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Abstract: We extend discrete calculus to a bra-ket formalism for arbitrary (p-form) fields on

discrete geometries, based on cellular complexes. We then provide a general definition of discrete

Laplacian using both the primal cellular complex and its topological dual. The precise implemen-

tation of geometric volume factors is not unique and comparing the definition with a circumcentric

and a barycentric dual we argue that the latter is, in general, more appropriate because it induces

a Laplacian with more desirable properties. We give the expression of the discrete Laplacian in

several different sets of geometric variables, suitable for computations in different quantum gravity

formalisms. Furthermore, we investigate the possibility of transforming from position to momen-

tum space for scalar fields, thus setting the stage for the calculation of heat kernel and spectral

dimension in discrete quantum geometries.
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1 Introduction

In a variety of current approaches to quantum gravity, including loop quantum gravity (LQG) [1, 2]

and spin-foam models [3–5], group field theory [6, 7], simplicial quantum gravity, be it quantum

Regge calculus [8] or (causal) dynamical triangulations [9], the basic building blocks of geometry

and spacetime are discrete in nature. Depending on the specific theory considered, these discrete

building blocks can be interpreted as the true degrees of freedom of quantum spacetime (it is the

case in loop gravity and spin-foams, as well as in group field theory) or as a convenient regularization

(in simplicial gravities) chosen only for the purpose of defining the theory or being able to calculate

with it. In any case, one is left with the task of reconstructing a continuum spacetime and its

geometry starting from such discrete structures (on which one can make appropriate superpositions

of states, in canonical setting, or define histories, in path-integral-like frameworks). Despite a

wealth of results obtained in recent years in all these approaches, the issue of recovering continuum

geometry from discrete structures, or more generally that of extracting geometric information from

them, remains outstanding.1 Notice also that the issue of determining the effective geometry in a

given regime is present also in continuum frameworks like asymptotic safety [11], simply because

one allows for quantum fluctuations between continuum geometric configurations.

One difficulty has to do with the limited number of geometric observables being available and

under control in all these scenarios at the quantum level, where it is clear that the only meaningful

notion of effective geometry is in terms of the evaluation of specific quantum geometric observables.

In loop quantum gravity and spin-foams, for example, one has good control over the definition of

areas and 3-volumes as quantum operators and over their spectrum, and definitions of length and

4-volume observables exist, but do not come with a good enough analytic control. Various distance

measures exist in the simplicial context, which are usually dealt with numerically. In general, it is

fair to say that much more work is needed and that the more examples of geometric observables

we can construct, the more the task of analyzing the effective geometries produced in our quantum

gravity models will be facilitated.

More such observables could be defined in the case of quantum gravity coupled to matter, and

matter is also expected to permit the construction of local geometric observables (as opposed to

global ones) which are still diffeomorphism invariant. Again, much on matter coupling in canonical

and covariant approaches is known, even in the discrete context [12–19], but this is another area

where more results are needed. One example of geometric observable that has been widely used for

“reconstruction purposes”, i.e., as a probe of the geometry of states, phases or histories in quantum

gravity models, is the spectral dimension [20–34]. Being defined from the trace of the heat kernel, it

depends on the underlying geometry through the Laplacian operator, and implicitly relies on some

notion of matter field.

In this paper we focus on the notion of Laplacian in a discrete context. First of all, the Laplacian

is an interesting geometric kinematical observable per se. Second, it is the key ingredient for the

definition of momentum space and, as we mentioned, of the spectral dimension. Third, it is needed

to construct coupled gravity plus matter models, as it enters the propagators for matter fields (be

them scalars or gauge fields). We try to set up a general, systematic approach to its construction,

which can turn out to be useful for applications [35].

The plan is the following. In sections 2 and 3 we provide a coherent framework for the definition

of functions, p-form fields and differential operators on fundamentally discrete (and, later, quantum)

geometries, more specifically on simplicial and cellular complexes. We base our systematic approach

1A case where a continuum geometry arises naturally as a “blurring” of a discrete-symmetry structure is complex-

order fractional spacetimes [10].
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on the recently developed discrete calculus of [36, 37], that has been applied so far in the particular

context of computational science [38]. We will show how it suits also our quantum gravity setting.

While the formalism can be motivated as a discretization of functions on a triangulation of a

given smooth manifold, we define it on abstract combinatorial complexes obeying the conditions of

pseudo-manifolds, to comply with the use of such complexes in some quantum gravity approaches.

Using this, we propose (section 3) a general definition of the discrete Laplacian operator on

arbitrary simplicial complexes. The definition makes use of both primal and dual complexes. We

then study the properties of this Laplacian and, through them, compare different choices of dual

complex (barycentric and circumcentric).

We also describe (section 4) the generalization of the same operator to simplicial pseudo-

manifolds with boundaries and arbitrary cellular complexes, and the notion of momentum transform

in terms of eigenfunctions of the Laplacian, that plays a crucial role in the calculation of the heat

kernel trace, which we also discuss.

We then show (section 5) the various expressions that the newly-defined Laplacian operator

takes in different choices of geometric variables, again having in mind the sets of variables currently

used in various quantum gravity frameworks. This will facilitate concrete applications and com-

putations [35]. As already mentioned, the setting is chosen as general as possible. In particular,

complexes are defined only combinatorially in order to be applicable to diverse theories of quantum

geometry at a second stage.2 We give detailed expressions for the usual edge-length Regge calculus

as well as for its first order versions (face normal-connection, flux-connection and area-angle). Flux

and area-angle variables are directly useful also in the context of LQG spin networks, spin-foams

and group field theory. Causal dynamical triangulations are the special case of globally constant

volumes and, as such, they are also contained in this formalism.

We conclude with an outlook on the quantization of the Laplacian operator in a quantum

geometry context, and on its explicit evaluation in quantum gravity models, pointing out the

difficulties that arise there.

2 A bra-ket formalism for discrete position spaces

In order to define a Laplacian operator, we need to have at our disposal a notion of fields, and

more generally p-forms, in a discrete setting. Moreover, such fields have to be localized in a suitable

sense, as we are dealing with a local operator and we would like to capture, through it, the local

properties of the discrete geometry. In the following we will explain the formalism in detail. For

now, we just highlight the main ideas.

At a conceptual level, as mentioned, we need some generalization of a “field at a point” in order

to be able to define the action of the Laplacian on it. It is well known, in general, that for fields in

the continuum the notion of position basis (exactly localized state) is unavailable. As we will see,

the only existing inner product for p-forms involves an average (smearing) over an extended region

of space. This smearing is also needed for the very definition of field theories in the continuum

[42]. What can be defined, in principle, is instead a basis of states restricted to a subregion of the

pseudo-manifold. We will not discuss this construction in the continuum, but we will use the natural

analogue of this smearing in the discrete case to define a position basis and a bra-ket formalism for

discrete p-forms.

From a more mathematical point of view, the definition of such basis takes the need for smearing

into account together with several other structures (dualities) in both continuum and discrete

geometry. In fact, the crucial point of the construction is a unification of four kinds of dualities: 1)

2This is the type of complexes arising, for example, in group field theory [6, 7, 39–41], spin-foam models and loop

quantum gravity [3–5].
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the bra-ket duality of usual quantum mechanics in continuum position space, 2) Hodge duality on

continuum Riemannian manifolds, 3) the duality of chains and cochains on complexes, and finally

4) the discrete counterpart of Hodge duality constructed from the combinatorial complex and its

dual. All these dualities are well known but we will take advantage of them in a novel way.

2.1 Two dualities in the continuum

We start with two dualitites in the continuum. The setting is thus that of a smooth manifold.

Remaining in the continuum, there is no good way to unify these dualities in a strictly local manner

(i.e., there is no such thing as a position basis), but a unification will be possible for their discrete

analogs (the smearing being built in in the discrete setting).

1) First, we have the duality of states φ in the Dirac formalism of quantum mechanics as bras

and kets [43],

〈φ| ←→ |φ〉 , (2.1)

where |φ〉 is a vector in a complex Hilbert space H and 〈φ| is its covector, i.e., its dual linear

form on H with respect to the inner product 〈·|·〉 of H (which uniquely exists according to

the Riesz representation theorem). The duality is an isometric anti-isomorphism: it preserves

the norm and is linear up to complex conjugation of scalar factors.

Later we will be interested in function spaces, and in the discrete counterpart of position

space. For single particles (where by definition localization is possible), one has a complete

orthonormal (continuum) position basis {|x〉},

〈x|y〉 = δ(x, y) ,
ˆ

ddx |x〉〈x| = 1 .

The Hilbert space H of such system can be identified with the square integrable complex-

valued functions L2(Rd,C) with inner product

〈φ|ψ〉 = 〈φ|
ˆ

M

ddx |x〉〈x|ψ〉 =
ˆ

M

ddxφxψ
∗
x , (2.2)

where φx := 〈φ|x〉 are the position basis coefficients. Thus, at the level of these position

functions the duality is just given by complex conjugation,

φx = 〈φ|x〉 ←→ 〈x|φ〉 = φ∗x , (2.3)

because of its anti-linearity.

In the following we are not particularly interested in quantum mechanics but rather in a convenient

notation for elements in L2 function spaces for (p-form) fields.

2) Second, on a (continuum) Riemannian manifold (M, g) there is Hodge duality which maps

p-forms φ ∈ Ωp(M) to (d− p)-forms ∗φ ∈ Ωd−p(M) [44],

φ = φi1...ipdx
i1 ∧ · · · ∧ dxip ←→ ∗φ = (∗φ)ip+1...iddxip+1 ∧ · · · ∧ dxid , (2.4)

with coefficients

φi1...ip ←→ (∗φ)ip+1...id =

√
g

(d− p)!ǫi1...idg
i1j1 . . . gipjpφi1...ip . (2.5)
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In general it is a duality only up to a sign, ∗ ∗ φ = (−1)p(d−p)φ.3 The natural inner product

of p-forms is again a position manifold integration by pairing a form and a dual form,

(φ, ψ) =

ˆ

M

φ ∧ ∗ψ =

ˆ

M

(
φi1...ip

)
x

[
(∗ψ)ip+1...id

]
x

√
gxdxi1 ∧ · · · ∧ dxid . (2.6)

This defines a L2-space of forms L2Ωp(M) [45].

The crucial point to notice is that this natural inner product, compatible with the tensorial (p-

form) nature of the fields, involves an averaging (smearing) over the base manifold. Because of

this, a simple-minded notion of a position basis is not viable, as any perfectly localized field would

not be well-defined an element of the above space. Only smeared fields are. We will see how the

discrete setting provides a natural notion of smearing, which in turn allows to define an analogue

of a position basis even for fields.

2.2 Exterior forms on simplicial complexes

One can identify a natural concept of discrete forms by using a third type of duality. For defining

it, we choose finite abstract simplicial complexes as our discrete setting.

A finite abstract simplicial complex K (in the following, simplicial complex for short) is a

multiset of ordered subsets σ of the set of vertices K0 = {v1, v2, . . . , vN0} such that if σ ∈ K and

σ′ ⊂ σ also σ′ ∈ K [46]. In general, σ′ ⊂ σ is called a face of σ. All subsets of cardinality p + 1

are called p-simplices σp ∈ Kp and the dimension d of K is defined as the maximal cardinality of

simplices in K. Thus K consists of 0-simplices to d-simplices, K =
⋃d

p=0Kp, and is also referred

to as a simplicial d-complex. The ordering of the sets σp = (vi1 , . . . , vip) =: (i1 . . . ip) defines an

orientation on the complex.

