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Abstract

We consider the limit of two-dimensional N = (2, 2) superconformal minimal models
when the central charge approaches c = 3. Starting from a geometric description as non-
linear sigma models, we show that one can obtain two different limit theories. One is the
free theory of two bosons and two fermions, the other one is a continuous orbifold thereof.
We substantiate this claim by detailed conformal field theory computations.
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1 Introduction

Sequences of two-dimensional conformal field theories and their limits have been analysed
in [1, 2, 3, 4, 5, 6, 7, 8]. The motivation to study them arises on the one hand, because
one can use them to explore non-rational models that occur as limits of sequences of
rational theories. On the other hand, the analysis of such sequences might shed light
on the structure of the space of two-dimensional field theories. There are several ideas
about what a good notion of distance on such a space would be, e.g. the Zamolodchikov
metric [9, 10] or g-factors of conformal interfaces (for a recent discussion see [11]). If one
has a notion of distance or more generally a topology, one can also discuss the question
of convergence of sequences of theories. Conversely, lacking a proper understanding of
theory space, one may study sequences of theories in order to learn more about what the
right notion of convergence should be.

The study of limits of sequences of two-dimensional conformal field theories was pi-
oneered in ref. [1] for the limit of Virasoro minimal models. The general idea of that
construction is to define fields in the limit theory as limits of averages of fields. More
precisely, given a smooth, non-negative function f(h) of fast enough decay that describes
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a certain averaging over conformal weights, the corresponding limit field Φf arises from
weighted averages

Φ
(k)
f =

∑
i

f(hi)φ
(k)
i (1.1)

of primary fields φ
(k)
i in the kth model with conformal weight hi. Correlators of limit fields

are then defined as limits of correlators of averaged fields. In order to obtain finite and
sensible correlators in the limit, one can make use of the freedom to rescale fields and
correlators and to redefine the fields φ

(k)
i by individual phases. A priori it is not guaranteed

that in this way one arrives at a valid conformal field theory, but in all examples that
have been studied over the years, the limit theory seems to be well behaved.

The above procedure is ambiguous when other quantum numbers are available, because
there is some freedom of how to treat them while taking the limit. In the limit ofN = (2, 2)
superconformal minimal models which we explore here, we will encounter this ambiguity
because of the presence of the U(1) current J in the N = 2 superconformal algebra and
the corresponding charge Q. On the one hand we could keep the charge fixed in the limit
and define field averages (1)Φ

(k)
f corresponding to a certain test function f(h,Q) by an

obvious generalisation of (1.1). This leads to the limit theory constructed in [8] with a
continuous spectrum of charged primary fields. On the other hand, one could rescale the
charges and define new averaged fields

(2)Φ
(k)
f =

∑
i

f(hi, Qi(k + 2))φ
(k)
i . (1.2)

Because of the rescaling, in this theory the primary fields have charge zero, and we will
show that this limit is equivalent to a free theory of two uncompactified bosons and
two fermions. The discrete quantum number that arises from the rescaled charge of the
primary fields is then interpreted as the eigenvalue of the rotation operator on the plane
spanned by the two bosonic fields. In the process of defining the limit theory we will see
that in addition to a global rescaling of the fields we also have to make use of the freedom
to redefine the ingredient fields by individual phases compared to the conventions used in
the other limit construction [8].

The appearance of two different limit theories can also be understood from a geometric
point of view. The minimal models can be described by non-linear sigma models [12] with
a target space having the topology of a disc with infinite circumference but with a finite
radius

√
π(k + 2)/2, which goes to infinity in the limit k → ∞. If one focusses on the

region around the centre while taking the limit, the metric approaches the flat metric on
the plane. This is the free limit theory described above. On the other hand one could focus
on the region close to the (singular) boundary of the disc. As explained in section 2 one
can use T-duality to show that the corresponding limit theory should be given by a free
theory of two bosons and two fermions orbifolded by the rotation group SO(2). We will
verify explicitly that this continuous orbifold coincides with the limit theory constructed
in [8].

The plan of the paper is the following: We will start our analysis in section 2 by
discussing the two possible limits starting from a geometric description. In section 3
we will confirm that the limit procedure in which the charges are rescaled as in (1.2)
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leads to a free field theory; we determine the partition function, the three-point function
and boundary conditions in the limit and compare them to the free field theory results.
Thereafter in section 4 we show that the other limit theory obtained in [8] is equivalent to
a continuous orbifold by matching the partition function and boundary conditions, and
we close in section 5 with a brief discussion.

2 The geometry of minimal models and the limit

In [12] Maldacena, Moore and Seiberg gave a geometric description of N = (2, 2) minimal
models in terms of a supersymmetric non-linear sigma model on a two-dimensional target
space with the topology of a disc and with the metric

ds2 =
k + 2

1− ρ2

(
dρ2 + ρ2dϕ2

)
, (2.1)

where the radial coordinate ρ runs from 0 to 1, and the angular coordinate ϕ is 2π-periodic.
In addition there is a non-trivial dilaton field Φ of the form

eΦ(ρ,ϕ)−Φ0 =
1√

1− ρ2
. (2.2)

The geometry is such that the boundary at ρ = 1 is at a finite distance π
2

√
k + 2 from the

centre at ρ = 0, but the circumference of a circle at radius ρ is 2πρ
√

k+2
1−ρ2 , and it diverges

as ρ→ 1.
Given the geometric interpretation, we now want to analyse what happens for large

levels k. One way to take the geometric limit is to introduce a new coordinate

ρ′ =
√
k + 2 ρ , (2.3)

such that the metric reads

ds2 =
1

1− ρ′2/(k + 2)

(
dρ′2 + ρ′2dϕ2

)
. (2.4)

Keeping ρ′ fixed while taking the limit k →∞ leads to the flat metric on the plane.
From this analysis one would like to conclude that the limit of N = (2, 2) minimal

models for k → ∞ is a free theory. At first sight this is in conflict with the analysis
in [8], where the limit of minimal models was shown to be a theory containing fields with
a continuous U(1) charge that should not be present in a free theory. This conflict can be
resolved by comparing more carefully how the limits are taken in these two approaches.

In a minimal model of level k, Neveu-Schwarz primary fields φl,m are labelled by two
integers satisfying 0 ≤ l ≤ k, |m| ≤ l and l +m even. In [8] the fields in the limit theory
arise from fields φl,m where l and m grow linearly with k in the limit, while the difference
l − |m| =: 2n is kept fixed. To compare this procedure to the geometric limit we need a
geometric interpretation of the fields φl,m, which was also given in [12]. The fields φl,m
correspond to wave functions

ψl,m(ρ, ϕ) = ρ|m|eimϕ2F1

(
|m|+l

2
+ 1, |m|−l

2
; |m|+ 1; ρ2

)
, (2.5)
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which are eigenfunctions of the (dilaton-corrected) Laplacian,(
−1

2
∇2 + (∇Φ) · ∇

)
ψl,m(ρ, ϕ) = 2hl,m ψl,m(ρ, ϕ) . (2.6)

Here, 2F1 is the hypergeometric function, and

hl,m =
l(l + 2)−m2

4(k + 2)
(2.7)

is the conformal weight of the field φl,m.
When we now take the geometric limit to the flat plane, the wave functions ψl,m should

approach the eigenfunctions of the flat Laplacian. In radial coordinates, these are given
by

ψflat
p,m(ρ′, ϕ) = eimϕJ|m|(pρ

′) , (2.8)

where J is a Bessel function of the first kind. They satisfy

− 1

2
∇2

flatψ
flat
p,m(ρ′, ϕ) =

p2

2
ψflat
p,m(ρ′, ϕ) . (2.9)

Comparing the angular dependence of ψl,m and ψflat
p,m one observes immediately that the

label m should be kept fixed in the limit. For the eigenvalue hl,m to approach hp = p2

4
,

the label l has to grow with the square root of k, namely l ≈ p
√
k + 2. Then the wave

functions ψl,m behave as

(k + 2)|m|/2ψl,m = ρ′|m|eimϕ 2F1( |m|+l
2

+ 1, |m|−l
2

; |m|+ 1; ρ′2

k+2
) (2.10)

= eimϕ
(l−|m|)/2∑
n=0

(
l+|m|

2

)
n

(
−l+|m|

2

)
n

n!(|m|+ 1)n
(ρ′)2n+|m|(k + 2)−n (2.11)

= eimϕ
(l−|m|)/2∑
n=0

(−1)n

n!(|m|+ 1)n

(
l − |m| − 2n+ 2

2
√
k + 2

)
· · ·
(
l − |m|

2
√
k + 2

)
×
(
l + |m|

2
√
k + 2

)
· · ·
(
l + |m|+ 2n− 2

2
√
k + 2

)
(ρ′)2n+|m| (2.12)

∼ eimϕ
∞∑
n=0

(−1)np2n2−2n

n!(|m|+ 1)n
(ρ′)2n+|m| (2.13)

∼ eimϕ J|m|(pρ
′) . (2.14)

Thus up to an overall normalisation factor the wave functions ψl,m approach the wave
functions of the free theory.

On the one hand this suggests that there is a free field theory limit of minimal models
by scaling l ≈ p

√
k + 2 and keeping m fixed. This will be examined further in section 3.

On the other hand this means that the limit theory found in [8] should correspond to a
different way of taking the geometric limit. Indeed for fixed l−|m| = 2n the wave function
ψl,m is, apart from the angular part, a polynomial in ρ containing n+1 terms with powers
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ranging from ρ|m| to ρ|m|+2n. If |m| is large, the wave functions are localised close to ρ = 1,
in the region where the metric and the dilaton diverge and the sigma model description
becomes singular, so that one cannot easily extract a sensible geometric interpretation.
It was however observed in [12] that under a T-duality the minimal model is mapped to
its own Zk+2 orbifold described by

ds̃2 =
k

1− ρ̃2

(
dρ̃2 + ρ̃2dϕ̃2

)
(2.15)

eΦ̃−Φ0 =
1√
k + 2

1√
1− ρ̃2

(2.16)

ϕ̃ ≡ ϕ̃+
2π

k + 2
. (2.17)

T-duality maps the problematic region around ρ = 1 to the region close to the conical
singularity of the orbifold at ρ̃ = 0. This suggests that the limit of minimal models of [8]
corresponds to taking the limit in the orbifolded model by focussing on the region around
ρ̃ = 0. By introducing again a rescaled variable ρ̃′ =

√
k + 2ρ̃ and keeping ρ̃′ fixed in

the limit, the metric ds̃2 approaches the flat metric on the plane. On the other hand,
according to (2.17) all angles have to be identified. The resulting limit theory is thus the
theory on a flat plane R2 orbifolded by the rotation group SO(2).

