, 'a) = (',,,, D t u  - Au)  (7.6) 

is an isomorphism from P ~  onto W2P('~-�89 },a x p2 -1 .  
The technique for proving regularity is standard - -  we prove Caccioppoli-esque energy 
estimates first for u and then for its difference quotients. So, suppose u is in some L W ,  
and solves the equation 

r + fo ~ e-="tAt( u, r dt = (g, r (Dr,,, (7.7) 

for any smooth, compactly supported r and hence by completion for any r in the broader 
class LWa. Suppose further that u h ~  initial values Uo, which are taken on only in L 2. 

L e m m a  7.10 u satisfies the eneryy est imate 

= Ilgll~L~ IlullLw,. <- C (tluollo(M.) + 2 

Proof .  Choose u itself as the test function in (7.7). Then, 

U)LL. + fo~e-~"tAdu, u)dt = (g, U)LL.. (7.8) (Dt~, 

For any f which is W 1'2 in time, partial integration gives 

(Dr f, f )LL.  2 I 2 = a ]IfIILLo -- ~ HfO]IL2(M,,) �9 (7.9) 

Thus, returning to (7.6), and using the ellipticity of At, 

AP u 2  p 1 
T LWa + (a -- q)IlUlILLo2 _< 2 IIuoI[L,(M-)= + IMILLo " IlUHLL.. 

Now choosing a > Q and handling the forcing term with Young's inequality, the lemma 
is proved. 
To establish that u has derivatives of higher order, we prove estimates for its difference 
quotients. Defining the difference quotients requires a continuous co-ordinate system, so 
we have to focus on a single co-ordinate patch. This means multiplying u with a cut-off 
function in space. 

L e m m a  7.11 l f  u E W W ,  is a solulion to (7.7) with initial values uo E WP'2(M") ,  then 
u E L W ~ ,  with the est imate 

I 1 < '  ' IIglILL~ �9 ILw~, < C (llUollw,,,(Mo) + ' 
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Proof .  Let r : D~' ---* M", i = 1 , . . . ,  N be a collection of smooth co-ordinate patches, 
so chosen that the images r between them cover all of M '~. Let rl be a fixed C ~ 
cut-off function between DI/~ and Da/4. Let Bi be the image r in M"; let B~ denote 
the image of D1/2. 
Now assume that we already have estimates for u in LW~ +p, for each l < k, and set r = 
A~h(r/~+2A~,u ) in B~, where 71 and the finite differencing operator A~,f(x) = h- l ( f (x  + 
hej) - f(x)) are lifted to M'* with the co-ordinate map r Outside B~, we simply extend 
r to be zero. Notice that, although we don' t  have uniform estimates in h for the norm of 
r the function is at least as regular in space as u itself. 
Then, substituting for r in (7.7): 

and so, shifting difference operators with the discrete analogue of partial integration in 
space, 

e Ae(AhU, ~ Ahu ) dt = (D,(r/V+tAkhu), r/V+tAhkU)LL ~ + f :  -2at k ap+2 k 

( -1 )  k (g, Ak-h(Y2n+2A~U))LL. - ( - - l l k ~ = ,  (~) fYe-Ut(A~Atl(A~-iu, y2p+2A~u) dr, 

where the error term on the right arises through applying the product rule for difference 
quotients to the elliptic term. The discretised product rule is not completely clear-cut; 
it reads Ah(fg)(x ) = f ( x  + hej)Ahg(x) + g(x)Ahf(x) - -  that is, one of the functions is 
shifted. In our case, this has no bearing; A is completely smooth, and we are concerned 
only with its pointwise properties. In applying the product rule, then, we always shift the 
factor in A, never the one in u. 
Denote this error term El. Then, 

IE, I -< C [oo [ ~-~" ~ IV'A~,-"~,I. IVJ(,TV+;A~,u)l dv ~ dr. 
JO J M "  i,j<p;l <rn<k 

The first factor in the quadratic part is harmless, because by assumption we already have 
an estimate for u in LW~ +n-~. The second may be handled in the same way for j < p, 
while the case j = p is no worse than the helpful term which will be won using the 
ellipticity of At. So, by Young's inequality, 

2 ~+lVntAku~ll2 (7.10) led -< C l l u l I L w : + , - I  + c  ,, ~ h ' I ILL . "  