3) There is a duality between chains and cochains on the simplicial complex K [46]. Formal

linear combinations of p-simplices generate the finite vector space of p-chains c ∈ Cp(K)

(which we take on C) and we introduce a bra-ket notation to write them as

|c〉 =
∑

σp∈Kp

cσp
|σp〉 =

∑

σp∈Kp

〈σp|c〉 |σp〉 . (2.7)

Accordingly, linear forms on chains are called p-cochains c̃ ∈ Cp(K). As they can be expanded

in the dual basis {〈σp|}, defined by the pairing
〈
σp|σ′

p

〉
= δσσ′ , the cochain c̃ dual to c can be

written as the bra

〈c̃| ≡ 〈c| =
∑

σp∈Kp

c∗σp
〈σp| =

∑

σp∈Kp

〈c|σp〉 〈σp| . (2.8)

The connection to the first two continuum dualities is the following [36, 38]: On a finite triangulation

of a Riemannian manifold (M, g) with combinatorial structure K, p-cochains can be naturally

interpreted as discretized p-forms φ ∈ Ωp(K) ∼= Cp(K) by smearing the continuous form φcont ∈
Ωp(M) over p-surfaces S represented by chains |S〉 =∑i Vσi

p
|σi

p〉 ∈ Cp(K) in the triangulation:

φ(S) := 〈φ|S〉 =
∑

i

Vσi
p

〈
φ|σi

p

〉
=:
∑

i

Vσi
p
φσi

p
∼
∑

i

ˆ

σi
p

φcont =

ˆ

S

φcont , (2.9)

where Vσp
denotes the p-volume of σp. In particular, for a single p-simplex surface S = σp repre-

sented by Vσp
|σp〉 one has

φ(σp) = Vσp
〈φ|σp〉 = Vσp

φσp
∼
ˆ

σp

φcont. (2.10)

3For Lorentzian manifolds there is an extra minus sign; this fact would be an important guiding line for extending

the discrete formalism consistently to Lorentzian geometries.
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Therefore, the coefficient φσp
= 〈φ|σp〉 can be interpreted as the averaged field value of φcont over σp.

Obviously, the above requires an embedding of the abstract simplicial complex into the continuum

manifold.

However, note that, even though motivated by discretization, this definition works perfectly

well for the abstract simplicial complex K. We just take

φσp
:= 〈φ|σp〉 (2.11)

as the definition of position coefficients of a p-form 〈φ|. Even a geometric interpretation in terms

of p-volumes Vσp
as induced by the ambient space M in the case of triangulations is not needed

at this stage, as long as we are only interested in the forms 〈φ| themselves and not in integrated

quantities φ(σp).

2.3 Choice of convention

Before moving on to discuss the other dualities and discrete calculus, let us point out one difference

between our definitions and the ones that can be found in the literature [36, 38]. One has in fact a

choice as to where to include the geometric information encoded in the volumes. The question is

whether the p-volume Vσp
of a simplex σp is defined explicitly in its p-chain representation Vσp

|σp〉,
such that

〈φ|σp〉 = φσp
=

1

Vσp

φ(σp) (2.12)

as chosen here, or whether it is already implicit in |σp〉 such that

〈φ|σp〉 = φ(σp) = Vσp
φσp

, (2.13)

like in [36]. The former has the advantage that the position-space measure is explicit. The latter

choice could be called the “math” convention since it is natural from the point of view of the

mathematical properties of forms. This is reflected in the fact that, in this convention, Hodge

duality must depend on the geometric interpretation in terms of volumes, while differentials do not

[36]. In our choice, it is exactly the other way round (see eqs. (2.29) and (3.2)).

There is a third convention, used in random lattice field theory [47–49] by Itzykson [50], where

〈φ|σp〉 is defined as a function for every p, thus without volumes, but where the duals carry the

whole d-volume as densities. This can be justified by the common convention in the continuum to

attach the metric part
√
g of the invariant measure only to the Hodge dual forms.

2.4 Discrete Hodge duality

In order to be able to define the natural scalar product for p-forms also for these discrete forms, a

discrete version of Hodge duality is necessary. This is only possible by taking advantage of a fourth

duality for simplicial pseudo-manifolds.

A finite abstract simplicial pseudo d-manifold is a finite abstract simplicial d-complex which

is non-branching, strongly connected and dimensional homogeneous [39]. That is, each (d − 1)-

simplex is face of exactly two d-simplices (non-branching), any two d-simplices have a strong chain

of d-simplices neighboring pairwise by (d− 1)-faces (strongly connected) and every simplex is face

of some d-simplex (dimensional homogeneous).

4) A simplicial pseudo d-manifold K has a combinatorial dual polyhedral complex ⋆K consisting

of (d − p)-cells ⋆σp (which we also denote as σ̂d−p) dual to the primal p-simplices σp, with

orientation induced from the orientation of K and cellular structure induced by the adjacency
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relations of K. The latter means that ⋆σ ⊂ ⋆σ′ if, and only if, σ′ ⊂ σ.4 Then ⋆K can be

given as a multiset over its vertex set, too.

This duality between a “primal” simplicial and a dual cell complex induces a new type of dual

chains, the chains ⋆c ∈ Cp(⋆K) on the dual complex. This is possible because each primal

chain basis element (simplex) has a unique dual basis element. Using Dirac notation also for

this duality, this reads

|c〉 =
∑

σp∈K

cσp
|σp〉 ⋆←→ 〈⋆c| =

∑

σp∈K

c∗σp
〈⋆σp| . (2.14)

Note that the duality holds only up to a sign ⋆2 = (−1)p(d−p) [36], and also between primal

and dual cochains.

Since the Hodge dual (d−p)-form cannot live on p-simplices but only on (d−p)-cells, we can regard

the discrete Hodge dual of a p-form φ ∈ Ωp(K) as its dual in the sense of this fourth duality:

∗ φ := ⋆φ ∈ ∗Ωp(K) ∼= Ωd−p(⋆K) ∼= Cd−p(⋆K) . (2.15)

From the above dualities, at the level of coefficients the defining condition for the Hodge duality is

the equality of the averaged field values:5

(∗φ)⋆σp
:= φ∗σp

. (2.16)

With the bra-ket convention

〈⋆σp|φ〉 = ∗φσ̂d−p
=

1

V⋆σp

∗ φ(⋆σp) , (2.17)

this can be equivalently expressed as

〈⋆σp|φ〉 = 〈φ|σp〉∗ . (2.18)

In the case of triangulations, we can again view the coefficients of dual fields ∗φ as smeared fields:

∗ φ(⋆σp) ∼
ˆ

σ̂d−p

∗φcont . (2.19)

Thus, one can take Hodge duality as two different perspectives to look at the same discrete field φ:

Either as a p-form 〈φ| on the primal complex or a (d− p)-form |φ〉 on the dual complex.

2.5 Geometric interpretation of abstract complexes

So far, we have presented a formalism for fields on abstract discrete spaces without using any

geometric information neither associated directly with the simplicial complex nor derived from an

original continuum pseudo-manifold being discretized. However, a geometric interpretation for the

elements of the simplicial complex is needed to define the inner product.

In the first place, we understand an assignment of geometry to a finite simplicial pseudo-

manifold K as an assignment of p-volumes Vσp
, dual (d− p)-volumes Vσ̂d−p

and support d-volumes

V
(d)
σp to all the simplices σp. IfK has a geometric realization |K| in terms of a (topological) simplicial

complex over a metric space, these volumes can be induced from this realization.

While the primary volumes can be taken directly from this realization, dual and support vol-

umes depend on how the dual complex is realized, i.e., how it is concretely constructed from (or
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a) b)

Figure 1. Circumcentric (a) and barycentric (b) dual cells to the same simplicial d = 2 complex; for the

purpose of illustration dual edges are dashed and one dual 2-cell is highlighted.

embedded into) the primal complex. The most common choices are circumcentric and barycentric

dual complexes (fig. 1).

For constructing the circumcentric dual one chooses the circumcenters of the d-simplices as the

0-cells and builds up higher cells (i.e., with p ≥ 1) connecting them according to the combinatorics

induced from the primal complex; sub-cells of the dual complex are then automatically identified

as well.

In the case of a geometric realization in terms of a Delaunay triangulation, the circumcentric

dual complex is a Voronoi decomposition. A Delaunay triangulation is obtained by constructing

d-simplices from a set of points in a metric space such that no point is in the interior of the

circumsphere of any d-simplex. From the same set of points a d-cell of a Voronoi decomposition

associated with some point P is constructed as the set of points closer to P than to any other in

the set.

For this reason the circumcentric dual is often also called Voronoi dual. But this is meaningful

only for Delaunay triangulations. For an arbitrary triangulation the circumcentric dual complex

and the Voronoi decomposition with respect to the vertex set of the triangulation are different. In

fact, the Voronoi decomposition does not have the structure of a dual complex for triangulations

which are not Delaunay. This is particularly important in the abstract setting where the simplicial

pseudo-manifold is considered as a gluing of d-simplices and the geometry of each is to be defined

independently of its neighbors. The difference is further detailed in the discussion of the Laplacian

in section 3.2 and in fig. 2 below.

The barycentric dual, on the other hand, is defined by a barycentric subdivision of all simplices,

assumed to be flat in their interior. The barycenters of d-simplices define the dual points, and

metrically connecting them iteratively to the barycenters of lower simplices defines the realization

of the higher cells.

While the circumcentric dual is not built by a (circumcentric) subdivision, a simplicial sub-

division nevertheless can be constructed analogously to the barycentric subdivision [36]. One can

therefore in general define the support volumes V
(d)
σp to be the volume of the symmetric difference

of all d-simplices in this subdivision having σp (or equivalently ⋆σp) on its boundary.6 Since the

4The fact that every p-simplex contains Cp+1
q+1 =

(

p+1
q+1

)

q-simplices translates into the condition for the dual

complex to have Nk|l =
(

d+1−l

k−l

)

=
(

d+1−l

d+1−k

)

k-cells with a given l-cell as a face. This property can be used as an

iterative check for constructing such dual complexes from regular graphs [51].
5This is analogous to what is done in [36]. The details of the construction differ, however, since in that work the

convention (2.13) is used which includes p-volumes.
6To account also for the case of circumcentric dual complexes with some circumcenters outside their simplices, the
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whole of support volumes for a given p takes all the simplices in the subdivision into account, they

indeed define a space measure summing up to the total volume V of the complex,

∑

σp∈Kp

V (d)
σp

= V . (2.20)

In the circumcentric case, the support volumes are not independent of the p-volumes but propor-

tional to their product [36]:

V (d)
σp

=
1

d
Vσp

Vσ̂d−p
. (2.21)

We will give explicit expressions of these volumes in terms of various geometric variables below.

2.6 Inner product and position-space measure

With a well-defined meaning given to bras and kets of discrete fields, only a slight modification to

the forth duality (2.14) is needed in order to have the usual geometric L2 inner product on the

simplicial complex K:7

〈φ|ψ〉 :=
∑

σp

V (d)
σp

φσp
ψ∗
⋆σp

= 〈φ|
∑

σp

V (d)
σp
|σp〉〈⋆σp|ψ〉 , (2.22)

where we took a position-space measure into account in terms of the d-volumes V
(d)
σp associated

with the pairs of primal and dual p-simplices. This inner product is obtained by a resolution of the

identity ∑

σp

V (d)
σp
|σp〉〈⋆σp| = 1 , (2.23)

which for reasons of consistency demands a modification of the pairing of primal and dual chains:

〈⋆σp|σ′
p〉 :=

1

V
(d)
σp

δσσ′ . (2.24)

By the third duality between chains and cochains, this directly yields the same form of completeness

and orthonormality relations for primal and dual cochains. While the p-volumes in (2.10) and (2.16)

are not needed to define the field space, the position measure V
(d)
σp is crucial and it is at this stage

where the geometric interpretation is needed.

