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a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes

as contour integrals over constrained link variables, with an integrand naturally expressed in

terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude,

such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in

the formulation. We also comment on rewriting the formula in a GL(k)-invariant manner,

which may serve as a starting point for the generalization to possible Grassmannian contour

integrals.
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1 Gravity amplitudes from rational curves

A new formulation of the classical S-matrix in N = 8 supergravity has been conjectured

recently [1], which expresses n-particle, Nk−2MHV amplitudes in terms of degree k−1 holo-

morphic map to twistor space 1,

Mn,k(λa, λ̃a, η̃a) =

∫

∏k−1
d=1 d

4|8Z ′
d

vol GL(2)
det′(Φ) det′(Φ̃)

n
∏

a=1

d2σaδ
2(λa−λ(σa)) exp[−i µ(σa)·λ̃a+i η(σa)·η̃a] ,

(1.1)

where the map from the worldsheet to N = 8 supertwistor space, Z = (λα, µα̇, ηA), is given

by a degree k−1 polynomial of worldsheet coordinates σα = (σ1, σ2),

Z(σ) =
k−1
∑

d=0

Z ′
d(σ

1)d(σ2)k−d−1 . (1.2)

Up to an overall GL(2) transformation, one integrates over
∏k−1

d=0 d
4|8Z ′

d, and over the vertex

operator insertions,
∏n

a=1 d
2σa. In the integrand, there are n external twsitor-space wave-

functions for momentum eigenstates (λα, λ̃α̇, η̃A)a, a = 1, ..., n. Note α = 1, 2, α̇ = 1̇, 2̇ are

SU(2) spinor indices, A = 1, ..., 8 is the SU(8) R-symmetry index, and the inner products are

defined as µ · λ̃ := µα̇λ̃α̇, η · η̃ := ηAη̃A .

Remarkably, Cachazo and Skinner were able to observe that the non-trivial content of

all gravity tree amplitudes is hidden in the two “determinant” factors in (1.2), which can be

obtained from minors of two n× n matrices, Φ̃ and Φ [1],

Φ̃a b,a6=b =
[a b]

(a b)
, Φ̃a a = −

∑

b6=a

Φ̃a b
ỹb
ỹa

,

Φa b,a6=b =
〈a b〉

(a b)
, Φa a = −

∑

b6=a

Φa b

∏

c 6=a(a c)
∏

d6=b(b d)

yb
ya

, (1.3)

1The formula, together with a related but distinct “twistor-string” inspired formula [2], are partly based

on a new expression for the MHV gravity amplitudes [3].
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which depend on brackets of external spinors, 〈a b〉 := ǫαβλ
α
aλ

β
b , [a b] := ǫα̇β̇λ̃aα̇λ̃bβ̇

, on

those of worldsheet insertions (a b) := ǫαβσ
α
aσ

β
a , and on worldsheet reference points p1, ..., pk,

q1, ..., qn−k, through the combinations,

ỹa :=

k
∏

i=1

(a pi) , ya :=

n−k
∏

i=1

(a qi) . (1.4)

Note that Φ̃ has rank n−k−1, and Φ has rank k−1, thus we need to define minors |Φ̃red|

by deleting k+1 rows and k+1 columns of Φ̃, similarly minors |Φred| by deleting n−k+1

rows and n−k+1 columns of Φ. As shown in [1], the “determinants” needed in (1.2) are the

following ratios, which are independent of what rows and columns we choose to delete, and

are symmetric under any permutations of n particles,

det′(Φ̃) :=
|Φ̃red|

|r̃1 · · · r̃k+1||c̃1 · · · c̃k+1|
, det′(Φ) :=

|Φred|

|r1 · · · rk−1||c1 · · · ck−1|
, (1.5)

where in the denominators, we have Vandermonde determinants, obtained from all rows that

are either removed or remained,

|r̃1 · · · r̃k+1| =
∏

a<b∈{removed}

(a b) , |r1 · · · rk−1| =
∏

a<b∈{remain}

(a b) , (1.6)

and similarly Vandermonde determinants of removed or remained columns.

Except for the “determinants”, the formula (1.2) resembles the connected prescription

of Witten’s twistor string theory [4] [5], for tree amplitudes in N = 4 super–Yang-Mills

(SYM). However, as is well known, it is highly non-trivial to carry out the integration over

the worldsheet insertions, since it involves solving polynomial equations. To overcome the

difficulties, it has proved very useful to rewrite the connected prescription into the so-called

link representation [6] [7], first introduced in [8].