Notice here that, if we differentiate r/2p+2 up to p times, there always remain at least p +  1 
powers of 7/in every term. 
Now consider the remaining elliptic term; call it E2. We have: 

E2 = f~r e-2~' A,( A~u, r/~+2Akhu ) dt 
f ~  fM. e-2at AIJ Aku ~,+2 k = ~,lll,Idl<n VI( h )Vd(rl Ahu ) d# | dr, 
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and whatever else may happen, every term in the sum must contain at least p + 1 powers 
of 7/. Bearing this in mind, and isolating the term of highest order in u, 

E 2 >  [ o o [  e -2"t (A,pj~V,,,fVj~f.,2p+2_ C~ +1 ~ IV ' f l .  IV i f , /  d# | dt 
JO J Mn ~ i,j~_p;i+j<2p / 

where now f = Ahku, and so using tile ellipticity of A, Young's inequality and tile estimates 
assumed from the outset for u, 

)'P + l v p  k ~ - - C l l u l I L w k + ~ - , .  (7 .11)  E~ > T if' (A,u)  LL. 2 

This controls the terms in At in (7.10); now consider those which remain. The first term 
is of the form handled in (7.9): 

2 (Dt(r r : a zr~+'Akhu 12LL~ -- 21 rf+,A~uo L~(M.) (7.12) 

while the forcing term is easily estimated if we now assume k _< p: 

g, A k /.2p+2Aku~\ 
- h k q  h ]ILL~ ~- IM[LL." A[a('I~P+2Akh u) LL~, (7.13) 

<- CIMILL." ,fp+~a~u LW.~ (7.14) 

< cIIgl lLs." ,fP+2,*,~u sw.," (7.15) 

Combining (7.10), (7.10), (7.11), (7.12) and (7.15), we have 

+1 p k 2 /'llTf+lAkuo 2 2 2 ). 
I ~p V (AhU) LL~ "~ C -~ IlullLw2+~-' + [[gIILL. - \ l l  h L2(M .) 

Now assume that uo is in the class Wp'2(M"). This isn't the same as assuming the initial 
data are taken on in W p,2 - -  indeed, in the above calculation, we only make use of the 
fact that  u, and hence AhkU, assume their initial values in L 2. Nonetheless, if uo is (by 
chance) W ',2, then we have 

+1 p k LLa2 IIU[ILW~+p_12 2 ~' v (z~,,u) < c (ll"oll~,,~(M-) + + IIglILL~ 
To keep the notation from becoming needlessly complicated, this estimate was written for 
the 'pure'  k-th difference quotients; though it is clearly just as true for the mixed difference 
quotients as well. Thus, we have uniform Wp,2-bounds in h for all the difference quotients 
of k-th order in the hall B~, which therefore converge weakly to genuine weak derivatives 
satisfying the estimate 

vk+"u ~' < c (ll'~llw,.~(Mo) + IlullLw:+,-' + LL.(B;) - 

and summing now over all co-ordinate charts, we have 

2 IIglILL.)" (7 .16)  v~+"u :L~ -< c (11~o11~,,,.,(,~.) + IlullLW:+,-' + 2 
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Starting from the energy estimate (7.10), then, and iterating (7.16) over k = 0, 1, 2 , . . .  ,p, 
this proves the lemma. 
Once this much is settled, u is smooth enough that we no longer need represent Atu as an 
operator - -  indeed, we have Dtu = g - Atu pointwise almost everywhere in M n x [0, c~). 
This means in turn that Dtu E LL~, - -  well, this much we knew already - -  but with a 
concrete estimate. Combining this bound with that of the previous lernma, we have then 

L e m m a  7.12 I f  u is a solution to (7.7), where g E P~ and Uo E WP'2(M'~), and i ra  
is chosen larger than some constant which depends only on At, then u E P~, with the 
estimate 

2 

The constant Q depends only on At and M". 

tIigher Regularity: Tile above proof made use only of the minimum of regularity needed 
to make sense of the defining equation. Now suppose that g E ~ and that uo E 
W2P('~+�89 In this case, we choose r = A2~P+k(~/2~+2A~mP+ku) as test function 
in (7.7) and proceed almost as before; the one difference is in the bound for the integral 
which comes from the forcing term. In this case, we exploit the greater smoothness of g: 

g,  A2r~P+k(~2p+2A2rnP-bkU ~\  
-h ~,, ~ JILL. < IlgllLw:-, '  I Iv~ '+~a~, ' "+%ll~ t  

