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Abstract

Diffeomorphism symmetry, the fundamental invariance of general relativity, is generically
broken under discretization. After discussing the meaning and implications of diffeomor-
phism symmetry in the discrete, in particular for the continuum limit, we introduce a per-
turbative framework to construct discretizations with an exact notion of diffeomorphism
symmetry. We will see that for such a perturbative framework consistency conditions need
to be satisfied which enforce the preservation of the gauge symmetry to the perturbative
order under discussion. These consistency conditions will allow structural investigations of
diffeomorphism invariant discretizations.

1 Introduction and overview

Lattice discretizations of field theories are a popular method to access non-perturbative quan-
tum physics, for instance very successfully in lattice quantum chromodynamics. Similarly, many
approaches to quantum gravity are based on discretizations [1], such as (quantum) Regge cal-
culus [2] or spin foams [3]. There is however, an important difference between the status of
discretizations available for Yang Mills theories and for (4D) general relativity. Whereas for the
former, discretizations are available that do preserve the Yang Mills gauge symmetry also on
the lattice [4] this is not the case for gravity [5, 6], where the gauge symmetry in question is
given by diffeomorphism symmetry. The reason is that diffeomorphism symmetry acts on space
time itself. If this space time is discretized, we can expect that a diffeomorphism would deform
in some way this discretization.

Indeed, there are several examples where diffeomorphism symmetry is realized also for the
discretization (this includes 3D gravity [7, 8], reparametrization invariant 1D systems [9, 10]
and linearized 4D gravity [11]), both at the classical and quantum level. For all these examples,
diffeomorphism symmetry acts by displacing the vertices of the lattice in the space time in which
the lattice is embedded. (This kind of diffeomorphism symmetry in the discrete was termed
ditt–invariance in [12].) That is this symmetry can change the geometrical distance between the
vertices. Here one can already see that such a discrete notion of diffeomorphism symmetry is
enormously powerful: a discrete system in which such a symmetry is realized needs to reproduce
physics on all length scales, also on the large ones. The exploration of the consequences of such a
symmetry has been only recently started, see for instance [13, 10, 12, 14]. In this work we will see
that on the one hand it is very complicated (or might not be possible) to construct discretizations
with such a symmetry of a given system. We will therefore propose a perturbative approach.
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On the other hand such a symmetry has a number of important advantages and moreover would
solve long standing problems for discretizations, in particular of gravity:

• Consistent perturbative formalism: The main body of this paper will discuss how to obtain
a consistent perturbative formalism for discretizations, in which a gauge symmetry is
broken at a certain order (as is the case for 4D gravity). For instance Regge gravity
will not allow a consistent perturbative framework around flat space, if one does not
improve the action appropriately. The problem is, that linearized Regge gravity displays
the linearized form of diffeomorphism symmetry, i.e. one can identify longitudinal lattice
modes, that do not propagate as these are null modes of the Hessian of the action [11, 15].
The higher order interactions will however involve these longitudinal modes. That is at
higher order the gauge freedom associated to these modes does get fixed. This happens
however in a non-linear fashion. Basically, the perturbation assumption, namely that
the solution is analytical in a small parameter ǫ is not valid [6]. This means that for
instance the computation of graviton scattering is not possible without changing the given
discrete action to have a perturbative consistent form to the required order. As this
problem is rooted in having broken symmetries, it will not appear if a discrete notion
of diffeomorphism symmetry is exactly realized. On the other hand we will see that the
requirement of perturbative consistency might help us to construct discretizations with
such a symmetry.

• Canonical formalism with first class constraints: A long standing problem in discrete grav-
ity is the construction of a consistent canonical formalism. In the continuum the dynamics
in the canonical formalism is generated by arbitrary combinations of the Hamiltonian and
(spatial) diffeomorphism constraints. The arbitrariness of the coefficients – lapse and shift
– reflects the diffeomorphism symmetry of the covariant formalism and indeed the con-
straints do follow from the diffeomorphism symmetry of the theory. Discretizations (in
4D) break this symmetry. Hence in the discrete, we cannot expect constraints and also
not the related gauge freedom of freely choosing lapse and shift. Indeed these get rather
fixed to some discrete values in the cases where the symmetries are broken. This also
means that time evolution will proceed in discrete steps [16, 14].
This situation is not so much a problem in the classical realm. One can define a canonical
formalism that exactly reproduces the solutions of the covariant one [16, 13, 5, 6, 17], to-
gether with the exactly preserved and broken symmetries. Recently a canonical formalism
has been defined which can handle arbitrary triangulations and the associated issue of
changing phase space dimensions during time evolution [17]. It therefore can reproduce
for instance all Regge solutions.
One has however to realize that having constraints in the continuum which are not re-
produced in the discrete does lead to repercussions. Indeed constraints are just equations
of motions, which involve the data of one time slice only. If the associated symmetry is
broken by the discretization, this equation of motion will be a proper one, i.e. describing
a coupling between time slices, however this coupling will be very weak. These equations
are termed pseudo constraints, and can be imagined as describing thickened out constraint
hypersurfaces [5]. The problem now is that selecting canonical data ‘far away’ from this
hypersurface will lead to unphysical solutions (not approximating a continuum solution),
resulting for instance in complex lapse and shift parameters. Classically one could deal
with this problem by staying near this pseudo constraint hypersurface. In quantum the-
ory however it is unclear how to deal with such pseudo constraints. Proper (first class)
constraints have to be imposed onto the quantum states, this is however not possible for
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the pseudo constraints which are not first class, i.e. do not form an algebra. This prob-
lem is addressed in the uniform discretization program [18, 14] in which all the (pseudo)
constraints are squared and summed to one master constraint [19] thus avoiding inconsis-
tencies due to the constraint algebra. It is however unclear whether in the continuum limit
diffeomorphism symmetry can be regained or not (this is related to the question whether
the continuum limit can be performed or whether one remains with some ’fundamental
discreteness’ associated to the failure to fully satisfy the (pseudo) constraints) [20].
Having a canonical formalism with proper constraints which satisfy a first class algebra
would completely circumvent this problem. Also one would use the diffeomorphism symme-
try represented by the first class algebra to restrict hugely quantization (and discretization)
ambiguities, see below. Such a formalism can be constructed from a discrete action which
does display exact diffeomorphism invariance. Such actions (for non–topological theories,
e.g. 4D gravity) will however be non–local1 [15]. This needs to be taken into account in
the formulation of the canonical framework [21].

