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FLOWING MAPS TO MINIMAL SURFACES: EXISTENCE AND

UNIQUENESS OF SOLUTIONS

MELANIE RUPFLIN

Abstract. We study the new geometric flow that was introduced in [11] that evolves
a pair of map and (domain) metric in such a way that it changes appropriate ini-
tial data into branched minimal immersions. In the present paper we focus on the
existence theory as well as the issue of uniqueness of solutions. We establish that a
(weak) solution exists for as long as the metrics remain in a bounded region of mod-
uli space, i.e. as long as the flow does not collapse a closed geodesic in the domain
manifold to a point. Furthermore, we prove that this solution is unique in the class
of all weak solutions with non-increasing energy. This work complements the paper
[11] of Topping and the author where the flow was introduced and its asymptotic
convergence to branched minimal immersions is discussed.

1. Introduction

Let M be a smooth closed orientable surface and let (N,GN ) be a (fixed) closed smooth
Riemannian manifold of arbitrary dimension that we view as being isometrically im-
mersed in R

K for some K ∈ N.

For g a Riemannian metric on M and a map u : (M, g) → (N,GN ) the Dirichlet energy
is defined as

E(u, g) :=
1

2

ˆ

M

|du|2 dvg.

We remark that (u, g) is a critical point of E if and only if u is harmonic and weakly
conformal, i.e. a branched minimal immersion or a constant map. In the present paper
we establish the existence theory for the natural gradient flow of E (considered as a
function of both the map and the domain metric) which was introduced in [11]. We refer
to this joint paper of Topping and the author for the construction and the geometric
background of this flow, but for convenience here recall the main points that led to the
definition in [11].

We consider the negative gradient flow of E considered as a function of both the map
and the domain metric, but taking into account the symmetries of E, that is the in-
variance under conformal variations of the domain as well as under the pull-back by
diffeomorphisms applied simultaneously to the metric and the map component. That is
we consider E and its gradient flow on the set

A = {[(u, g)]; g ∈ Mc, u ∈ C∞(M,N)}

of equivalence classes where we identify (u, g) ∼ (u ◦ f, f∗g) for smooth diffeomorphisms
f :M → M homotopic to the identity. Here Mc stands for the set of smooth metrics of
constant (Gauss-)curvature c = 1, 0,−1 for surfaces of genus γ = 0, 1 respectively γ ≥ 2,
with unit area in case γ = 1.
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The tangent space of Mc splits orthogonally into a horizontal part consisting of the real
parts of holomorphic quadratic differentials and a vertical part along the fibers of the
action of diffeomorphisms on Mc, i.e. the space of Lie-derivatives of the metric, compare
Lemma 2.5 below. This canonical splitting allows us in [11] to represent solutions of the
L2-negative gradient flow of E on A by the solutions of the system

∂tu = τg(u)(1.1a)

dg

dt
=
η2

4
Re(PH

g (Φ(u, g))).(1.1b)

Here τg(u) = trg(∇g(du)) = ∆gu + Ag(u)(∇u,∇u), A the second fundamental form of
N →֒ R

K , denotes the tension field of u : (M, g) → (N,GN ) and Φ(u, g) stands for the
Hopf-differential, i.e. the quadratic differential given in conformal coordinates z = x+ iy
of (M, g) as Φ(u, g) = φdz2 for φ = |ux|

2
− |uy|

2
− 2i〈ux, uy〉. Furthermore PH

g denotes

the L2-orthogonal projection from the space of quadratic differentials onto the finite
dimensional subspace of holomorphic quadratic differentials on (M, g). Finally η > 0 is
a free coupling constant related to the choice of L2-metric on A.

As the main result of this paper we prove the following existence and uniqueness theorem

Theorem 1.1. To any given initial data (u0, g0) ∈ C∞(M,N)×Mc there exists a weak
solution (u, g) of (1.1) defined on a maximal interval [0, T ), T ≤ ∞, that satisfies the
following properties

(i) The solution (u, g) is smooth away from at most finitely many singular times
Ti ∈ (0, T ) at which ‘harmonic spheres bubble off’. More precisely as t ր Ti
energy concentrates at a finite number of points S(Ti) ⊂M and suitable rescalings
of the maps u(t) around points in S(Ti) converge as tր Ti to (a bubble-tree of)
non-trivial harmonic maps from R

2 ∪ {∞} ∼= S2 to N .
(ii) As t → Ti the maps u(t) converge weakly in H1 and smoothly away from the

set S(Ti) to a limit u(Ti) ∈ H1(M,N). Furthermore, the metrics g(t) converge
smoothly to an element g(T ) ∈ Mc; in fact, the flow of metrics is Lipschitz-
continuous with respect to all Cm metrics on Mc across singular times.

