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1 Introduction

After more than two decades, since the formulation of the supermembrane matrix model

[1, 2, 3], the existence of the zero-energy ground state of the theory, as well as its explicit

construction, are still open issues. Any solution to this problem results in long-standing

implications - if the normalizable state does not exist the theory is likely to be meaningless.

However even in such worst case scenario it is still possible that the large N limit results in

the function that is still normalizable [4]. Therefore the supermembrane could make sense

even though its regularization is ill defined. Clearly, the existence of the ground state of the

model has important consequences not only for membranes but also for string theory due to

the BFSS conjecture [5].

Although there are strong indications, based on the Witten index calculations [6, 7], that

the ground state exists, the fact that the spectrum of the model is continuous [8, 9] makes the

index ill-defined and hence cannot serve directly as a rigorous proof of the existence of the

state (for a more detailed discussion see e.g. [10]).

There are however other techniques, not relying on the supersymmetric index, which make

the proof accessible. A notable example of this kind is the deformation technique [11, 12] which

was used in a different but related matrix model (corresponding to D0-D4 bound states). Other

promising approach is based on the group averaging techniques - in particular in references

[13, 14] it was shown that the question about the existence of the ground state can be answered

using a simpler model with two interacting matrices (while in the original model there are nine

of them). Such tremendous simplification was possible due to the hidden octonionic structure

of the model.

In this paper, rather than focusing on the existence, we address the question about the

explicit form of the ground state. Although its asymptotic form is very well studied [15, 16] the

corresponding behavior near the origin is still not known to a satisfactory degree. Performing

the Taylor expansion of the ground state about X = 0, the 0th order term (i.e. the coordinate

independent one) for the SU(2) model has been constructed explicitly [17] and proven to be

unique [18, 19] which confirmed earlier symbolic results using Mathematica [20]. The 1st order

term is now also available and turns out to be unique as well [21]. Because the zero-energy

state |ψ〉 satisfies (schematically) (∂X +X2) |ψ〉 = 0, the 0th, the 1st and the 2nd order terms

fix the higher order terms completely by an appropriate recurrence equation. It is therefore

important to find the remaining 2nd order term. After summarizing notation and basic facts

1



in section 2 and 3, we shall determine that term explicitly in section 4. We find that there are

two independent terms of this sort. Since explicit expressions of those states are lengthy, we

give them in the Appendix.

2 Preliminaries

The supermembrane matrix model is a quantum mechanical system with N = 16 supersym-

metries, SU(N) gauge invariance (in this paper we consider N = 2) and Spin(9) symmetry.

The theory involves real bosonic variables Xa
i (the coordinates) and real fermionic ones θaα

(Majorana spinors) with i = 1, . . . , 9, α = 1, . . . , 16 and a = 1, . . . , N2−1 - spatial, spinor and

color indices respectively. The corresponding supercharges and the Hamiltonian of the model

are

Qα = Tr

(

Piγ
iθ +

i

2
[Xi, Xj]γ

ijθ

)

α

, {Qα, Qβ} = 2δαβH, (2.1)

where γi are 16× 16 real, gamma matrices such that {γi, γj} = 2δij1 and γij = 1
2
[γi, γj]. The

Hilbert space consists of all the states |s〉 satisfying the singlet constraint

Ga |s〉 = 0, Ga = fabc(X
b
iP

c
i + iθbαθ

c
α), (2.2)

where P a
i denote the conjugate momenta i.e. [Xa

i , P
b
j ] = iδijδ

ab, and fabc are the structure

constants of SU(N). The trace in (2.1) is over the SU(N) matrix given by Xi = Xa
i Ta,

Pi = P a
i Ta and θα = θaαTa where Ta’s are the basis elements of the group algebra. For more

details of the model we refer to existing reviews in the literature [22, 23].

Let |ψ〉 denote the conjectured ground state i.e. a normalizable vector s.t. Qα |ψ〉 = 0. It

has been shown that |ψ〉 must be SO(9) singlet [24]. When we expand |ψ〉 in the coordinates

Xa
i :

|ψ〉 = |φ〉+Xa
i |φa

i 〉+Xa1
i1
Xa2

i2

∣

∣φa1a2
i1i2

〉

+ . . .

=

∞
∑

n=0

Xa1
i1
. . .Xan

in

∣

∣φa1...an
i1...in

〉

, (2.3)

coordinate independent states
∣

∣φa1...an
i1...in

〉

, which are constructed by acting creation operators

made of θaα on the vacuum for those operators, play an important role. In our case of SU(2)

gauge group, classification of the coordinate independent states by representations has been

given in [19].
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Zero-energy state equationQα |ψ〉 = 0 can be decomposed into three independent sequences

m = 0, 1, 2 relating
∣

∣

∣
φ
a1...a3n+m

i1...i3n+m

〉

with
∣

∣

∣
φ
a1...a3(n+1)+m

i1...i3(n+1)+m

〉

, while the first two of those equations

contain only one
∣

∣φa1...an
i1...in

〉

:

γiθa |φa
i 〉 = 0, (2.4)

γi1θa1
∣

∣φa1a2
i1i2

〉

= 0, (2.5)

[Xi, Xj]
aXa1

i1
. . .X

a3n+m

i3n+m
γijθa

∣

∣

∣
φ
a1...a3n+m

i1...i3n+m

〉

= 2(3(n+ 1) +m)Xa2
i2
. . . X

a3(n+1)+m

i3(n+1)+m
γi1θa1

∣

∣

∣
φ
a1...a3(n+1)+m

i1...i3(n+1)+m

〉

, (2.6)

where n = 0, 1, 2, . . . . The first three states |φ〉, |φa
i 〉 and

∣

∣φa1a2
i1i2

〉

give the starting points for

solving each sequence of equations order by order.