• Discretization ambiguities: Many different discretizations may lead to the same continuum
limit. In other words, discretizations come usually with an overwhelming amount of ambi-
guities. This is not so much a problem if one sees the discretization just as a regularization
of a continuum system. However, if one postulates discrete systems as fundamental, as
some quantum gravity approaches do, one has to address the question of ambiguities. I.e.
exclusion criteria should be formulated so that in the best case a unique theory can be
found.
Requiring an exact realization of diffeomorphism invariance might provide a unique dis-
cretization, even on the quantum level. This has been proven for 1D reparametrization
invariant (quantum) systems in [10]. The intuitive reason is the following: If there is a
gauge symmetry that allows vertex displacements we can imagine to change the vertices
such that there is a region where the effective lattice scale is macroscopic. That is the
discretization has actually to reproduce the macroscopic (continuum) physics (without any
coarse graining taking place) – all terms in the discrete action are therefore relevant.
Such a requirement can also be used to specify the path integral measure, as is shown in
[22] for (linearized) Regge calculus. There one does actually require triangulation inde-
pendence, which is however deeply related to diffeomorphism symmetry, as we will discuss
in the next point.

• Triangulation independence: A discretization for which diffeomorphism symmetry is re-
alized should also lead to triangulation independent results. I.e. expectation values or
transition amplitudes should not depend on the choice of (bulk) triangulation or lattice.
Note that this means that one can go to the most coarse grained triangulation possible.
Again, there is a proof for 1D (quantum) systems [10] which also gives an intuition why
this should also hold in higher dimensions: If vertices of a triangulation can be displaced
without interfering with predictions, we can also move vertices onto each other such that
the triangulation is effectively coarse grained.
Examples for triangulation invariant quantum systems are well known from topological
field theories, in particular 3D gravity with the Ponzano-Regge [23] and the Tuarev-Viro
model [24]. Note however that it is the topological character (i.e. not having propagating
degrees of freedom) of these theories that allows to have a triangulation invariant system

1I.e. the couplings are not restricted to nearest neighbors. One can however expect an exponential decay with
the lattice distance [25].
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with a partition function with only local couplings. For interacting theories we have rather
to expect non-local terms [25, 15].

• Continuum or large scale limit: A discretization is usually adopted to describe the system
on very small scales. To re-obtain physics on large scales, or on a continuum manifold as we
know it, we have to take the continuum /large scale limit of the system. This can be done,
for instance by coarse graining/renormalization, which will give effective actions describing
physics on larger and larger scales. However from what has been said in the previous
points, such a process is not really necessary for discretizations displaying diffeomorphism
invariance. In particular we mentioned in the last point that such a theory should be
triangulation independent, which would also include invariance under coarse graining. In
other words, we are dealing with a system at a renormalization fixed point, see also the
discussion in [12]. As we will see constructing a diffeomorphism invariant discretization
already includes the process of taking the continuum limit. In this sense the dichotomy of
discretization and continuum symmetry is resolved.

In summary all advantages can be understood from the requirement for the discrete system
to reproduce physics on all length scales, which entails that the discrete system already needs
to encode continuum physics. Hence all the disadvantages coming with a discretization (in
particular ambiguities, discretization dependence and consistency) can be addressed.

On the other hand one needs to construct the discretization such that it can reproduce
continuum physics. This requires a certain control over the solution space of the system. Indeed,
one way to construct such a perfect discretization, is – turning the last point of our list on its head
–by coarse graining and essentially finding the fixed point action [26, 27]. The process can be
understood as ‘blocking from the continuum’ [25], i.e. defining a lattice system which completely
mirrors the physics of the continuum. There are a number of works where this approach has been
successfully applied [8, 9, 10, 15]. Concerning the question whether diffeomorphism symmetry
can be regained in this way, the examples however include only systems where the perfect
discretization is still local (i.e. topological systems or 1D). This is understandable due to the
problem at hand: coarse graining basically means to solve the dynamics of the system. Therefore
a perturbative approach is advisable. In [15] the zeroth order of (free) field theories has been
discussed including systems with gauge symmetries such as U(1) gauge theory and gravity. Here
one needs to carefully choose the coarse graining such that the linearized gauge freedom of these
systems is preserved.

In this work, using parametrized field theories as an example, we will discuss the challenges
of going to higher order. The main point will be that, even before coarse graining, one has to
make sure that the discrete action satisfies certain consistency requirements that hugely restrict
the possible choices. These consistency requirements enforce the gauge symmetry to hold to the
given order. This can of course be understood as an obstacle. On the other hand these conditions
might allow the construction of a perfect action without actually going through the coarse
graining process completely. Furthermore an investigation of these consistency conditions might
give us important information on the possible form of the perfect action, for instance regarding
the structure of its non-local couplings. In particular the consistency conditions can be used to
restrict possible discretization choices, with the option that there is only one unique solution
possible. Thus the consistency conditions allow the explorations of the perfect action without
having it explicitly constructed yet. From what has been said before the consistency conditions
can be understood as infinitesimal versions for the requirement of triangulation independence
of a given discretization or model. Thus these conditions could serve as the starting point for a
systematic search for triangulation independent models.
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We will discuss the issue of diffeomorphism symmetry in the discrete using as an example
discretizations of parametrized (free) field theories, as in this case the split into physical and
gauge variables is straightforward. In the next secion 2 we will discuss the general features of
such discrete theories and the basics of a perturbative expansion and coarse graining. We will
discuss the coarse graining procedure order by order and see that at the first non-linear order
consistency conditions arise. These have to be satisfied before coarse graining can be performed.
Also the second order will be explicitly discussed as there new types of terms for the coarse
grained action arise which do not appear in first order. We will give general formulas for the
coarse graining of the different perturbative objects appearing in the expanded action. These
results will be applied to the parametrized harmonic oscillator, which can be understood as (0+1)
dimensional parametrized field theory. Here we will see that the consistency conditions may be
either violated already at first order or at second order. However a perturbative consistent
discretization can be found and the perfect action can be constructed via coarse graining. We
will close with a discussion and outlook in section 4.