This has enabled the computation of all tree amplitudes in SYM using the connected

prescription [9] [10], and has led to a remarkable duality [11] [12], linking the twistor-string

prescription to the tree-contour of the Grassmannian integral [13], which has been shown

to encode leading singularities of all-loop amplitudes in SYM. In this note we derive a link

representation for gravity amplitudes, from this “twistor-string”-like formula (1.2). We hope

the new formulation will not only improve our understanding of tree-level gravity amplitudes,

but also shed light on a possible Grassmannian integral for leading singularities in N = 8

supergravity.

2 Gravity amplitudes in a link representation

In [14], Feng and the author introduced a rewriting of the determinant formula of tree-level

MHV gravity amplitudes [3]. Here, following similar ideas, we find it useful to define a more
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symmetric version of the matrices defined in (1.3),

Ψ̃ab = Φ̃ab ỹa ỹb , Ψab = Φab
ya yb

∏

c 6=a(a c)
∏

d6=b(b d)
, (2.1)

which have a nice property that each row or column sums up to zero. Furthermore, we divide

the n indices, a = 1, ..., n, into two sets, N and P , of k and n−k indices, respectively, e.g.

N = {1, ..., k} and P = {k+1, ..., n}. Then it is convenient to make the following special

choice for reference points: we set p’s to coincide with worldsheet insertions, σI for I ∈ N ,

and q’s to coincide with σi for i ∈ P 2. With this choice, ỹI = 0 and yi = 0, which immediately

kills all entries of the form Ψ̃ib, Ψ̃aj , and those of the form ΨIb, ΨaJ .

This simplifies the formula significantly, since Ψ̃ and Ψ are effectively reduced to (n−k)×

(n−k) and k × k matrices, respectively,

Ψ̃ij = Φ̃ij xi xj , ΨIJ =
ΦIJ

xI xJ
, (2.2)

where, by (2.1), we have introduced variables xa to relate the matrices to Φ̃ij and ΦIJ ,

xa :=
∏

J 6=a, J∈N

(a J) . (2.3)

Thus, up to an overall factor of xa’s, we can compute the minor |Φred| (|Φ̃red|) by deleting

one row and one column of ΨIJ (Ψ̃ij), which we will write down explicitly in a moment.

As a consequence of the reduction of matrices, det′(Φ) now only depends on external

twistors ZI for I ∈ N , and det′(Φ̃) only depends on external dual twistors Wi for i ∈ P ,

where W = (µ̃α, λ̃α̇, η̃A)
3. It will be useful to define inner products of twistors and dual

twistors, W · Z = µ̃ · λ− µ · λ̃+ η · η̃, with µ̃ · λ := µ̃αλ
α.

We have seen that in this “gauge” (choice of reference points, as well as that of deleted

rows and columns), the formula wanted to be transformed into the basis of {ZI ,Wi},

M(ZI ,Wi) =
∏

i

∫

d2λi e
iµ̃i·λi

∏

I

∫

d2λ̃I d
0|4η̃I e

i(µI ·λ̃I−ηI ·η̃I )M(λa, λ̃a, η̃a), (2.4)

which is exactly the natural basis for defining a link representation. Under the transformation,

the “determinants” stay unchanged, and the product of wavefunctions becomes

∏

i

exp[iWi · Z(σi)]
∏

I

δ4|8(ZI −Z(σI)) . (2.5)

At this point, it is clear that we can trivially use the 4k bosonic functions to carry out

the integration over Z ′, which sets the polynomial to be

Z(σ) =
∑

I

ZI

∏

J 6=I

(σ J)

(I J)
. (2.6)

2In the following we will always use I, J, ... for labels in N , i, j, ... for labels in P , and a, b, ... for those in

N ∪ P , and will often abbreviate the sum (product) over I ∈ N , or i ∈ P , simply as
∑

I
(
∏

I
), or

∑
i
(
∏

I
).