(iii) The energy t 7→ E(u(t), g(t)) is non-increasing.
(iv) The solution exists as long as the metrics do not degenerate in moduli space;

i.e. either T = ∞ or the length ℓ(g(t)) of the shortest closed geodesic in (M, g(t))
converges to zero as tր T .

Furthermore, the solution is uniquely determined by its initial data in the class of all
weak solutions with non-increasing energy.

Definition 1.2. We call (u, g) ∈ H1
loc(M × [0, T ), N)×C0([0, T ),M−1) a weak solution

of (1.1) if u solves (1.1a) in the sense of distributions and if g is piecewise C1 (viewed
as a map from [0, T ) into the space of symmetric (0, 2) tensors equipped with any Ck

metric, k ∈ N) and satisfies (1.1b) away from times where it is not differentiable.

We remark that the assumption on the initial data in Theorem 1.1 can be weakened to
u0 ∈ H1(M,N) with the resulting solution being smooth away from finitely many times,
possibly including T1 = 0.

On intervals where the obtained solution (u, g) is smooth, the energy decays by

(1.2)
d

dt
E(u(t), g(t)) = −

ˆ

M

|τg(u)|
2 dvg −

η2

16
‖Re[PH

g (Φ(u, g))]‖2L2(M,g(t)),

so that if T = ∞, both the tension field as well and the holomorphic part of the Hopf-
differential converge to zero as t→ ∞ suitably. In the joint paper [11] of Topping and the
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author we indeed prove that if the metric does not degenerate even as t → ∞, then the
full Hopf-differential (sub)converges to zero, resulting in a limit that is both harmonic
and weakly conformal and thus, if non-constant, a minimal immersion away from at most
finitely many branch-points [6]. More precisely, in [11], we prove

Theorem 1.3 ([11], Thm 1.4). In the setting of Theorem 1.1, if the length ℓ(g(t)) of the
shortest closed geodesic of (M, g(t)) is uniformly bounded below by a positive constant,
then there exist a sequence of times ti → ∞ and a sequence of orientation-preserving
diffeomorphisms fi :M → M such that

f∗
i g(ti) → ḡ and u(ti) ◦ fi → ū

converge to a metric ḡ ∈ Mc and a branched minimal immersion ū or a constant map.
Here the convergence of metrics is smooth, while the maps converge weakly in H1(M,N)

and strongly in W 1,p
loc (M\S) for any p ∈ [1,∞) away from a finite set of points where

energy concentrates.

For suitable initial data, such as incompressible maps, a degeneration of metrics can
be excluded so that the flow (sub)converges (up to reparametrisations) to a branched
minimal immersion. In [11] we thus recover the well known results on the existence of
branched minimal immersions with given action on the level of fundamental groups of
Schoen-Yau [14] and Sacks-Uhlenbeck [13] with a flow approach.

Solutions of (1.1) that degenerate in moduli space will be analysed in a forthcoming
paper [12] by Topping, Zhu and the author.

Remark 1.4. For surfaces of genus less than two the structure of the flow (1.1) is
simplified considerably and the existence of solutions is known; for spheres the space of
holomorphic quadratic differentials is trivial so (1.1) reduces to the harmonic map flow
of Eells and Sampson [3] for which existence of global weak solutions was proven in the
seminal paper of Struwe [15]. For maps from a surface of genus 1 it is shown in [11] that
(1.1) agrees with a flow that was introduced and studied by Ding, Li and Liu in [1]. In this
special case the flow of metrics is reduced to two scalar ODEs for parameters describing
a global horizontal submanifold of the space of metrics. Furthermore, the completeness
of Teichmüller space prevents a degeneration of the metric at finite times, leading to the
existence of global (weak) solutions for all initial data as obtained in [1].

In this paper we thus focus on the analysis of the flow from general surfaces of genus
γ ≥ 2.