2 Discretized parametrized fields

Here we will discuss discretized parametrized (field) theories. That is we assume a (here regular)
lattice with vertices labelled by x, y, . . .. Each of these vertices x is described by embedding vari-
ables tax into Rd, which is equipped with some (Euclidean or Minkowskian) metric. Furthermore
we assume a (here scalar) field fx associated to the vertices. The discrete theory is defined by
the action

S =
1

2
Sxy(t)fxfy (2.1)

where we sum over repeated indices. We assume a quadratic action in the fields as we are dealing
with a free field theory. This quadratic form depends on the induced lattice metric, which is
reflected in the dependence of Sxy on the embedding variables taz of the vertices z. It is important
to note that both kind of variables, the fields fx and the embedding variables tax are treated as
dynamical variables, i.e. we have to vary the action with respect to both fields. Changing
the embedding variables will change the matrix Sxy(t) defining the quadratic interaction. This
matrix includes metric information, i.e. the geometrical distance between the vertices (as the
inverse defines the two point function of the theory). That is varying the embedding variables
is actually a variation of the geometrical properties of the underlying lattice. If the position of
the vertices is fixed by the equation of motions, it happens such that the action (2.1) evaluated
on the corresponding solutions for fx is extremal. i.e. such that the dependence of Hamilton’s
principal function on the embedding variables t (now treated as parameters) is vanishing [6]. In
a sense the lattice itself (i.e. the vertex positions and therefore the geometric distances between
vertices) is determined by the equations of motion for the embedding variables.

The discrete notion of diffeomorphism symmetry we are looking for would result in a gauge
freedom for the variables tax, i.e. independence of Hamilton’s principal function from the vertex
positions taw. This entails an independence of physical predictions from the vertex positions
and therefore the details of the lattice. Indeed such a feature can already be understood as
discretization independence.

Diffeomorphism invariance is realized if given a solution f sol
y for the variables fy

Sxyf sol
y = 0 (2.2)
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the equation of motion associated to the taw are automatically satisfied (for arbitrary values of
taw)

∂Sxy

∂taw
f sol
x f sol

y = 0 . (2.3)

Here we basically have the derivative of the Lagrangian with respect to the metric, which defines
the energy momentum. Indeed (2.3) can be understood as a discrete conservation equation for
the energy momentum [28]. In case diffeomorphism symmetry is exact this conservation will
hold for arbitrary vertex position. As one can easily see this is the case if the derivative of Sxy

is of the form

∂Sxy

∂taw
= γwx

z,a(t)S
zy(t) + γwy

z,a(t)S
zx(t) (2.4)

for some tensor field γ
wy
z,a(t). In case the symmetry is broken, the requirement of energy con-

servation, i.e. equation (2.3) will fix the vertex positions. Note however that we can linearize
this theory around arbitrary vertex positions taw and the field configurations fx = 0. In this
case the quadratic order of the action will be just given by the linearized field variables, the
perturbations of the embedding variables will not appear. That is for the linearized theory we
do have the gauge symmetry, as the linearized embedding variables will remain undetermined.
This is analogous to the situation in Regge calculus [11, 29], where linearized diffeomorphism
symmetry is realized around the flat solutions (based on arbitrary lattices). In the following we
will see that continuing this gauge symmetry to higher order will require consistency conditions
which are basically derived from (2.4).

The framework we are discussing here should also be applicable to non-linear theories in
particular Regge gravity. There all the variables are of the same form, namely given by the
lengths of the lattice edges. That is a division into fields f and embedding variables t is not
obvious. As it is not possible to solve the full theory at once, we will attempt a perturbative
approach. Since in Regge calculus all variables are treated on an equal footing, we will attempt
the same for parametrized field theory here, and expand both the fields f and the embedding
variables t around a solution. We choose this solution to be the zero energy solution f ≡ 0 and
t determined by some regular lattice. That is we expand

f = 0 + ǫφ

tb = nb + ǫξb . (2.5)

Here nb is a vector in Zd, denoting the regular lattice coordinates. Using this expansion in the
action (2.1) we obtain

ǫ−2S =
1

2

(

Mxy φxφy + ǫΓwxy
a ξaw φxφy + ǫ2 Γwzxy

ab ξawξ
b
z φxφy + . . .

)

. (2.6)

The unusual point in this perturbative expansion is that the variables ξ do not appear in the
quadratic term, but only start to appear in the cubic and higher order terms. This signifies
that at lowest, zeroth, order, we will have gauge freedom as the lowest order term of the action
does not depend on the variables ξ. These variables do appear however at higher order and
might (and indeed generically) lead to a breaking of gauge invariance. This will lead to severe
conditions on the consistency of the perturbative expansion.

The aim here is to improve the discretization, i.e. the discrete action, towards better display-
ing the dynamics of the continuum theory. As in the continuum theory the (reparametrization)
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gauge symmetry is not broken, we might hope that in this way we obtain a discrete theory, in
which this will be also the case.

How can we obtain such an improvement? Here we will follow a renormalization/ coarse
graining approach, i.e. we construct a family of (effective) actions on a given ‘coarse’ lattice,
that can be obtained by integrating out fine degrees of freedom from theories living on very fine
lattices. These effective actions therefore display the dynamics defined on the finer lattice, and
in an infinite refinement lattice, continuum dynamics.

To this end we have to integrate out the fine grained degrees of freedom, i.e. solve the
equations of motion on the fine lattice. This has to be done under the condition that the
‘microscopic’ fields give under coarse graining the ‘macroscopic fields’, which live on the coarse
lattice. The solutions, that now depend on the coarse lattice, have to be re–inserted into the
fine lattice action, which will result in an effective action depending on the macroscopic fields.

This assumes a definition of coarse graining. Here (and also because of geometric consider-
ations) we follow the simplest choice, equivalent to a decimation procedure. That is the coarse
grained fields on the coarse lattice site X have (modulo a common factor) to coincide with the
fine field at the lattice site x = LX where L denotes the lengths of a coarse graining block, that
is 2

0 = ΦX − φLX (2.7)

0 = ΞX − ξLX . (2.8)

We will take care of these conditions by adding a Lagrange multiplier term

λX (ΦX − δxLXφx) + αX
a (Ξa

X − δxLX ξax) (2.9)

thus introducing as further fields the Lagrange multipliers λX and αX
a .

This finally defines the complete dynamical problem we have to consider. The equations of
motion are obtained by varying the action (including Lagrange multiplier terms) with respect
to the fields φ, ξ, λ, α and are given by

0 = Mxyφy + ǫΓwxy
a ξwa φy + ǫ2 Γwzxy

ab ξwa ξ
z
b φy − λXδxLX + . . . (2.10)

0 =
1

2
ǫΓwxy

a φxφy + ǫ2 Γwzxy
ab ξbz φxφy − αW

a δwLW + . . . (2.11)

0 = ΦX − φLX (2.12)

0 = ΞX − ξLX . (2.13)

where the dots signify higher order terms in ǫ. As the equations of motions come naturally in
orders of ǫ we will make a perturbative ansatz for the solutions

φx = 0φx + ǫ 1φx + . . .