For the inner product to be well-defined, the space of p-form fields does not have to be con-

strained further. Since its dimension is the number of p-simplices in the finite complex K,

dimΩp(K) = dimΩd−p(⋆K) = Card(Kp) <∞ , (2.25)

the field space Ωp(K) ∼= Ωd−p(⋆K) is already the discrete L2 space.

2.7 The bra-ket formalism

To define a formalism with unique types of bras and kets, we now go one step further (beyond [36])

and identify primal chains with dual cochains and dual chains with primal cochains:

|σp〉 ≡ | ⋆ σp〉 , 〈σp| ≡ 〈⋆σp| . (2.26)

symmetric difference instead of the union [36] of simplices in the subdivision has to be used. This can also happen

in the case of primal Delaunay triangulations.
7Again analogous to [36] but different in details of convention.
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We end up having just one complete orthonormal basis,

〈
σp|σ′

p

〉
=

1

V
(d)
σp

δσσ′ , (2.27)

∑

σp

V (d)
σp
|σp〉〈σp| = 1 . (2.28)

With this identification, we can now write the Hodge dual (2.16) as

〈∗φ|σp〉 := 〈⋆σp|φ〉 = 〈σp|φ〉 = 〈φ|σp〉∗ . (2.29)

One still has to be careful with the sign when taking the dual twice, as

〈∗ ∗ φ|σp〉 = (−1)p(d−p) 〈φ|σp〉 . (2.30)

The following commutative diagram shows the identifications and dualities by which the discrete

L2 position function space is defined:

Ωp(K)
OO
∼=

��

oo ∗ // Ωd−p(⋆K)
OO
∼=

��
Cp(K)

ff
∼

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

oo ⋆ //
OO

≡

��

Cd−p(⋆K)
OO

≡

��
Cd−p(⋆K)

xx
∼

88♣♣♣♣♣♣♣♣♣♣♣
oo

⋆
// Cp(K)

(2.31)

All the maps are well known [36, 38] except for the last identification denoted as “≡”, which makes it

possible to have a Dirac position space notation for arbitrary p-fields on simplicial pseudo-manifolds

with an assigned set of geometric data.

Note that, since by the last identification the pairing of the chain-cochain duality is modified,

too, the fields finally have bra and ket component expansion

〈φ| =
∑

σp∈K

V (d)
σp

φσp
〈σp| ∗←→ |φ〉 =

∑

σp∈K

V (d)
σp

φ∗σp
|σp〉 . (2.32)

3 Laplacian on simplicial pseudo-manifolds

In order to define the Laplacian, we have first to introduce discrete calculus on complexes by

defining a differential. Then, the formal expression of the Hogde Laplacian is well defined on

simplicial pseudo-manifolds and we can analyze its properties in the case of dual scalar fields.

3.1 Exterior calculus on complexes

The exterior differential operator on discrete forms is constructed by taking Stokes theorem as a

definition [36, 38]. For the integration of the differential of a form φ ∈ Ωp−1(K) over one simplex σp
in the triangulation of a pseudo-manifold with corresponding complex K, the theorem states that

dφ(σp) =

ˆ

σp

dφcont =

ˆ

∂σp

φcont = φ(∂σp) . (3.1)

Therefore, we define the differential of φ ∈ Ωp−1(K) on an abstract simplicial complex K as8

dφ(σp) = Vσp
〈dφ|σp〉 := φ(∂σp) :=

∑

σp−1∈∂σp

sgn(σp−1, σp)Vσp
〈φ|σp−1〉 . (3.2)

8The differential operator is just a modified version of the coboundary operator, which is the operator adjoined

to the boundary operator with respect to the third duality between chains and cochains. It is modified because in

the convention chosen here we have to explicitly keep track of the volume factors. In the math convention [36], on

the other hand, the differential is exactly the coboundary operator.
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The sign factor takes into account the orientation of the faces σp−1 = (i1 . . . îj . . . ip) relatively to

the bulk simplex σp = (i1 . . . ip) via the permutation of their vertices,

sgn(σp−1, σp) := sgn(i1 . . . îj . . . ip) sgn(i1 . . . ip) . (3.3)

Similarly, the differential on dual forms φ ∈ Ωd−p−1(⋆K) ∼= Ωp+1(K) is defined as

Vσ̂d−p
〈σ̂d−p|dφ〉 :=

∑

σ̂d−(p+1)∈∂σ̂d−p

sgn(σ̂d−(p+1), σ̂d−p)Vσ̂d−(p+1)

〈
σ̂d−(p+1)|φ

〉
, (3.4)

or equivalently

V⋆σp
〈σp|dφ〉 :=

∑

σp+1;σp∈∂σp+1

sgn(σp+1, σp)V⋆σp+1 〈σp+1|φ〉 . (3.5)

One can easily check that indeed the differential on the dual complex is the adjoint to the differential

on the primal one, 〈dφ|ψ〉 = 〈φ|dψ〉. More precisely, if we do not write the inner product directly as

a pairing of bra and ket but as a bilinear form on either Ωp(K) or Ωd−p(⋆K), the adjoint operator

of the differential as usual is

δ := (−1)d(p+1)+1 ∗ d∗ , (3.6)

taking into account the sign of multiple Hodge operations [36].

3.2 Laplacian on dual scalar fields and its properties

Using the above notions of discrete differential and codifferential, we can now simply define the

discrete Laplacian using the standard definition of the Hodge–Laplace–Beltrami operator in the

well-known form [45]

∆p := ∆ = δd + dδ , (3.7)

which has now a well-defined meaning on arbitrary p-forms on a simplicial pseudo-manifold. In

particular, we are interested in the action of this Laplacian on dual scalar fields φ ∈ Ω0(⋆K) ∼=
Ωd(K), that is, fields living on d-simplices:9

(−∆dφ)σ̂0
= −

〈
σ̂0

∣∣∣(−1)d(1+1)+1 ∗ d ∗ dφ
〉

= 〈d ∗ dφ|σd〉

=
1

Vσd

∑

σd−1∈∂σd

sgn(σd−1, σd)Vσd−1
〈∗dφ|σd−1〉

=
1

Vσd

∑

σd−1∈∂σd

sgn(σd−1, σd)Vσd−1
〈σ̂1|dφ〉

=
1

Vσd

∑

σd−1∈∂σd

sgn(σd−1, σd)
Vσd−1

Vσ̂1

∑

σ̂0∈∂σ̂1

sgn(σ̂0, σ̂1) 〈σ̂0|φ〉

=
1

Vσd

∑

σ′

d
∼σd

Vσd∩σ′

d

V
⋆(σd∩σ′

d)

(
φσ̂0 − φσ̂′

0

)
. (3.8)

The dual volumes V
⋆(σd∩σ′

d)
in the denominator are the lengths of the dual edges between dual

points σ̂0 and σ̂′
0, and we write them as l̂σσ′ = V⋆(σ∩σ′) (suppressing from now on the dimension

9In the literature of Regge calculus a Laplacian of the same form is derived for a primal scalar field (i.e., a scalar

field living on the vertices of the primal simplicial complex) in the circumcentric case [8]. Then the dual Laplacian

∆d is guessed to have exactly the form eq. (3.8)
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index in σ = σd). Thus the action of the Laplacian on a scalar field ket

−∆d|φ〉 =
∑

σ

Vσ |σ〉 〈σ|∆dφ〉

=
∑

σ

|σ〉
∑

σ′∼σ

Vσ∩σ′

l̂σσ′

(
〈σ|φ〉 − 〈σ′|φ〉

)

=

[∑

σ

(∑

σ′∼σ

wσσ′

)
|σ〉〈σ|

]
|φ〉 −

(∑

σ

∑

σ′∼σ

wσσ′ |σ〉〈σ′|
)
|φ〉

=: D|φ〉 −A|φ〉 . (3.9)

is of the general type of a graph Laplace matrix [52]: on the 1-skeleton graph of the dual complex

it is a difference of an off-diagonal adjacency matrix A in terms of weights

wσσ′ :=
Vσ∩σ′

l̂σσ′

(3.10)

and a diagonal degree matrix D with entries

Dσσ =
∑

σ′∼σ

wσσ′ . (3.11)

The Laplace matrix position elements (−∆dφ)σ, on the other hand, come with an additional inverse

volume and are
wσσ′

Vσ
. (3.12)

By definition, such discrete (graph) Laplacians obey three desirable properties [52, 53]:

1. Null condition: (∆dφ) = 0 if, and only if, φ is constant. This is obvious because ∆dφ is the

difference of position values of φ. The zero mode of the spectrum of ∆d reflects the fact that

K corresponds to a closed pseudo-manifold.

2. Self-adjointness : The Laplace operator is self-adjoint with respect to the inner product

〈φ|∆dψ〉 = 〈∆dφ|ψ〉 . (3.13)

This is reflected by the symmetry of its weights wσσ′ , though at the level of position coefficients

(∆dφ)σ, eq. (3.8), the inverse-volume factor V −1
σ spoils this symmetry.

3. Locality: The action of ∆d at any given position, (∆dφ)σ, is not affected by field values φσ′ at

non-neighboring positions σ′
≁ σ. In discrete calculus, this comes directly from the definition

of the Laplacian as a second-order differential operator.

In the case of a simplicial decomposition |K| of a pseudo-manifold M , a further natural condition

which is built into the formalism from the start (by the definition of differentials via Stokes theorem)

is the

4. Convergence to the continuum Laplacian under refinement of triangulations.

To see this, consider a region Ω ∈M large compared to the scale a ∼
(
Vσp

) 1
p of simplices σp ∈ K,

in which the function φ and its derivatives do not vary strongly. Using eq. (2.21), Vσ∩σ′V⋆(σ∩σ′) ≈
d · V (d)

σ∩σ′ , we have

∑

σ∈Ω

Vσ(−∆dφ)σ =
∑

σ∈Ω

∑

σ′∼σ

Vσ∩σ′

l̂σσ′

(φσ − φσ′) ≈ d
∑

σ∈Ω

∑

σ′∼σ

V
(d)
σ∩σ′

φσ − φσ′

l̂2σσ′

≈ 2d Vol(Ω)
∑

σ̂1∈Ω

φσ − φσ′

a2
. (3.14)
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Summing over all the dual edges σ̂1 ∈ Ω gives effectively a rotationally invariant expression. In

particular, it is an average over hypercubic lattices and the difference term can readily be seen to

be the Laplacian in the continuum limit, just as in standard lattice field theory with hypercubic

lattice size a. As φσ+aeµ −→
a→0

φσ + a (∂µφ)σ eµ +O(a2), the difference term gives

2d∑

σ′

φσ − φσ′

a2
= −

d∑

µ=1

1

a

(
φσ+aeµ − φσ

a
− φσ − φσ−aeµ

a

)

−→
a→0
−

d∑

µ=1

(∂µφ)σ − (∂µφ)σ−aeµ

a
eµ ≈ −

d∑

µ=1

(∂µ∂µφ)σ . (3.15)

Despite the validity of the above properties, one has to expect that it is not possible to preserve

all the features of the continuum Laplacian in the discrete setting. This has been shown in the

case of two-dimensional triangulations [53]. As a result, the definition of a discrete counterpart of

the continuum Laplacian cannot be unique. In our case, it is therefore natural to wonder which

properties of the continuum Laplacian are not preserved by the discrete Laplacian ∆d.