Outline of the paper

The paper consists of three main parts. In the first section we study the properties of
horizontal curves, i.e. curves that move in the direction of the real part of holomorphic
quadratic differentials. Using ideas from Teichmüller theory, we obtain strong estimates
for all horizontal curves, and thus in particular for the metric component of the flow,
under the sole condition that we stay away from the boundary of moduli space.

In the second section we prove the existence of solutions as claimed in Theorem 1.1. First
we obtain short-time existence of smooth solutions based on the properties of horizontal
curves derived in the first section. In a second step we then analyse the possible finite
time singularities of the flow. On the one hand, we prove that the only way for the
metric component to become singular is by a degeneration in moduli space. On the other
hand, we obtain that as long as the metric component remains regular, the behaviour of
solutions to (1.1a) is similar to the one of solutions of the harmonic map flow as described
by Struwe in [15]; the singularity is caused by the bubbling off of harmonic spheres and
the flow can be continued past the singular time by a weak solution.
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Finally we consider the question of uniqueness. We show uniqueness not just for solutions
of (1.1) satisfying properties (i)-(iii) of Theorem 1.1 but in the general class of weak
solutions with non-increasing energy. This represents the analogue of the uniqueness
results [4] and [5] of Freire for the harmonic map flow.

Remark 1.5. For general curves within M−1, satisfying an L2 bound on the velocity
such as (1.2), singularities can form without the metrics degenerating in moduli space.
For the flow

(1.3) ∂tu = τg(u),
dg

dt
=
η2

4
Re(Φ(u, g)),

which we would obtain if we were to consider the gradient flow of E without taking
into account the symmetries, we thus would not have a characterisation of the maximal
existence time of solutions as statement (iv) of Theorem 1.1. For (1.3) we thus could
not expect to obtain the global solutions needed to evolve pairs (u, g) to critical points
of the energy, i.e. to branched minimal immersions, even for incompressible initial data.

Acknowledgements: The author thanks Peter Topping for valuable discussions. This
work was partially supported by The Leverhulme Trust.

2. Horizontal curves

We consider general horizontal curves, that is curves moving in the direction

d

dt
g = Re(Ψ(t))

of holomorphic quadratic differentials Ψ(t) = ψ(t)dz2 on (M, g(t)), z = z(t) a complex
coordinate on (M, g(t)). Key for the analysis of such curves is a good understanding of
the dependence on the metric g ∈ M−1 of the horizontal space

H(g) := {Re(Φ) : Φ = φdz2 holomorphic quadratic differential on (M, g)}

and of the corresponding L2-orthogonal projection PH
g . What we essentially need is a

quantified version of the idea that a smooth variation of the metric leads to a smooth
variation of the complex structure, which in turn results in a smooth change of the space
of holomorphic quadratic differentials and of PH

g .

We remark that there are several equivalent points of view that one can take to study
horizontal tensors and curves as well as to study the flow (1.1). Here we follow the dif-
ferential geometrical approach to Teichmüller theory as presented in the book of Tromba
[17]. We view the space of horizontal tensors as a subspace H(g) of the space Sym2(M)
of all real symmetric (0, 2) tensors of class L2, with H(g) characterised by

H(g) = {h ∈ Sym2(M) : trg(h) = 0 and δgh = 0},

δg the divergence operator (induced by the Levi-Cività connection ∇g). We then consider
the projection

Pg : Sym2(M) → H(g)

that is orthogonal with respect to the L2(M, g)-inner product

〈k, h〉L2(M,g) :=

ˆ

M

gijglmkilhjm dvg.

This projection Pg, for which we shall derive an explicit formula later on, is related to
the projection PH

g from the space of quadratic differentials to the space of holomorphic
quadratic differentials by

(2.1) Pg(Re(ψdz
2)) = Re(PH

g (ψdz2))

for any quadratic differential ψdz2 on (M, g).
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We first remark that the set of hyperbolic metrics M−1 with smooth coefficients (in the
given coordinate charts) is not a manifold. On the other hand for any s > 3 the set
Ms

−1 of hyperbolic metrics with coefficients in the Sobolev space Hs(M) is a smooth
submanifold of the (half-)space of all Hs metrics on M , see [17] Theorem 1.6.1.