ξx = 0ξx + ǫ 1ξx + . . .

λX = 0λX + ǫ 1λX + . . .

αa
X = 0αa

X + ǫ 1αa
X + . . . . (2.14)

(Here we will not expand the coarse grained fields Φ and Ξ, which are just parameters in the
equations of motion. An expansion would just lead to more terms in the improved action which

2We could include a global scaling of the coarse grained variables, this global scaling can however easily inserted
into the improved action terms at the end of the calculation.
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are however determined by the lower order terms, i.e. by expanding Φ and Ξ in the improved
action). Note that behind this perturbative ansatz there is an assumption, namely that the
solutions can be actually expanded into a power series in ǫ. We will see that this is generically
not the case for an action of the form (2.6).

2.1 Zeroth order improvement

Let us start with the zeroth order equation of motion whose solution will lead to the lowest
order correction for the improved action.

The zeroth order terms of the equations of motions (2.10)–(2.13) are given by

0 = Mxy 0φy −
0λXδxLX (2.15)

0 = − 0αW
a δwLW (2.16)

0 = ΦX − 0φLX (2.17)

0 = ΞX − 0ξLX . (2.18)

Hence the 0ξx with x 6= LX remain undetermined. Furthermore we have 0αW
a = 0 which leaves

as with the coupled equations (2.15,2.17). Assuming invertibility of Mxy we can solve (2.15)
for the fields 0φx and use this solution in (2.17) to determine the Lagrange multipliers 0λX as
functions of the coarse fields Φ. That is

0φx = (M−1)xyδ
y
LY

0λY (2.19)
0λX = MXY ΦY (2.20)

where MXY is the inverse matrix to (M−1)XY := (M−1)LX LY , which we also assume to be
invertible. In this way we can write the solution as

0φx = (M−1)x(LX) M
XY ΦY =: P Y

x ΦY . (2.21)

The map P Y
x := (M−1)x(LX)M

XY provides us with the fine grained (zeroth order) solution for
a given coarse grained configuration ΦY . As we will see it will also appear for the coarse graining
of the higher order terms.

These solutions (2.21) have to be inserted into the lowest order term of the action to obtain
the effective action 0S′, i.e. (we rescale by ǫ−2)

0S′ :=
1

2
Mxy 0φx

0φy

=
(2.17,2.19)

1

2
ΦX

0λX

=
(2.20)

1

2
MXY ΦXΦY =:

1

2
(M ′)XY ΦX ΦY (2.22)

This is the improved action to zeroth order. Note that the improved quadratic form can be
written as (M ′)XY = MXY = PX

x MxyP Y
y .

We will assume that the refinement limit of (2.22) exist and will call the result the zeroth
order perfect action.
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2.2 First order improvement

We can now move on to the discussion of the next order. Two remarks are in order. Firstly
we might use in the expanded action (2.6) the zeroth order perfect action, i.e. replace Mxy by
M ′

xy there. In the following we will just denote both cases by Mxy. Secondly we will see that
the first order improvement of the action does not strictly need the solutions of the first order
equations of motion: to determine the first order term of the improved action insert the ansatz
(2.14) into the action (2.6) and keep only terms up to first order in ǫ. Note that there are two
types of terms in the first order improved action: The first type is of the form

δS

δv
∣

∣v=0v
· 1v (2.23)

for the variables v = φ, ξ, λ, α. All these terms vanish, as 0v satisfy the equations of motion
for the zeroth order action and hence the first factor in (2.23) is zero. The second type of
terms comes from the ǫ1 term in the action (2.6) which gives for the first order correction of the
improved action

1S′ =
1

2
Γwxy
a

0ξaw
0φx

0φy . (2.24)

Here the zeroth order variables 0ξaw appear, which remained however undetermined for w 6= LW .
We should therefore check the first order equations of motions

0 = Mxy 1φy + Γwxy
a

0ξaw
0φy −

1λXδxLX (2.25)

0 =
1

2
Γwxy
a

0φx
0φy −

1αW
a δwLW (2.26)

0 = 1φLX (2.27)

0 = 1ξLX . (2.28)

Equations (2.25) and (2.27) can be solved similarly to the zeroth order equation and with the
same assumptions, i.e. that Mxy and furthermore (M−1)XY := (M−1)LX LY can be inverted:

1φz = −
[

(M−1)zv − (M−1)z(LX)M
XY (M−1)(LY )v

]

Γwvy
a

0ξaw
0φy . (2.29)

Equation (2.26) for w 6= W is rather a consistency condition3 as only the fields 0φx appear,
which are already determined by the zeroth order equation. Hence we have to see this equation
as a condition on the discretization, namely on Γwxy

a and Mxy. Here we mention Mxy as it
determines the zero order solutions that appear in the conditions (2.26).

Also the condition (2.26) ensures that the improved first order action does not depend on
the choice of the undetermined variables 0ξaw for w 6= LW , as it can now be written as

1S′ = Ξa
W

1αW
a . (2.30)

Furthermore as (2.26) has to hold we can assume that Γ has the following form

Γwxy
a = γwx

a,zM
zy + γwy

a,zM
zx . (2.31)

If we consider the case of not having any coarse graining conditions at all, i.e. L = ∞, the first
order correction would be given as4

1φz = −γwy
a,z

0ξaw
0φy . (2.32)

3This condition can be interpreted as energy momentum conservation.
4The higher order solutions can be given only modulo solutions 0φx satisfying Mwx 0φx = 0. We assume that

these terms can be put to zero by requiring appropriate boundary conditions.
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Requiring locality of the gauge action, that is a displacement of a vertex w should only affect
the field at the vertex w we can conclude that γ has to be of the form

γwx
a,z = δwz β

wx
a so that Γwxy

a = βwx
a Mwy +Mwxβwy

a . (2.33)

Note that we now may have indices appearing twice in upper positions, which we do not sum
over. This form of Γ ensures that the consistency conditions (2.41) are satisfied for w 6= LW .