3 Note 〈I J〉 = ZIIZJ and [i j] = WiIWj , where the infinity twistor, I, projects any twistor Z (dual twistor

W) to its λ (λ̃) component.
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Unlike the SYM case, the integration gives a Vandermonde Jacobian
∏

I<J(I J)
4 =

∏

I x
2
I ,

thus

Mn,k(ZI ,Wi) =
∏

I

x2I

∫

d2nσa
vol GL(2)

det′(Φ)det′(Φ̃) exp[i
∑

i,I

cIiWi · ZI ] , (2.7)

where we have defined k × (n−k) link variables “linking” ZI ’s and Wi’s,

cIi =
∏

J 6=I

(i J)

(I J)
=

xi
xI(i I)

. (2.8)

In this form it is straightforward to transform back to momentum space [8],

Mn,k(λa, λ̃a, η̃a) =
∏

I

x2I

∫

d2nσa
volGL(2)

det′(Φ)det′(Φ̃)δ2(λi − cIiλI)δ
2|8(Λ̃I + cIiΛ̃i) , (2.9)

where Λ̃a := (λ̃a, η̃a), and the products over i, I and sums over I, i are kept implicit.

Now we want to explicitly simplify the “determinants” in this gauge. Using a particular

way of expanding such determinants, the so-called Matrix-Tree Theorem (for details of the

theorem and applications, see [14]), we note that, up to overall factors, |Φred|, |Φ̃red| can be

expanded as summing over all trees with weighted edges of the form (2.2), and vertices in N

and P respectively. Collecting the denominators, the result is very simple,

det′(Φ) = (−)k−1
∏

I

xI
∑

T−∈T (N)

∏

{I J}∈E(T−)

〈I J〉

(I J)xIxJ
,

det′(Φ̃) = (−)n−k−1
∏

I

1

xI

∏

i

1

x2i

∑

T+∈T (P )

∏

{i j}∈E(T+)

[i j]xixj
(i j)

, (2.10)

where T (V ) is the set of all trees with vertices in V , and E(T ) contains all edges {i j}, labeled

by endpoints i, j, in a tree T . The full integrand, Fn,k :=
∏

I x
2
I det

′(Φ)det′(Φ̃), looks quite

symmetric between N and P (which is related to parity invariance, as we will see soon),

Fn,k = (−)n
∏

I

x2I
∑

T−∈T (N)

∏

{I J}∈E(T−)

〈I J〉

(I J)xIxJ

∏

i

1

x2i

∑

T+∈T (P )

∏

{i j}∈E(T+)

[i j]xixj
(i j)

. (2.11)

The next step is to rewrite everything in terms of link variables cIi, and the computation

is similar to that of [7]. We formally insert an identity,

1 =

∫

dk×(n−k)cIi
∏

I i

δ(cIi −
∏

J 6=I

(i J)

(I J)
) , (2.12)

which fixes the link variables as (2.8), and enables us to integrate over worldsheet insertions

using 2n−4 out of the k × (n−k) delta functions. A convenient choice is that [7], given any
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R,S ∈ N , r, s ∈ P (we denote N ′ := N/{R,S}, P ′ := P/{r, s}), we use delta functions of

c′ ∈ {cRi, cSi, cIr, cIs : i ∈ N ′, I ∈ P} to integrate over worldsheet insertions. We can also fix

the GL(2) gauge by singling out σR, σS ,

1

vol GL(2)

∫ n
∏

a=1

d2nσa = (RS)2
∫

∏

a6=R,S

d2n−4σa . (2.13)

The integration over σ’s then gives a Jacobian J1,

J1 =
∏

i

∣

∣

∣

∣

∣

∂(cRi, cSi)

(σ
1
i , σ

2
i )

∣

∣

∣

∣

∣

−1
∏

I∈N ′

∣

∣

∣

∣

∣

∂(cIr, cIs)

(σ
1
I , σ

2
I )

∣

∣

∣

∣

∣

−1

=
∏

i

x2i
c2Ri c

2
Si xR xS (RS)

∏

I∈N ′

xr xs
x2I c

2
Ir c

2
Is (r s)

.

(2.14)

Relations (2.8) are over-constrained, and imply m := (k−2) × (n−k−2) constraints on

the link variables, cIi. As shown in [7], the remaining m delta functions, labeled by c̃ ∈ {cIi :

I ∈ N ′, i ∈ P ′}, are equivalent to m sextics. In the choice above, we write C̃Ii := CRSI rsi,

which are given by the determinant of a 3× 3 matrix,

C̃Ii =

∣

∣

∣

∣

∣

∣

∣

cRs cRi cRi cRr cRr cRs

cSs cSi cSi cSr cSr cSs
cIs cIi cIi cIr cIr cIs

∣

∣

∣

∣

∣

∣

∣

, (2.15)

and explicitly, in terms of a basic object, cIJi j = cIi cJj − cIj cJi, the sextics are given by,

C̃I i = cIr cSi c
RS
r s cRI

s i − cIi cSr c
RS
s i cRI

r s . (2.16)