The answer turns out to depend also on the specific choice of the geometry of the dual complex,

that is, on the choice of its geometric embedding into the primal complex. The two distinguishing

features are linear precision and positivity.

5. Linear precision: (∆dφ)σ = 0 for straight-line triangulations |K| of flat space M ⊂ Rd and

linear functions φ(xµ) = c +
∑d

i=1 cµx
µ in Cartesian coordinates xµ. By linearity, this is

equivalent to a vanishing Laplacian (∆dx)σ = 0 of the coordinate field x (considered as a

bunch of scalars xµ).

Linear precision holds for circumcentric dual geometries, in which case the dual lengths are l̂σσ′ =

|xσ̂ − xσ̂′ | and (with unit face normals n̂σσ′ = xσ̂−xσ̂′

|xσ̂−xσ̂′ |
)

(∆dx)σ ∼
∑

σ′∼σ

Vσ∩σ′

l̂σσ′

(xσ̂ − xσ̂′ ) =
∑

σ′∼σ

Vσ∩σ′ n̂σσ′ = 0 (3.16)

is true because these are exactly the closure conditions for the polyhedron σ. This property fails,

on the other hand, for the barycentric case. One could heuristically understand this by noting

that generically l̂σσ′ 6= |xσ̂ − xσ̂′ | in any dimension for the barycentric dual edges, so that (∆dx)σ
reduces to a sum over normals of a set of modified faces, which cannot be expected to close, in

general.

The second property is

6. Positivity of the weights: wσσ′ > 0. It is also called Markov property [54] and is directly

related to Osterwalder–Schrader positivity. The latter is crucial for a Euclidean quantum

field theory to yield unitarity in the corresponding Lorentzian theory after Wick rotation [55].

Positivity holds if all the volumes in the weights are positive. This is generically true for barycentric

duals. For circumcentric duals the situation is less general. Positivity does hold for circumcentric

duals of regular complexes (where the circumcenters lie in the simplices).

However, this is not the case for irregular circumcentric duals. When a circumcenter does not

lie inside the simplex, the part of the dual length associated with this simplex is negative such that

in some cases the sum of the two parts is negative (see fig. 2), inducing negative Laplace matrix

weights.

Therefore we see that, as anticipated, the choice of geometry of the dual complex is crucial,

yielding different properties for the discrete Laplacian. In quantum gravity, in particular in the

– 13 –



a) b)

c) d)

Figure 2. Examples of the dual edges to the the faces of a triangle in a simplicial d = 2 complex: In the

first picture (a) the dual edges are the sum of the distance of the dual vertices σ̂i to the face. In the second

(b) the dual vertex σ̂0 lies outside the triangle. Its distance to the face line therefore has to be subtracted,

but the dual length l̂σ̂0σ̂1 is still positive. In the third case (c) both the vertices of l̂σ̂0σ̂1 lie outside their

simplices such that l̂σ̂0σ̂1 is negative. Exactly when this happens the triangulation cannot be Delaunay

because the circumcenter is closer to the neighbor than to its own triangle. The forth picture (d) shows the

Delaunay triangulation for the primal points of (c), where the triangle originally considered, and thus its

dual vertex, does not exist (though still shaded for comparison).

investigation of its possible fractal structure, the barycentric dual is to be preferred. Indeed, in

this context, the null-condition, symmetry and positivity are generically required. They are even

taken as the defining properties in fractal spectral theory [54] (see appendix A). On the contrary, it

could be expected on general grounds that standard locality and linear precision might be violated.

Though we do have locality for ∆d in our simplicial context the relation between such discrete

and the continuum notion of locality is not immediate. Indications of a breakdown of standard

locality actually exist in several approaches to quantum gravity (e.g., [56]). Also, in fractional

calculus, which can be used as an effective description of fractal and other anomalous spacetimes,

the Laplacian may be composed by fractional integro-differential operators, which are non-local (by

the dependence on non-neighboring points) [33, 57–59].

Linear precision is not needed either, because we are not in flat space and its only relevance is as

an asymptotic property in the continuum limit to flat spaces. But as we have argued, this is already

fulfilled up to higher-order corrections. That this works despite the lack of linear precision can be

easily understood by noting that the average difference between circumcentric and barycentric dual

lengths is only of higher order in the scale of refined triangulations. Fractional spacetimes are

a continuum example where this property is violated, in all self-adjoint Laplacians (also in the

second-order one, due to the presence of a measure weight to the right of the derivatives) [33, 60].
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4 Generalizations and applications

4.1 Generalizations of simplicial pseudo-manifolds

So far we have detailed the formalism for primal simplicial pseudo-manifolds equipped with a geom-

etry. There are two possible generalizations which are important for applications: pseudo-manifolds

with boundary and more general polyhedral complexes instead of simplicial ones. We sketch such

generalizations without going into the details, as the construction is actually straightforward.

Boundaries

An abstract simplicial pseudo d-manifold K is allowed to have a boundary ∂K when the non-

branching condition is relaxed. The (d − 1)-simplices comprised in ∂K have to be faces of only

one d-simplex each. Therefore the non-branching condition for simplicial pseudo-manifolds with

boundary states that each (d − 1)-simplex is face of one or two d-simplices. The other conditions

of section 2.4 remain.

Then ∂K, or more precisely all the elements of (∂K)d−1, can be obtained from the action of

the boundary operator ∂ on the d-chain comprising all d-simplices:

|∂K〉 = ∂
∑

σd∈Kd

|σd〉 , (4.1)

since the interior (d− 1)-simplices cancel pairwise, because of orientation.

The boundary ∂K is just a (d − 1)-subcomplex of K. Without the original non-branching

condition holding, the construction of a dual ⋆∂K is only possible using the simplicial subdivi-

sion explained above yielding half lines, or in general half cells dual to face simplices. These are

distinguished as exterior cells σ̂e ∈ ⋆∂K from the usual interior ones σ̂i = σ̂ ∈ ⋆K\ ⋆ ∂K.

For the calculus of fields φ ∈ Ωp(K), p < d, on the simplicial pseudo-manifold nothing is changed

beside exterior cells having volumes accordingly. Only for d-forms φ ∈ Ωd(K) it is necessary to

define their boundary values extending their domain from Kd to Kd ∪ (∂K)d−1. In general, it is

desirable to have a boundary field also for d-forms. One can then choose boundary conditions for

such fields, for example Dirichlet ones φ|∂K = ∗φ|⋆∂K = 0.

Cell complexes

Furthermore, one is interested in more general cell complex pseudo-manifolds on the primal side, too.

This poses no issue as far as cell complexes are concerned allowing for some simplicial decomposition,

for which one can use the formalism we have presented. Typically, one just wants to generalize from

dual (d+1)-valent vertices to vertices of arbitrary valence, that is, from primal simplices to arbitrary

polytopes. At the level of geometric realizations, the possibility of decompositions and hence the

relation to simplicial pseudo-manifolds is obvious. One has only to take care of generalizing the

definition appropriately at the abstract combinatorial level. Therefore, along the lines of [38] we

sketch how the formalism is easily generalized to cell complexes obeying the three pseudo-manifold

conditions of section 2.4 at the topological level.

A primal p-cell σp now is a set of points homeomorphic to a closed unit p-ball Bp; its boundary

∂σp is the part of σp homeomorphic to the boundary to ∂Bp. It can be represented by the ordered

set of vertices of a p-polytope. A cell d-complex K is a collection of p-cells, p = 0, 1, . . . , d, with the

following two properties:

• The boundary ∂σp of each p-cell σp ∈ K is the union of some (p− 1)-cells σp−1 ∈ K.

• The intersection of any two p-cells is empty or an element of the boundary of both.
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As before, an orientation is given by the representation in terms of ordered sets.

If K is non-branching, strongly connected and dimensional homogeneous it has a dual complex

⋆K with cellular structure induced by the adjacency relations of K, just as in the simplicial case.

Then, the whole formalism of discrete exterior calculus works through with an appropriate definition

of relative signs sgn(σp−1, σp). All the formal definitions are already general enough to account for

this generalization.

4.2 Applications: momentum transform and heat kernel

Momentum transform

Let us assume that the finite simplicial complex K has a geometric interpretation in terms of a

set of finite, non-degenerate primal and dual volumes. In particular, for the case of the Laplacian

acting on a scalar function the d-volumes Vσd
and dual edge lengths Vσ̂1 should be non-vanishing.

Then the computation of eigenvalues λ and eigenfunctions |λ〉 of the Laplacian reduces to a purely

linear algebraic issue. It depends on the combinatorics of the simplicial complex as well as on the

geometric data. Note that in the defining equation

(
−∆de

λ
)
σ
:= −〈σ|∆d|λ〉 = λ 〈σ|λ〉 =: λeλσ (4.2)

indeed the asymmetric matrix elements wσσ′/Vσ are essential. The eigenvalues λ are defined with

a relative minus sign such that they are positive on, for example, closed pseudo-manifolds [52].

If the matrix elements of the Laplacian are finite and well defined in the complex field, that

is, if ∆ is just a linear map in a finite vector space, then the Laplacian is diagonalizable and the

eigenspaces of its eigenvectors comprise the vector space. Assuming this, the eigenfunctions eλσ
of the Laplacian (where the label λ is meant to run not only over eigenvalues but also over their

multiplicities) form a complete orthonormal basis defining momentum space. The measure Vλ of

this space is thus defined as the norm chosen for the orthogonal eigenspace basis elements |λ〉 such

that orthonormality,

〈λ|λ′〉 =
∑

σ

V (d)
σ eλσe

λ′∗
σ =

1

Vλ
δλλ′ , (4.3)

and consistently completeness, ∑

λ

Vλ|λ〉〈λ| = 1 , (4.4)

hold.

For a momentum measure of the usual dimension [Vλ] = d one could for example normalize the

coefficients eλσ with respect to the standard Euclidean measure. Although this choice of dimension is

not necessary, since any physical quantity will be automatically normalized by the measure factors

Vλ, it is the usual convention in continuum physics to have position and momentum space measure

of inverse dimension. In this case, momentum transform is an automorphism (see [33, 60] for

further discussion). Transformations of fields φ from position to momentum space and back are

straightforwardly given by the resolution of the identity in either position or momentum space:

φλ = 〈φ|
∑

σp

V (d)
σp
|σp〉〈σp|λ〉 =

∑

σp

V (d)
σp

eλ∗σ φσ , (4.5)

φσ = 〈φ|
∑

λ

Vλ|λ〉〈λ|σ〉 =
∑

λ

Vλe
λ
σφ

λ . (4.6)

Heat kernel

With a transform between position and momentum space at hand, one can easily deal also with

functions of the Laplacian. We illustrate this with the example of the heat kernel, the solution to

the heat equation on K in terms of a continuous diffusion parameter τ .
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The formal expression of the heat kernel eτ∆d now has a well-defined meaning on a simplicial

pseudo-manifold K for functions on the dual complex:

Kσσ′(τ) :=
〈
σ′|eτ∆d |σ

〉
= 〈σ′|e−λτ

∑

λ

Vλ|λ〉〈λ|σ〉 =
∑

λ

Vλe
−λτeλ∗σ′ eλσ . (4.7)

We can use the heat kernel to calculate the diffusion of some initial matter distribution ρ parametrized

by τ to be

ρσ(τ) := 〈ρ|K(τ)|σ〉 = 〈ρ|eτ∆d |σ〉 = 〈ρ|
∑

σ′

Vσ′ |σ′〉〈σ′|eτ∆d|σ〉 =
∑

Vσ′

σ′

Kσσ′(τ)〈ρ|σ′〉

=
∑

σ′

Vσ′Kσσ′(τ)ρσ′ . (4.8)

In particular, the heat kernel itself is the evolution ρσ(τ) = Kσσ′(τ) for an initial distribution ρσ =
1
Vσ
δσσ′ concentrated on one simplex σ′. In the continuum, this initial condition would correspond

to a diffusing test particle.