3 0th and 1st Order Terms

The unique candidate for |φ〉 which we denote here by |S〉, has been constructed in [17, 20],

and the unique candidate for |φa
i 〉 which satisfies (2.4) has also been constructed in [21]. Thus

we have the starting points for the sequences m = 0 and 1. It turns out that the explicit

expressions for these states are relatively simple if one works with states corresponding to

irreducible representations of SO(9) of dimensions 44(symmetric-traceless representation),

84(3-rank antisymmetric representation) and 128(vector-spinor representation) which we de-

note here by |ij〉a, |ijk〉a and |αi〉a respectively∗. The state |αi〉a is Grassmann odd, and

satisfies the Rarita-Schwinger constraint (γi)βα |αi〉a = 0. Actions of θa on these states are

given by

θaα |ij〉b = −1

3

[

(γi)αβ |βj〉a + (γj)αβ |βi〉a
]

δab, (3.1)

θaα |ijk〉b =
1√
3
(γ[ij)αβ |βk]〉a δab, (3.2)

θaα |βi〉b =
[

− 3

4
(γj)αβ |ij〉a −

√
3

24
(γjklγi − 9δijγkl)αβ |jkl〉a

]

δab, (3.3)

where [ijk] denotes antisymmetrization of indices with the factor 1/3!†. For the 0th order

term one finds that [17]

|φ〉 = α0 |S〉 , (3.4)

∗Note the subscript a corresponding to the color index - a generic state for SU(2) will have the form
|A〉

1
|B〉

2
|C〉

3
.

†For the definition of states |ij〉
a
, |ijk〉

a
and |αi〉

a
we use conventions of [21] which differ from the conven-

tions of [17] by normalization factors.
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|S〉 := − 6

13
|||
44

1〉+ |||
844

1〉, (3.5)

|||
44

1〉 := |ik〉1|jk〉2|ij〉3, (3.6)

|||
844

1〉 := |ijk〉1|ljk〉2|il〉3 + |ljk〉1|il〉2|ijk〉3 + |il〉1|ijk〉2|ljk〉3. (3.7)

The overall factor α0 cannot be determined by the condition Qα |ψ〉 = 0 - the only remaining

constraint is the norm 〈ψ|ψ〉 = 1 which should be used to fix α0. For the 1st order term a

similar expression is more complicated however as it turns out it can be written in an elegant

form when using |S〉. One finds that [21]

∣

∣φi
a

〉

= α1fabcθbγ
iθc |S〉 , (3.8)

where α1 is determined again by 〈ψ|ψ〉 = 1.

The above result suggests a possibility that all the states
∣

∣φa1...an
i1...in

〉

of the Taylor expansion of

|ψ〉 can be obtained as fairly simple expressions containing fermionic operators θaα, contracted

with gamma matrices and SU(2) invariant tensors, acting on |S〉. This assertion, if true,

implies that there exist a gauge invariant and SO(9) invariant function f(X, θ) such that the

ground state of the supermembrane can be written as

|ψ〉 = f(X, θ) |S〉 . (3.9)

In the following section we shall confirm that conjecture giving an explicit expression for the

second order terms.

4 Construction of 2nd Order Terms

To give the starting point for m = 2 satisfying (2.5), we construct all the candidates for
∣

∣φab
ij

〉

first. For the construction the table of representations in the coordinate independent state

space (Table 1) given in [19] is quite useful. From the table we will see that there are five

candidate representations

δabδij |S〉 , δab
∣

∣φij
〉

,
∣

∣

∣
φij

(1)ab

〉

,
∣

∣

∣
φij

(2)ab

〉

,
∣

∣

∣
φij

(3)ab

〉

.

Moreover the table tells us that there are two independent solutions to (2.5), and indeed we

will find that two linear combinations of the above five representations satisfy (2.5). We now
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explain the details of these states and solutions:
∣

∣φij
ab

〉

, which satisfies
∣

∣φij
ab

〉

=
∣

∣φji
ba

〉

, can be

decomposed into the following five irreducible representations of SU(2)× SO(9):

(t, t) :
∣

∣φkk
cc

〉

(t, s) :
∣

∣φ(ij)
cc

〉

− 1

9
δij

∣

∣φkk
cc

〉

(s, t) :
∣

∣φkk
(ab)

〉

− 1

3
δab

∣

∣φkk
cc

〉

(s, s) :
∣

∣

∣
φij

(ab)

〉

− 1

9
δij

∣

∣φkk
(ab)

〉

− 1

3
δab

∣

∣φ(ij)
cc

〉

+
1

27
δabδ

ij
∣

∣φkk
cc

〉

(a, a) :
∣

∣

∣
φ
[ij]
[ab]

〉

,

where t, s, and amean trace (i.e. singlet), symmetric-traceless, and antisymmetric respectively.

For example, (t, s) stands for (SU(2) singlet)×(SO(9) symmetic-traceless) representation. (ij)

and (ab) are symmetrization of indices, and [ij] and [ab] are antisymmetization.

For SU(2), t, a, and s correspond to spin 0, 1, and 2 representations respectively. For

SO(9), t, a, and s correspond to Dynkin labels [0000], [0100], and [2000] in Table 1 in [19]

respectively. Then the table tells us that in the coordinate independent state space,

(i) there is only one (t, t) representation (and therefore proportional to |S〉).

(ii) there is only one (t, s) representation.

(iii) there is no (s, t) representation.

(iv) there are two (s, s) representations.

(v) there is only one (a, a) representation.

We have to construct all of these representations explicitly to determine
∣

∣φij
ab

〉

.