In section 4 we will construct this orbifold conformal field theory and show that it
precisely matches the limit theory of [8].

3 Free field limit

The geometric analysis of section 2 suggests that the N = 2 minimal models have a free
field limit when the field labels (l,m) are treated such that l ≈

√
k + 2 p and m stays fixed

in the limit. We will first analyse the behaviour of the partition function in the limit. We
will then turn to the actual construction of the fields in the limit theory, and determine
the bulk three-point function and boundary conditions.

3.1 Partition function

We will now reproduce the partition function of the free theory as the limit of the partition
functions of minimal models. We focus on the Neveu-Schwarz sector, and define

PNS
k (τ, ν) = TrHNS

k

(
qL0− c

24 zJ0 q̄L̄0− c
24 z̄J̄0

)
, (3.1)

where J0 is the zero mode of the U(1) current of the N = 2 superconformal algebra, and
q = e2πiτ and z = e2πiν . Note that PNS

k (τ, ν) does not depend holomorphically on τ and
ν, but we suppress the dependence on τ̄ and ν̄ to shorten the notation. HNS

k is the full
supersymmetric Hilbert space for the Neveu-Schwarz sector,

HNS
k =

⊕
0≤l≤k

⊕
|m|≤l

l+m even

Hl,m ⊗Hl,m , (3.2)
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and the Neveu-Schwarz spectrum of the actual minimal model corresponds to a (GSO-
like) projection thereof. For k → ∞ the partition function diverges: there are infinitely
many states approaching the same conformal weight and charge. We therefore need to
regularise it.

The fields we are interested in have fixed label m, and their U(1) charge Q = − m
k+2

approaches zero in the limit. To cure the divergence associated to the appearance of
infinitely many chargeless fields, we want to keep track of the quantum number m in the
limit. In the free field theory, m corresponds to the eigenvalue of the angular momentum
operator M , and we could insert eiϕM in the partition function: in this way the partition
function is written as a formal power series in eiϕ and e−iϕ, and the coefficient of eimϕ

gives the contribution of states of a given angular momentum m. In the geometric de-
scription of the minimal models, there is a U(1) rotation symmetry in the classical theory,
but it is broken to a Zk+2 symmetry in the quantum model. The rotation by an angle
2πi r

k+2
(r integer) is realised by the operator gr, where g acts on states in Hl,m ⊗ Hl,m

by multiplication with the phase e2πi m
k+2 . To mimic the insertion of eiϕM in the free field

theory, we therefore introduce the operator gb
ϕ
2π

(k+2)c in the partition function, such that
states with a given m will get the phase eimϕ in the limit (bxc dentoes the greatest integer
smaller or equal x).

The regularised partition function therefore becomes (we use standard conventions for
ϑ-functions as summarised in appendix A)

PNS
k,(ϕ)(τ, ν) =

∣∣∣∣ϑ3(τ, ν)

η3(τ)

∣∣∣∣2 k∑
m=−k

e2πi m
k+2
b ϕ

2π
(k+2)c(zz̄)−

m
k+2

k∑
l=|m|

l+m even

(qq̄)
(l+1)2−m2

4(k+2)
∣∣Γ(k)

lm (τ, ν)
∣∣2 ,
(3.3)

where we used the minimal model characters given in eq. (A.12). Γ
(k)
lm is defined in

eq. (A.14), it is of the form

Γ
(k)
lm = 1 + (subtractions from singular vectors) , (3.4)

and its behaviour for large k is given in eq. (A.17). The contribution of a fixed m is then

PNS
k,(ϕ,m)(τ, ν) ≈

∣∣∣∣ϑ3(τ, ν)

η3(τ)

∣∣∣∣2 eimϕ√k + 2

2

∫
dp (qq̄)p

2/4 , (3.5)

where we employed the Euler-MacLaurin sum formula (see e.g. [13, appendix D]) to
convert the sum over l into an integral over p = l/

√
k + 2. For fixed m and large l all

singular vectors disappear and Γ
(k)
lm → 1. To get the true partition function, i.e. the trace

over the projected Hilbert space, we have to combine P evaluated at ν and at ν+ iπ, and
we find after rescaling by an overall factor

1√
k + 2

(
PNS
k,(ϕ)(τ, ν) + PNS

k,(ϕ)(τ, ν + iπ)
)

→ 1

2

(∣∣∣∣ϑ3(τ, ν)

η3(τ)

∣∣∣∣2 +

∣∣∣∣ϑ4(τ, ν)

η3(τ)

∣∣∣∣2
)∑

m∈Z

eimϕ
∫ ∞

0

dp (qq̄)p
2/4 , (3.6)

which is precisely the Neveu-Schwarz part of the partition function of two free uncom-
pactified bosons and two fermions, weighted by the rotation operator eiMϕ.
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3.2 Fields and correlators

We will now define fields Φp,m in the limit theory. For m = 0, the behaviour of the
corresponding fields in the limit was analysed in [8], and we will closely follow that con-
struction.

In the Neveu-Schwarz sector we introduce the averaged fields1

Φε,k
p,m =

1

|N(p, ε, k,m)|
∑

l∈N(p,ε,k,m)

φl,m , (3.7)

where the set N(p, ε, k,m) contains all allowed labels l that are close to p
√
k + 2,

N(p, ε, k,m) =

{
l : l +m even , p− ε

2
<

l√
k + 2

< p+
ε

2

}
. (3.8)

Here, ε is a small real number that will be taken to zero at the end. For large k the
number of elements in N(p, ε, k,m) is (assuming p− ε

2
> 0)

|N(p, ε, k,m)| = ε

√
k + 2

2
+O(1) . (3.9)

These averaged fields are used to define fields Φp,m in the limit theory of conformal weight

h = p2

4
and U(1) charge Q = 0. Their correlators are defined as

〈Φp1,m1(z1, z̄1) · · ·Φpr,mr(zr, z̄r)〉
= lim

ε→0
lim
k→∞

β(k)2α(k)r〈Φε,k
p1,m1

(z1, z̄1) · · ·Φε,k
pr,mr(zr, z̄r)〉 , (3.10)

with normalisation factors α(k) for each field, and an overall normalisation factor β2(k)
for correlators on the sphere. In addition to this rescaling we also have the possibility to
redefine the fields φl,m by individual phases. Compared to the analysis in [8] we change
the normalisation by

φl,m → (−1)
l−m

2 φl,m . (3.11)

The necessity of introducing these signs will become clear when we analyse the three-point
function. With this convention the two-point function in the minimal models is

〈φl1,m1(z1, z̄1)φl2,m2(z2, z̄2)〉 = (−1)
l1−m1+l2−m2

2 δl1,l2 δm1+m2,0
1

|z12|4h1

= (−1)m1 δl1,l2 δm1+m2,0
1

|z12|4h1
, (3.12)

where we used that l1 +m1 is even.

1In comparison to the discussion around (1.2) we make use of the fact that the spectrum of the
rescaled charge Q(k + 2) = −m is discrete so that we can define fields with fixed labels m. For large k
our procedure here then corresponds to using a (discontinuous) averaging function

fp,ε(h) =

{
1/ε for |p− 2

√
h| < ε/2

0 else
, and in addition a k-dependent rescaling of the fields by 2/

√
k + 2.
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By following the analysis of [8] we find a normalised two-point function in the limit,

〈Φp1,m1(z1, z̄1)Φp2,m2(z2, z̄2)〉 = (−1)m1δ(p1 − p2)δm1+m2,0
1

|z1 − z2|p
2
1

, (3.13)

if we choose

α(k)β(k) =
(k + 2)1/4

√
2

. (3.14)

Before moving on, let us compare this to the free field theory. The primary fields Φfree
p in

the Neveu-Schwarz sector are labelled by a complex momentum p, they have conformal

weight h = |p|2
4

and U(1) charge q = 0. We can define a new “radial” basis,

Φfree
p,m =

√
p

2π

∫
dϕ Φfree

peiϕ e
imϕ , (3.15)

where the factor in front ensures a proper normalisation of the two-point function,

〈Φfree
p1,m1

(z1, z̄1)Φfree
p2,m2

(z2, z̄2)〉 = (−1)m1δ(p1 − p2)δm1+m2,0
1

|z1 − z2|p
2
1

. (3.16)

We therefore expect that the fields Φp,m of the limit theory are to be identified with the
fields Φfree

p,m of the free field theory. To confirm this we now look at the three-point function.

3.3 Three-point function

The three-point function in the free theory is given by

〈Φfree
p1

(z1, z̄1)Φfree
p2

(z2, z̄2)Φfree
p3

(z3, z̄3)〉 = δ(2)(p1 + p2 + p3)

× |z12|2(h3−h1−h2)|z23|2(h1−h2−h3)|z13|2(h2−h1−h3) . (3.17)

A straightforward calculation (see appendix C) shows that in the basis Φfree
p,m it can be

expressed as

〈Φfree
p1,m1

(z1, z̄1)Φfree
p2,m2

(z2, z̄2)Φfree
p3,m3

(z3, z̄3)〉 = δm1+m2+m3,0

√
p1p2p3√

2π
(−1)m3

× cos(m2α1 −m1α2)

A(p1, p2, p3)
|z12|2(h3−h1−h2)|z23|2(h1−h2−h3)|z13|2(h2−h1−h3) , (3.18)

where A(p1, p2, p3) is the area of the triangle with side lengths p1, p2 and p3, and αi is the
angle of the triangle opposite of the edge pi. If a triangle with these side lengths does not
exist, the correlator is zero.

The three-point functions in the limit theory are obtained from the three-point func-
tions in the minimal models [14] (see also [15, 16]). For large k + 2 and li ≈ pi

√
k + 2,

the three-point function is given by (see [8])

〈φl1,m1(z1, z̄1)φl2,m2(z2, z̄2)φl3,m3(z3, z̄3)〉 = (−1)
l1+l2+l3

2

(
l1
2

l2
2

l3
2

m1

2
m2

2
m3

2

)2

×
√

(l1 + 1)(l2 + 1)(l3 + 1) δm1+m2+m3,0|z12|2(h3−h1−h2)|z13|2(h2−h1−h3)|z23|2(h1−h2−h3) .
(3.19)
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Here,

(
j1 j2 j3

µ1 µ2 µ3

)
denotes the Wigner 3j-symbols, and in order to determine the cor-

relator in the limit one has to understand the asymptotic behaviour of the 3j-symbols
for large quantum numbers ji, which we analyse in appendix B. The result (compare
with (B.14)) is

(
l1
2

l2
2

l3
2

m1

2
m2

2
m3

2

)
= (k + 2)−1/2 (−1)

l1−l2−m3
2√

π
2
A(p1, p2, p3)

× cos

(
l1 + l2 − l3

4
π +

m2α1 −m1α2

2

)
+O(k−1) . (3.20)

For large level k the three-point function therefore behaves as

〈φl1,m1(z1, z̄1)φl2,m2(z2, z̄2)φl3,m3(z3, z̄3)〉 = (k + 2)−1/4 2
√
p1p2p3

πA(p1, p2, p3)
δm1+m2+m3,0

× (−1)
l1+l2+l3

2 cos2
(
l1+l2−l3

4
π + m2α1−m1α2

2

)
|z12|2(h3−h1−h2)|z13|2(h2−h1−h3)|z23|2(h1−h2−h3) .