The trace of the heat kernel, which gives the return probablity in diffusion processes, becomes

P(τ) := TrKσσ′(τ) =
1

V

∑

σ

Vσ
∑

λ

Vλe
−τλeλ∗σ eλσ =

1

V

∑

λ

Vλe
−τλ

∑

σ

Vσe
λ∗
σ eλσ

=
1

V

∑

λ

e−τλ. (4.9)

While the spectrum of the Laplacian gives a closed expression for P(τ) in many cases, for

numerical computations of combinatorially very large complexes it can alternatively be treated as a

random walk. In this case, local probabilities are given for jumping from one simplex σ to a neighbor

σ′ given by the matrix elements wσσ′/Vσ of the Laplacian. This is the technique used in dynamical

triangulations [20, 27], which will be discussed below, and random combs and multi-graphs [61–64].

5 Classical expressions of the Laplacian

The general form of the discrete Laplacian depends both on the combinatorial structure of the

underlying simplicial complex and on its discrete geometry through the various volume factors. ∆

takes then different concrete expressions, depending on the variables used to encode the geometry

of the simplicial complex. These expressions would be needed for explicit calculations in differ-

ent formulations of classical discrete gravity and, successively, in applications to quantum gravity

models. In the following, we provide some examples for the discrete Laplacian constructed in the

geometric variables used in various approaches to classical and quantum gravity.

5.1 Regge edge length variables

The most common variables to describe the geometry of a simplicial pseudo-manifold are the edge

lengths {lij}. In the standard version of Regge calculus [65, 66], these are taken as configuration

space for the geometries of piecewise flat triangulations.

The expressions for primal volumes are well known in the Regge literature, so the only geometric

data needed for defining the dual scalar Laplacian ∆d are the dual edge lengths l̂σσ′ . We subdivide

the dual edges into two parts l̂σ and l̂σ
′

, associated respectively with the simplex σ and σ′, so that

l̂σσ′ = l̂σ + l̂σ
′

. These dual edge lengths depend on the chosen embedding of dual complex into the

primal one.
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In the barycentric case, when l̂σ
î

is the length of the edge dual to the face σd−1 = (012 . . . î . . . d)

contained inside the simplex σd = (012 . . . d), it is given by (see appendix B)

l̂σ
î
=

1

d (d+ 1)

√
d
∑

j

l2ij −
∑

(jk)

l2jk . (5.1)

Then the matrix elements of the Laplacian (eq. (3.12)) for σ∩σ′ = (012 . . . d)∩(0′12 . . . d) = (12 . . . d)

have the form
wσσ′

Vσ
= d (d+ 1)

1

V012...d

V12...d

l̂σ
0̂
+ l̂σ

′

0̂′

. (5.2)

These are well defined on simplicial geometries satisfying the strong generalized triangular inequal-

ities, that is, Vσp
> 0 for all 0 < p ≤ d. In particular, these conditions ensure that the dual lengths

l̂σi are non-zero and positive.

This is not the case for the circumcentric dual where each l̂σ
0̂
∈ R can be negative or vanishing,

and thus it is possible to have l̂σ
0̂
+ l̂σ

′

0̂′
= 0. This pole in the expression for the Laplacian, moreover,

cannot be absorbed into the volumes as they depend only on the edges of σ but not of σ′. On

the other hand, except for these singularities, the circumcentric Laplacian might be well defined

even on degenerate geometries with Vσd
= 0. This is true, for example, for d = 2, 3 where explicit

expressions of the circumradius are known. In d = 2,

w(ijk)(jkl)

Aijk

=
8

±
(
l2ij + l2ik − l2jk

)
± Aijk

Ajkl

(
l2jl + l2kl − l2jk

) , (5.3)

and in d = 3

w(ijkl)(ijkm)

Vijkl
=

12A2
ijk

±
√
(2AijkAijkl)

2 − (3lij ljklkiVijkl)
2 ± Vijkl

Vijkm

√
(2AijkAijkm)

2 − (3lij ljklkiVijkm)
2
.

(5.4)

The sign of each dual length part l̂σ is positive if the circumcenter lies inside the d-simplex σ and

negative if outside. With these descriptions of the Laplacian at hand, one can compare with other

discrete Laplacians in the literature.

Sorkin’s discrete Laplacian

In [67] a formalism with special “barycentric” coordinates (not to be confused with the mathematical

notion, where unit vectors are attached to corners) is developed. As done also in [68], it can be

expressed in terms of the dihedral angles as a “cotangens” Laplacian (with inverse volume factor)

for primal scalar fields. In d = 2, with ασ2

ij the angle opposite to the edge (ij) in the triangle σ2, it

is given by

− (∆0φ)i =
1

V⋆(i)

∑

j


 ∑

σ2∋(ij)

cotασ2

ij


 (φi − φj) , (5.5)

and it is easy to show its equivalence to the Laplacian coming from discrete calculus with circum-

centric duals.10 In d = 3,

− (∆0φ)i =
1

V⋆(i)

∑

j


 ∑

σ3∋(ij)

lσ3

îĵ
cotασ3

ij


 (φi − φj) , (5.6)

10Elementary geometric arguments yield l̂
(ijk)

î
=

√

R2
−

(

ljk/2
)2

= (ljk/2) cotα
σ2
ij .
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where the opposite dihedral angle ασ2

ij now is between faces sharing the opposite edge lσ3

îĵ
in the

tetrahedron σ3.
11 From the equivalence in d = 2 it is tempting to conjecture equivalence also for

d ≥ 3, but this remains to be proven.

Laplacian in dynamical triangulations

A different way of encoding the simplicial geometry of a piecewise flat triangulation, still based

on the Regge calculus description, is to fix all edge lengths to some constant value, and allow

only changes in the combinatorics of the simplicial complex itself. This idea underlies the quan-

tum gravity program of dynamical triangulations [66, 69]. For such equilateral configurations, the

Laplacian coming from discrete calculus drastically simplifies (up to an overall factor) to a purely

combinatorial graph Laplacian [52] of the form (3.9),

∆d ∝ D −A , (5.7)

where the weights here are wσσ′ = 1 if σ and σ′ are adjacent.

While in the Lorentzian version, named causal dynamical triangulations, this should be mod-

ified by introducing negative length squares for timelike edges, this modification is not performed

since the theory is Wick rotated to Euclidean signature and actual calculations are performed in a

reduced ensemble of Euclidean triangulations (those that can indeed be obtained by Wick rotating

Lorentzian ones) [69].

5.2 First-order Regge calculus with (d− 1)-face variables

An alternative version to edge-length Regge calculus is in terms of the (d−1)-face normals ωσd−1(α)

(expressed in the reference frame of the d-simplex σα) and Lorentz rotations (parallel transports)

U(α, α′) from frame to frame across neighboring simplices. In turn, the latter define holonomies

(around closed plaquettes) Wα(h) = Uα,α+1Uα+1,α+2 . . . Uα−1,α, which are rotations in the plane

orthogonal to hinges h ∈ Kd−2 [70–72] and measure the local curvature. The class angles corre-

sponding to the holonomies are therefore the deficit angles θh = 2π −
∑

α θ
α
h , as could be obtained

from the dihedral angles θαh at the hinge h in each d-simplex σα sharing it (see also [8]).

We show how all geometric data needed for the Laplacian ∆d have an expression in terms of

the face normals ωσd−1(α). While the (d − 1)-volumes are just the modulus of the face normals

themselves,

Vσd−1
= |ωσd−1(α)| , (5.8)

the d-volumes of simplices σα can also be expressed by d of the face normals ωi(α) = ωσd−1=(012...̂i...d)

as [70]

Vα ≡ Vσα =

[
1

d!
ǫI1...Idǫi1...idjω

i1
I1
(α) . . . ωid

Id
(α)

] 1
d−1

, (5.9)

where capital indices I, J, ... are in internal space. By the closure relations, it does not matter which

face (012 . . . ĵ . . . d) is left out if σα is closed. Alternatively, one could also average over the choices

of reference face.

An explicit expression of dual lengths can only be obtained using position coordinates on σα as

functions of the face normals. Barycentric coordinates z(α), that is coordinates for which the sum

over vertices satisfies
∑d+1

i=1 z
I
i (α) = 0, can be derived inverting the expression of the face normals

in terms of discrete vielbeins (see eq. (B.1)) in these coordinates [70],

ωi
I(α) =

1

(d− 1)!2

∑

k 6=i

ǫJ1...Jd−1Iǫ
i,i1...id−1,kzJ1

i1
(α) . . . z

Jd−1

id−1
(α) , (5.10)

11From private communication with Sebastian Steinhaus.
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leading to

zIi (α) =
1

(d− 1)!

1

(Vα)
d−2

∑

k 6=i

ǫJ1...Jd−1Iǫi,i1...id−1,kω
i1
J1
(α) . . . ω

id−1

Jd−1
(α) . (5.11)

The barycentric dual length is particularly simple in these coordinates. It is just the distance from

the barycenter of the tetrahedron with coordinate zI = 0 to the barycenter of a face

l̂σ
î
=

∣∣∣∣∣∣
∑

j 6=i

zj [ω
i(σ)]

∣∣∣∣∣∣
. (5.12)

For the circumcentric case no such simplification can be expected. Still primal edge lengths can be

expressed in the coordinates z(α), taking then advantage of the above expressions (eqs. (5.2), (5.3)

and (5.4)).

As an example, we can give the (further simplified) expressions in d = 3. On σα = (ijkl)

(suppressing the frame label α),

zIi =
1

2

1

Vα

∑

r 6=i

ǫIJKǫimnrω
m
J ω

n
K =

1

2

1

Vα

(
ωj × ωk + ωk × ωl + ωj × ωl

)I
, (5.13)

and the tetrahedron volume in terms of three of its face triangles is

(Vα)
2
=

1

6
ǫIJKǫijklω

i
Iω

j
Jω

k
K . (5.14)

Therefore, the dual length is

l̂αi =
1

3
|zj + zk + zl| =

1

6Vα

∣∣ωj × ωk + ωk × ωl + ωl × ωj
∣∣

=
1

6Vα

√ ∑

(mn)∈(jkl)

[ω2
mω

2
n − (ωm · ωn)2 + (ωm · ωr)(ωr · ωn)− (ωm · ωn)ω2

r ] .

Using the closure condition
∑
ωi = 0, this further simplifies to

l̂αi =
1

2Vα

∣∣ωj × ωk
∣∣ =

√
ω2
jω

2
k − (ωj · ωk)

2
(5.15)

for some faces j, k. The matrix elements (3.12) of the Laplacian ∆d can then easily be computed

combining all the above expressions.

Finally, we note that the volume form ωh(α) of a hinge h = σd−2 can be expressed in terms of

two normals to two faces σα+1,α, σα,α+1 sharing it, in the frame of σα [70]:

ωh
IJ(α) =

1

Vα
ωα−1,α
[I (α)ωα,α+1

J] (α) . (5.16)

This gives a connection to flux variables, discussed in the next section, which are exactly these

(d− 2)-face normals.