The transformation from δ(c̃)’s to δ(C̃)’s results in another Jacobian [7],

J2 =
∏

I∈N ′,i∈P ′

∂C̃I i

∂c̃I i
= (cRS ; r s)

m
∏

I∈N ′

(cI r cI s)
n−k−2

∏

i∈P ′

(cR i cS i)
k−2

∏

I∈N ′,i∈P ′

1

cI i
. (2.17)

Now we can express the amplitude as an integral over k × (n−k) link variables,

Mn,k(ZI ,Wi) =

∫

dk×(n−k)cIi J1 J2 (RS)2 Fn,k exp[i cI iWi · ZI ]

′
∏

I,i

δ(C̃I i) , (2.18)

where we have use
∏′

I,i to denote
∏

I∈N ′,i∈P ′. Note the following combination can be written

in terms of link variables,

xi xj
xI xJ (I J) (i j)

=
cI icJ jcI jcJ i

cIJi j
. (2.19)
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Since there are exactly k−1 edges in any tree T− , and n−k−1 ones in any T+, the weights

in (2.11) can always be combined with factors in J1, (2.14), to produce such combinations,

(RS)2 J1 Fn,k = (−)ncRS
r s cRr cSs cRs cSr

∏

I

1

c2Ir c
2
Is

∏

i

1

c2Ri c
2
Si

×

∑

T−

∏

{I J}

〈I J〉 cIr cJs cIs cJr
cIJr s

∑

T+

∏

{i j}

[i j] cRi cSj cRj cSi

cRS
i j

. (2.20)

Since J2 is a function of link variables, we have seen that the formula was written in a link

representation, given explicitly by (2.18) and (2.20).

To put it in a more compact form, using the Matrix-Tree Theorem [14], we can write the

result in terms of determinants, obtained after deleting any one row and one column of the

following matrices,

Φ−
IJ,I 6=J =

〈I J〉

cIJr s
, Φ−

II = −
∑

J 6=I

Φ−
IJ

cIr cIs
cJr cJs

,

Φ+
ij,i 6=j =

[i j]

cRS
i j

, Φ+
ii = −

∑

j 6=i

Φ+
ij

cRi cSi
cRj cSj

. (2.21)

If we delete row P (p) and column Q (q) from Φ− (Φ+), the desired expansion is given by

|Φ−|PQ
cPr cPs cQr cQs

|Φ+|pq
cRp cSp cRq cSq

, (2.22)

where |Φ|ab means the minor with row a and column b deleted from Φ. Staring at the prefactor

in (2.20), it is natural to choose {P,Q} = {R,S} and {p, q} = {r, s}, which gives,

Mn,k(ZI ,Wi) =

∫

dk×(n−k)cIi J |Φ−|RS |Φ+|rs exp[i cIiWi · ZI ]
′

∏

I,i

δ(C̃Ii) , (2.23)

and the momentum space formula,

Mn,k(λa, λ̃a, η̃a) =

∫

dk×(n−k)cIi J |Φ−|RS |Φ+|rs δ
2(λi − cIiλI) δ

2|8(Λ̃I + cIiΛ̃i)
′

∏

I,i

δ(C̃Ii) ,

(2.24)

where J = cRS
r s

cRr cS s cRs cS r
J2 with J2 given by (2.17), and C̃Ii is given by (2.16). Thus we have

obtained the link representation of gravity tree amplitudes.

In addition to m sextics, we have 2n bosonic delta functions in (2.24), which, after

pulling out 4 of them corresponding to momentum conservation, can be used to integrate out

2n−4 link variables, e.g. c′ ∈ {cRi, cSi, cIr, cIs : i ∈ N ′, I ∈ P}. Taking into account the
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Jacobian [7], we obtain an equivalent form of the link representation in momentum space,

Mn,k(λa, λ̃a, η̃a) =
δ4(

∑

a λaλ̃a)

〈RS〉n−k−2[r s]k−2

∫

dmc̃ J |Φ−|RS |Φ+|rs(c
′(c̃), c̃) δ0|8(η̃I+cI iη̃i)

′
∏

I,i

δ(C̃Ii) ,

(2.25)

where on the right hand side, c′ have been solved in terms of m remaining link variables, c̃,

and the remaining integrations are completely fixed by the sextics.