4.1 Construction of (t, t), (t, s), (a, a), and (s, s) Representations

Candidates for most of the above states are given by appropriately symmetrizing, anti-

symmetrizing, or contracting indices in Oi
aO

j
b |S〉 and subtracting trace part, where Oi

a :=

ǫabcθ
bγiθc:

(t, t) : δabδ
ijOk

cO
k
c |S〉

(t, s) : δab
∣

∣φij
〉

:= δab
[

O(i
c O

j)
c − 1

9
δijOk

cO
k
c

]

|S〉

5



(s, t) : δij
[

Ok
(aO

k
b) −

1

3
δabO

k
cO

k
c

]

|S〉

(s, s) :
∣

∣φ(2)
ij
ab

〉

:=
[

O
(i
(aO

j)
b) −

1

9
δijOk

(aO
k
b) −

1

3
δabO

(i
c O

j)
c +

1

27
δabδ

ijOk
cO

k
c

]

|S〉

(a, a) :
∣

∣φ(1)
ij
ab

〉

:= O
[i
[aO

j]
b] |S〉 .

By straightforward calculation using (3.1)-(3.3) the followings can be shown:

Oi
aO

i
a |S〉 = −1440 |S〉 , (4.1)

[

Ok
(aO

k
b) −

1

3
δabO

k
cO

k
c ] |S〉 = 0, (4.2)

as is indicated by the table in [19]. Therefore |φij〉 and
∣

∣φ(2)
ij
ab

〉

can be simplified:

∣

∣φij
〉

=
[

O(i
c O

j)
c + 160δij

]

|S〉 , (4.3)
∣

∣φ(2)
ij
ab

〉

=
[

O
(i
(aO

j)
b) −

1

3
δabO

(i
c O

j)
c

]

|S〉 . (4.4)

There should be another (s, s) representation, and it will be denoted by
∣

∣φ(3)
ij
ab

〉

. Before

constructing
∣

∣φ(3)
ij
ab

〉

, we give explicit expressions of |φij〉 ,
∣

∣φ(1)
ij
ab

〉

, and
∣

∣φ(2)
ij
ab

〉

. This needs

tedious calculation, and we have done it by using Mathematica and the package for γ-matrix

algebra GAMMA [25].

First, the explicit expression of O
(i
(aO

j)
b) |S〉 is given by the following:

O
(i
1 O

j)
1 |S〉 = δ

ij
[ 896

39
|kl〉1 |lm〉2 |mk〉3 −

448

13
|kl〉1 |kmn〉2 |lmn〉3 − 80 |kmn〉1 |kl〉2 |lmn〉3 − 80 |kmn〉1 |lmn〉2 |kl〉3

]

−
1

39

[

1184 |ij〉1 |kl〉2 |kl〉3 + 896 |kl〉1 |ij〉2 |kl〉3 + 896 |kl〉1 |kl〉2 |ij〉3
]

+
160

3

[

|k(i〉1 |j)l〉2 |kl〉3 + |k(i〉1 |kl〉2 |j)l〉3
]

−
3584

39
|kl〉1 |k(i〉2 |j)l〉3 +

384

13
|ij〉1 |klm〉2 |klm〉3 −

1104

13

[

|k(i〉1 |j)lm〉2 |klm〉3 + |k(i〉1 |klm〉2 |j)lm〉3
]

+16
[

|kl(i〉1 |j)m〉2 |klm〉3 + |kl(i〉1 |klm〉2 |j)m〉3
]

+ 128
[

|klm〉1 |m(i〉2 |j)kl〉3 + |klm〉1 |lm(i〉2 |j)k〉3
]

+96
[

|km(i〉1 |kl〉2 |lmj)〉3 + |km(i〉1 |j)lm〉2 |kl〉3
]

−
16

√
3

9
ǫ
k1...k8(i

[

|k1k2k3〉1 |k4k5j)〉2 |k6k7k8〉3 + |k1k2k3〉1 |k4k5k6〉2 |k7k8j)〉3
]

, (4.5)

O
(i
(1

O
j)
2)

|S〉 = −
1

351

[

288(γ
k(i

)αβ

(

|αj)〉1 |βl〉2 |kl〉3 + |αl〉1 |βj)〉2 |kl〉3
)

+4448(γ
k(i

)αβ |αl〉1 |βl〉2 |kj)〉3 + 10112
(

|α(i〉1 |αk〉2 |kj)〉3 − |αk〉1 |α(i〉2 |j)k〉3
)

]

+

√
3

351

[

904(γ
kl(i

)αβ

(

|αj)〉1 |βm〉2 |klm〉3 + |αm〉1 |βj)〉2 |klm〉3
)

− 5552(γ
k
)αβ

(

|α(i〉1 |βl〉2 |klj)〉3 − |αl〉1 |β(i〉2 |klj)〉3
)

−1520δ
ij

(γ
k
)αβ |αl〉1 |βm〉2 |klm〉3 − 120δ

ij
(γ

klm
)αβ |αn〉1 |βn〉2 |klm〉3

− 656(γ
klm

)αβ |α(i〉1 |βj)〉2 |klm〉3 − 1040(γ
(i

)αβ |αk〉1 |βl〉2 |klj)〉3 + 1736(γ
kl(i

)αβ |αn〉1 |βn〉2 |klj)〉3
]

, (4.6)

O
(i
2 O

j)
2 |S〉 = O

(i
1 O

j)
1 |S〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉2|∗2〉3|∗3〉1

, (4.7)

6



O
(i
3 O

j)
3 |S〉 = O

(i
1 O

j)
1 |S〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉3|∗2〉1|∗3〉2

, (4.8)

O
(i
(2O

j)
3) |S〉 = O

(i
(1O

j)
2) |S〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉2|∗2〉3|∗3〉1

, (4.9)

O
(i
(3O

j)
1) |S〉 = O

(i
(1O

j)
2) |S〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉3|∗2〉1|∗3〉2

. (4.10)

In the above, (i . . . j) just means symmetrization of only i and j, and does not symmetrize

indices between i and j. For example,

(γkl(i)αβ |αn〉1 |βn〉2 |klj)〉3 =
1

2

[

(γkli)αβ |αn〉1 |βn〉2 |klj〉3 + (γklj)αβ |αn〉1 |βn〉2 |kli〉3
]

.