We shall think of the projection Pg as a map from this Banach manifold Ms
−1 into the

space L(Sym2(M), TMs
−1) of linear functions mapping symmetric (0, 2)-tensors into the

tangent bundle of Ms
−1 and prove that it is locally Lipschitz.

Proposition 2.1. For any smooth hyperbolic metric g0 ∈ M−1 and every s > 3
there exists a neighbourhood W of g0 in the Banach manifold Ms

−1 and a constant
C = C(g0, s) < ∞ such that the following holds true: For every tensor k ∈ Sym2(M)
and every curve g ∈ C1([0, T ),Ms

−1) contained in W we have

(2.2) ‖Pg(k)‖Hs ≤ C · ‖k‖L2(M,g)

and

(2.3) ‖
d

dt
Pg(t)(k)‖Hs ≤ C · ‖

d

dt
g(t)‖Hs · ‖k‖L2(M,g).

Here and in the following the Sobolev norms ‖ · ‖Hs are to be computed in fixed local
coordinate charts of M .

Based on this local statement about the projection Pg, we then derive the following result
for horizontal curves contained in compact regions of moduli space.

Proposition 2.2. For every ε > 0 and every s > 3 there exists a number θ = θ(ε, s) > 0
such that the following holds true. Let g0 ∈ Ms

−1 be any hyperbolic metric of class
Hs for which the length ℓ(g0) of the shortest closed geodesic in (M, g0) is no less than
ε. Then there is a number C = C(g0, s) < ∞ such that for any horizontal curve g ∈
C1([0, T ),Ms

−1) with g(0) = g0 and of L2-length

L(g) =

ˆ T

0

‖
d

dt
g(t)‖L2(M,g(t))dt ≤ θ

we have

(2.4) ‖
d

dt
g(t)‖Hs ≤ C‖

d

dt
g(t)‖L2(M,g(t)) for every t ∈ [0, T ).

For tori the corresponding result is obtained as a consequence of the existence of a
smooth global horizontal slice, i.e. of a finite dimensional smooth submanifold of M0,
parametrised over Teichmüller space, whose tangent space at each point is horizontal
and which thus contains all horizontal curves passing through g0.

While for surfaces of genus γ ≥ 2 the space of horizontal tensors H(g) is still finite
dimensional, dimR(H(g)) = 6γ − 6 by the Riemann-Roch theorem, the distribution g 7→
H(g) is no longer integrable, compare [17], section 5.3, so Proposition 2.2 cannot be
reduced to a statement about curves on a finite dimensional manifold.

Proof of Proposition 2.1. We prove Proposition 2.1 in two steps; we show first that esti-
mates of the form (2.2) and (2.3) hold true for metrics contained in a so called slice and
then in a second step pull-back these estimates to give the claim of Proposition 2.1 for
general metrics in a neighbourhood of g0. To do so we make use of ideas from Teichmüller
theory as explained in the book of Tromba [17], chapter 2.

So let g0 ∈ M−1 be any given metric and let s > 3 be fixed. Following [17] we define a
small slice around g0 by

(2.5) S := {g = ρ(h) · (g0 + h) : h ∈ U ⊂ H(g0)} ⊂ M−1
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for U = U(g0, s) a suitably small neighbourhood of 0 ∈ H(g0) chosen later on. Here the
function ρ(h) : M → R is to be chosen such that ρ(h) · (g0 + h) has constant curvature
−1 and is uniquely determined by this property according to Poincaré’s theorem.

The key feature of this finite dimensional submanifold of Ms
−1 is that it provides a local

model of Ms
−1/D

s+1
0 , with Ds+1

0 the set of Hs+1-diffeomorphisms that are homotopic to
the identity

Theorem 2.3 ([17], Thm 2.4.3). For any number s > 3, any g0 ∈ M−1 and S = S(g0, s)
a sufficiently small slice around g0, there are neighbourhoods W ⊂ Ms

−1 of g0 and V ⊂

Ds+1
0 of id for which the map

S × V ∋ (g, f) 7→ f∗g ∈ W

is a diffeomorphism.