5.3 Flux and area-angle variables

In d = 4, a useful alternative set of variables in simplicial geometry are the bivectors bIJijk = eIij ∧eJik
associated with triangles (ijk) (or their internal Hodge dualsXIJ

ijk = ǫIJKLb
KL
ijk ), known as fluxes, and

playing a prominent role in both canonical loop quantum gravity and spin-foam models [1, 73, 74].

In a geometric 4-simplex (ijklm), the triangle areas are

Aijk = |Xijk| , (5.17)
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and volumes of tetrahedra can be computed using three of the fluxes associated with the four

triangles on their boundary [75], regarding the bivectors as linear maps:

V 2
ijkl =

8

9
Tr (∗Xijk [∗Xjkl, ∗Xkli]) . (5.18)

Volumes of 4-simplices can be taken from the wedge product of two fluxes not lying in the same

3-hyperplane (thus not belonging to the same tetrahedron),

Vijklm = |Xijk ∧Xilm| . (5.19)

Primal edge lengths can be expressed using the generalized sine formula as

l2ij = 2
|Xijk|2|Xijl|2 − (Xijk ·Xijl)

2

Tr (∗Xijk [∗Xjkl, ∗Xkli])
. (5.20)

This gives all the buildings blocks for explicit expressions (eqs. (5.2), (5.3) and (5.4)) of the barycen-

tric and circumcentric discrete Laplacian ∆d with elements (3.12).

In the spin representation in d = 3 + 1 LQG and d = 4 spin-foams (adapted to a simplicial

context), the easiest variables to use are triangle areas and 3-volumes of tetrahedra. However, it is

known that they form an overcomplete set of data to specify a four-dimensional simplicial geometry,

and should be supplemented by additional constraints whose explicit form is not known [76, 77].

A more natural choice is to use areas Aijk and dihedral angles φijk,l between faces (ijk) and (ijl)

hinged at the common edge (ij) [78]. This set of data encodes the same information as the fluxes

Xijk. In these variables, the relevant geometric data to compute the discrete Laplacian have the

following expressions. The 3-volumes are

V 2
ijkl =

Aijk

9

√∑

j

A2
ijl sin

2 φijk,lA
2
jkl sin

2 φjki,l −
∑

(ij)

A4
ijl sin

4 φijk,l , (5.21)

from which the 4-volumes are obtained via the generalized sine law12

Vijklm =
3

4

1

Aijk

VijklVijkm sin θijkl,m[φ] , (5.22)

as well as the primal edge lengths

lij =
2

3

1

Vijkl
AijkAijl sinφ

ij
k,l . (5.23)

Again, this is all the information needed to build the Laplacian ∆d.

6 Laplacian in models of quantum geometry

With the classical expressions of the dual scalar Laplacian ∆d in the appropriate geometric variables

at hand, one can take one’s favorite model of quantum gravity and promote ∆d to a quantum

observable. For instance, one can either take ∆d as an operator acting on quantum states of spatial

geometries in a canonical theory (e.g., in a LQG context) or as a classical function to be path

integrated over with the quantum measure of a covariant theory (within a spin-foam or simplicial

12The angles θijk
l,m

between 3-simplices (ijkl) and (ijkm) are functions of the area dihedral angles according to [78]

cos θijk
l,m

=
cos φij

k,l
− sinφij

l,m
sinφij

m,k

cos φij

l,m
cosφij

m,k

.
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path integral setting). We now discuss briefly how such calculations could be set up, leaving explicit

computations for future study.

In both types of approaches the main challenge beyond a purely formal quantization is to

deal with possible singularities of the matrix entries of the Laplacian, coming from the inverse

d-volumes in the barycentric case and from the inverse dual length part in the circumcentric case.

In a canonical setting, these singularities may prevent the definition of the Laplacian operator as a

bounded operator; in the covariant setting, they may produce divergences in explicit evaluations.

Obviously, whether or not such difficulties arise depend on the details of the quantum theory

considered, and depending on the precise structure of the Hilbert space of states or the path integral

measure, as well as on the exact classical expression to be quantized, they may not necessarily pose

a problem.

Furthermore, for many purposes, it is not the Laplacian ∆d as such but functions of it, f [∆d],

which are of interest. These need not have the same quantization issues (e.g., possible singularities)

as the Laplacian itself.

A good example is the trace of the heat kernel P(τ), discussed in the classical simplicial setting

above (section 4.2). Since it is of the general form P(τ) ∼ eτ∆, one would expect that it vanishes

exactly in those cases where the Laplacian is singular (see the example in appendix C). Thus one

may even envisage cases in which observables functions of the Laplacian f [∆d], inserted within

quantum geometric evaluations (e.g., path integrals), might even help to suppress pathological

configurations corresponding to degenerate or divergent geometries.

In the context of a quantum theory of pure geometry without any dynamical matter, there are

reasons to believe that quite in general only global functions of the Laplacian are suitable complete

observables (beyond the kinematical level) since they are invariant under diffeomorphisms. The

heat trace is a good example of an observable meeting these conditions.

6.1 Laplacian in canonical formalism

The best developed canonical approach to quantum gravity is LQG [1, 2]. The kinematical Hilbert

space of states of spatial geometry is defined as a projective limit of Hilbert spaces HΓ of states

associated with graphs Γ. Under certain assumptions [51], they can be considered as the 1-skeleton

Γ = (⋆K)1 of the dual of a combinatorial pseudo-manifold K. Since the valency of the nodes in Γ

is left arbitrary in LQG, the complex has to be polyhedral in general, though often one restricts to

the lowest non-trivial (non-vanishing volume) valency of d + 1, corresponding to primal simplicial

pseudo-manifolds.13

The LQG states are cylindrical functions ψΓ(hσ̂1) of holonomies of the gauge group G = SU(2)

on the links σ̂1 of the graphs Γ. These variables encode the extrinsic geometry of the spatial

slice. The same states can be transformed into functions of representations jσ̂1 on the links and

intertwiners iσ̂0 between them on the nodes σ̂0, called spin network states ψΓ(jσ̂1 , iσ̂0). A further

possibility is to transform into a basis of fluxes Xσ̂1 on the links, valued in the Lie algebra of the

group [73]. These sets of dual variables encode the intrinsic geometry of the spatial slice.

The spin network states are the eigenstates of a commuting set of local geometric observables.

In d = 2 + 1 these are the primal edge length operators l̂σ1 dual to graph links σ̂1 = ⋆σ1, with

squared spectrum proportional to the Casimir of the group G = SO(3) ∼= SU(2):

l̂2σ1
ψΓ(jσ̂1 , iσ̂0) ∼ [j⋆σ1 (j⋆σ1 + 1) + c]ψΓ(jσ̂1 , iσ̂0) , (6.1)

13In principle, one can take an expression of the Laplacian obtained from the geometric interpretation in a pseudo-

manifold setting and apply it even to graphs Γ which are not in the skeleton of the dual to a pseudo-manifold, as

long as all the variables are defined.

– 22 –



with c = const being a quantization ambiguity.

In d = 3+ 1 the same holds with the difference that it is now primal triangles (more generally,

polygons) to be dual to the graph links σ̂1 = ⋆σ2, and the spins are then their areas Âσ̂2 for which

Â2
σ2
ψΓ(jσ̂1 , iσ̂0) ∼ [j⋆σ2(j⋆σ2 + 1) + c]ψΓ(jσ̂1 , iσ̂0) . (6.2)

The 3-volume operator V̂σ3 for the tetrahedron (more generally, 3-cell) dual to a graph vertex has

a (more complicated) spectrum in terms of the intertwiners i⋆σ3 [2].

Concerning length operators l̂σ1 for primal edges, there are several definitions available in the

literature. In one such definition [79], eigenstates of l̂σ1 are linear combinations of the intertwiners,

and the operators l̂σ1 corresponding to edges of the primal 3-cell, neither commute with the volume

operator of the same 3-cell V̂σ3 nor with one another in the case of intersecting edges.

A natural way to promote the spatial Laplacian to a quantum operator would therefore be to

regard it as a function of these basic geometric observables. In d = 2 + 1, on states with simplicial

combinatorics, that is 3-valent graphs Γ, this is fairly straightforward as the commuting set of length

operators captures the whole simplicial geometry. Thus the two-dimensional spatial Laplacian ∆2

can be formally quantized as a composition of length operators,

∆̂2 = ∆2[l̂σ1 ] . (6.3)

In practice, to avoid the issue of zeros in the denominator in either the barycentric or circumcentric

description, a regularization14 or linearization of the classical expression ∆2[lσ1 ] (eq. (5.2) or (5.3))

is needed to achieve a well-defined operator ∆2[l̂σ1 ].

In d = 3 + 1 this quantization cannot work as easily because the commuting set of operators

Â2
σ2

and V̂σ3 is not sufficient to determine a simplicial spatial geometry. Therefore, the quantum

Laplacian ∆̂3 can only be expressed as a function of operators at least a pair of which are non-

commuting. A consequence is that ∆̂3 cannot be diagonalized in the spatial geometry states on a

given graph. This fact is less problematic than it may look at first sight. Ultimately, pure states of

quantum geometry cannot be expected to have a geometry in a classical, e.g., simplicial sense. Only

semi-classical coherent states peaked on a classical geometry are supposed to have this meaning.

On such states it should be possible to obtain a well-defined action and expectation value of ∆̂3.

Since we do have expressions of ∆3 in three dimensions in terms of face normals (eq. (5.15) and

so on), that is fluxes in the canonical setting, an appropriate type of coherent states to be used

are those in flux variables studied in [81, 82]. As ∆̂3 is now built from non-commuting operators,

there are also ordering ambiguities, and the same issue of regularization of possible inverse volume

divergences will also have to be dealt with.

Comparison with other proposed Laplacians in the LQG context

We will close this subsection discussing briefly our Laplacian with other proposals appeared in the

LQG literature, usually defined in the context of matter Hamiltonians. These proposals are indeed

different from ours.

From the Hamiltonian of a non-relativistic point particle on an LQG space, one can read off

the following Laplacian ∆̂3 [19]. Assuming that the Hamiltonian is diagonal in the Hilbert space of

spin network states |s〉, the result of a discretization procedure is (in the notation of [19])

∆̂3 ∼
∑

s,l∈s

A2
l |s, l

∼
〉〈s, l

∼
| (6.4)

14In [79], for example, a Tikhonov regularization [80] is used to cure inverse-volume issues.
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on a position basis of the particle on the links of the graph | l
∼
〉, where the underlining with a tilde

indicates that an inverse-volume factor is included in the definition of this basis.

In the position basis of dual points σ̂0 (dual to primal simplices) natural for the dual scalar

function, its expectation value on a spin network state |s〉 is

〈s|∆̂3|s〉 ∼
∑

σ

∑

σ′∼σ

A2
σσ′

V 2
σ

|σ〉〈σ| −
∑

σ

∑

σ′∼σ

A2
σσ′

VσVσ′

|σ〉〈σ′| , (6.5)

where Aσσ′ = Vσ∩σ′ are the areas of the primal faces dual to the links connecting σ and σ′.

Obviously, this differs from the Laplacian operator coming from discrete calculus. If the inverse

volumes are understood to belong to the position states, the above expression is just a graph Laplace

matrix with weights A2
σσ′ . This is the definition used in [19]. On the other hand, for the Laplacian

to have the right dimension the volumes would have to be considered as part of the its definition

(and not of the position basis) and the weights are then, as in the formula above, A2
σσ′/(VσVσ′ ).