(4.11)

We need the following identity to obtain the above expression of O
(i
1 O

j)
1 |S〉:

0 = ǫk1...k8i
(

|k1k2j〉1 |k3k4k5〉2 |k6k7k8〉3 − |k1k2k3〉1 |k4k5j〉2 |k6k7k8〉3
+ |k1k2k3〉1 |k4k5k6〉2 |k7k8j〉3

)

−1

3
δijǫk1...k9 |k1k2k3〉1 |k4k5k6〉2 |k7k8k9〉3 , (4.12)

which can be shown by using |jk1k2〉1 = 1
3!·6!

ǫjk1k2l4...l9ǫl1...l9 |l1l2l3〉1.

From the above expression of O
(i
(aO

j)
b) |S〉, we obtain |φij〉 and

∣

∣φ(2)
ij
ab

〉

. Explicit expression

of
∣

∣φ(1)
ij
ab

〉

is also obtained by straightforward calculation, and all of those explicit expressions

are summarized in the Appendix.

4.2 Another (s, s) Representation

Now we have (t, t), (t, s), (a, a), and one of (s, s) representations explicitly. Then the only

missing one is the other (s, s) state
∣

∣φ(3)
ij
ab

〉

. Let us try to construct this representation as states

made by acting θ’s on |S〉, although it is not clear at present if every state can be constructed

in this way. First, let us consider classifying this kind of states with two symmetrized SU(2)

adjoint indices by the number of θ’s on |S〉. In the case of two θ’s, θaγijθb |S〉 and θaγijkθb |S〉
are possible. However it is impossible to give two symmetrized SO(9) vector indices to these

states. This is the reason why we did not start with states with two θ’s in the previous

subsection. In the case of four θ’s, two of four adjoint indices of θ’s are contracted, and

by Fierz transformation those contracted indices can be put into the same fermion bilinear.

The Fierz transformation may give additional terms which come from the anticommutation

relation of θ’s and have two θ’s. We concentrate on terms with four θ’s. Then the possible

states are

[θaγijθb][θcγklθc] |S〉 , [θaγijkθb][θcγlmθc] |S〉 ,
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[θaγijθb][θcγklmθc] |S〉 , [θaγijkθb][θcγlmnθc] |S〉 . (4.13)

Note that θcγklθc is an SO(9) generator, which annihilates |S〉. So the first two states vanish.

If we consider states with two symmetrized SO(9) vector indices, [θaγkl(iθb][θcγj)klθc] |S〉 is the
only possibility. So

∣

∣φ(2)
ij
ab

〉

must be proportional to this state (plus terms with less θ’s and

terms for subtracting the trace part), and indeed is proportional as can be seen from

∣

∣φ(2)
ij
ab

〉

= −4[θaγ(iθc][θbγj)θc] |S〉+ (terms with two θ’s)

+(terms proportional to δab), (4.14)

and the following Fierz transformation:

[θaγ(iθc][θbγj)θc] |S〉 = − 1

16 · 2[θ
aγ(iγm1m2γj)θb][θcγm1m2θ

c] |S〉

− 1

16 · 6[θ
aγ(iγm1m2m3γj)θb][θcγm1m2m3θ

c] |S〉
+(terms with two θ’s)

= − 1

16
[θaγkl(iθb][θcγj)klθc] |S〉

+(terms with two θ’s) + (terms proportional to δij). (4.15)

This shows that using four θ’s we can construct no more (s, s) representation. Next we

consider six θ case. By Fierz transformation SU(2) adjoint indices are arranged so that we

have two bilinears with SU(2) indices contracted within each of them, and one bilinear with

two symmetrized free indices. For example,

∣

∣φ′
(3)

ij
ab

〉

:= [θaγ(in1θ
b][θcγj)n2n3θ

c][θdγn1n2n3θd] |S〉 (4.16)

is the only state with two symmetrized SO(9) vector indices, and its traceless part
∣

∣φ(3)
ij
ab

〉

may give another (s, s) representation. Explicitly,

∣

∣

∣
φ
′

(3)
ij
11

〉

=
6144

13
δ
ij |kl〉1 |lm〉2 |mk〉3 + 21504 |ij〉1 |kl〉2 |kl〉3 +

3072

13

(

|kl〉1 |ij〉2 |kl〉3 + |kl〉1 |kl〉2 |ij〉3
)

+
16384

13

(

|ki〉1 |lj〉2 |kl〉3 + |kj〉1 |li〉2 |kl〉3 + |ki〉1 |kl〉2 |lj〉3 + |kj〉1 |kl〉2 |li〉3
)

−
60416

13

(

|kl〉1 |ki〉2 |lj〉3 + |kl〉1 |kj〉2 |li〉3
)

+
52224

13
δ
ij( |kmn〉1 |lmn〉2 |kl〉3 + |lmn〉1 |kl〉2 |kmn〉3

)

+
24576

13
δ
ij |kl〉1 |kmn〉2 |lmn〉3 −

135168

13
|ij〉1 |klm〉2 |klm〉3

+
12288

13

(

|klm〉1 |ij〉2 |klm〉3 + |klm〉1 |klm〉2 |ij〉3 + |klm〉1 |lmi〉2 |kj〉3 + |klm〉1 |lmj〉2 |ki〉3 + |klm〉1 |mi〉2 |klj〉3 + |klm〉1 |mj〉2 |kli〉3
)