1 p 2p+2 p z~2rap+k 2 and again, the term in u is subsumed by the elliptieity term (SA lit/ V ( h )IILL~ 
provided k < p. In this case, then, we can iterate (7.16) as far as 

So much for the spatial regularity; now consider the time derivatives. Here again we argue 
incrementally. Assume that, for each s < j ,  D~u exists and is in the class LW~ p("-'). 
Since Dtu = g - Atu pointwise almost everywhere, this means that u is (j + 1) times 
differentiable in time; more to this, this gives us the estimate 

I[Dt UllLW~,(~-,) < O E Dt u [LW2,(~-O II~gllLw:~(--J) + 
a l<.j 

Starting from (7.17) then, and iterating up to j = ra, this proves 

L e m m a  7.13 l f  u is a solution to (7.7), where now g E ~ and uo E W2g"+�89 
then u E t:~ +1, with the estimate 

These estimates are the foundations for the theorem foreshadowed at the start of this 
section: 
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T h e o r e m  7.14 The map F : p~+l ~ W2P(,n+~).2(U n) X P~a defined by 

F(u) = (uo,g(u))= (Uo, n t u -  Atu) (7.18) 

is a Banach space isomorphism. 

P r o o f .  First  we show that  F is continuous. This much is clear for the second component; 
the interesting par t  is the continuity of the initial values. 
Let u E P~o +~. Then u has, at  the very least, a weak t ime derivative which is in LL~. 
This ensures that IlUt]]L~(Mn) is a Lipschitz function of time; in particular,  ut converges 
in L 2 to Uo as t --~ 0. 
To prove u0 is bet ter  than merely an L 2 function, we argue again with difference quotients. 
Recycling the notat ion used to derive the estimates above, we have 

r/2A(2-~+l)p u 12 h 0 L2(M.)  : 2a y2A(~"+m)Pu 2LL ~ - -  . I n  ^ ( 2 r n + l ) p .  

(which is simply equation (7.9) rearranged). The first term on the right is clearly con- 
trolled by the LW~'P+P-norm of u, and in turn by the P ~  +knorm. To handle the second, 
we shift p difference operators from one factor in the inner product  to the other, giving 

2^(2,~+,),, I s 2(_I),,(DtA~,,,Pu, AP_h(~2A(2,~+,),,U))LL. " , . . ,  L,( .o)  -< Cllull :+. - 

The second term is now easily est imated using the Cauchy-Schwarz inequality: the first 
factor by the LW~'~P-norm of Dtu, the second by the LW~"P+2P-norm of u itself. Again, 
both of these are contained within the p~+a norm, so we have 

tie ̂ (2m-l-  1)p 12 
~'h Uo L,(M.) <- Cllutl~:+, 

Since this is independent of h, we may pass to the weak limit, and infer tha t  Uo has weak 
derivatives of order (2m + 1)p, with the est imate 

lu011w,.(..+�89 -< Cllull~.-+,, 

and with this, the mapping u ~ ~o is continuous between the given spaces. 
The next step is to show that  F has an inverse. This means showing that  the equation 
F u  = (uo, g) for given Uo and 9 is uniquely solvable in the appropriate  class. This 
follows from the existence theorem 7.9 together with the regularity theory above. The 
one remaining loophole is that  the initial da ta  in the existence theorem were assumed to 
be at least W 2p'2. We now close this. 
Let Uo E WP'2(M"), and let u~ be a sequence of smooth functions on M "  converging to 
no in the W p'z norm. For each i, the existence result returns a function u ~ in P2 which 
solves the equation Fu i = (u~,g). Because of the P2 est imate above, these converge in 
the P2 norm to a limit u. By the continuity of F ,  Fu = (uo,g) and we have our solution. 
The uniqueness claim is an immediate consequence of the P2 estimate. 
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Lastly, we wish to show that the inverse of F is continuous. But this is exactly the content 
of the estimates above. �9 

7.4 T h e  Quas i l inear  E q u a t i o n  

The isomorphism estimates of the previous section axe the means by which we proceed 
from the linear equation to tile quasilineax. 
Consider the quasilinear problem of 2p-th ordcr 

D~u = Q(u) = A'I~i2J2""'pi~D . . . . . . .  + b, u(-,  0) = no, (7.19) $i$2...~pJi . . .Jp~ 

where the functions A = A(x ,  u, Vu ,  V2u, . . . , V ~ - l u )  and b = b (x, u, Vu ,  . . . , V ~ - l u )  
are smooth in all their arguments and where A is elliptic, at least in a neighbourhood of 
the initial data. By 'elliptic', we mean still that A factors as a power of a positive tensor 
of second rank. 