The two determinants contain k−1 powers of 〈 , 〉 and n−k−1 powers of [ , ], while in

the overall kinematic denominator, there are (k−2) [ , ]’s and (n−k−2) 〈 , 〉’s, thus, dressed

with the momentum-conservation delta functions, the amplitude is indeed a pure number.

The link representation, (2.23),(2.24) and (2.25), is fully supersymmetric as (1.2), and it also

encodes other important symmetries and properties of gravity amplitudes, as we discuss now.

Under parity, we go to the representation (λ̃a, λa, ηa) := (λ̃a,Λa) by exchanging λ with

λ̃, and Fourier transforming η̃’s to η’s. If we define conjugate link variables, c⊥iI := −cIi [13],

and exchange the role of N and P (thus k with n−k, I, J,R, S ∈ P , i, j, r, s ∈ N) at the same

time, we have the transformation

Φ± → (Φ∓)⊥ , δ2(λi − cIiλI) δ
2|8(Λ̃I + cIiΛ̃i) → δ2(λ̃i + c⊥iI λ̃I)) δ

2|8(ΛI − c⊥iIΛi) . (2.26)

It is trivial to check that the integral measure, together with J and δ(C̃), is invariant under

the transformation, thus the parity-conjugate of Nk−2MHV amplitudes, (2.24), reads,

Mconj
n,k (λ̃a, λa, ηa) =

∫

dk×(n−k)c⊥ J⊥ |(Φ+)⊥|RS |(Φ−)⊥|rs δ
2(λ̃i+c⊥iI λ̃I) δ

2|8(ΛI−c⊥iIΛi)

′
∏

i,I

δ(C̃⊥
iI ) ,

(2.27)

which is exactly the formula for Nn−k−2MHV amplitudes, Mn,n−k(λ̃a, λa, ηa), thus our for-

mula is manifestly parity symmetric.

Moreover, the formula is clearly independent of the choice of R,S or r, s, and, as mani-

fested by the structure as product of two determinants/trees, it is symmetric under permuta-

tions of N and that of P , Sk ×Sn−k.
4 Of course, different choices of N and P give the same

result, thus (2.23) and (2.24), are in fact symmetric under permutations of all external parti-

cles. The Sn symmetry can be made manifest by going back to a form using n× n matrices

which depend on reference variables, similar to (1.3), possibly at the expense of simplicity.

Last but not least, we can rewrite the link representation as a contour integral,

Mn,k(ZI ,Wi) =

∮

C̃=0
dk×(n−k)cIi J |Φ

−|RS |Φ+|rs exp[i cIiWi · ZI ]

′
∏

I,i

1

C̃Ii

, (2.28)

4(2.24) are particularly convenient for computing amplitudes of k negative-helicity gravitons in N and n−k

positive-helicity ones in P . By setting ηi = 0 and integrate over all ηI ’s, the fermionic delta functions becomes

trivial, and the Sk × Sn−k symmetry of graviton scattering is manifest.
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where the contour corresponds to simultaneously set all m sextics, C̃’s, to zero. In this form,

it is natural to consider a more general object,

Gn,k(ZI ,Wi) =

∫

dk×(n−k)cIi J |Φ
−|RS |Φ+|rs exp[i cIiWi · ZI ]

′
∏

I,i

1

C̃Ii

, (2.29)

which should be regarded as a multi-dimensional contour integral. Due to the 2n−4 inde-

pendent delta functions as in 2.24, the integral (2.29) is m-dimensional, and in principle we

can evaluate its generic residues by setting any m poles to vanish.

In the simplest case, the MHV amplitude (or MHV amplitude which is related by parity),

there is no integral needs to be performed, and a direct evaluation reproduces immediately

the well-known results in [15] [3]. Beyond the MHV case, while the tree amplitude can be

computed by summing over residues corresponding to C̃Ii = 0, by the global residue theorem

of multi-dimensional contour integral [13], it can also be obtained using e.g. the contour

which encloses all poles in (2.29), except those poles C̃Ii = 0.

Although we have not computed such residues for k > 2, from what we learnt in SYM

case [11] [12], we expect that the computation is greatly simplified by summing over these

residues, which gives different, but equivalent representations of tree amplitudes, such as those

obtained by BCFW recursion relations. It is natural to suspect that generic residues of (2.29)

are associated with leading singularities of loop-level amplitudes in N = 8 supergravity

(see [16]), and it is highly desirable to compute and understand them. We leave the study of

residues of (2.29), and their physical interpretations, to future works.