−12288
(

|kmi〉1 |lmj〉2 |kl〉3 + |kmj〉1 |lmi〉2 |kl〉3 + |kli〉1 |lm〉2 |kmj〉3 + |klj〉1 |lm〉2 |kmi〉3
)

− 3072
(

|kl〉1 |kmi〉2 |lmj〉3 + |kl〉1 |kmj〉2 |lmi〉3
)

−
87552

13

(

|kli〉1 |klm〉2 |mj〉3 + |klj〉1 |klm〉2 |mi〉3 + |kli〉1 |mj〉2 |klm〉3 + |klj〉1 |mi〉2 |klm〉3
)

−
35328

13

(

|ki〉1 |lmj〉2 |klm〉3 + |kj〉1 |lmi〉2 |klm〉3 + |ki〉1 |klm〉2 |lmj〉3 + |kj〉1 |klm〉2 |lmi〉3
)

, (4.17)

8



∣

∣

∣
φ
′

(3)
ij
12

〉

=
15360

13

[

(γ
ki

)αβ |αj〉1 |βl〉2 |kl〉3 + (γ
kj

)αβ |αi〉1 |βl〉2 |kl〉3 + (γ
ki

)αβ |αl〉1 |βj〉2 |kl〉3 + (γ
kj

)αβ |αl〉1 |βi〉2 |kl〉3
]

−
128000

117

[

(γ
ki

)αβ |αl〉1 |βl〉2 |kj〉3 + (γ
kj

)αβ |αl〉1 |βl〉2 |ki〉3
]

+
204800

117

[

|αk〉1 |αi〉2 |kj〉3 + |αk〉1 |αj〉2 |ki〉3 − |αi〉1 |αk〉2 |kj〉3 − |αj〉1 |αk〉2 |ki〉3
]

−
512

13

√
3δ

ij
(γ

klm
)αβ |αn〉1 |βn〉2 |klm〉3 +

48128

39
√

3
δ
ij

(γ
k
)αβ |αl〉1 |βm〉2 |klm〉3

−
41216

39
√

3

[

(γ
kli

)αβ |αj〉1 |βm〉2 |klm〉3 + (γ
klj

)αβ |αi〉1 |βm〉2 |klm〉3 + (γ
kli

)αβ |αm〉1 |βj〉2 |klm〉3 + (γ
klj

)αβ |αm〉1 |βi〉2 |klm〉3
]

+
8704

39
√

3
(γ

klm
)αβ

[

|αi〉1 |βj〉2 |klm〉3 + |αj〉1 |βi〉2 |klm〉3
]

+
12032

39
√

3

[

(γ
kli

)αβ |αm〉1 |βm〉2 |klj〉3 + (γ
klj

)αβ |αm〉1 |βm〉2 |kli〉3
]

−
9728

3
√

3

[

(γ
i
)αβ |αk〉1 |βl〉2 |klj〉3+(γ

j
)αβ |αk〉1 |βl〉2 |kli〉3

]

+
37376

39
√

3
(γ

k
)αβ

[

|αl〉1 |βi〉2 |klj〉3+|αl〉1 |βj〉2 |kli〉3−|αi〉1 |βl〉2 |klj〉3−|αj〉1 |βl〉2 |kli〉3
]

,

(4.18)

∣

∣φ′
(3)

ij
22

〉

=
∣

∣φ′
(3)

ij
11

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉2|∗2〉3|∗3〉1

, (4.19)

∣

∣φ′
(3)

ij
33

〉

=
∣

∣φ′
(3)

ij
11

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉3|∗2〉1|∗3〉2

, (4.20)

∣

∣φ′
(3)

ij
23

〉

=
∣

∣φ′
(3)

ij
12

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉2|∗2〉3|∗3〉1

, (4.21)

∣

∣φ′
(3)

ij
31

〉

=
∣

∣φ′
(3)

ij
12

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉3|∗2〉1|∗3〉2

. (4.22)

Unlike
∣

∣φ(2)
ij
11

〉

,
∣

∣

∣
φ′
(3)

ij
11

〉

does not have terms in the form of |k1k2k3〉1 |k4k5k6〉2 |k7k8k9〉3. This
shows that

∣

∣φ(2)
ij
ab

〉

and
∣

∣φ(3)
ij
ab

〉

are independent of each other.

Noting that θaγin1θ
a is an SO(9) generator, we obtain

∣

∣φ′
(3)

ij
aa

〉

= 72[θcγ(in2n3θ
c][θdγj)n2n3θd] |S〉 − 8δij [θcγn1n2n3θ

c][θdγn1n2n3θd] |S〉 . (4.23)

This shows that
∣

∣

∣
φ′
(3)

ii
aa

〉

= 0, and therefore
∣

∣

∣
φ′
(3)

ii
ab

〉

is in (s, t) representation. However there

is no (s, t) representation in the table in [19]. This means
∣

∣

∣
φ′
(3)

ii
ab

〉

= 0. The above explicit

expression of
∣

∣

∣
φ′
(3)

ij
ab

〉

indeed satisfies this, and the traceless part
∣

∣φ(3)
ij
ab

〉

is defined by

∣

∣φ(3)
ij
ab

〉

:=
∣

∣φ′
(3)

ij
ab

〉

− 1

3
δab

∣

∣φ′
(3)

ij
cc

〉

. (4.24)

Let us make another check on the above expression of
∣

∣

∣
φ′
(3)

ij
ab

〉

:
∣

∣

∣
φ′
(3)

ij
aa

〉

gives a (t, s) repre-

sentation, and since this representation must be unique, this must be proportional to |φij〉.
Indeed,

∣

∣φ′
(3)

ij
aa

〉

= −288
∣

∣φij
〉

. (4.25)