T h e o r e m  7.15 For any smooth initial data uo for  which A(uo) is eUipic, the quasilinear 

problem (7.19) has a smooth solution defined on some finite time interval [0,T). The 
solution is unique and depends continuously on no. 

Proof .  Define an operator F : p~+l  ___, W2p(,,,+�89 x / ~  thus: 

F(u)  = (no, D , u -  Q(u)).  

F is Fr6chet differentiable, and, by the results of the previous section, the linearised 
operator D F ( z )  is an isomorphism provided A(zt) is elliptic for each t. 
Let w be the solution to the 'frozen' linear problem, 

Dtw - A(uo) . D2pw = b(uo), wo = no. 

Since Uo is smooth, the same is true of w, and in particular, wt converges smoothly to uo 
as t ~ 0. It follows that A(wt)  is elliptic for sufficiently small times. 
Now lineaxise F around w. To simplify the following argument, we shall assume that 
A(wt)  is in fact elliptic for all times; if this is not the case by nature, we simply tamper 
with w outside some interval 0 _< t < ~. In the following analysis, we are in any case only 
concerned with the properties of w in a neighbourhood of t = 0. 
The Implicit Function Theorem for mappings between Banach spaces (see, for instance, 
[15]) ensures that F is locally a diffeomorphism from a neighbourhood of w to a neigh- 
bourhood U of F(w) .  However, F(w)  = (no, Dtw - Q(w)) ,  and hence, bearing in mind 
the definition of w, 

F(w)  = (no, (b(uo) - b(w) ) - (A(uo) - A(w))  . D=Pw), 

and the second component here converges smoothly to zero for t ~ 0. In particular, then, 
we can choose q E W(2"~+I)P'2(M ") x P~, approximating F(w)  with second component 
vanishing in some whole interval of time [0, c). For appropriately small c, this q will fall 
inside the neigbourhood U. 
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Since F is a local diffeomorphism, this means there is some u E p~+l  such that F(u) = 
(Uo, q). In particular, then, the second component of F(u) vanishes for small time: Dtu = 
Q(u) for t < e. With that, we have a solution to the quasilinear problem in p~+l .  
ttowever, we may conclude more. The initial values here need not be precisely u0; they 
may be taken from some neighbourhood of Uo in W(~m+l)r"~(M"). So we have a solution 
for all nearby initial data; and more to this, the Implicit Function Theorem guarantees 
that the correspondence between solution and initial data is continuous in the appropriate 
norms. 
All this does not yet suffice to prove the claim of the theorem. The argument above 
gives solutions of increasing smoothness, but possibly defined on intervals of decreasing 
duration. To prove the existence of a C ~~ solution on a definite time interval, we need a 
further property from the regularity theory. 
Let u be a solution now to (7.19) in [0,c) which is uniformly bounded in C"*. For m 
sufficiently large, this will imply that u is in fact absolutely smooth. 
Prccisely, we considcr u as a fixcd flmction now, and derive the evolution equation for 
w~ = Viu. If u is uniformly bounded in C ap-I+G, then this may be considered as a linear 
equation for w with coefficients which depcnd on u and its derivatives of up to ( 2 p -  1)-th 
order. These are therefore uniformly bounded in C% This limits the growth of wj to 
exponential in time; in particular, each w i remains bounded in the interval [0, ~), and this 
means that  u is in fact C ~ for t < ~. This detail completes the proof of the theorem. 

7.5 S h o r t - t i m e  Ex i s t ence  for G e o m e t r i c  E q u a t i o n s  

Now at last we are in a position to prove the existence of short-time solutions for a class 
of geometric evolution equations. Considcr the deformation processes 

0~g 
= ( - ( - A ) P R  + r Riem, VRiem, V2Riem,. . .  V2P-'Riem)) g (7.20) 