(3.21)

To obtain the correlator in the limit theory we have to average over the quantum num-
bers li. We observe that

(−1)
l1+l2+l3

2 cos2
(
l1+l2−l3

4
π + m2α1−m1α2

2

)
= (−1)m3 ×

{
cos2

(
m2α1−m1α2

2

)
for l1+l2−l3

2
= 0 mod 2

− sin2
(
m2α1−m1α2

2

)
for l1+l2−l3

2
= 1 mod 2 .

(3.22)

In average these contributions combine to

1

2
(−1)m3

(
cos2 m2α1−m1α2

2
− sin2 m2α1−m1α2

2

)
=

1

2
(−1)m3 cos (m2α1 −m1α2) . (3.23)

In total we arrive at

〈Φp1,m1(z1, z̄1)Φp2,m2(z2, z̄2)Φp3,m3(z3, z̄3)〉 = β2(k)α3(k)(k + 2)−1/4 δm1+m2+m3,0 (−1)m3

×
√
p1p2p3

π

cos(m2α1 −m1α2)

A(p1, p2, p3)
|z12|2(h3−h1−h2)|z23|2(h1−h2−h3)|z13|2(h2−h1−h3) , (3.24)

which matches the free field theory result (3.18) if we set (respecting (3.14))

α(k) =
√

2π(k + 2)−1/4 β(k) =
1

2
√
π

(k + 2)1/2 . (3.25)

Hence, we find perfect agreement for the three-point function. Notice that the redefini-
tion of the minimal model fields φl,m by the sign (−1)

l−m
2 was crucial in matching the

expressions. Without it, the averaging in (3.23) would simply give 1
2
(−1)m3 so that the

three-point function would have a rather trivial dependence on the labels mi.

10



ψR

D1

Figure 1: Illustration of the boundary condition that corresponds to a one-dimensional
brane, and the distance R and the angle ψ that determine its position.

3.4 A-type boundary conditions

We now want to discuss boundary conditions, and at first we focus on one-dimensional
branes in our two-dimensional target. They imply A-type boudnary conditions for the
supercurrents. In the free theory, a one-dimensional brane is characterised by a vector
Reiψ that determines its shortest distance from the origin plus an orientation (see fig. 1).
In the Neveu-Schwarz sector the one-point functions are2

〈
Φfree
peiϕ(z, z̄)

〉A
R,ψ

=
1

2
δ(p cos(ψ − ϕ)) eiRp sin(ψ−ϕ) 1

|z − z̄|2hp
. (3.26)

The prefactor 1/2 already includes the factor of 2−1/2 that arises because we choose the
(GSO-like) projection of our theory such that also the Ramond-Ramond fields couple to
the one-dimensional brane. In the radial basis, the one-point function is then given by〈

Φfree
p,m(z, z̄)

〉A
R,ψ

=

√
p

2π

∫
dϕ eimϕ〈Φfree

peiϕ(z, z̄)〉AR,ψ (3.27)

=
1√
2πp

eimψ ·

{
cosRp for m even

i sinRp for m odd.
(3.28)

In the minimal models, A-type boundary conditions are obtained using the standard
Cardy construction [17]. They are labelled by integers (L,M, S), where 0 ≤ L ≤ k, M

2A boundary condition corresponding to a d-dimensional brane in a D-dimensional target space that
only couples to the NS-NS sector has the one-point function〈

ei~p·
~X
〉

= 2−
D
4 (α′)

D−2d
4 δ(d)(~p‖)e

i ~R·~p⊥ |z − z̄|−2hp ,

where the conformal weight is hp = α′p2

4 . The projection of the full Hilbert space only allows either the
even- or the odd-dimensional branes to couple to the R-R sector; in that case there is an additional factor
of 2−1/2. In our conventions α′ = 1.
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is 2k + 4-periodic, S ∈ {−1, 0, 1, 2}, and L + M + S is even. In the geometric descrip-
tion (2.1) of [12], these boundary conditions correspond to branes that are straight lines
characterised by the equation

ρ cos(ϕ− ϕ0) = ρ0 , (3.29)

where

ρ0 = cos
π(L+ 1)

k + 2
ϕ0 =

πM

k + 2
. (3.30)

Note that boundary labels (L,M, S) and (k − L,M + k + 2, S + 2) describe the same
boundary conditions, and we can always choose L ≤ k/2 such that the above defined ρ0

is positive. In the geometric picture (ρ0, ϕ0) are the coordinates of the point on the
brane that is closest to the origin. For large k the distance to the origin is given by
ρ′0 =

√
k + 2ρ0. To make contact with the free field theory description we want this

distance to approach the constant R,

√
k + 2 cos

π(L+ 1)

k + 2
→ R . (3.31)

We can achieve this by scaling the boundary label as

L =
1

2
(k + 2)− R

π

√
k + 2 +O(1) . (3.32)

Similarly we scale the boundary label M such that the corresponding angle ϕ0 is constant
in the limit,

M =
k + 2

π
ϕ0 +O(1) . (3.33)

We expect ϕ0 to coincide with the angle ψ up to a possible additive shift.
The one-point function of a Neveu-Schwarz primary field φl,m for a boundary condition

(L,M, S) is given by (see3 e.g. [12])

〈φl,m(z, z̄)〉A(L,M,S) =
(−1)

l−m
2

√
k + 2

sin π(l+1)(L+1)
k+2√

sin π(l+1)
k+2

eπi
Mm
k+2

1

|z − z̄|2hl,m
. (3.34)

For L and M as in (3.32) and (3.33), this behaves as

〈φl,m(z, z̄)〉A(L,M,S) =
(k + 2)−1/4

2
√
πp

(
e
iR l+1√

k+2 − eiπ(l+1)−iR l+1√
k+2

)
ei(ϕ0−π2 )m 1

|z − z̄|2hl,m
. (3.35)

To obtain the one-point function for the limit field Φp,m we take expression (3.35), multiply
it by α(k)β(k) given in (3.14) and take the limit k → ∞ while we keep m constant and
scale l ≈ p

√
k + 2. We arrive at the result〈

Φp,m

〉A
R,ϕ0

=
1√
2πp

ei(ϕ0−π2 )m ·
{

cosRp for m even
i sinRp for m odd ,

(3.36)

which precisely matches the free field theory result (3.28) upon identifying ψ = ϕ0 − π
2
.

3The sign (−1)
l−m

2 comes from our field redefinition in (3.11).
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3.5 B-type boundary conditions

B-type boundary conditions in minimal models are labelled by two integers (L, S) where
0 ≤ L ≤ k and S = 0, 1. The one-point functions of Neveu-Schwarz primaries are given
by (see4 e.g. [12])

〈φl,m(z, z̄)〉B(L,S) =
√

2
sin π(l+1)(L+1)

k+2√
sin π(l+1)

k+2

δm,0|z − z̄|−2hl,m . (3.37)

Geometrically these correspond to two-dimensional discs where the coordinate of the
boundary is given by ρ1 = sin π(L+1)

k+2
. We expect that we can define two limits: one for

which the disc shrinks to a point to describe a 0-dimensional brane in the free theory, and
one for which the disc covers the whole plane corresponding to a two-dimensional brane
in the free theory.

Let us first consider the 0-dimensional brane. We keep the label L fixed, such that
the radius of the disc, ρ′1 =

√
k + 2 sin π(L+1)

k+2
, goes to zero. One readily obtains the

corresponding one-point function〈
Φp,m(z, z̄)

〉B
(L,S)

=
√
πp(L+ 1)δm,0|z − z̄|−2hp , (3.38)

which is an integer multiple of the one-point function for L = 0, so it describes a stack
of L + 1 elementary branes. This is related to the fact that in minimal models the B-
type boundary conditions with L > 0 can be obtained from a superposition of boundary
conditions with L = 0 by a boundary renormalisation group flow that becomes short when
k →∞ [18].

In the free theory, for a 0-dimensional brane at the origin, the one-point function of
Neveu-Schwarz primary fields Φfree

p is simply5

〈
Φfree

p (z, z̄)
〉B
(0)

=
1√
2
|z − z̄|−2hp , (3.39)

which in the radial basis reads〈
Φfree
p,m(z, z̄)

〉B
(0)

=
√
πp δm,0

1

|z − z̄|2hp
, (3.40)

in precise agreement with the minimal model computation.

On the other hand, we can look at two-dimensional branes. There is a one-parameter
family of those that differ in the strength of a constant electric background field. The
electric field can be labelled by an angle6 −π < φ < π (see e.g. [19, 20] and the discussion

4Note that the sign (−1)
l−m

2 that one expects from the field redefinition (3.11) is absorbed by a sign
hidden inside the definition of the B-type Ishibashi states in [12].

5Note that the 0-dimensional brane cannot couple to the R-R sector, because we chose the projection
such that the 1-dimensional brane couples to it. Therefore the prefactor is simply 2−D/4 = 2−1/2 (compare
the discussion in footnote 2 on page 11).