The advantage of the first choice of position basis and Laplacian with exclusive dependence on

the areas, for an application to LQG, is that this Laplacian only needs, for its evaluation, the

geometric information that is present in pure spin network states, by passing the issues discussed in

the previous section. On the other hand, one might then question whether this choice captures the

whole geometric content of the Laplacian, as the one coming from discrete calculus does, and gives

an operators with the right properties. Our analysis would suggest that this is not the case, but

the above simpler operator could nevertheless represent a useful approximation in some contexts.

A Laplacian of a similar type was also considered in [23] in the context of an evaluation of the

spectral dimension in LQG and spin foams. More precisely, the scaling of the Laplacian was all

that was needed in that setting, and it was taken to be given just by the area spectrum, so that in

practice it amounted as dealing with a diagonal Laplacian.

Another LQG Laplacian appears in [12], within the Hamiltonian for a scalar field. In order to

deal with the issue of inverse volumes, one uses Thiemann’s trick of substituting inverse 3-volumes

with Poisson brackets of holonomies and (powers of) 3-volumes. The Laplacian operator then takes

the form (
∆̂3φ

)
σ̂0

∼ N(σ̂0)

E(σ̂0)2

∑

∆
v∆=σ̂0

tr(ĥ[ĥ−1, V̂
3
4 ])4(φs(∆) − φσ̂0) , (6.6)

where N(σ̂0) and E(σ̂0) are some combinatorial factors depending on the vertex σ̂0, ĥ is the holon-

omy operator and the sum effectively runs over neighbors, too. The precise structure, in particular

of the spectrum, is not known, so a more detailed comparison with the Laplacian coming from

discrete calculus, from which it clearly differs, is not possible.

6.2 Laplacian in covariant models

In covariant theories of quantum gravity, the Laplacian lives in spacetime itself rather than on

spatial slices only. Even for the spatial Laplacian in LQG, a covariant counterpart in terms of a

spin-foam model might be necessary to evaluate it within a physical scalar product.

Such covariant approaches are typically formulated as discretized path integrals. The sum over

4-geometries for a given boundary 3-geometry is defined for geometries on a simplicial pseudo-

manifold K (e.g., in Regge calculus), or on its dual complex (e.g., in spin-foam models, which

can also be re-expressed as simplicial gravity path integrals), and may include a sum over these

combinatorial structures as well (dynamical triangulations and group field theories). We discuss

briefly the templates for the evaluation of the discrete Laplacian as a geometric observable in these

contexts.
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Quantum Regge calculus

The formalism of discrete calculus is most easily applied to the Regge approach. This is, first of

all, because Regge calculus works directly on a simplicial pseudo-manifold K. Second, because

the configuration space summed over consists only of simplicial geometries, even in the quantum

version. In the latter, this condition has to be imposed by special constraints, namely, the strict

generalized triangle inequalities. These demand the volumes of all p-simplices to be positive, Vσp
>

0. On such simplicial geometries the discrete Laplacian is automatically well defined (no issues with

degeneracies or singularities). Neither in edge length variables l2ij nor in the (d − 1)-face normal

variables ω there are any problems in expressing the Laplacian as a classical observable in Regge

calculus.

In principle, one could therefore go straight to the quantum theory on a given triangulation

|K| in the path integral formulation, given an appropriate measure µ
|K|
Regge = [Dlij ] eiSRegge[lij ] or

µ
|K|
Regge = [DUαβ ][Dωαβ ] e

iSRegge[Uαβ ,ωαβ ], and consider the quantum expectation value

〈f [∆d]〉|K|
=

ˆ

µ
|K|
Reggef [∆d] . (6.7)

While the Regge action SRegge is well known in both cases, the definition of the exact measure of

such a model of quantum gravity is still a pending challenge, with respect to the imposition of the

generalized triangle inequalities as well as the issue of simplicial symmetries [8, 83].

Spin-foams and related path integrals

This path integral expectation value can be considered also in spin-foams, an approach generalizing

the concept of Regge geometries [84] where a precise form of the measure can be motivated from a

discretization of the Holst–Plebanski action.

By the motivation of spin-foams as a path integral version of LQG defined via spatial graphs Γ,

that is 1-complexes, the discrete counterpart of spacetime is usually defined as a 2-complex C (hence

the name “foam”). Analogously to the discussion of the canonical case, in a strict sense the discrete

Laplacian ∆d is therefore applicable only to 2-complexes being the 2-skeleton of a dual d-complex,

C = (⋆K)2. In spin-foams only (d+ 1)-valent vertices are considered such that the primal complex

K would be indeed a simplicial complex. Nevertheless, an expression of the simplicial ∆d could still

be generalized to the setting of arbitrary 2-complexes C, as long as they are equipped with enough

geometric data for all the volumes in ∆d to be defined.

Just as in LQG, the geometry variables could be fluxes, holonomies, or their spin representations

of the full gauge group G on the edges σ̂1 ∈ C. A spin-foam in the strict sense of the name refers

to the latter. Most generally, it is defined as a path-integral state sum over representations jσ̂2 and

intertwiners iσ̂1 by a measure factorizing into amplitudes Aσp
on faces, edges and vertices on C [5]:

ZC =
∑

{jσ̂2
},{iσ̂1

}

µC
SF

=
∑

{jσ̂2
},{iσ̂1

}

∏

σ̂2∈C

Aσ̂2 (jσ̂2)
∏

σ̂1∈C

Aσ̂1(jσ̂2 , iσ̂1)
∏

σ̂0∈C

Aσ̂0 (jσ̂2 , iσ̂1) . (6.8)

On the other hand, this is just the spin-foam representation of an underlying more general path

integral which could equally well be expressed in holonomies g or fluxes X with corresponding

measures:

ZC =

ˆ

[Dgσ̂1 ]µ
C
g =

ˆ

[DXσ̂1 ]µ
C
X . (6.9)

Since these variables are directly related to the LQG variables in the canonical theory, the

discussion of the possibility to express the Laplacian through them is similiar. Particularly simple
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is the d = 3 case of the so-called Ponzano–Regge model with a measure µC
PR defined in terms

of the dimension of representations associated with edges of the dual complex and of 6j-symbols

associated with vertices [85]. From the length operator in LQG, an interpretation of primal lengths

dual to the foam faces σ̂2 can be induced such that

l2σ1
= l2⋆σ̂2

= jσ̂2(jσ̂2 + 1) + c . (6.10)

This defines ∆3 = ∆3(jσ̂2) on C in its edge length version (eq. (5.2) or (5.4)) and one has a formal

expectation value of functions of the Laplacian:

〈f [∆3]〉CPR =
∑

{jσ̂2
}

µC
PRf [∆3(jσ̂2)] . (6.11)

It is then straightforward generalizing to the well-understood case with LQG spin network states |s〉
on the boundary of C, where the state sum is running only over internal labels with fixed boundary

configurations induced from |s〉 [86].

As already noticed, the geometric interpretation of spin-foam configurations is more general

than Regge geometries. While the trivial intertwiners iσ̂1 = i⋆σ2 implicit in the 6j-symbols con-

straint the primal triangles σ2 to close, there are no conditions for the tetrahedra σ3 (more generally,

top-dimensional simplices) to close, too. Therefore, the volumes Vσ3 (l
2
σ1
) might take complex values

or even vanish. Since they appear in the denominator of the Laplace matrix elements (eq. (5.2)),

this may result in poles of the Laplacian.

In d = 4 it is more challenging to get a version of ∆4 in terms of the spin representation

labels via the LQG-induced relation to primal areas Aσ2 (dual to foam faces σ̂2) and 3-volumes

Vσ3 (dual to foam edges σ̂1). While the number of labels is in principle large enough, the issue of

configurations not uniquely specifing a simplicial geometry discussed above becomes relevant again.

A convenient set of variables in which to compute the expectation value of ∆4 is obtained in the flux

representation of the state sum, that takes then the form of a BF -like simplicial path integral. The

fluxes Xσ̂2 are now the volume forms of primary faces σ2, that can also be equivalently associated

with their dual faces σ̂2 = ⋆σ2 in the foam.

A general remark is the following. In any discrete path integral, whether configurations on

which ∆d is divergent lead to divergences of the overall sum over quantum geometric configurations

or not depends very much on the dynamics encoded in the measure. If there were divergences,

they could be treated with an appropriate regulator or, when possible, by directly excluding the

singular configurations from the path integral. On the other hand, many spin-foam amplitudes

are generically divergent even before inserting other geometric observables, and some regulariza-

tion/renormalization might be needed from the start, anyway. Proper calculations of Laplacian-

based observables would have to be then phrased in this regularized context. We will do this in

future work.

7 Conclusions and outlook

We have employed discrete calculus, known from computational science [36, 38], as a formalism

for differential operators and arbitrary fields at a fundamentally discrete level, more precisely on

simplicial complexes and their topological dual complexes. This should open up novel ways to

investigate the physical and geometric properties of simplicial theories of quantum gravity.

With respect to [36], we chose a different, more physical convention where a geometric space

measure is explicitly taken into account. The formalism was presented in a convenient bra-ket
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notation and, therefore, slightly generalized, thus providing a setting to rigorously define a discrete

Laplacian operator ∆. We analyzed the action of the Laplacian on scalar fields living on vertices

of the dual complex. The discrete Laplacian can be required to satisfy several properties, coming

from continuum properties, from usual lattice gauge theory, from the fractal literature or from

reasonable physical requirements. Whether these properties are satisfied or not by the discrete

Laplacian we considered depends on the precise geometric embedding of the dual complex into the

primal one. In particular, we have shown that the barycentric version may be preferred to the

circumcentric one because it does lead to a positivity property that is the discrete counterpart of

Osterwalder–Schrader positivity.

The formalism can be made sufficiently general to be extended to polyhedral complexes and

complexes with boundary. Also, the Laplacian enters the definition of an invertible momentum

transform to a representation of fields on its eigenspaces. This generalization of the Fourier trans-

form works on arbitrary discrete geometries and can be effectively used to handle functions of the

Laplacian such as the heat kernel and, from that, the spectral dimension of spacetime. The latter

will be the subject of a companion paper [35]. The use of (functions of) the discrete Laplacian as

a geometric observable to unravel the geometry of quantum gravity states and histories is indeed

one application we envisage for our results. Another application is as a necessary ingredient for

defining matter coupling in discrete models of quantum gravity.

These results are ready to be applied to various gravity approaches. We gave explicit expressions

of the Laplacian in geometric variables used in loop quantum gravity, spin-foams, Regge calculus and

dynamical triangulations: edge lengths, face normals, fluxes, area-angle variables. We discussed how

to apply these expressions to specific models, either in a canonical or covariant formalism, and the

issues to be tackled. Fluxes seems to be the type of variables with the most general applicability, i.e.,

for combinatorics other than those of d-complexes, as they can be used to define general polyhedral

geometries. Operator issues about inverse volumes and dual lengths (present inside ∆) could be

cured in various ways: in canonical theory, by regularization or linearizations; in the covariant one

by regularization, renormalization precedures or appropriate modifications of models. At any rate,

we also noticed that considering functions of the Laplacian, rather than the Laplacian itself, may

make these issues irrelevant for practical purposes, as discussed in the example of the heat kernel

and in [35]. In particular, the spectral dimension in LQG and spin-foam models can be computed

and is well defined.

We conclude with a comment on the continuum limit. In continuum flat space, the discrete

Laplacian (3.8) reduces to the second-order continuum Laplace operator:

∆→
d∑

µ=1

∂2µ . (7.1)

However, the limit to the continuum in a discrete quantum gravity model is much less trivial,

because it must include quantum dynamics, a wealth of geometric information (curvature, effective

measures respecting quantum symmetries, and so on), and physical matter fields. Thus, the correct

physical description of a quantum geometry in a large-scale/low-energy/semi-classical regime may

remain elusive in several interesting cases.