Ot 

for metrics, and 

OF = ( _ ( _ A ) P H + r  VA,V2A,. .  V~_IA))  n (7.21) 
0t "' 

for immersions, whcre r is in each case smooth in all its arguments, but otherwise ar- 
bitrary. This is the structure of the total-curvature problems considered in subsequcnt 
chapters; it also appears in a number of equations unrelated to variational problems. The 
cases n = 1, r = 0 in the above equations fall into this last category; they arise in general 
relativity [13] and crystal formation [10[. 
The derived equations of lemmas 7.3 and 2.1.6 describe the change in the curvature which 
follows from the above defomations. To highest order, 

OR OH 
Ot - ( - A ) P + I R  + ' " '  Ot - ( - A ) P + I H  +"  

and these arc parabolic, in the sense that the linearisations are parabolic, even using the 
very restrictive notion of ellipticity introduced in section 2.2. 
It is not surprising, then, that (7.20) and (7.21) themselves are, properly interpreted, 
also parabolic equations. In this section, we show how they may be reduced to strictly 
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parabolic, quasilinear scalar equations, and hence that  they have short-t ime solutions 
under appropriate  initial conditions. 

T h e o r e m  7.16 Let M "  (n > 2) be a smooth manifold with metric go. There exists a 
solution to (7.20) defined for some period of time 0 ~_ t < T which takes go as its initial 
values. It is unique. 

P r o o f .  If there is a solution at all, it may be represented as in Lcmma 7.1 in the form 

gt(x) = exp 2u(x, t) . go(x) 

where the conformal factor u evolves according to 

Ou 1 
-- ( - ( - A ) P R  + r Riem, VRiem, V2Riem, . . ,  V ~ ' - ' R i e m ) )  

gt 2 " " 
(7.22) 

Lemma 7.2 shows how the Laplace operator and Ricci curvature of gt may be expressed 
in terms of those of go and the conformal factor. The same is clearly true of the Pdemann 
curvature of g and its covariant derivatives. So one can rewrite (7) in the form 

Ou 
O--/-- - ( p  - 1 ) e x p ( - 2 ( p +  1)u)- (--A0)p+I~/, + r (X, U, V0tt, (V0)2U,..., (V0)2p-}-It0 , 

where r is smooth in all its arguments. This, however, is now a quasilinear scalar equation 
on (M'~,g0); it is parabolic in the sense of Theorem 7.15, and it therefore has a unique 
solution with initial values u0 -= 0 for some period of t ime 0 _< t < T. Start ing from 
this solution, we now take (7.22) as the definition of gt and this gives a solution to the 
geometric problem. 
When it comes to hypersurfaces, life is not quite so simple. In this case, the reduction to 
a quasilinear problem is not as clear-cut. The idea is to represent the the hypersurface 
at t ime t as a graph in Fermi co-ordinates over the initial hypersurface and consider the 
deformation process as a quasilinear scalar equation for the height function. 
Consider again an isometric immersion F0 : (M ", g) ~ (N '*+l, ~0). Let M = M n x ( - c ,  c), 
where c is chosen so small that  the map 

F : M --* N "+1 : (x, h) ~ expFo(x)(hn(x)) 

is itself an immersion. If Fo is an embedding, then F is simply the map which generates 
Fermi co-ordinates on a tubular  neighbourhood of Fo(M'~). The tangent space to M is 
spanned by the vectors o y~-;~, i =  1 , 2 , . . . n a n d  o ~-~. 
Let G be the metric induced on M by F.  It follows from the GauB Lemma that  the 
geodesics {x=constant}  are orthogonal to the parallel surfaces {h=constant} ,  and hence 
that  G may be broken into a sum: 

G(x, h) = Ga(z) + dh | dh, 

where Gh is the metric on the surface M" x {h}. In particular,  Go = F~9 = g. 
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Now let u : M" ~ ( -e ,e)  be a smooth function, and consider the graph of u in M, 
parametriscd by r : M "  --~ M : x --* (x, u(x)) .  The tangent space to graph u, considered 
as a submanifold of M, is spanned at a point r  by the vectors 

O 8r a Ou o 
r i -  Ox i -  Ox i + Ox ~ Oh ' 

and the induced metric M" inherits from graph u is given by 

"7~j(x) = r  

The normal to graph u - -  one sees this simply by computing the product with each of 
the basis vectors above - -  is given by 

l ( a  ~ Ou a ' l  
n , , . , . , , , , , ( x )  = - ' 

where N = {1-i- G,(:)(VC"u, V c ' u ) }  '~ . From this, we derive an expression for the second 
fundamental form of the graph: 