For a proof of this theorem as well as for further insight into Teichmüller theory we refer
to the book of Tromba [17]. We remark that the above result remains valid if we replace
the slice S by a smaller slice defined by (2.5), for appropriate new neighbourhoods of id
in Ds+1

0 and of g0 in Ms
−1, but that the theorem does not give the existence of a uniform

slice for which the statement is valid for all numbers s > 3. We furthermore stress that
the theorem demands that the metric g0 is not only in Ms

−1 but smooth; this in turn
implies that all metrics contained in a small slice S are smooth and thus satisfy stronger
estimates than just Hs bounds, in particular

Lemma 2.4. For a sufficiently small slice S around g0 ∈ M−1 there exists a constant
C = C(s, g0) <∞ such that for all metrics g1,2 ∈ S

(2.6) ‖g1 − g2‖Hs+1 ≤ C · dS(g1, g2).

Here we denote by dS the Hs metric on S, i.e. consider S as a submanifold of the Banach
manifold Ms

−1.

Apart from the finite dimensionality of H(g0), and thus of S, the essential observation
leading to the above estimate is that the conformal factor ρ(h) can be characterised as
the unique solution of an elliptic PDE, compare [17] section 1.5, leading to a smooth
dependence of ρ(h) on h ∈ U .

Based on these stronger estimates on elements of the slice, we can analyse the dependence
of Pg on g ∈ S using an explicit formula for Pg that we shall derive now.

We first recall the following canonical splitting of the tangent space TgM
s
−1 into the

horizontal and vertical space, see Theorem 2.4.1 of [17].

Lemma 2.5. For any g ∈ M−1 the tangent space TgM
s
−1 splits L2-orthogonally into

H(g) and the space {LXg} of Lie-derivatives. More precisely, given any k ∈ TgM
s
−1

there is a unique vector field X (of class Hs+1) such that

trg(k − LXg) = 0 and δg(k − LXg) = 0

and X can be characterised as the unique solution of the elliptic PDE

(2.7) δgδ
∗
gX = −δgk,

δ∗gX = −LXg the L2(M, g)-adjoint of δg.

In order to define the orthogonal projection of a general symmetric (0, 2) tensor k onto
the horizontal space H(g), we first map k onto an element of TgM

s
−1 using
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Lemma 2.6. For any g ∈ M−1 and any symmetric (0, 2) tensor k of class Hs there
exists a unique function µ ∈ Hs(M,R) such that

k − µ · g ∈ TgM
s
−1.

The function µ is characterised as the unique solution of the equation

(2.8) −∆gµ+ 2µ = 2DR(g)(k),

R(g) the Gauss curvature of (M, g).

Given any g ∈ M−1, we now claim that the orthogonal projection Pg : Sym2(M) → H(g)
is given by

(2.9) Pg(k) := k − µ(k, g) · g − LX(k−µ(k,g)·g,g)g

where X(·) and µ(·) stand for the corresponding solutions of (2.7) and (2.8). Indeed,
Pg|H(g) = id and for general k ∈ Sym2(M) the tensor given by (2.9) is well defined and
divergence- as well as trace-free with respect to g, i.e. an element of H(g). Furthermore,
k − Pg(k) stands orthogonal to any h ∈ H(g) as

〈h, k − Pg(k)〉L2(M,g) = 〈h, µ · g〉L2 + 〈h, LXg〉L2 =

ˆ

M

µ · trg(h) dvg + 〈h,−δ∗gX〉L2

= −〈δgh,X〉L2 = 0.

To analyse the dependence of Pg on g we now use that X and µ are characterised by
elliptic PDEs for which the following uniform estimates apply

Lemma 2.7. Let s > 3 and g0 ∈ M−1 be given and let S = S(g0, s) be a sufficiently
small slice. Then there exists a constant C = C(s, g0) < ∞ such that the following
claims hold true for every g ∈ S. For every vector field Y there is a unique solution of
the equation

(2.10) δgδ
∗
gX = Y

and for any 0 ≤ l ≤ s+ 1 we have

‖X‖Hl ≤ C · ‖Y ‖Hl−2 .

Similarly, the unique solution µ of

(2.11) −∆gµ+ 2µ = f ∈ H l−2(M,R),

satisfies
‖µ‖Hl ≤ C · ‖f‖Hl−2, 0 ≤ l ≤ s.

We remark that the occurring Sobolev norms with negative exponent are to be under-
stood as the norms of the coefficients in the dual spaces H−k(Ω) = (Hk

0 (Ω))
∗, Ω ⊂ R

2.