6where sinφ = 2f
1+f2 and cosφ = 1−f2

1+f2 for an electric field strength Fµν =

(
0 f
−f 0

)
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in [21]). The boundary conditions are characterised by the one-point functions〈
Φfree

p (z, z̄)
〉B
φ

=
1√

2 cos φ
2

δ(2)(p) . (3.41)

Instead of working with the delta distribution directly, it is more convenient to apply it
on a test function ζ(p), i.e. we look at a smeared one-point function〈∫

d2p ζ(p)Φfree
p (z, z̄)

〉B
φ

=
1√

2 cos φ
2

ζ(0) . (3.42)

For a comparison to the minimal model limit, we express it in terms of the radial basis,〈∫
dp
∑
m

ζp,−mΦfree
p,m(z, z̄)

〉B
φ

=
〈∫

d2p ζ(p)Φfree
p (z, z̄)

〉B
φ

=
1√

2 cos φ
2

ζ(0) (3.43)

=
1√

2 cos φ
2

ζp,0√
2πp

∣∣∣∣
p=0

, (3.44)

where

ζp,m =

√
p

2π

∫
dϕ eimϕ ζ(peiϕ) . (3.45)

We can reformulate this as 〈
Φfree
p,m(z, z̄)

〉B
φ

= 0 for m 6= 0 (3.46a)〈√
2π

∫ ∞
0

dp
√
p χ(p)Φfree

p,0 (z, z̄)
〉B
φ

=
1√

2 cos φ
2

χ(0) , (3.46b)

for suitable test functions χ on the positive real line.
We expect to get these boundary conditions from the minimal models by considering

B-type boundary conditions that correspond to a disc covering the whole two-dimensional
space in the minimal model geometry. These are labelled by (L, S) where L is scaled
linearly with k, L = bΛ(k + 2)c. The minimal model one-point functions behave as

〈φl,m(z, z̄)〉B(bΛ(k+2)c,S) ≈

√
2(k + 2)

π(l + 1)
sin (πΛ(l + 1)) δm,0|z − z̄|−2hl,m . (3.47)

The sine function in the numerator oscillates rapidly as a function of l. Therefore the
one-point function of Φp,0 is suppressed for non-zero p as expected. To evaluate the
contribution at p = 0, we consider the one-point function for fields smeared by a test
function χ,〈√

2π

∫ ∞
0

dp
√
p χ(p) Φp,0(z, z̄)

〉B
(bΛ(k+2)c,S)

= lim
k→∞

√
2π
√

2 (k + 2)−1/4
∑
l even

(
l + 1√
k + 2

) 1
2

χ

(
l + 1√
k + 2

)
〈φl,0(z, z̄)〉B(bΛ(k+2)c,S)

= lim
k→∞

2
√

2
∑
l even

sin (πΛ(l + 1)) χ

(
l + 1√
k + 2

)
|z − z̄|−2hl,0

=

√
2

sin πΛ
χ(0) , (3.48)
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which equals twice the result in eq. (3.46b) if we set

φ = ±2π
(
Λ− 1

2

)
. (3.49)

Therefore the limiting boundary condition is not elementary, but a superposition of two
2-dimensional branes in the free theory. A closer analysis (e.g. by looking at the relative
spectrum to the 0-dimensional brane) reveals that in fact it is a superposition of two
branes with opposite electric field (corresponding to the two possible signs of φ in (3.49)).
This is in accordance with the identification of B-type boundary states in minimal models
under L ↔ k − L, which amounts to the identification Λ ↔ 1 − Λ corresponding to a
switch of the sign in (3.49).

This concludes our discussion of the free field limit, and we turn now to the continuous
orbifold limit.

4 Continuous orbifold limit

In [8] we constructed a limit of minimal models where both field labels l and m are sent
to infinity such that both the conformal weight and the U(1) charge are kept fixed. The
resulting theory contains a spectrum of primary fields that is continuous in the U(1)
charge. In this section we want to interpret this limit as a continuous orbifold of a free
theory, where the U(1) charge serves as a twist parameter.

The possibility to construct continuous orbifolds by gauging a continuous global sym-
metry group was recently explored in [22] where the nonabelian orbifold SU(2)1/SO(3)
was analysed. The theory we want to consider is the N = (2, 2) supersymmetric the-
ory of two uncompactified bosons and two fermions orbifolded by the rotation group
SO(2) ' U(1).

4.1 The orbifold

Notations and conventions follow closely the ones in [21]. We start by defining the real
bosonic coordinates X1(z, z̄), X2(z, z̄) and their fermionic counterparts ψ1(z, z̄), ψ2(z, z̄).
We rearrange the fields to work on the complex plane with one free complex fermion,
namely defining

φ = 1√
2
(X1 + iX2) φ∗ = 1√

2
(X1 − iX2) (4.1a)

ψ = 1√
2
(ψ1 + iψ2) ψ∗ = 1√

2
(ψ1 − iψ2) , (4.1b)

such that the mode expansion of the (holomorphic) fields reads

∂φ = −i
∑
m∈Z

αmz
−m−1 ∂φ∗ = −i

∑
m∈Z

α∗mz
−m−1 (4.2a)

ψ =
∑
r∈Z+ 1

2

ψrz
−r+η ψ∗ =

∑
r∈Z+ 1

2

ψ∗rz
−r+η , (4.2b)
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where η = 0, 1
2

in the Ramond and Neveu-Schwarz sector respectively. The antiholo-
morphic case is analogous. For simplicity we will restrict the following discussion to the
Neveu-Schwarz sector. The modes respect the algebra of one free complex boson and one
free Neveu-Schwarz complex fermion:

[αm, α
∗
n] = mδm,−n {ψr, ψ∗s} = δr,−s (4.3a)

[αm, αn] = [α∗m, α
∗
n] = 0 {ψr, ψs} = {ψ∗r , ψ∗s} = 0 . (4.3b)

We can explicitly realise the N = 2 superconformal algebra by defining the generators
through our holomorphic fields as

T = −∂φ∂φ∗ − 1

2
(ψ∗∂ψ + ψ∂ψ∗) J = −ψ∗ψ (4.4a)

G+ = i
√

2ψ∂φ∗ G− = i
√

2ψ∗∂φ , (4.4b)

and similarly for their antiholomorphic counterparts.
We want to end up with an N = (2, 2) theory; we therefore choose the action of the

orbifold group in such a way that the currents in (4.4) are invariant under the transfor-
mation and supersymmetry is not broken. In particular we choose the U(1) action on the
fields as follows

U(θ) · φ = eiθφ U(θ) · φ∗ = e−iθφ∗ (4.5a)

U(θ) · ψ = eiθψ U(θ) · ψ∗ = e−iθψ∗ , (4.5b)

so that in terms of the coordinates X1, X2 on the plane it is realised by the rotation
matrix

U(θ) · ~X ≡ Rθ · ~X =

(
cos θ − sin θ
sin θ cos θ

)
·
(
X1

X2

)
. (4.6)

The action of the group on the field modes is thus

αn 7→ eiθαn α∗n 7→ e−iθα∗n (4.7a)

ψr 7→ eiθψr ψ∗r 7→ e−iθψ∗r . (4.7b)

4.2 Partition function

We now want to determine the partition function of the orbifold. We first look at the
Neveu-Schwarz part, and work with the full supersymmetric Hilbert space. To compare
with the minimal models we will later perform a (GSO-like) projection by 1

2
(1+(−1)F+F̄ )

onto states of even fermion number.
By inserting a twist operator we obtain the θ-twined characters

θ

0

= TrHNS
free

(
U(θ)qL0− 1

8 q̄L̄0− 1
8

)
, (4.8)
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where we denoted by HNS
free the (unprojected) Neveu-Schwarz part of the Hilbert space of

the free theory.
The orbifold group acts non-trivially on the vacua labelled by the momentum on the

plane,
|~p 〉 7−→ |Rθ · ~p 〉 , (4.9)

so that the momentum dependent part of equation (4.8) becomes∫
d2p δ2(Rθ · ~p− ~p) (qq̄)

|~p|2
4 =

∫
d2p

1

det(Rθ − 1)
δ2(~p) (qq̄)

|~p|2
4 . (4.10)

The θ-twined character is then

θ

0

= TrHNS
free

(
U(θ)qL0− 1

8 q̄L̄0− 1
8

)

=

∫
d2p

δ2(~p)

det(Rθ − 1)
(qq̄)

|~p|2
4

∣∣∣∣∣q− 1
8

∞∏
n=0

(1 + qn+ 1
2 eiθ)(1 + qn+ 1

2 e−iθ)

(1− qn+1eiθ)(1− qn+1e−iθ)

∣∣∣∣∣
2

=

∣∣∣∣∣ϑ3(τ, θ
2π

)

ϑ1(τ, θ
2π

)

∣∣∣∣∣
2

. (4.11)

We then act with a modular S-transformation on the complex modulus of the torus
(τ 7→ − 1

τ
) to get from the θ-twined free character to the character of the θ-twisted sector,

θ

0

S7−→ 0

θ

. (4.12)

We can benefit from known transformation properties of the ϑ-functions, in particular

ϑ3(− 1
τ
, ν)

ϑ1(− 1
τ
, ν)

= i
ϑ3(τ, ντ)

ϑ1(τ, ντ)
, (4.13)

so that the θ-twisted sector reads

0

θ

= TrHNS
θ

(
qL0− 1

8 q̄L̄0− 1
8

)
=

∣∣∣∣∣ϑ3(τ, τθ
2π

)

ϑ1(τ, τθ
2π

)

∣∣∣∣∣
2

(4.14)

=

∣∣∣∣∣q− 1
8

+ θ
4π

∞∏
n=0

(1 + qn+ 1
2

+ θ
2π )(1 + qn+ 1

2
− θ

2π )

(1− qn+ θ
2π )(1− qn+1− θ

2π )

∣∣∣∣∣
2

. (4.15)

We can now get the θ′-twined character over the θ-twisted sector by acting once more
with the orbifold group on the modes. We get the following:

θ′

θ

= TrHNS
θ

(
U(θ′)qL0− 1

8 q̄L̄0− 1
8

)

=

∣∣∣∣∣q− 1
8

+ θ
4π

∞∏
n=0

(1 + qn+ 1
2

+ θ
2π eiθ

′
)(1 + qn+ 1

2
− θ

2π e−iθ
′
)

(1− qn+ θ
2π eiθ′)(1− qn+1− θ

2π e−iθ′)

∣∣∣∣∣
2

=

∣∣∣∣∣ϑ3(τ, τθ+θ
′

2π
)

ϑ1(τ, τθ+θ
′

2π
)

∣∣∣∣∣
2

, (4.16)

17



which is the expression we are interested in.
The contribution of a θ-twisted sector to the unprojected partition function is therefore

obtained by integrating equation (4.16) over the twisting parameter θ′,

PNS
θ−twisted =

1

2π

∫ 2π

0

dθ′ θ′

θ

=

∫ 2π

0

dθ′

2π
TrHNS

θ

(
U(θ′)qL0− 1

8 q̄L̄0− 1
8

)
(4.17)

=

∫ 2π

0

dθ′

2π

∣∣∣∣∣ϑ3(τ, τθ+θ
′

2π
)

ϑ1(τ, τθ+θ
′

2π
)

∣∣∣∣∣
2

. (4.18)

Using some identities of appendix C in [21] the modular functions can be recast in the
form

ϑ3(τ, ν)

ϑ1(τ, ν)
= −2i

ϑ3(τ, 0)

η3(τ)

∞∑
n=0

cos [2π(n+ 1/2)(ν − τ/2)]
q
n
2

+ 1
4

1 + qn+ 1
2

, (4.19)

so that the integral (4.18) becomes

PNS
θ−twisted = 4

∣∣∣∣ϑ3(τ, 0)