1 

1 0 2 u  
- N OxiOx ~ + termsinx, u a n d V u  

_ 1 XToOVVOu 4- alj(x ,  u, Vu) 
~ r - - i  j - -  

and in the last equation, a is a smooth tensor field. Its exact form need not concern us. 
Tracing with the metric on graph u, this yields the mean curvature: 

1. ijrTGo wG0.. H = - - ~ r  vi v~ ~ + (T i ia~) (x ,u ,  V u ) ,  (7.23) 

nothing here that .y~i too depends only on x, and u and its first derivatives. 
Since 1, depends on Vu, its Christoffel symbols depend in turn upon derivatives of u 
of second order. The same is then true of covariant derivatives on graph u; while q-th 
covariant derivatives depend on derivatives of u up to and including the (q+ 1)-th. 
In particular, if f is a function graph u ~ Ill., then 

A~f  = ")"~VT~176 + termsinz, u , . . . ,  V~u, f a n d V f .  (7.24) 

Thus, the leading term in the mean curvature of graphu could be rewritten (and more 
naturally so) in terms of the laplacian on graph u; this, however, is precisely what we 
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don't want for the purposes of the short-time existence theory. We wish to repaclmge our 
equations for a fixed manifold with a fixed metric. 
It follows from (7.23), (7.23) and (7.24), together with the preceding remarks about 
covariant derivatives, that  the instantaneous speed of graph u under (7.21) is given by 

I i~j~ ++2J2 ( -  1)n~7 "/ ..../iP+lJp+I ~'7CO~q--$1 --31 . . . .  --iP+l~CO VI~Ojp.I_lU.~_~(X,U, V U ,  �9 �9 �9 , V2P-I - lu ) ,  

where q~ is another function which is smooth in all its arguments but whose precise form 
is left unstated. 

T h e o r e m  7.17 For any smooth hypersurface immersion Fo : M "  ---+ N '++1, there exists a 
unique solution to the flow problem (7.2I) defined on some interval 0 < t < T and taking 
Fo as its initial values. 

Proo f .  The quasilinear equation 

0u0_/ . . . .  ( -  1)"7+'J' 7++J+ 'v+"+'J"+'Va~176 --~' " " "--~"+' v a ~  va~ u + N r  V u , .  . . ,  V~"+lu) 

is parabolic at u = 0, and therefore has a unique smooth solution with zero initial values 
defined for some period of time 0 < t < T. 
Consider now the family of surfaces graph ut, parametrised by eL(x) = (x, u(x, t)). The 
initial surface u = 0 is simply M" itself; and the family develops according to the equation 

a r  Ou 0 

Ot Ot Oh" 

In view of the preceding discussion, o y/u is the speed graph ut would have under the flow 
(7.21), rescaled by a factor of N. So, r is a solution to the geometric equation 

o 
(x)  = N c o .  

where ~0 is the speed in (7.21). 
However, decomposing o into tangential and normal parts, 

0 1 
Oh - N ngr~'h''  + )~ 

where )~(x) is a tangential vector field. Since r is smooth, so is ,L Thus, the evolution of 
r can be rewritten, 

0r  = co. ngr~h ,, (X) + N,~, 
0 t "  " 

and so r is a solution to the original geometric problem, give or take a tangential motion. 
Tangential motion has no effect on the solution hypersurfaees, considered as sets; it affects 
only their parametrisations. In crude terms, it is the movement of a bicycle chain: each 
individual link is in motion, but the shape of the chain taken as a whole does not change. 
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Let a : M '~ x [0, T) --* M '~ be a smoothly varying family of diffeomorphisms of M '~, with 
C~o being the identity map and 

0a  
at -r 

Since A and r are completely smooth up to time T, this may be integrated directly to a 
unique solution for (~. Now define 

Then, 

�9 (x, t) = r  t), 1). 

~ ;  (a (x, t), t) - ~ ( x , t )  = _ + r  ~ (x, t), t) 

= (~ .  n(~(~ , t ) )  + ~(~(~ , t ) ) )  - ~ ( ~ ( x , 0 ) ,  

and so �9 now solves the geometric problem, at least in M, and because F is an isometry, 
F o ~ now satisfies the original geometric equation in N '~+1. 
These two theorems provide the short-time existence results for the flows which appear 
in later chapters; as another special case, Theorem 7.17 incorporates the L2-gradient flow 
for the Willmore energy of a surface immersed in a Riemannian manifold. 
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