Using the zeroth order solutions

0φx = (M−1)xy δ
y
LX MXY ΦY = P Y

x ΦY (2.34)

in (2.24) we can write the coarse grained action as

1S′ =
1

2
Ξa
W

(

β(LW )x
a PX

x MWY + MWX β(LW )y
a P Y

y

)

ΦX ΦY

=:
1

2
Ξa
W

(

(β′)WX
a (M ′)WY + (M ′)WX(β′)WY

a

)

ΦX ΦY . (2.35)

This form of the improved Γ′ automatically ensures its consistency with respect to M ′. In
summary, to find the coarse grained first order part of the action we have to construct

(β′)WX
a = β(LW )x

a PX
x = β(LW )x

a (M−1)x(LY )M
Y X . (2.36)

Note that compared to the second order tensor Γwxy
a we started originally with the improved

tensor might undergo two kinds of modifications. The first one might arise if we have to change
Γ such that the consistency conditions are satisfied (and the continuum limit still agrees with
the continuum theory). The second modification is due to the actual coarse graining.

Furthermore if we require that the Γ is of a consistent form and actually comes from the
derivative of the action Sxy(t) we will obtain rather strong conditions on Sxy(t). Later–on we
will discuss this issue for the 1D example.

2.3 Second order improvement

For the same reason for which we did not need the first order solutions to obtain the first order
improvement of the action we will not need the second order solutions to obtain the second order
improvement.

We will however need to consider the first order solutions and also have to check whether in
the second order equations of motion consistency conditions arise. Again we might assume that
the lower order tensors Mxy and Γwxy

a are the ones coming from a perfect discretization.
The second order terms of the improved action are given by

2S′ =
1

2

(

Mxy 1φx
1φy + Γwxy 0ξaw ( 0φx

1φy +
1φx

0φy) +

Γwxy
a

1ξaw
0φz

0φy + Γwzxy
ab

0ξaw
0ξbz

0φx
0φy

)

=
1

2

(

Mxy 1φx
1φy + Γwxy 0ξaw ( 0φx

1φy +
1φx

0φy) + Γwzxy
ab

0ξaw
0ξbz

0φx
0φy

)

. (2.37)

The first summand in the second line, which appears to depend on 1ξaw, does actually vanish due
to the consistency conditions (2.26) and the equations (2.28) which require 1ξaLW = 0. There is
still the potential dependence on the variables 0ξaw, which appear in (2.37), but which have not
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been determined so far by the zeroth and second order equations of motion. Note that also the
solutions 1φx depend on the variables 0ξaw, see the equations (2.29).

Let us therefore investigate the second order part of the equations of motion (2.10)–(2.13)

0 = Mxy 2φy + Γwxy
a

(

1ξaw
0φy +

0ξaw
1φy

)

+ Γwzxy
ab

0ξaw
0ξbz

0φy −
2λXδxLX (2.38)

0 =
1

2
Γwxy
a

(

0φx
1φy +

1φx
0φy

)

+ 0ξbzΓ
wzxy
ab

0φx
0φy −

2αW
a δwLW (2.39)

0 = 2φLX (2.40)

0 = 2ξLX . (2.41)

Again equations (2.39) for w 6= LW contain only variables of zeroth and first order. The
embedding variables 0ξaw only appear in zeroth order. If we want to have gauge freedom with
respect to these variables, we have to make sure that these consistency conditions are satisfied
for arbitrary choices of 0ξaw. Alternatively one can try to find solutions, which fix 0ξaw and coarse
grain in this way. The hope however is that the resulting perfect action allows for full gauge
freedom. To first find a discretization allowing for this gauge freedom to the order in question
seems to be less cumbersome. This will also give the conditions that a discrete action has to
satisfy, in order to display gauge freedom to second order.

We have to make some ansatz for the form of the tensor Γwzxy
ab . Here we use that it should

arise as the second derivative of Sxy(taw) with respect to the embedding variables t. We know
that the first order derivative (evaluated on some background) has the form (2.33). Another
derivative acting on Mxy = Sxy will produce a term of the same form. We therefore require

Γwzxy
ab =

1

2

(

βwy
a Mzwβzx

b + βwx
a Mzwβ

zy
b

)

+

1

2
(βwy

a Mzxβzw
b + βwx

a Mzyβzw
b ) +

1

2
(βzy

a Mwxβwz
b + βzx

a Mwyβwz
b ) +

1

2

(

Mwxγ
wzy
ab + γwzx

ab Mwy
)

+
1

2

(

Mzxγ
zwy
ab + γzwx

ab Mzy
)

+

1

2
(MwxMzyηwz

ab + MzxMwyηzwab ) . (2.42)

Here the terms in the first two lines arise through the derivative acting on the factor M in
Γ = βM + Mβ. The other terms should be given by derivatives of β, with the terms in the
third line suggested by the symmetry of second derivatives. In the last line we just isolated5

terms, which might have two factors of M , from the terms in the fourth and fifth line. Note
that this form of Γwzxy

ab does not constitute a further requirement once we assume that the first
order condition (2.33) holds for arbitrary background variables taw that is

∂Sxy(t)

taw
= Swx(t)βwy

a (t) + βwx
a (t)Swy(t) . (2.43)

Consider the second order solutions 2φx to (2.38) without coarse graining conditions, i.e. for
L 6= ∞,

2φx = −δwx β
wy
a

1ξaw
0φy − δwx γ

wzy
ab

0ξaw
0ξbz

0φy . (2.44)

5This splitting is not unique as the η terms might be just reabsorbed into the γ terms. However we will derive
the condition γwzy 0φy = δwzγwzy 0φy for the part of γ that does not vanish on solutions. This does not need to
hold for ηwx.
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Requiring again locality of the gauge action, namely that displacing a vertex at z 6= w should
not affect the field at w, we can conclude that

γ
wzy
ab = δwzκ

wy
ab . (2.45)

It will turn out that the form (2.42) ensures that the consistency conditions (2.39) are satisfied
for w 6= LW and arbitrary values for 0ξbz. Furthermore the solutions 2αW

a will not depend on
0ξbz with z 6= LZ. Indeed a straightforward calculation gives

1

2
Γwxy
a

(

0φx
1φy +

1φx
0φy

)

+ 0ξbzΓ
wzxy
ab

0φx
0φy =

δwLW

(

1

2

(

(β′)WY
a MZW (β′)ZX

b + (X ↔ Y )
)

+

1

2

(

(β′)WY
a MZX(β′)ZW

b + (X ↔ Y )
)

+
1

2

(

(β′)ZY
a MWX(β′)WZ

b + (X ↔ Y )
)

+

1

2

(

MWXγ
(LW )(LZ)y
ab (M−1)y(LV )M

V Y + (X ↔ Y )
)

+
1

2

(

W ↔ Z
)

+

1

2

(

MWXMZY η
(LW )(LZ)
ab + (W ↔ Z)

)

−

1

2

(

MWXMZY β(LW )u
a (M−1)uvβ

(LZ)v + (W ↔ Z)
)

+

1

2

(

MWXMZY β(LW )u
a (M−1)u(LU)M

UV (M−1)(LV )vβ
(LZ)v + (W ↔ Z)

)

)

Ξa
ZΦXΦY .