η3(τ)

∣∣∣∣2 ∞∑
n,n̄=0

q
n
2

+ 1
4 q̄

n̄
2

+ 1
4

(1 + qn+ 1
2 )(1 + q̄n̄+ 1

2 )
Iθn,n̄ (4.20)

with

Iθn,n̄ =

∫ 2π

0

dθ′

2π
cos
[
(n+ 1

2
)(τ(θ − π) + θ′)

]
cos
[
(n̄+ 1

2
)(τ̄(θ − π) + θ′)

]
(4.21)

=
δn,n̄
2

cos
[
(n+ 1

2
)(π − θ)(τ − τ̄)

]
. (4.22)

Inserting (4.22) into (4.20), evaluating the sum over n̄, and combining the cosine with
the q, q̄ dependent part of the numerator, we arrive at

PNS
θ−twisted =

∣∣∣∣ϑ3(τ, 0)

η3(τ)

∣∣∣∣2 ∞∑
n=0

q
θ

2π
(n+ 1

2
)q̄

θ
2π

(n+ 1
2

) + q(1− θ
2π

)(n+ 1
2

)q̄(1− θ
2π

)(n+ 1
2

)

(1 + qn+ 1
2 )(1 + q̄n+ 1

2 )
. (4.23)

The unprojected supersymmetric partition function is then obtained by integrating over
all twisted sectors

PNS
C/U(1) =

∫ 2π

0

dθ

2π
PNS
θ−twisted =

∞∑
n=0

∫ 2π

−2π

dθ

2π

q
|θ|
2π

(n+ 1
2

)q̄
|θ|
2π

(n+ 1
2

)

(1 + qn+ 1
2 )(1 + q̄n+ 1

2 )

=

∣∣∣∣ϑ3(τ, 0)

η3(τ)

∣∣∣∣2 ∞∑
n=0

∣∣∣∣ 1

1 + qn+ 1
2

∣∣∣∣2 ∫ 1

−1

dQ (qq̄)|Q|(n+ 1
2

)

=
∞∑
n=0

∫ 1

−1

dQ
∣∣∣χI|Q|(n+ 1

2
),Q

∣∣∣2 , (4.24)

where we used the definitions of appendix A for the c = 3 character χI .
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The last expression is ill-defined: the integration over Q gives

PNS
C/U(1) =

1

2πτ2

∣∣∣∣ϑ3(τ, 0)

η3(τ)

∣∣∣∣2 ∞∑
n=0

1− (qq̄)n+ 1
2∣∣1 + qn+ 1

2

∣∣2 1

n+ 1
2

, (4.25)

which exhibits a logarithmic divergence when we sum over n. The fields that contribute to
this divergence are the chargeless ones, as one can see by looking at the large n asymptotic
behaviour of the function (4.24): the fraction in front of the integral tends to one and the
integrand localises around Q ∼ 0. Therefore a sensible regulator would screen away the
untwisted fields. We define

PNS,(r)
C/U(1) :=

∣∣∣∣ϑ3(τ, 0)

η3(τ)

∣∣∣∣2 ∞∑
n=0

∣∣∣∣ 1

1 + qn+ 1
2

∣∣∣∣2 ∫ 1

−1

dQ (qq̄)|Q|(n+ 1
2

)
(
1− e2πirQ

)
, (4.26)

which corresponds to inserting 1 − e2πirJ0 in the trace, where J0 is the zero mode of the
U(1) current J(z). We see explicitly that this cures the logarithmic divergences of the
sum in equation (4.24) by performing the integral over the twist Q,

PNS,(r)
C/U(1) =

∣∣∣∣ϑ3(τ, 0)

η3(τ)

∣∣∣∣2
×
∞∑
n=0

∣∣∣∣ 1

1 + qn+ 1
2

∣∣∣∣2
[

1− (qq̄)n+ 1
2

2πτ2(n+ 1
2
)
− 1− e2πir(qq̄)n+ 1

2

4πτ2(n+ 1
2
)− 2πir

− 1− e−2πir(qq̄)n+ 1
2

4πτ2(n+ 1
2
) + 2πir

]
. (4.27)

The summand is suppressed by n−2 for large n, and the series converges.
From equation (4.26) it is easy to write down the (GSO-like) projected version of the

regularised partition function, which reads in the Neveu-Schwarz sector

Z
NS,(r)
C/U(1) =

1

2

(∣∣∣∣ϑ3(τ, 0)

η3(τ)

∣∣∣∣2 +

∣∣∣∣ϑ4(τ, 0)

η3(τ)

∣∣∣∣2
)
∞∑
n=0

∣∣∣∣ 1

1 + qn+ 1
2

∣∣∣∣2 ∫ 1

−1

dQ (qq̄)|Q|(n+ 1
2

)
(
1− e2πirQ

)
.

(4.28)

Comparison with the limit of minimal models

We now want to show that the partition function of minimal models reproduces the result
of equation (4.28) in the limit we analysed in reference [8]. We are thus interested in the

behaviour of minimal models in the regime in which n = l−|m|
2

is a fixed non-negative
integer, and |m| scales with k. The Neveu-Schwarz contribution to the partition function
for the Ak+2 minimal model reads (see appendix A for notations and details)

ZNS
k (τ, ν) =

1

2

k∑
l=0

l∑
m=−l

m+l even

[
χNS
l,mχ̄

NS
l,m(q, z) + χNS

l,mχ̄
NS
l,m(q,−z)

]
, (4.29)

where z = e2πiν . As before we first analyse the partition function before taking the (GSO-
like) projection, i.e. the corresponding trace is taken over the full supersymmetric Hilbert
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space,

PNS
k (τ, ν) =

k∑
l=0

l∑
m=−l

m+l even

χNS
l,mχ̄

NS
l,m(q, z)

=

∣∣∣∣ϑ3(τ, ν)

η3(τ)

∣∣∣∣2 k∑
l=0

l∑
m=−l

∣∣∣∣q (l+1)2−m2

4(k+2) Γ
(k)
lm (τ, ν)

∣∣∣∣2 .

(4.30)

For large level k we expect the same kind of divergence as for the partition function of
the continuous orbifold due to the almost chargeless field. Similarly to our strategy there
we insert the factor (1− e2πirJ0) in the trace, and arrive at (we set ν = 0 in the following)

PNS,(r)
k (τ) =

∣∣∣∣ϑ3(τ, 0)

η3(τ)

∣∣∣∣2
 b k2 c∑
n=0

I(r)
k,n

 (4.31)

with

I(r)
k,n := 2

k−2n∑
m=1

(qq̄)
1
k+2(n+ 1

2)
2
+ m
k+2(n+ 1

2)
∣∣∣Γ(k)

m+2n,m(τ, 0)
∣∣∣2 (1− cos

(
2πr m

k+2

))
. (4.32)

For large level k, the main contribution comes from small n and large m: the regularisation
factor (1 − cos(·)) is small unless m is of order k, while the exponent containing the
conformal weight tells us that for large m only small values of n contribute significantly.
In this limit, only one singular vector survives in Γ

(k)
lm (the one present in the c = 3

representations of type I in appendix A). Using the Euler-MacLaurin formula to convert
the sum over m into an integral, we obtain

I(r)
k,n ≈ 2

k−2n∑
m=1

(qq̄)
m
k+2(n+ 1

2)

∣∣∣∣∣ 1− qm+2n+1

(1 + qn+ 1
2 )(1 + qm+n+ 1

2 )

∣∣∣∣∣
2(

1− cos

(
2πr

m

k + 2

))
(4.33)

≈ 2(k + 2)

∫ 1

0

dQ (qq̄)−Q(n+ 1
2)

∣∣∣∣∣ 1

(1 + qn+ 1
2 )

∣∣∣∣∣
2

(1− cos (2πrQ)) . (4.34)

Inserting this into (4.31) and comparing to (4.26) we find

lim
k→∞

1

k + 2
PNS,(r)
k (τ) = PNS,(r)

C/U(1)(τ) . (4.35)

An analogous relation holds for the true (projected) partition functions, so that indeed
we recover the continuous orbifold partition function in the limit.

4.3 Boundary conditions

The technology to study boundary conditions (D-branes) on discrete orbifold models is
well developed (see e.g. [23] and references therein), and essentially they are also applicable
for the continuous orbifold we are considering (see also [22]).

20



For continuous orbifolds one meets the phenomenon that the untwisted fields are in a
sense outnumbered by the twisted fields – in the partition function (4.28) the untwisted,
chargeless fields give a contribution of measure zero. Therefore the only interesting bound-
ary conditions are those that couple to the twisted sectors, i.e. fractional boundary states.
To obtain those we have to start from boundary conditions in the plane that are invariant
under the action of the orbifold group. In our case, these are the boundary condition cor-
responding to a point-like brane at the origin of the plane, and the boundary conditions
corresponding to space-filling branes.

Let us focus on the point-like brane. The fractional boundary conditions are then
labelled by representations of the orbifold group U(1), i.e. by an integer m. The relative
spectrum for two such boundary conditions labelled by m and m′ follows from the usual
orbifold rules,

Pm,m′(q̃) =

∫ 2π

0

dθ

2π
χm(θ)χ∗m′(θ) TrHopen

[
U(θ)q̃L0− 1

8

]
, (4.36)

where q̃ = e2πiτ̃ and χm(θ) = eimθ is a U(1) group character. Hopen denotes the Hilbert
space of boundary fields for the point-like brane, which is just given by the free Neveu-
Schwarz vacuum representation. Note that depending on the projection of the bulk spec-
trum, the point-like boundary condition could couple to the Ramond-Ramond sector, in
which case the boundary spectrum would be projected by 1

2
(1± (−1)F ). The unprojected

spectrum will be denoted by Pm,m′ as introduced above. Evaluating (4.36) we find

Pm,m′(q̃) =

∫ 2π

0

dθ

2π
ei(m−m

′)θ 2 sin
θ

2

ϑ3(τ̃ , θ
2π

)

ϑ1(τ̃ , θ
2π

)

=− 4i
ϑ3(τ̃ , 0)

η3(τ̃)

∞∑
n=0

q
n
2

+ 1
4

1 + qn+ 1
2

∫ 2π

0

dθ

2π
sin

θ

2
ei(m−m

′)θ cos (n+ 1
2
)(θ − πτ̃) ,

(4.37)

where we have made again use of equation (4.19). We can explicitly evaluate the integral,∫ 2π

0

dθ

2π
sin

θ

2
ei∆mθ cos (n+ 1

2
)(θ − πτ̃)