Explicit expression of
∣

∣φ(3)
ij
ab

〉

is given in the Appendix.
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4.3 Solutions to Schrödinger equation

Next we construct solutions to zero-energy Schrödinger equation (γiθa)α
∣

∣φij
ab

〉

= 0. The left

hand side of this equation has one vector index and one spinor index of SO(9), and one adjoint

index of SU(2). This SO(9) representation can be decomposed into a vector-spinor(128)

and a spinor(16) representation. According to the table in [19] there is a unique spinor

representation, and there are two independent vector-spinor representations. Therefore this

equation can be decomposed into three equations for those three representations.
∣

∣φij
ab

〉

is

given as a linear combination of five states we have constructed:

∣

∣φij
ab

〉

= c1δabδ
ij |S〉+ c2δab

∣

∣φij
〉

+ c3
∣

∣φ(1)
ij
ab

〉

+ c4
∣

∣φ(2)
ij
ab

〉

+ c5
∣

∣φ(3)
ij
ab

〉

, (4.26)

and three of those five coefficients ci can be determined. This means that we have two

independent solutions to the Schrödinger equation.

First we show c1 = 0 with a shorter calculation: Since (γjγiθa)α
∣

∣φij
ab

〉

= θaα |φii
ab〉 +

(γjiθa)α
∣

∣φij
ab

〉

, Three of five states |φij〉,
∣

∣φ(2)
ij
ab

〉

, and
∣

∣φ(3)
ij
ab

〉

do not contribute to (γjγiθa)α
∣

∣φij
ab

〉

.

By straightforward calculation we see that
∣

∣φ(1)
ij
ab

〉

also does not contribute to it. Therefore

(γjγiθa)α
∣

∣φij
ab

〉

= 0 gives c1 = 0.

Then we deal with (γiθa)α
∣

∣φij
ab

〉

= 0 directly. The coefficients of independent states in

explicit expression of (γiθa)α
∣

∣φij
ab

〉

must give only two independent equations for ci. There are

more than 40 independent states in (γiθa)α
∣

∣φij
ab

〉

, and we have checked that all of them reduce

to the following two equations:

c2 =
7

20
c4 + 240c5, c3 =

31

30
c4 − 96c5. (4.27)

Then we obtain two independent solutions:

7

20
δab

∣

∣φij
〉

+
31

30

∣

∣φ(1)
ij
ab

〉

+
∣

∣φ(2)
ij
ab

〉

, (4.28)

240δab
∣

∣φij
〉

− 96
∣

∣φ(1)
ij
ab

〉

+
∣

∣φ(3)
ij
ab

〉

. (4.29)

5 Discussion

Zero-energy states of supersymmetric models can often be found explicitly due to the fact that

they satisfy first order differential equations. It is clear however that for N = 16 supermem-

brane matrix model this simplification is not enough to find the corresponding wave-function
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- it seems not likely that one can just guess the form of the state. For this reason the Taylor

expansion approach initiated in [17] is a natural step forward. The 2nd order terms, deter-

mined in this paper, together with the 0th [17] and the 1st [21] order ones complete the initial

conditions needed to solve the recurrence relation (2.6) for all higher terms. It is therefore a

crucial step towards finding the ground state by this method.

We conjecture that the ground state can be written in terms of variables X and θ acting

on |S〉 as in (3.9). This statement is true for the 0th, 1st and the 2nd order terms and since

they provide the initial conditions for the recurrence relation (2.6) it is very likely that is holds

for all other terms.
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Appendix: Summary of Results

In this appendix we give a summary of explicit expressions of |φij〉,
∣

∣φ(1)
ij
ab

〉

,
∣

∣φ(2)
ij
ab

〉

, and
∣

∣φ(3)
ij
ab

〉

.

∣

∣φij
〉

:=
[

O(i
c O

j)
c + 160δij

]

|S〉

=
1

13

[

− 992
(

|ij〉1 |kl〉2 |kl〉3 + |kl〉1 |ij〉2 |kl〉3 + |kl〉1 |kl〉2 |ij〉3
)

+96
(

|ki〉1 |lj〉2 |kl〉3 + |lj〉1 |kl〉2 |ki〉3 + |kl〉1 |ki〉2 |lj〉3
+ |kj〉1 |li〉2 |kl〉3 + |li〉1 |kl〉2 |kj〉3 + |kl〉1 |kj〉2 |li〉3

)

−64δij |kl〉1 |lm〉2 |mk〉3
−448δij

(

|kmn〉1 |lmn〉2 |kl〉3 + |lmn〉1 |kl〉2 |kmn〉3 + |kl〉1 |kmn〉2 |lmn〉3
)

+384
(

|klm〉1 |klm〉2 |ij〉3 + |klm〉1 |ij〉2 |klm〉3 + |ij〉1 |klm〉2 |klm〉3
+ |ki〉1 |klm〉2 |lmj〉3 + |klj〉1 |mi〉2 |klm〉3 + |klm〉1 |lmj〉2 |ki〉3
+ |kj〉1 |klm〉2 |lmi〉3 + |kli〉1 |mj〉2 |klm〉3 + |klm〉1 |lmi〉2 |kj〉3
+ |ki〉1 |lmj〉2 |klm〉3 + |klm〉1 |mi〉2 |klj〉3 + |klj〉1 |klm〉2 |mi〉3
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+ |kj〉1 |lmi〉2 |klm〉3 + |klm〉1 |mj〉2 |kli〉3 + |kli〉1 |klm〉2 |mj〉3
)

+1248
(

|kmi〉1 |lmj〉2 |kl〉3 + |lmj〉1 |kl〉2 |kmi〉3 + |kl〉1 |kmi〉2 |lmj〉3
+ |kmj〉1 |lmi〉2 |kl〉3 + |lmi〉1 |kl〉2 |kmj〉3 + |kl〉1 |kmj〉2 |lmi〉3