The diffusion equation is a crystalline example in this respect. In a discrete setting, it is defined

via a test field φ obeying (∂τ −∆)φ = 0, with some initial condition φ|τ=0 in the abstract diffusion

time and where curvature effects are ignored [31, 33, 59]. In the naive sense of eq. (7.1), this

equation reduces to the continuum diffusion equation in flat Euclidean space, with the consequence

that the spectral dimension of the continuum manifold Rd on which the diffusion process takes

place is the classical one d. However, if one first computes the effective spectral dimension in a

genuinely discrete (and quantum) setting (such as causal dynamical triangulations, for instance
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[20], or spin-foams [23, 25, 28, 35]), and taking into account the full quantum dynamics, the output

would differ from d at any given scale, even in semi-classical or continuum approximations and

even in the zero-curvature limit. Rd is not necessarily the effective manifoldMcont representing the

physical continuum limit of the quantum-fluctuating geometry in the large scale regime. As briefly

discussed in section 3.2, the physical continuum limit is a black-box procedure which can generate

also effective continuous Laplacians (in the sense of the operator governing diffusion processes)

which may violate one or more of the properties of the discrete ∆, and of the standard continuum

one, including locality and the effective order of the operator [33, 59].

The task of getting control over this important aspect of quantum gravity models goes beyond

the scope of the present work. Yet, the stage in which this issue can be tackled in the near future

has been hopefully improved by the results presented here.
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A Laplacians on fractals

In the spectral theory of deterministic fractals, Laplacians are defined as a limit of Laplace matrices

∆Γm on a series of graphs Γm approximating the fractal which can then be identified with lim
m→∞

Γm.

In general [54], one defines Laplacians −∆Γm on the vertex set of the graphs Γm as symmetric

linear operators with three properties: Positive definiteness, the null condition and the Markov

property. These are exactly the conditions satisfied by the barycentric version of the discrete

Laplacian presented in section 3.2, since positive definiteness follows from symmetry and positivity

[53].

The graph Laplacian ∆Γm needs two modifications to define the Laplacian on the fractal: A

“renormalization factor” r−m according to the graph approximation, and a volume factor V
(m)
σ̂0

for

the evaluation of a function at a point on the graph σ̂0 ∈ Γm, similar to discrete calculus. The

volume factor depends on the self-similar (space) measure µ on the fractal, since

〈
σ̂0|∆Γm |φ

〉
=

ˆ

dµ χσ̂0∆
Γmφ =

ˆ

dµ ψ
(m)
σ̂0

∆Γmφ

≈
(
ˆ

dµ ψ
(m)
σ̂0

)(
∆Γmφ

)
σ̂0

=: V
(m)
σ̂0

(
∆Γmφ

)
σ̂0
. (A.1)

Here the characteristic function χσ̂0 for σ̂0 on the fractal is approximated by the so-called harmonic

splines ψ
(m)
σ̂0

, which are functions sufficiently peaked on σ̂0 on the fractal and identical to the Dirac

distribution on the graphs Γm [87].

Eventually, the Laplacian on the fractal is defined as the limit

(∆φ)σ̂0
:= lim

m→∞

1

V
(m)
σ̂0

rm

〈
σ̂0|∆Γm |φ

〉
. (A.2)

While the volume factor in the known and understood examples of deterministic fractals is just

an overall constant independent of the approximation level m, the exact renormalization factor is

crucial to obtain a neither vanishing nor trivial Laplacian [87].
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B Geometric data of simplices

For a simplicial complex K with a geometric realization as a piecewise linear space, the frame field

can be considered as a set of discrete edge vectors

eI = eIµdxµ 7→ eIij(α) = [xi(α) − xj(α)]I , (B.1)

where the coordinates x(α) are given by a choice of origin and frame for every d-simplex σα the

edge (ij) is face of. The index α = 1, 2, . . . , Nd labels the d-simplices. Accordingly, the volume form

of a p-simplex σp in the coordinates of a d-simplex it is a face of is

ω
σp

Ip+1...Id
(α) = ǫI1...Id

p∏

k=1

eIkk (α) , (B.2)

in terms of p linear independent edge vectors ek belonging to σp. The p-volume σp is the norm of

the volume form,

Vσp
= |ωσp | = 1

p!

√√√√
∑

Ip+1<···<Id

∣∣∣ωσp

Ip+1...Id

∣∣∣
2

. (B.3)

B.1 Edge length variables

In the edge length variables {l2ij}, the volumes can be obtained from the Cayley–Menger determinant

Vσp
=

1

p!

(−1)
p+1
2

2
p
2

∣∣∣∣∣∣∣∣∣∣

0 1 · · · 1

1 0 l2ij · · ·
... l2ij

. . .

1
... 0

∣∣∣∣∣∣∣∣∣∣

1
2

. (B.4)

In particular,

Vσ2 =
1

4

√∑

i

(
2l2ijl

2
ik − l4jk

)
(B.5)

and, after some manipulations,

Vσ3 =
1

12

√∑

(ij)

l2ij

(
l2ikl

2
jl + l2ill

2
jk − l2ij l2kl

)
−
∑

(ijk)

l2ij l
2
ikl

2
jk , (B.6)

Vσ4 =
1

96


 ∑

(ij)(kl)

l4ij l
4
kl +

∑

(ij)(k)

(
l2lil

2
ikl

2
kj l

2
jm + l2mil

2
ikl

2
kj l

2
jl − l4ij l2kll2km

)

−2
∑

(ijkl)

l2ij l
2
jkl

2
kll

2
li − 4

∑

(ij)

l2ij l
2
kll

2
lml

2
mk




1
2

, (B.7)

where all sums run over all subsimplices of the given kind.

B.2 Barycentric dual volumes

The dual volumes are much more involved and we will consider only dual lengths. In the barycentric

case, the length l̂σi of the part in one simplex σd = (012 . . . d) of an edge dual to the face σd−1 =

(012 . . . î . . . d) is given by

l̂σi =
1

d (d+ 1)

√
d
∑

j

l2ij −
∑

(jk)

l2jk . (B.8)
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This can be seen as follows. In coordinates x the position of the barycenter xbc of a p-simplex is

xbc =
1

p+ 1

p∑

i=0

xi . (B.9)

The distance from the barycenter of σd to the barycenter of σd−1 = (12 . . . d) in these coordinates

then is

l̂σ0 =

∣∣∣∣∣
1

d+ 1

d∑

i=0

xi −
1

d

d∑

i=1

xi

∣∣∣∣∣ =
∣∣∣∣∣d x0 −

1

d(d + 1)

d∑

i=1

xi

∣∣∣∣∣ , (B.10)

and choosing coordinates where x0 is the origin and using xi · xj = gij =
1
2

(
l20i + l20j − l2ij

)
[88] this

reduces to

l̂σ0 =
1

d(d+ 1)

√√√√
(

d∑

i=1

xi

)2

=
1

d (d+ 1)

√∑

i

x2i − 2
∑

(ij)

xi · xj

=
1

d (d+ 1)

√
d
∑

i

l20i −
∑

(ij)

l2ij . (B.11)

Besides the simple two dimensional case this formula was also proven before for the tetrahedron

(theorem 187 in [89]).

B.3 Circumcentric dual volumes

In the circumcentric case, in d = 2 one gets dual edge lengths from the circumradius Rijk =
lij likljk
4Aijk

:

l̂
(ijk)
jk =

√
R2

ijk −
(
ljk
2

)2

=
ljk
2

√
l2ij l

2
ik

4A2
ijk

− 1

=
ljk

4Aijk

√
l4ij + l2jk + l2ki − l2ij l2ik − 2(l2jkl

2
ij + l2jkl

2
ik) . (B.12)

Since

4l2jkl
2
ik − 16A2

ijk = l4ij + l4jk + l4ki − 2(l2jkl
2
ij + l2jkl

2
ik − l2ij l2ik)

= (l2ij + l2ik − l2jk)2 , (B.13)

this simplifies to

l̂
(ijk)
jk =

l2ij + l2ik − l2jk
4Aijk

ljk
2
. (B.14)

The matrix elements of the Laplacian are

w(ijk)(jkl)

Aijk

=
1

Aijk

2

±
√

l2ij l
2
ik

4A2
ijk

− 1±
√

l2
jl
l2
kl

4A2
jkl

− 1

(B.15)

=
4

±
√
l2ij l

2
ik − 4A2

ijk ±
Aijk

Ajkl

√
l2jll

2
kl − 4A2

jkl

=
8

±
(
l2ij + l2ik − l2jk

)
± Aijk

Ajkl

(
l2jl + l2kl − l2jk

) . (B.16)

For d = 3, there is a formula relating the circumradius R of the tetrahedron (ijkl) to the area Aijkl

of a triangle with the product of opposite edge lengths in the tetrahedron as its edge lengths [89]:

6VijklRijkl = Aijkl . (B.17)
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The circumcentric dual length to a face (ijk) thus is

l̂
(ijkl)

l̂
=
√
R2

ijkl −R2
ijk =

√
(2AijkAijkl)

2 − (3lij ljklkiVijkl)
2

12AijkVijkl
, (B.18)

and the Laplace weight

w(ijkl)(ijkm) =
12A2

ijkVijkl
√
(2AijkAijkl)

2 − (3lij ljklkiVijkl)
2
+ Vijkl

√(
2AijkAijkm

Vijkm

)2
− (3lijljklki)

2

. (B.19)

A simplification to avoid the square roots, as in d = 2, remains to be found.

C Simple example: degenerate triangulation of the d-Sphere

To illustrate the formalism we consider as an example the triangulation of the d-sphere Sd by two

d-simplices labeled a, b with the same vertices 1, 2, . . . , d + 1 which are glued along all their faces

(1, . . . , î, . . . d+ 1). The weights of the Laplacian are w(1,...,̂i,...,d+1) = V(1,...,̂i,...,d+1)/V⋆(1,...,̂i,...,d+1)

but in the end only the degrees D = Da = Db =
∑

(1,...,̂i,...,d+1) w(1,...,̂i,...,d+1) enter in this specific

example:

(∆φ)a =
1

Va

∑

(1,...,̂i,...d+1)

w(1,...,̂i,...,d+1) (φa − φb) =
D

Va
(φa − φb) , (C.1)

and for the simplex b accordingly. The eigenvalues of the Laplacian are λ0 = 0 and λ1 = V D/(VaVb),

which directly give the heat trace and spectral dimension.

The eigenvectors eλ0
σ = (1, 1)/

√
2 and eλ1

σ = (Vb,−Va)/
√
2VaVb are normed to a constant

momentum basis measure of the inverse of the average volume per simplex

Vλ0 = Vλ1 =
2

V
, (C.2)

and it is easily checked that they are orthogonal. Then the heat kernel coefficients are

Kσσ′(τ) =
1

V

(
Va(1 +

Vb

Va
e
− V D

VaVb
τ
) Va(1− e−

V D
VaVb

τ
)

Vb(1− e−
V D
VaVb

τ
) Vb(1 +

Va

Vb
e
− V D

VaVb
τ
)

)
, (C.3)

and we can explicitly check that

Kσσ′(τ) →
τ→∞

(
1
Va

0

0 1
Vb

)
(C.4)

and that its trace is just

P(τ) = 1

V

(
1 + e

− V D
VaVb

τ
)
. (C.5)
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