=
1

4i

[
q̃

1
2

(n+ 1
2

) (δ∆m,n − δ∆m−1,n) + q̃−
1
2

(n+ 1
2

) (δ−∆m+1,n − δ−∆m,n)
]
, (4.38)

where ∆m = m − m′. Inserting this into (4.37) we find that the spectrum is given by
single N = 2 characters: in the notations of appendix A we obtain

Pm,m(q̃) =
ϑ3(τ̃ , 0)

η3(τ̃)

(
1− q̃ 1

2

1 + q̃
1
2

)
= χvac

0,0 (q̃) (4.39a)

and (for m 6= m′)

Pm,m′(q̃) =
ϑ3(τ̃ , 0)

η3(τ̃)
q̃|∆m|−

1
2

[
1− q̃

(1 + q̃|∆m|−
1
2 )(1 + q̃|∆m|+

1
2 )

]
= χIII

±

|∆m|− 1
2
,±1

(q̃) , (4.39b)
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where the upper sign applies for ∆m > 0 and vice versa. This result can now be com-
pared to the limit of minimal models. In [8] two types of boundary conditions were
identified. They arise as limits of A-type boundary conditions in minimal models, which
are labelled by triples (L,M, S) with the same range as labels for minimal model fields
(see appendix A.2 for the conventions). The first type of boundary conditions is obtained
by keeping the boundary labels fixed while taking the limit. Only for L = 0 one obtains
elementary boundary conditions. The label S can be fixed to even values for a fixed gluing
condition for the supercurrents, and the two remaining choices S = 0, 2 determine the
overall sign of the Ramond-Ramond couplings (thus distinguishing brane and anti-brane).
The relative spectrum for two such boundary conditions reads [12]

Z
(k)
(0,M,S),(0,M ′,S′)(q̃) = χ(0,M−M ′,S−S′+2)(q̃) . (4.40)

This is a projected part of the full supersymmetric character χNS
0,M−M ′ . For M = M ′ this

is the minimal model vacuum character, which for k → ∞ goes to the c = 3 vacuum
character. For M 6= M ′, using field identification (see (A.11)) the labels can be brought
to the standard range, (0,M −M ′) ∼ (k,M −M ′ ∓ (k + 2)), where the sign depends
on M −M ′ being positive or negative. In the limit k → ∞ the corresponding character
approaches a type III character (see (A.21) and (A.22)),

lim
k→∞

χNS
0,M−M ′∓(k+2) = χIII

±
M−M′

2
− 1

2
,±1

. (4.41)

The unprojected part of the boundary spectrum thus coincides with the spectrum for
the fractional boundary conditions in the continuous orbifold upon identifying M = 2m.
On the other hand, the spectrum in the limit of minimal models is projected. To get
agreement we therefore need that the point-like boundary conditions in the continuous
orbifold model couple to the Ramond-Ramond sector, which specifies the necessary (GSO-
like) projection in the Ramond-Ramond sector. Note that this is precisely opposite from
the projection that we need in the free field theory limit, which is in accordance with
the T-duality that we use in the geometric interpretation of the equivalence of a minimal
model and its Zk+2 orbifold (see the discussion at the end of section 2).

In ref. [8], instead of the boundary spectrum, the one-point functions have been de-
termined. To make contact to these results, we perform a modular transformation to get
the closed string tree level exchange between boundary states: we rewrite the open string
partition function (4.37) in terms of the modulus of the closed string τ = − 1

τ̃
using the

known transformation properties (4.13),

Pm,m′(q̃) = 2i

∫ 2π

0

dθ

2π
ei(m−m

′)θ sin
θ

2

ϑ3(τ, τθ
2π

)

ϑ1(τ, τθ
2π

)
. (4.42)

The ratio of ϑ-functions can be rewritten using eq. (4.19),

ϑ3(τ, τθ
2π

)

ϑ1(τ, τθ
2π

)
=− 2i

ϑ3(τ, 0)

η3(τ)

∞∑
n=0

cos

[
2π(n+ 1/2)

(
τθ

2π
− τ/2

)]
q
n
2

+ 1
4

1 + qn+ 1
2

=− iϑ3(τ, 0)

η3(τ)

∞∑
n=0

q(n+ 1
2

) θ
2π + q(n+ 1

2
)(1− θ

2π
)

1 + qn+ 1
2

,

(4.43)
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so that we obtain

Pm,m′(q̃) =
ϑ3(τ, 0)

η3(τ)

∫ 2π

0

dθ

2π
ei(m−m

′)θ 2 sin
θ

2

∞∑
n=0

q(n+ 1
2

) θ
2π + q(n+ 1

2
)(1− θ

2π
)

1 + qn+ 1
2

=
∞∑
n=0

∫ +1

−1

dQ 2 sin (π|Q|) e2πi(m−m′)Q χI|Q|(n+ 1
2

),Q
(q) .

(4.44)

If we do the same analysis for the projected spectrum, we find

Zm,m′(q̃) =
∞∑
n=0

∫ +1

−1

dQ sin (π|Q|) e2πi(m−m′)Q
(
χNS
|Q|(n+ 1

2
),Q

(q) + χR
1
8

+|Q|(n+1),Q
(q)
)

+

∫ 1
2

− 1
2

dQ sin
(
π
∣∣Q− 1

2

∣∣) e2πi(m−m′)(Q− 1
2

) χR0

1
8
,Q

(q) . (4.45)

Comparing with the formulae presented in reference [8, eqs (4.5)-(4.7)], we find perfect
agreement with the one-point functions given there for the discrete A-type boundary
states of the limit theory for L = 0 and with the identification M = 2m.

Along similar lines let us briefly discuss boundary conditions that correspond to two-
dimensional branes. As we discussed at the end of section 3.5 on page 13, there is a one-
parameter family of those that differ in the strength of a constant electric background field,
which can be labelled by an angle φ. In the orbifold the boundary conditions obtain an
additional integer label m that determines the corresponding representation of U(1). The
unprojected part of the open string spectrum between such a two-dimensional boundary
condition labelled by φ and m, and a zero-dimensional boundary condition labelled by m′

is then (using again (4.19))

P(φ,m),m′(q̃) =

∫ 2π

0

dθ

2π
ei(m−m

′+ 1
2

)θ i
ϑ3(τ̃ , θ+(φ+π)τ̃

2π
)

ϑ1(τ̃ , θ+(φ+π)τ̃
2π

)
(4.46)

=
ϑ3(τ̃ , 0)

η3(τ̃)

q̃
π∓φ
2π
|∆m+ 1

2
|

1 + q̃|∆m+ 1
2
|
, (4.47)

where the upper sign corresponds to ∆m = m −m′ ≥ 0, and the lower one to ∆m < 0.
These are the type I characters χI

±

(n+ 1
2

)|Q|,Q for charge |Q| = π∓φ
2π

and n = |∆m + 1
2
| − 1

2
.

Note that this is precisely the result we expect from the limit of minimal models: in
ref. [8] we constructed a continuous family of A-type boundary states labelled by Q,N as
a limit of minimal model boundary states with labels

(L,M, S) = (|b−Q(k + 2)c|+ 2N, b−Q(k + 2)c, 0) , (4.48)

where bxc denotes the greatest integer smaller or equal x. Their relative spectrum
(without projection) to a boundary condition (0,M ′, 0) with fixed M ′ is simply given
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by χNS
L,M−M ′ , and in the limit we find (see appendix A.3)

χNS
|b−Q(k+2)c|+2N,b−Q(k+2)c−M ′ →



χI
+

|Q| |N−M′
2

+ 1
2
|,Q

Q > 0, N ≥ M ′

2

χI
+

|Q−1| |N−M′
2

+ 1
2
|,Q−1

Q > 0, N < M ′

2

χI
−

|Q| |N+M′
2

+ 1
2
|,Q

Q < 0, N ≥ −M ′

2

χI
−

|Q+1| |N+M′
2

+ 1
2
|,Q+1

Q < 0, N < −M ′

2

. (4.49)

These are the type I characters that we found above in (4.47) if we identify

φ = 2π
(
−Q± 1

2

)
m = −1

2
±
(
N + 1

2

)
, (4.50)

where the upper sign applies for Q > 0, and the lower for Q < 0.

5 Discussion

We have shown that one can obtain two different limits of the sequence of N = (2, 2)
minimal models, and we have discussed how these limits can be understood geometrically.
The first limit theory is simply a free field theory, the second limit theory is the non-
rational theory of [8], and we have shown that it can be described as a continuous orbifold
C/U(1). The latter observation is reminiscent of the recent interpretation of the limit of
Virasoro minimal models as a continuous orbifold SU(2)1/SO(3) [22].

It would be interesting to explore similar limits in the case of other series of N = (2, 2)
superconformal models, like the Grassmannian Kazama-Suzuki models [24] based on
SU(n + 1)/U(n). Again one might expect to find different possible limit theories; in
fact there might be a greater variety of limits, because in addition to the U(1) charge
there are charges associated to currents of higher spin for which one might have the
freedom to scale them while taking the limit. One is tempted to speculate that the
limit theory corresponding to fixed charges is again described by a continuous orbifold
Cn/U(n). It would be interesting to study this in detail. This could also be of relevance in
the context of the supersymmetric generalisation of minimal model holography [25, 26],
where a limit of Kazama-Suzuki models occurs in the conjectured holographic dual of
supersymmetric higher-spin theories on three-dimensional asymptotically Anti-de Sitter
space-times [27, 28, 29, 30, 31].
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A Characters

In this appendix we collect results about characters for N = 2 theories and their limits. A
general character over a sector Hh,Q labelled by h,Q (eigenvalues of the L0, J0 generators
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respectively) of the N = 2 superconformal algebra is defined as

χh,Q(q, z) = TrHh,Qq
L0− c

24 zJ0 , (A.1)

with q = e2πiτ , z = e2πiν . In the main text we often make use of the following shorthand
notation for characters specialised to z = 1,

χh,Q(q) ≡ χh,Q(q, 1) . (A.2)

Throughout the text we use ϑ and η functions with the following conventions:

ϑ1(τ, ν) = −iz
1
2 q

1
8

∞∏
n=0

(1− qn+1z)(1− qnz−1)(1− qn+1)

ϑ2(τ, ν) = z
1
2 q

1
8

∞∏
n=0

(1 + qn+1z)(1 + qnz−1)(1− qn+1)

ϑ3(τ, ν) =
∞∏
n=0

(1 + qn+ 1
2 z)(1 + qn+ 1

2 z−1)(1− qn+1)

ϑ4(τ, ν) =
∞∏
n=0

(1− qn+ 1
2 z)(1− qn+ 1

2 z−1)(1− qn+1)

η(τ) = q
1
24

∞∏
n=0

(1− qn+1) .