(2.46)

Now we use for the first term in the improved action (2.37) the solutions (2.25) for 1φx and
find

Mxy 1φx
1φy = − 1φv Γ

wvy
a

0ξwa
0φy . (2.47)

Invoking the equations (2.39) the improved action can be rewritten as

2S′ =
1

2
Ξa
W

2αW
a (2.48)

where due to the consistency equations (2.39) the solutions for 2αW
a are given by (2.46).

Hence

2S′ =
1

2
(Γ′)WZXY

ab Ξa
WΞa

Z ΦXΦY (2.49)

where Γ′ is of the same form as Γ in (2.42) with the replacements M,β, γ, η → M ′, β′, γ′, η′ and
the latter two tensors are given by

(γ′)WZY
ab = γ

(LW )(LZ)y
ab (M−1)y(LV )M

V Y = γ
(LW )(LZ)y
ab P Y

y

(η′)WZ
ab = η

(LW )(LZ)
ab +

1

2

(

β(LW )u
a

[

(M−1)u(LU)M
UV (M−1)(LV )v − (M−1)uv

]

β(LZ)v + (W ↔ Z)
)

. (2.50)

Note that the ambiguity between γwzy terms that include a Mwy or Mzy factor and the ηwz

term does not matter, as both expressions will be coarse grained in the same way. Also note,
that the expression

Gxy := (M−1)xy − (M−1)x(LX)M
XY (M−1)(LY )y (2.51)
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is the Green’s function associated to the matrixMxy together with the coarse graining conditions.
That is, given the equations

jx = Mxyφy − δxLXλX , φLX = ΦX (2.52)

the solution is given by

φx = P Y
x ΦY + Gxyj

y . (2.53)

In summary, the coarse graining of the different objects appearing in the action will be deter-
mined by the two maps P Y

x and Gxy. This will be also the case at higher order.
The consistency requirements at higher order can be addressed in a similar fashion. The

form of the higher order Γ tensors can be obtained by taking the derivatives of the lower order
ones and using the relations between the derivatives of M , β, etc..

3 Discrete parametrized harmonic oscillator

Let us consider a simple but popular example [9, 10, 12], the discrete parametrized harmonic
oscillator. We will start from a general family of actions, describing a parametrized (0 + 1)
dimensional free field qx

S =
1

2

∑

x∈Z

[

D(tx+1 − tx)
(

q2x + q2x+1

)

+ 2E(tx+1 − tx)qxqx+1

]

. (3.1)

A possible choice for the functions D(t) and E(t) is

D(t) =
1

t
−m2αt , E(t) = −

1

t
−

1

2
m2(1− 2α)t (3.2)

for instance with α = 1
2 or α = 1

4 . Only the second choice will be perturbatively consistent to
first order.

For this example the perfect action is well known as it can be obtained from the continuum
Hamiltons principal function [28, 9, 10]. It is given by

D = m
cos(mt)

sin(mt)
, E = −m

1

sin(mt)
. (3.3)

Note that all these discrete actions lead to the same continuum limit for the solutions.
The reason is that the coefficients C+ and C− in (3.1) in front of Q+

x = (qx + qx+1)
2 and of

Q−

x = (qx − qx+1)
2 respectively, coincide in their lowest order expansion in t, as C+ ∼ −1

4m
2t

and C− ∼ 1
t
. For solutions we will have Q−

x ∼ t2, whereas Q2
x ∼ t0, which explains the different

scaling of the coefficients.
To apply our formalism of improving the action order by order, we expand the variables as

qx = 0 + ǫφx

tx = ax+ ǫξx (3.4)

(here x ∈ Z) which results in an action of the form

ǫ−2S =
1

2

(

Mxy φxφy + ǫΓwxyξw φxφy + ǫ2 Γwzxyξwξz φxφy + . . .
)

. (3.5)

We will now discuss the improvement of the different orders in (3.5).
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3.1 Zeroth order

We start with the zeroth order improvement for which we need the square term described by

Mxy = 2D δxy + E (δx(y+1) + δx(y−1)) (3.6)

where D = D(a) and E = E(a).
The improved or perfect action to zeroth order can be calculated in many ways, one is as

fixed points of the coarse graining flow [10], the other is to explicitly obtain the inverse matrices
(M−1)xy and then MXY using Fourier transform as in [15]. Here we will follow another route,
by constructing explicitly the zeroth order solutions as functions of the coarse grained variables.
Via the general form of the solution in (2.21) we will obtain the expression (M−1)x(LX)M

XY

that will also appear at higher order.
The homogeneous zeroth order equations of motion

0 = 2D 0φx + E 0φx−1 + E 0φx+1 (3.7)

can be easily solved with an ansatz 0φx = exp(iνx) from which we obtain the condition

cos ν = −
D

E
, (3.8)

so that ν = ma for the perfect action (3.3). Choosing one of the roots for this equation we can
write the general solution as

0φLX+r = AXei(LX+r)ν +BXe−i(LX+r)ν (3.9)

where r = 0, . . . , L − 1. Here, with making the coefficients AX , BX dependent on the coarse
grained intervals we indicate that the homogeneous equations of motions do not need to hold
at the interval boundaries. Using the conditions 0φLX = ΦX and 0φL(X+1) = ΦX+1 we can
determine AX , BX and obtain the solutions

0φLX+r =
1

sin(νL)
[sin(ν(L− r))ΦX + sin(νr)ΦX+1]

=
(2.21)

(M−1)(LX+r)(LZ)M
ZY ΦY . (3.10)

We therefore have

(M−1)(LX+r)(LZ)M
ZY =

1

sin(νL)

[

sin(ν(L− r)) δYX + sin(νr) δY(X+1)

]

. (3.11)

With this at hand we can actually find easily the zeroth order improved action, as we just need
to multiply (3.11) with the matrix M (LW )(LX+r) to find the matrix MWY which defines the
zeroth order improved action:

MXY =
E sin(ν)

sin(Lν)

[

−2 cos(Lν) δXY + δX(Y −1) + δX(Y +1)
]

. (3.12)

Here we also used the relation (3.8) between the frequency ν and the parameters D,E. In the
continuum limit a → 0, L → ∞ such that La =: a′ = const. we obtain for any of the choices
(3.2,3.3) the perfect action

MXY = 2
m cos(ma′)

sin(ma′)
δXY −

m

sin(ma′)

(

δX(Y −1) + δX(Y +1)
)

(3.13)

on the coarse grained lattice.
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3.2 First order

To find the tensor Γwxy appearing in the expanded action (3.5) we take the derivative of

Sxy = D(tx+1 − tx)δ
xy +D(tx − tx−1)δ

xy + E(tx+1 − tx)δ
x(y−1) + E(tx − tx−1)δ

x(y+1) (3.14)

with respect to tw (here a prime will denote the derivative of a function)

∂

∂tw
Sxy = D′(tx+1 − tx)δ

xy
[

δw(x+1) − δwx
]

+ D′(tx − tx−1)δ
xy

[

δwx − δw(x−1)
]

+

E′(tx+1 − tx)δ
x(y−1)

[

δw(x+1) − δwx
]

+ E′(tx − tx−1)δ
x(y+1)

[

δwx − δw(x−1)
]

. (3.15)

Putting tx+1 − tx = a for all x we can write Γwxy as

Γwxy = E′δwx
[

δw(y+1) − δw(y−1)
]

+ E′δwy
[

δw(x+1) − δw(x−1)
]

+

1
2D

′δw(x+1)
[

δw(y+1) − δw(y−1)
]

+ 1
2D

′δw(y+1)
[

δw(x+1) − δw(x−1)
]

+

1
2D

′δw(x−1)
[

δw(y+1) − δw(y−1)
]

+ 1
2D

′δw(y−1)
[

δw(x+1) − δw(x−1)
]

= M̃wx
[

δw(y+1) − δw(y−1)
]

+ M̃wy
[

δw(x+1) − δw(x−1)
]

. (3.16)

Note that in the second line we just subtracted two terms which are added again in the third
line. Here M̃xy is given by

M̃xy = E′δxy + 1
2D

′δx(y+1) + 1
2D

′δx(y−1) . (3.17)

Hence we can satisfy the consistency requirement (2.33) if M̃xy = βMxy. That is we obtain the
conditions

D′(a) = 2β(a)E(a) , E′(a) = 2β(a)D(a) ⇒ DD′ = EE′ = 2βED . (3.18)

From the family of actions (3.2) only the choice with α = 1
4 satisfies (3.18) with β(a) = 1

2a . For
the perfect action (3.3) the condition is also satisfied with β = −E

2 .
In general we can make a ansatz for E,D in (odd) powers of a

D(a) =
1

a
+ d1a+ d2a

2 + . . .

E(a) = −
1

a
+ e1a+ e2a

2 + . . . . (3.19)

Here the coefficients of a−1 are determined by the continuum limit. With this form we can
conclude that β(a) = 1

2a +O(a).
A consistent form of Γwxy is therefore given by

Γwxy = βwxMwy +Mwxβwy (3.20)

where

βwx = β(a)
[

δw(x+1) − δw(x−1)
]

. (3.21)

with β(a) = 1
2a +O(a).
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Following (2.36) it is straightforward to determined the improved (β′)WX to

(β′)WX = β(LW )y(M−1)y(LZ)M
ZX

=
β(a) sin(ν)

sin(Lν)

[

δW (X+1) − δW (X−1)
]

−→
a→0,L→∞

m

2 sin(a′m)

[

δW (X+1) − δW (X−1)
]

. (3.22)

Notice that for taking the continuum limit in the last line it is sufficient to know that β(a) =
1
2a +O(a). For all such choices we re-obtain the first order of the perfect action.

3.3 Second order

In (2.42) we determined a consistent form of the second order tensor Γwzxy

Γwzxy
cons =

1

2
(βwyMzwβzx + βwxMzwβzy) +

1

2
(βwyMzxβzw + βwxMzyβzw) +

1

2
(βzyMwxβwz + βzxMwyβwz) +

1

2
(Mwxγwzy + γwzxMwy) +

1

2
(Mzxγzwy + γzwxMzy) +

1

2
(MwxMzyηwz + MzxMwyηzw) . (3.23)

Note that we will assume γwzy ∼ δwz as this ensures locality of the gauge action. On the other
hand the second order derivative of the second rank tensor (3.14) gives

Γwzxy =
1

2

∂2

∂tz∂tw
Sxy =

1

2
D′′(tx+1 − tx)δ

xy
[

δw(x+1) − δwx
] [

δz(x+1) − δzx
]

+

1

2
D′′(tx − tx−1)δ

xy
[

δwx − δw(x−1)
] [

δzx − δz(x−1)
]

+

1

2
E′′(tx+1 − tx)δ

x(y−1)
[

δw(x+1) − δwx
] [

δz(x+1) − δzx
]

+

1

2
E′′(tx − tx−1)δ

x(y+1)
[

δwx − δw(x−1)
] [

δzx − δz(x−1)
]

. (3.24)

We can compare these two expressions for different values of the indices (wzxy). This will
give a number of equations involving E,D, its second derivatives, and the components of β, γ, η.
In addition we have the conditions (3.18) from our discussion of the first order.

For instance combining the equations for (wzxy) = (0011) and (1120) on the one hand and
for (0101) and (1230) on the other, we find the conditions

8Dβ2 = D′′ , and 4β2E2 + 4β2D2 = −EE′′ . (3.25)

Here, β can be also expressed as a quotient between D′ and E or between E′ and D from (3.18),
so that

2
(E′)2

D
= D′′ = 2

D(D′)2

E2
, and (D′)2 + (E′)2 = −EE′′ . (3.26)

None of the actions (3.2) satisfies these requirements, that is none of these is perturbatively
consistent to second order. Of course the perfect action (3.3) does satisfy (3.25). Hence we can
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regain the perfect action by solving the system (3.26) via an ansatz for D,E as a power series
in a (starting with a−1).