)

]

. (A.1)

∣

∣φ(1)
ij
ab

〉

:= O
[i
[aO

j]
b] |S〉 . (A.2)

∣

∣φ(1)
ij
12

〉

= −160

9
(γk[i)αβ

(

|αj]〉1 |βl〉2 |kl〉3 − |αl〉1 |βj]〉2 |kl〉3
)

+
√
3
[112

9
(γkl[i)αβ

(

|αj]〉1 |βm〉2 |klm〉3 − |αm〉1 |βj]〉2 |klm〉3
)

−32

27
(γk)αβ

(

|α[i〉1 |βl〉2 |klj]〉3 + |αl〉1 |β[i〉2 |klj]〉3
)

+
304

27
(γkij)αβ |αl〉1 |βm〉2 |klm〉3

−40

81
(γklmij)αβ |αn〉1 |βn〉2 |klm〉3

+
272

81
(γklm)αβ |α[i〉1 |βj]〉2 |klm〉3

+
416

27
(γk)αβ |αl〉1 |βl〉2 |kij〉3

]

, (A.3)

∣

∣φ(1)
ij
23

〉

=
∣

∣φ(1)
ij
12

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉2|∗2〉3|∗3〉1

, (A.4)

∣

∣φ(1)
ij
31

〉

=
∣

∣φ(1)
ij
12

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉3|∗2〉1|∗3〉2

. (A.5)

∣

∣φ(2)
ij
ab

〉

:=
[

O
(i
(aO

j)
b) −

1

3
δabO(i

c O
j)
c

]

|S〉 . (A.6)

∣

∣φ(2)
ij
11

〉

=
32

13

(

|kl〉1 |kl〉2 |ij〉3 + |kl〉1 |ij〉2 |kl〉3 − 2 |ij〉1 |kl〉2 |kl〉3
)

+
944

39

(

|ki〉1 |lj〉2 |kl〉3 + |kj〉1 |kl〉2 |li〉3 − 2 |kl〉1 |li〉2 |kj〉3
+ |kj〉1 |li〉2 |kl〉3 + |ki〉1 |kl〉2 |lj〉3 − 2 |kl〉1 |lj〉2 |ki〉3

)

−592

39
δij

(

|klm〉1 |lmn〉2 |kn〉3 + |klm〉1 |mn〉2 |kln〉3 − 2 |kl〉1 |lmn〉2 |kmn〉3
)

−128

13

(

|klm〉1 |klm〉2 |ij〉3 + |klm〉1 |ij〉2 |klm〉3 − 2 |ij〉1 |klm〉2 |klm〉3
)

+16
(

|kli〉1 |kmj〉2 |lm〉3 + |klj〉1 |lm〉2 |kmi〉3 − 2 |kl〉1 |lmi〉2 |kmj〉3
+ |klj〉1 |kmi〉2 |lm〉3 + |kli〉1 |lm〉2 |kmj〉3 − 2 |kl〉1 |lmj〉2 |kmi〉3

)

+
704

13

(

|klm〉1 |lmi〉2 |kj〉3 + |klm〉1 |lmj〉2 |ki〉3
+ |klm〉1 |mi〉2 |klj〉3 + |klm〉1 |mj〉2 |kli〉3

)
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−24

13

(

|kli〉1 |klm〉2 |mj〉3 + |klj〉1 |klm〉2 |mi〉3
+ |kli〉1 |mj〉2 |klm〉3 + |klj〉1 |mi〉2 |klm〉3

)

−680

13

(

|ki〉1 |lmj〉2 |klm〉3 + |kj〉1 |lmi〉2 |klm〉3
+ |ki〉1 |klm〉2 |lmj〉3 + |kj〉1 |klm〉2 |lmi〉3

)

− 8

3
√
3

(

ǫk1k2k3k4k5k6k7k8i |k1k2k3〉1 |k4k5j〉2 |k6k7k8〉3
+ǫk1k2k3k4k5k6k7k8j |k1k2k3〉1 |k4k5i〉2 |k6k7k8〉3
+ǫk1k2k3k4k5k6k7k8i |k1k2k3〉1 |k4k5k6〉2 |k7k8j〉3
+ǫk1k2k3k4k5k6k7k8j |k1k2k3〉1 |k4k5k6〉2 |k7k8i〉3

)

, (A.7)
∣

∣φ(2)
ij
12

〉

= − 1

351

[

288(γk(i)αβ
(

|αj)〉1 |βl〉2 |kl〉3 + |αl〉1 |βj)〉2 |kl〉3
)

+4448(γk(i)αβ |αl〉1 |βl〉2 |kj)〉3
+10112

(

|α(i〉1 |αk〉2 |kj)〉3 − |αk〉1 |α(i〉2 |j)k〉3
)

]

+

√
3

351

[

904(γkl(i)αβ
(

|αj)〉1 |βm〉2 |klm〉3 + |αm〉1 |βj)〉2 |klm〉3
)

−5552(γk)αβ
(

|α(i〉1 |βl〉2 |klj)〉3 − |αl〉1 |β(i〉2 |klj)〉3
)

−1520δij(γk)αβ |αl〉1 |βm〉2 |klm〉3
−120δij(γklm)αβ |αn〉1 |βn〉2 |klm〉3
−656(γklm)αβ |α(i〉1 |βj)〉2 |klm〉3
−1040(γ(i)αβ |αk〉1 |βl〉2 |klj)〉3
+1736(γkl(i)αβ |αn〉1 |βn〉2 |klj)〉3

]

, (A.8)

∣

∣φ(2)
ij
22

〉

=
∣

∣φ(2)
ij
11

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉2|∗2〉3|∗3〉1

, (A.9)