A.1 c = 3 characters

We discuss here the characters of the unitary fully supersymmetric irreducible repre-
sentations of the N = 2 superconformal algebra at c = 3. The modules of the N = 2
superconformal algebra contain several singular submodules,7 which have to be taken into
account. The structure of the singular submodules can be read off from the embedding
diagrams of the representations (for further details we refer to [33, 34]); we will follow the
classification of [32]. Let us explain the procedure at the example of the characters for
the representations of type I± in the notations of the aforementioned paper; the labels
satisfy h

Q
∈ Z + 1

2
, with positive h and Q 6∈ Z. In this case we have only one charged

singular vector. The singular vectors at level h
|Q| = n+ 1

2
can be recognised to be8

G−1
2

G−3
2

. . . G−h
|Q|−1

G+

− h
|Q|
G+

− h
|Q|+1

. . . G+
− 3

2

G+
− 1

2

|n,Q〉 for Q > 0

G+
1
2

G+
3
2

. . . G+
h
|Q|−1

G−− h
|Q|
G−− h

|Q|+1
. . . G−− 3

2

G−− 1
2

|n,Q〉 for Q < 0
, (A.3)

7In general there are also subsingular submodules, but they do not show up for unitary representa-
tions [32].

8One can, for instance, follow the spectral flow of Neveu-Schwarz null vectors starting from the
(anti)chiral primaries.
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and they have relative charge +1 and −1, respectively. In the character we have to
subtract the contribution of the submodule associated to them. The result is

χI
±

n,Q(q, z) = q(n+ 1
2

)|Q|− 1
8 zQ

[
∞∏
m=0

(1 + qm+ 1
2 z)(1 + qm+ 1

2 z−1)

(1− qm+1)2

](
1− qn+ 1

2 zsgnQ

1 + qn+ 1
2 zsgnQ

)
.

(A.4)
The other cases are analogous, and we can write:

• Vacuum: (Q = h = 0)

χvac
0,0 (q, z) =

ϑ3(τ, ν)

η3(τ)

(
1− q

1
2 z

1 + q
1
2 z
− q

1
2 z−1

1 + q
1
2 z−1

)
(A.5a)

• Type 0: (Q = 0 , h ∈ R \ {0})

χ0
h,0(q, z) = qh

ϑ3(τ, ν)

η3(τ)
(A.5b)

• Type I±: (0 < |Q| < 1 , h = |Q|(n+ 1
2
) , n ∈ Z≥0)

χI
±

|Q|(n+ 1
2

),Q
(q, z) = q(n+ 1

2
)|Q|zQ

ϑ3(τ, ν)

η3(τ)

(
1− qn+ 1

2 zsgnQ

1 + qn+ 1
2 zsgnQ

)
(A.5c)

• Type II±: (Q = ±1 , h ∈ R≥0)

χII
±

h,Q (q, z) = qhzQ
ϑ3(τ, ν)

η3(τ)

(
1− q|Q|

)
(A.5d)

• Type III±: (Q = ±1 , h ∈ Z + 1
2
)

χIII
±

h,Q (q, z) = qhzQ
ϑ3(τ, ν)

η3(τ)

(
1− q − qhzsgn(Q)

1 + qhzsgn(Q)
+

qh+2zsgn(Q)

1 + qh+1zsgn(Q)

)
(A.5e)

Ramond characters can be obtained from the Neveu-Schwarz characters by spectral
flow (see e.g. [35]). We give an example: let us denote spectral flowed operators and sectors
by an upper label η, which indicates the amount of spectral flow units to use. Under a flow
of η = ±1/2, primary vectors of the Neveu-Schwarz sector become Ramond primaries,
and the same happens for Neveu-Schwarz singular vectors, which flow to Ramond singular
vectors. The Ramond characters can then be computed using the formula

χhη ,Qη(q, z) = TrHhη,Qη q
L0− c

24 zJ0 = TrHh,Qq
Lη0−

c
24 zJ

η
0 , (A.6)

with the spectral flowed operators

Lηn = Ln − ηJn +
c

6
η2δn,0 Jηn = Jn −

c

3
ηδn,0 . (A.7)
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For c = 3 and η = 1
2
, L

1/2
0 = L0 − 1

2
J0 + 1

8
and J

1/2
0 = J0 − 1

2
, we have

χh1/2,Q1/2(q, z) = q
1
8 z−

1
2χh,Q(q, q−

1
2 z) . (A.8)

Starting e.g. from the type I characters in the Neveu-Schwarz sector we find the characters

χR0

1
8
,Q

(q, z) =
zQ

z1/2 − z−1/2

ϑ2(τ, ν)

η3(τ)
, −1

2
< Q <

1

2
(A.9)

χR
1
8

+n|Q|,Q(q, z) =
qn|Q|zQ

1 + qnzsgn(Q)

ϑ2(τ, ν)

η3(τ)
, 0 < |Q| < 1 , n ≥ 1 , (A.10)

where in the first character the lowest lying state is a Ramond ground state, whereas in
the second character there are two lowest lying states of charges Q± 1

2
.

A.2 Minimal model characters and partition function

Representations for the bosonic subalgebra of the N = 2 superconformal algebra at central
charge c = 3 k

k+2
are labelled by three integers (l,m, s) with 0 ≤ l ≤ k, m ≡ m + 2k + 4,

s ≡ s+ 4, and l+m+ s even. Not all triples label independent representations, and they
are identified according to

(l,m, s) ∼ (k − l,m+ k + 2, s+ 2) . (A.11)

Representations of the full superconformal algebra are then obtained by combining rep-
resentations labelled by (l,m, s) and (l,m, s+ 2).

Explicit expressions for the character of the N = 2 superconformal algebra can be
found e.g. in [36]. In the Neveu-Schwarz sector for |m| ≤ l they read

χNS
l,m(q, z) :=

(
χ(l,m,0) + χ(l,m,2)

)
(q, z)

= q
(l+1)2−m2

4(k+2)
− 1

8 z−
m
k+2

[
∞∏
n=0

(1 + qn+ 1
2 z)(1 + qn+ 1

2 z−1)

(1− qn+1)2

]
× Γ

(k)
lm (τ, ν) , (A.12)

and in the Ramond sector (for |m| ≤ l + 1)

χRl,m(q, z) :=
(
χ(l,m,1) + χ(l,m,−1)

)
(q, z)

= q
(l+1)2−m2

4(k+2) z−
m
k+2 (z

1
2 + z−

1
2 )

[
∞∏
n=0

(1 + qn+1z)(1 + qn+1z−1)

(1− qn+1)2

]
× Γ

(k)
lm (τ, ν) ,

(A.13)

where the structure of the singular vectors is summarised in Γ
(k)
lm ,

Γ
(k)
lm (τ, ν) =

∞∑
p=0

q(k+2)p2+(l+1)p

(
1− q(k+2)p+ l+m+1

2 z

1 + q(k+2)p+ l+m+1
2 z

− q(k+2)p+ l−m+1
2 z−1

1 + q(k+2)p+ l−m+1
2 z−1

)

−
∞∑
p=1

q(k+2)p2−(l+1)p

(
1− q(k+2)p− l+m+1

2 z−1

1 + q(k+2)p− l+m+1
2 z−1

− q(k+2)p− l−m+1
2 z

1 + q(k+2)p− l−m+1
2 z

)
.

(A.14)
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The Neveu-Schwarz part of the minimal model partition function is given by

ZNS
k (τ, ν) =

k∑
l=0

l∑
m=−l

l+m even

χ(l,m,0)(q, z)χ̄(l,m,0)(q̄, z̄) + χ(l,m,2)(q, z)χ̄(l,m,2)(q̄, z̄)

=
1

2

k∑
l=0

l∑
m=−l

l+m even

(
χNS
l,m(q, z)χ̄NS

l,m(q̄, z̄) + χNS
l,m(q,−z)χ̄NS

l,m(q̄,−z̄)
)
.

(A.15)

It can be seen as a (GSO-like) projection of the trace over the full supersymmetric Neveu-
Schwarz Hilbert space HNS

k = ⊕|m|≤l≤kHNS
l,m ⊗HNS

l,m,

PNS
k (τ, ν) : =

k∑
l=0

l∑
m=−l

l+m even

(
χ(l,m,0)(q, z) + χ(l,m,2)(q,z)

) (
χ̄(l,m,0)(q̄, z̄) + χ̄(l,m,2)(q̄,z̄)

)

=

∣∣∣∣ϑ3(τ, ν)

η3(τ)

∣∣∣∣2 k∑
l=0

l∑
m=−l

l+m even

∣∣∣∣q (l+1)2−m2

4(k+2) Γ
(k)
lm (τ, ν)

∣∣∣∣2 .

(A.16)

A.3 Limit of minimal model characters

In the limit k →∞ in the expression (A.14) for Γ
(k)
lm in each sum only the first summand

can contribute,

Γ
(k)
lm (τ, ν) ≈

(
1− q

l+m+1
2 z

1 + q
l+m+1

2 z
− q

l−m+1
2 z−1

1 + q
l−m+1

2 z−1

)

− qk−l+1

(
1− q

2k−l−m+3
2 z−1

1 + q
2k−l−m+3

2 z−1
− q

2k−l+m+3
2 z

1 + q
2k−l+m+3

2 z

)
, (A.17)

and the precise behaviour of the character depends on the details of how l and m behave
in the limit.

For our analysis we need to consider the following cases in the Neveu-Schwarz sector:

1. l = m = 0: The limit character is simply the N = 2 vacuum character,

lim
k→∞

χNS
0,0 = χvac

0,0 . (A.18)

2. l + m = 2n finite, m/(k + 2)→ −Q, 0 < Q < 1: Only one singular vector survives
and we find

lim
k→∞

χNS
|m|+2n,m = χI

+

Q(n+ 1
2

),Q
. (A.19)

3. l−m = 2n finite, m/(k+ 2)→ −Q, −1 < Q < 0: Only one singular vector survives
and we find

lim
k→∞

χNS
m+2n,m = χI

−

|Q|(n+ 1
2

),Q
. (A.20)
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4. l +m = 2n finite, l = k: The first summand in (A.17) gives one positively charged
singular vector, the second produces one uncharged one and adds one positively
charged singular submodule. We find

lim
k→∞

χNS
k,−k+2n = χIII

+

n+ 1
2
,1
. (A.21)

5. l −m = 2n finite, l = k: Analogously to the previous case we obtain

lim
k→∞

χNS
k,k−2n = χIII

−

n+ 1
2
,−1

. (A.22)

There are several other cases, depending on the behaviour of l ±m for large k; in these
other situations the limiting character decomposes into a sum of N = 2 characters. We
illustrate this in the example of fixed labels l,m: in this instance the conformal weights
and U(1) charge of all the primary fields approach zero, the second line of equation (A.17)
gets suppressed, but the first line stays finite. The character then takes the form

lim
k→∞

χNS
l,m(q, z) =

ϑ3(τ, ν)

η3(τ)

(
1− q

l+m+1
2 z

1 + q
l+m+1

2 z
− q

l−m+1
2 z−1

1 + q
l−m+1

2 z−1

)
. (A.23)

Noticing the relation

ϑ3(τ, ν)

η3(τ)

(
qn+ 1

2 z±1

1 + qn+ 1
2 z±1

− qn+ 3
2 z±1

1 + qn+ 3
2 z±1

)
= χIII

±

n+ 1
2
,±1

(q, z) , (A.24)

it is easy to show that

lim
k→∞

χNS
l,m = χvac

0,0 +

l+m
2
−1∑

j=0

χIII
+

l+m
2
−( 1

2
+j),1

+

l−m
2
−1∑

j=0

χIII
−

l−m
2
−( 1

2
+j),−1

. (A.25)

Following similar lines it is possible to show that this kind of decomposition is common
to all the cases we have not listed explicitly.