From the equations for (wzxy) = (1230), (1120), (1121), (1101), (1111) we can obtain condi-
tions for the components of γ and η

η12 = −
β2

E
= η21

γ111 =
D′′

4D
−Dη11

γ110 = β2D

E
−

1

2
Eη11 = γ112 . (3.27)

This fixes the off–diagonal elements of η but leaves an ambiguity between the diagonal elements
of η and the components of γ. However this ambiguity is inherent in our definition (3.23) as
the diagonal elements of η can be reabsorbed into an additional term of the γ tensor, which is
proportional to M . (This only applies to the diagonal elements of η as we require γwzy ∼ δwz.)
This possibility of redefining γ allows to set the components γ110, γ112 to zero. With this
convention we obtain

γwzy = 2β2

(

1−
D2

E2

)

=
m2

2
δwzδwy +O(a2)

ηwz = 2β2 D

E2
δwz −

β2

E

(

δw(z+1) + δw(z−1)
)

=
1

a

(

1

2
δwz +

1

4
δw(z+1) +

1

4
δw(z−1)

)

+O(a) . (3.28)

In the second and fourth line we have given the lowest orders in a of the γ and η tensor
respectively. These can be easily obtained from the information about the lowest orders of D,E

and β we collected so far and will be sufficient for the purpose of coarse graining from the
continuum.

Following (2.50) let us now perform the coarse graining

(γ′)WZY = γ(LW )(LZ)y(M−1)y(LV )M
V Y = γ(LW )(LZ)yP Y

y

(η′)WZ = η(LW )(LZ) +

1

2

(

β(LW )u
[

(M−1)u(LU)M
UV (M−1)(LV )v − (M−1)uv

]

β(LZ)v + (W ↔ Z)
)

= η(LW )(LZ) −
1

2
β(LW )uGuvβ

(LZ)v − (W ↔ Z) . (3.29)

of these tensors. To this end we will need the Green’s function Guv. It can be obtained for
instance by Fourier transform or by solving the system of equations (2.52) directly and by
comparing the solution to (2.53). Such a solution can be constructed by mimicking the variation
of constants method from the continuum. One will obtain

G(LX+r)(LY +s) = δXY

(

sin(νr) sin(νs)

E sin(ν)

cos(Lν)

sin(Lν)
−

sin(νr) sin(νs)

E sin(ν)
δrs

−
sin(νr) cos(νs)

E sin(ν)
θ(s− r) −

sin(νs) cos(νr)

E sin(ν)
θ(r − s)

)

(3.30)
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where

θ(r) =

{

0 if r ≤ 0,

1 if r > 0.
(3.31)

We can now compute the coarse grained entities γ′, η′ and obtain in the limit a → 0, L → ∞

with L · a = a′

(γ′)WZY =
1

2
m2δWZδWY

(η′)WZ =
m

4 sin(a′m)

(

δW (Z+1) + δW (Z−1)
)

+
m

2

cos(a′m)

sin(a′m)
δWZ . (3.32)

As expected this result coincides with the tensors γperf , ηperf coming from the perfect action.

3.4 Summary

We have seen that from the family (3.2) of discrete actions only the choice α = 1
4 is perturbatively

consistent to first order. None of these choices is however perturbatively consistent to second
order. Nevertheless we succeeded to find a perturbatively consistent second order term. Note
that here different strategies are possible: we only determined the altered second order term to
the lowest order in the lattice constant a as the perfect action could afterwards be constructed
through coarse graining. Alternatively one might demand that the second order term arises from
the second derivate of the action, that is that the differential equations (3.25,3.26) are satisfied.
This would also fix the higher order terms in the lattice constant a so that even without coarse
graining, the perfect action can be calculated from the solutions of these differential equations.

4 Discussion

The notion of diffeomorphism symmetry in the discrete advocated here is a very powerful one:
it leads to discretization independence and to a reconciliation between continuum space time
and discrete underlying lattice. Basically such a symmetry requires that the discretization
encodes already continuum physics. It should therefore not be very surprising that there are no
examples yet where such a symmetry is realized for proper field theories with propagating degrees
of freedom. Generically discretizations will rather feature broken diffeomorphism symmetry, in
the sense that there exist special background solutions for which the symmetry is realized, but
is violated if considering other solutions. These special solutions are often the most simple ones
around which a perturbative expansion would be natural.

A theory with broken gauge symmetries is however not perturbatively consistent if expanded
around a background solution where the gauge symmetry is realized. For Regge calculus this
applies to the expansion around flat space (or for Regge calculus with cosmological constant
and curved tetrahedra [30] around homogeneous background solutions). That is one should be
aware that, i.e. the scattering of gravitons on a lattice is a priori not well defined. However
the computation of such scattering amplitudes provides an important test for the low energy
behavior of quantum gravity theories such as spin foams [31].

One possibility to allow for a perturbative treatment of lattice action with broken gauge
symmetries is to change the discretization to the appropriate order. This change should ensure
that the gauge symmetry is realized to this order, allowing a consistent perturbative treatment.
That is gauge modes will decouple to the given order and only physical modes need to be
considered.
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The change of discretization is already an important step towards constructing a perfect
action, i.e. a discretization where the gauge symmetry in question – diffeomorphism symmetry
– is fully realized. It might therefore be quite non–trivial to find perturbatively consistent
discretizations for field theories with propagating degrees of freedom. Future investigations will
show, whether such perturbatively consistent discretizations require non-local couplings. Such
couplings have to be expected for the perfect action as they do appear under coarse graining.
In this case the consistency requirements can give important informations on the structure of
the perfect action, without having explicitly constructed it yet.

In 4D Regge calculus difffeomorphism symmetry is broken – in general to quadratic order
[5]. This does not exclude the possibility that Regge calculus is perturbatively consistent to first
non–linear order on a regular lattice, which would make the regular lattice a preferred choice.
This can be checked explicitely, as the conditions for consistency are analogous to those for
parametrized field theory.

Here we discussed the classical theory, i.e. tree level amplitudes. A much farther reaching
question is to generalize the considerations to quantum theory (see [10] for a discussion of the
quantum theory for the discrete anharmonic oscillator). There are a number of crucial questions
to consider. In particular the minimal distance on a lattice serves usually as a regulator. However
if vertex translation symmetry is realized such a minimal distance looses its meaning as vertices
can be moved on top of each other. That is, in such a lattice quantum theory with diffeomorphism
symmetry the lattice looses is function as a regulator and finiteness needs to be provided for
by other means. One possibility is through the discreteness of spectra of geometric operators,
which is realized in loop quantum gravity [32]. Insight into this issue can be gained by finding
the fixed points under coarse graining of quantum gravity models, such as spin foams [33, 34]
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