3 Outlook: towards a Grassmannian formulation

Having established a link representation for tree amplitudes in N = 8 supergravity, now we

recast our formulae in a GL(k) invariant way, and we hope it will give us more hints on

how to write down a Grassmannian contour integral which goes beyond tree amplitudes. As

we have learnt from the Grassmannian formulation for SYM amplitudes [13], we introduce

a G(k, n) Grassmannian, which, up to GL(k) transformations, can be described by k × n

matrices Cαa, with α = 1, ..., k, a = 1, ..., n. A particular way for gauge-fixing Cαa is to

use a GL(k) transformation to set the k columns with a = I ∈ N to be an identity matrix.

Then the the remaining non-trivial entries of Cαa can be identified with cIi, and we call the

entire gauge-fixed k×n matrix, including the identity matrix part, cαa. This can be done by

inserting an identity [12],

1 =
1

volGL(k)

∫

dk×nCαa

∫

dk×kLβ
α

|L|k

∏

α,a

δ(Cαa − Lβ
αcβa) . (3.1)

By integrating out cIi and Lβ
α, the k×n delta function force us to set LI

α = CαI for I ∈ N ,

and set the link variables (also, as a consequence, its 2 × 2 determinants), to be written in
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terms of k × k minors of C, (a1a2...ak) := ǫα1...αkCα1a1Cα2a2 ...Cαkak ,

cIi =
(Ī i)

(N)
, cIJi j =

(IJ ij)

(N)
, (3.2)

where (N) = |L| is the minor with all k columns in N (in a canonical ordering), (Ī i) means

the k × k minor with column I deleted and i inserted, and similarly for (IJ ij). The sextics

can also be written in a GL(k)-invariant form,

CRSI rsi =
SRSI rsi

(N)4
, SIJKijk = (IJij)(IKjk)(K̄i)(J̄k)− (IJjk)(IKij)(K̄k)(J̄ i) . (3.3)

Note we pick up an Jacobian |L|k−n = (N)k−n from the integration over c’s.

In addition, essentially identical to the SYM case, the delta functions in (2.24) can also

be written in a GL(k) invariant manner, and it gives an Jacobian (N)−4 due to the fact that

the numbers of bosonic and fermionic delta functions are unbalanced. Collecting everything

(except a possible overall sign), we can put (2.29) in a GL(k)-invariant form,

Gn,k =
1

volGL(k)

∫

dk×nCαa
H|Φ−|rs|Φ

+|RS
S1 . . . Sm

∫

d2kρ
∏

a

δ2(ραCαa−λa)
∏

α

δ2|8(CαaΛ̃a) , (3.4)

where in the denominator we list all m sextics, and we misuse the notation that Φ± denote

the following matrices,

Φ−
IJ,I 6=J =

〈I J〉

(IJ rs)
, Φ−

II = −
∑

J 6=I

Φ−
IJ

(Ī r) (Ī s)

(J̄ r) (J̄ s)
,

Φ+
ij,i 6=j =

[i j]

(RS ij)
, Φ+

ii = −
∑

j 6=i

Φ+
ij

(R̄ i) (S̄ i)

(R̄ j) (S̄ j)
, (3.5)

and finally by factoring out all (N)’s from (3.2) and (3.3), we have an overall factor

H =
(RSrs)

(N)3(R̄r) (R̄s) (S̄r) (S̄s)

′
∏

Ii

(RSrs) (Īr) (Īs) (R̄i) (S̄i)

(Ī i)
. (3.6)

There are some remaining steps to go from formula (3.4) to a satisfying Grassmannian

formulation. As we see from (3.2), the formula (3.4) only uses minors involving mostly

columns in N , which, unlike the Grassmannian formula in SYM [13], does not treat all

minors of Cαa on an equal footing. Since the result is independent of the choice of N,P ,

we believe that (3.4) can be put into a manifestly Sn-invariant form. In addition, as is well

known [11] [9], there are various relations satisfied by the sextics (3.3), e.g. for k = 3,

δ(Sabcdef ) δ(Sabcdeg) =
(bcf) (adf)

(bce) (ade)
δ(Sabcdef ) δ(Sabcdfg) . (3.7)

Thus, by rewriting the product of m sextices using such relations, we can derive equiva-

lent GL(k)-invariant formulae of tree amplitudes, which enjoy certain nice properties, e.g. a

manifest particle interpretation [12]. Eventually, from (3.4), we hope to obtain a Grassman-

nian contour integral which contains beyond-tree-level information, and manifests important

symmetries and properties of gravity amplitudes.
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