B Asymptotics of Wigner 3j-symbols

We are interested in the region of the parameter space of 3j-symbols in which the angular
momentum labels ji scale like ji ∝

√
k and the magnetic labels µi stay finite in the limit

of large k. In this range we are deeply inside the classically allowed region (see e.g. the
appendix A of [8] for more details), and we can use the approximation methods derived
in [37]. In particular we find there [37, eq. (3.23)](

j1 j2 j3

µ1 µ2 µ3

)
' 2Ij1 µ1 j2 µ2 j3 µ3 (−1)j1−j2−µ3

√
j3

2j3 + 1

cos
[
χ+ π

4
− π(j3 + 1)

]
(4πA(λ1, λ2, λ2))1/2

, (B.1)

where χ is defined as

χ = (j1 + 1
2
)γ1 + (j2 + 1

2
)γ2 + (j3 + 1

2
)γ3 + µ2β1 − µ1β2 . (B.2)
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We use the Ponzano-Regge angles γ1,2,3, β1,2 (see [38] and figure 2) which through their
cosines read

cos γ1 =
µ3(j2

1 + j2
2 − j2

3)− µ2(j2
1 + j2

3 − j2
2)

4A(j1, j2, j3)λ1

cos β1 =
λ2

3 + λ2
2 − λ2

1

2λ2λ3

(B.3a)

cos γ2 =
µ1(j2

3 + j2
2 − j2

1)− µ3(j2
2 + j2

1 − j2
3)

4A(j1, j2, j3)λ2

cos β2 =
λ2

1 + λ2
3 − λ2

2

2λ1λ3

(B.3b)

cos γ3 =
µ2(j2

1 + j2
3 − j2

2)− µ1(j2
3 + j2

2 − j2
1)

4A(j1, j2, j3)λ3

. (B.3c)

Here,

λi =
√
j2
i − µ2

i i = 1, 2, 3 , (B.4)

and

A(x1, x2, x3) =
1

4

√
(x3 + x1 + x2)(−x3 + x1 + x2)(x3 − x1 + x2)(x3 + x1 − x2) (B.5)

is the area of the triangle with side lengths xi.

α2

α1

λ1 λ2

λ3

β1

β2

j1

j2

Figure 2: Ponzano-Regge angles defined in equations (B.3) and (B.13): the αi are the
internal angles of the triangle formed by the ji labels; the βi are the internal angles of
the triangle projected on the xy-plane (where the µi measure the z-components of the
angular momenta); γi (not present here) is the angle between the outer normals to the
faces adjacent to the edge ji.

The quantity Ij1 µ1 j2 µ2 j3 µ3 appearing in equation (B.1) is defined as

Ij1 µ1 j2 µ2 j3 µ3 =

√
(j3 + 1/2)(j3 + j1 + j2)

j3(j3 + j1 + j2 + 1)

× f(j1 + µ1) f(j1 − µ1) f(j2 + µ2) f(j2 − µ2) f(j3 + µ3) f(j3 − µ3)

f(j1 + j2 + j3) f(j1 + j2 − j3) f(j1 − j2 + j3) f(−j1 + j2 + j3)
, (B.6)

30



where f(n) is the square root of the ratio of n! to the Stirling approximation of n!, and
has the following large n behaviour

f(n) =

√
n!√

2πnnne−n
= 1 +

1

24n
+O

(
1

n2

)
. (B.7)

We now consider the situation where the labels ji are proportional to
√
k for large k

while keeping µi finite. In this regime we have

I = 1 +O
(
k−1/2

)
, (B.8)

and the angles behave as follows:

cos γ1,2,3 = f1,2,3 +O(k−3/2) (B.9a)

cos β1 =
−j2

1 + j2
2 + j2

3

2j2j3

+O(k−1) cos β2 =
j2

1 − j2
2 + j2

3

2j1j3

+O(k−1) , (B.9b)

where we used the definitions

f1 =
µ3(j2

1 + j2
2 − j2

3)− µ2(j2
1 − j2

2 + j2
3)

4A(j1, j2, j3)j1

∝ k−
1
2 (B.10a)

f2 =
µ1(−j2

1 + j2
2 + j2

3)− µ3(j2
1 + j2

2 − j2
3)

4A(j1, j2, j3)j2

∝ k−
1
2 (B.10b)

f3 =
µ2(j2

1 − j2
2 + j2

3)− µ1(−j2
1 + j2

2 + j2
3)

4A(j1, j2, j3)j3

∝ k−
1
2 . (B.10c)

Inverting (B.3) and expanding in k we get γ1,2,3 = π
2
− f1,2,3

k1/2 + O(k−3/2), so that χ of
eq. (B.2) becomes

χ =
π

2
(j1 + j2 + j3) +

[
3

4
π − (j1f1 + j2f2 + j3f3)− µ1 cos−1 j

2
1 − j2

2 + j2
3

2j1j3

+ µ2 cos−1 −j2
1 + j2

2 + j2
3

2j2j3

]
+O(k−1/2) . (B.11)

Since
∑
jifi = 0, we have

cos
[
χ+

π

4
− π(j3 + 1)

]
= cos

[
(j1 + j2 − j3)

π

2
+ µ2α1 − µ1α2

]
(B.12)

with (see figure 2)

α1 := arccos
−j2

1 + j2
2 + j2

3

2j2j3

α2 := arccos
j2

1 − j2
2 + j2

3

2j1j3

. (B.13)

The remaining factor behaves as
√

j3
2j3+1

= 1√
2

(
1 +O(k−1/2)

)
.

Collecting all the pieces we get(
j1 j2 j3

µ1 µ2 µ3

)
=

(−1)j1−j2−µ3√
2πA(j1, j2, j3)

cos
[
(j1 + j2 − j3)

π

2
+ µ2α1 − µ1α2

] (
1 +O(k−1/2)

)
.

(B.14)
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C Free field three-point function

In the supersymmetric free field theory of two bosons and two fermions on the plane
the three-point function of Neveu-Schwarz (super-)primary fields Φfree

p is very simple (see
eq. (3.17)). In this appendix we compute the three-point function in a radial basis Φfree

p,m,
which is needed for the comparison to the limit of minimal models.

The fields Φfree
p,m are defined as

Φfree
p,m =

√
p

2π

∫
dϕ Φfree

peiϕ e
imϕ . (C.1)

Their three-point function can therefore be expressed as

〈Φfree
p1,m1

(z1, z̄1)Φfree
p2,m2

(z2, z̄2)Φfree
p3,m3

(z3, z̄3)〉

=

√
p1p2p3

(2π)3

∫
dϕ1dϕ2dϕ3 e

im1ϕ1+im2ϕ2+im3ϕ3〈Φfree
p1eiϕ1 (z1, z̄1)Φfree

p2eiϕ2 (z2, z̄2)Φfree
p3eiϕ3 (z3, z̄3)〉

=

√
p1p2p3

(2π)3
|z12|2(h3−h1−h2)|z23|2(h1−h2−h3)|z13|2(h2−h1−h3)

×
∫
dϕ1dϕ2dϕ3 e

im1ϕ1+im2ϕ2+im3ϕ3 δ(2)(p1e
iϕ1 + p2e

iϕ2 + p3e
iϕ3) (C.2)

=

√
p1p2p3

2π
|z12|2(h3−h1−h2)|z23|2(h1−h2−h3)|z13|2(h2−h1−h3)

× δm1+m2+m3

∫
dϕ2dϕ3 e

im2ϕ2+im3ϕ3 δ(2)(p1 + p2e
iϕ2 + p3e

iϕ3) . (C.3)

We now have to evaluate the remaining integral over the angles ϕ2 and ϕ3. Due to the
delta-distribution it only gets contributions if the two-dimensional vectors corresponding
to the complex momenta p1, p2e

iϕ2 and p3e
iϕ3 form a triangle. In particular it is zero

unless the inequalities
|p2 − p3| ≤ p1 ≤ p2 + p3 (C.4)

are satisfied. The triangle condition arising from the delta-distribution can be formulated
by the equations

q1 := p1 + p2 cosϕ2 + p3 cosϕ3 = 0 (C.5)

q2 := p2 sinϕ2 + p3 sinϕ3 = 0 . (C.6)

The angles ϕi take values in the interval [−π, π]. For any solution (ϕ2, ϕ3) there is another
solution (−ϕ2,−ϕ3) that corresponds to the triangle reflected at the side p1. For ϕ2 > 0
we have ϕ3 < 0 and the relation to the angles of the triangle is given by (see figure 3)

ϕ2 = α1 + α2 ϕ3 = α2 − π . (C.7)

Evaluating the integral therefore reduces to plugging in the values for ϕ2 and ϕ3 for the
two solutions, and dividing this by the Jacobian determinant∣∣∣∣∣det

(
∂qi
∂ϕj

)
i,j

∣∣∣∣∣ = p2p3| sin(ϕ2 − ϕ3)| = 2A(p1, p2, p3) , (C.8)
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α2

α1

p1

p2p3

ϕ2−ϕ3 α3

Figure 3: The triangle spanned by p1, p2e
iϕ2 and p3e

iϕ3 .

where A(p1, p2, p3) is the area of the triangle (see eq. (B.5)). We find in total

〈Φfree
p1,m1

(z1, z̄1)Φfree
p2,m2

(z2, z̄2)Φfree
p3,m3

(z3, z̄3)〉

=

√
p1p2p3

2π
|z12|2(h3−h1−h2)|z23|2(h1−h2−h3)|z13|2(h2−h1−h3)

× δm1+m2+m3

cos(m2α1 −m1α2 + π(m1 +m2))

A(p1, p2, p3)
. (C.9)
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