∣

∣φ(2)
ij
33

〉

=
∣

∣φ(2)
ij
11

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉3|∗2〉1|∗3〉2

, (A.10)

∣

∣φ(2)
ij
23

〉

=
∣

∣φ(2)
ij
12

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉2|∗2〉3|∗3〉1

, (A.11)

∣

∣φ(2)
ij
31

〉

=
∣

∣φ(2)
ij
12

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉3|∗2〉1|∗3〉2

. (A.12)

∣

∣φ(3)
ij
ab

〉

:=
∣

∣φ′
(3)

ij
ab

〉

− 1

3
δab

∣

∣φ′
(3)

ij
cc

〉

. (A.13)

∣

∣φ(3)
ij
11

〉

= −92160

13

(

|kl〉1 |ij〉2 |kl〉3 + |kl〉1 |kl〉2 |ij〉3 − 2 |ij〉1 |kl〉2 |kl〉3
)

+
25600

13

(

|ki〉1 |lj〉2 |kl〉3 + |kj〉1 |kl〉2 |li〉3 − 2 |kl〉1 |li〉2 |kj〉3
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+ |kj〉1 |li〉2 |kl〉3 + |ki〉1 |kl〉2 |lj〉3 − 2 |kl〉1 |lj〉2 |ki〉3
)

+
9216

13
δij

(

|klm〉1 |lmn〉2 |kn〉3 + |klm〉1 |mn〉2 |kln〉3 − 2 |kl〉1 |lmn〉2 |kmn〉3
)

+3072
(

|kli〉1 |lmj〉2 |km〉3 + |klj〉1 |km〉2 |lmi〉3 − 2 |kl〉1 |lmi〉2 |kmj〉3
+ |klj〉1 |lmi〉2 |km〉3 + |kli〉1 |km〉2 |lmj〉3 − 2 |kl〉1 |lmj〉2 |kmi〉3

)

+
49152

13

(

|klm〉1 |klm〉2 |ij〉3 + |klm〉1 |ij〉2 |klm〉3 − 2 |ij〉1 |klm〉2 |klm〉3
+ |klm〉1 |lmi〉2 |kj〉3 + |klm〉1 |lmj〉2 |ki〉3
+ |klm〉1 |mi〉2 |klj〉3 + |klm〉1 |mj〉2 |kli〉3

)

−50688

13

(

|kli〉1 |klm〉2 |mj〉3 + |klj〉1 |klm〉2 |mi〉3
+ |kli〉1 |mj〉2 |klm〉3 + |klj〉1 |mi〉2 |klm〉3

)

+
1536

13

(

|ki〉1 |lmj〉2 |klm〉3 + |kj〉1 |lmi〉2 |klm〉3
+ |ki〉1 |klm〉2 |lmj〉3 + |kj〉1 |klm〉2 |lmi〉3

)

, (A.14)
∣

∣φ(3)
ij
12

〉

=
15360

13

[

(γki)αβ |αj〉1 |βl〉2 |kl〉3 + (γkj)αβ |αi〉1 |βl〉2 |kl〉3
+(γki)αβ |αl〉1 |βj〉2 |kl〉3 + (γkj)αβ |αl〉1 |βi〉2 |kl〉3

]

−128000

117

[

(γki)αβ |αl〉1 |βl〉2 |kj〉3 + (γkj)αβ |αl〉1 |βl〉2 |ki〉3
]

+
204800

117

[

|αk〉1 |αi〉2 |kj〉3 + |αk〉1 |αj〉2 |ki〉3
− |αi〉1 |αk〉2 |kj〉3 − |αj〉1 |αk〉2 |ki〉3

]

−512

13

√
3δij(γklm)αβ |αn〉1 |βn〉2 |klm〉3

+
48128

39
√
3
δij(γk)αβ |αl〉1 |βm〉2 |klm〉3

−41216

39
√
3

[

(γkli)αβ |αj〉1 |βm〉2 |klm〉3 + (γklj)αβ |αi〉1 |βm〉2 |klm〉3
+(γkli)αβ |αm〉1 |βj〉2 |klm〉3 + (γklj)αβ |αm〉1 |βi〉2 |klm〉3

]

+
8704

39
√
3
(γklm)αβ

[

|αi〉1 |βj〉2 |klm〉3 + |αj〉1 |βi〉2 |klm〉3
]

+
12032

39
√
3

[

(γkli)αβ |αm〉1 |βm〉2 |klj〉3 + (γklj)αβ |αm〉1 |βm〉2 |kli〉3
]

−9728

3
√
3

[

(γi)αβ |αk〉1 |βl〉2 |klj〉3 + (γj)αβ |αk〉1 |βl〉2 |kli〉3
]

+
37376

39
√
3
(γk)αβ

[

|αl〉1 |βi〉2 |klj〉3 + |αl〉1 |βj〉2 |kli〉3
− |αi〉1 |βl〉2 |klj〉3 − |αj〉1 |βl〉2 |kli〉3

]

, (A.15)
∣

∣φ(3)
ij
22

〉

=
∣

∣φ(3)
ij
11

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉2|∗2〉3|∗3〉1

, (A.16)
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∣

∣φ(3)
ij
33

〉

=
∣

∣φ(3)
ij
11

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉3|∗2〉1|∗3〉2

, (A.17)

∣

∣φ(3)
ij
23

〉

=
∣

∣φ(3)
ij
12

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉2|∗2〉3|∗3〉1

, (A.18)

∣

∣φ(3)
ij
31

〉

=
∣

∣φ(3)
ij
12

〉

∣

∣

∣

|∗1〉1|∗2〉2|∗3〉3→|∗1〉3|∗2〉1|∗3〉2

. (A.19)
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