The reason why the solution X of (2.10) is unique is that we work on a surface that has
negative curvature. Thus the kernel of δgδ

∗
g , which agrees with the space of Killing-fields,

is trivial, see e.g. [7], Thm. 5.3. Elliptic regularity theory combined with the Fredholm
alternative theorem then immediately gives the estimates for each individual g ∈ S.
These estimates are indeed uniform since all metrics in S are contained in a small (Hs)
neighbourhood of g0.

We can now give the proof of Proposition 2.1, first for metric contained in the slice.

Let g0 ∈ M−1, s > 3 and let S = S(g0, s) be a small slice as defined above. Combining
the elliptic estimates of Lemma 2.7 with (2.9) and the bounds on g given in Lemma 2.4,
we find that for every 0 ≤ l ≤ s and every k ∈ Sym2(M)

(2.12)
‖Pg(k)‖Hl ≤ ‖k‖Hl + C‖µ‖Hl + C‖X‖Hl+1

≤ ‖k‖Hl + C(‖DR(g)(k)‖Hl−2 + ‖δgk‖Hl−1) ≤ C‖k‖Hl .
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Here and in the following we crucially use that Lemma 2.4 gives bounds on s+1 derivatives
of g so that we may estimate the Hs and not just the Hs−1 norm of Lie-derivatives LXg.

Similarly, given any C1 curve g in the slice, we differentiate the corresponding equations
(2.7) and (2.8) characterising X and µ. This leads to elliptic PDEs of the form (2.10)
and (2.11) for d

dtX(t) and d
dtµ(t). Applying Lemma 2.7 and making use of the bound

‖ d
dtg‖Hs+1 ≤ C · ‖ d

dtg‖Hs of Lemma 2.4, we obtain

(2.13) ‖
d

dt
Pg(t)(k)‖Hl ≤ C‖

d

dt
g‖Hs · ‖k‖Hl

for any (sufficiently smooth) tensor k ∈ Sym2(M) and any 0 ≤ l ≤ s.

In order to establish the estimates (2.2) and (2.3) claimed in Proposition 2.1 we now
need to prove that the two estimates (2.12) and (2.13) obtained above remain valid with
the H l norm on the right hand side replaced with the L2 norm. We use

Claim: There exists C <∞ such that for all g ∈ S and all h ∈ H(g)

‖h‖Hs ≤ C‖h‖L2(M,g).

Proof of Claim: The estimate trivially holds true for g = g0 (or indeed for any one fixed
metric) since H(g0) is a finite dimensional space of smooth tensors. For general g ∈ S
we can parametrize H(g) over H(g0) by restricting the projection Pg onto H(g0). Using
estimate (2.12), we then get

(2.14) ‖Pg(k)‖Hs ≤ C‖k‖Hs ≤ C‖k‖L2 for every k ∈ H(g0), g ∈ S,

with ‖ · ‖L2 denoting one of the equivalent L2(M, g) norms, g ∈ S, say ‖ · ‖L2(M,g0).

On the other hand, integrating (2.13) for l = 0 along a suitable curve of metrics con-
necting g0 to g and making use of the fact that Pg0 |H(g0) = id, we obtain that for any
k ∈ H(g0)

‖k‖L2 ≤ ‖Pg(k)− k‖L2 + ‖Pg(k)‖L2 ≤ CdS(g, g0) · ‖k‖L2 + ‖Pg(k)‖L2

≤
1

2
‖k‖L2 + ‖Pg(k)‖L2

provided the slice is chosen small enough. Combined with estimate (2.14) this implies the
claim for tensors in the image Pg(H(g0)) ⊂ H(g) which must agree with H(g) because
Pg|H(g0) is injective and dim(H(g)) = dim(H(g0)).

Combining this claim with the estimate (2.12) for l = 0 we have thus proved the first
claim (2.2) of Proposition 2.1 for general tensors k ∈ Sym2(M) and for metrics g ∈ S in
the slice.

To obtain an improved version of (2.13), we write

Pg(t)(k) = Pg(t)

(

Pg(t0)(k)
)

+ Pg(t)

(

Pg(t)(k)− Pg(t0)(k)
)

and estimate the derivative of the right hand side at t = t0. Estimate (2.13), applied
first for l = s and then for l = 0, combined with the estimate (2.2) we just proved then
implies that for any k ∈ Sym2(M)

‖(
d

dt
Pg(t)(k))(t0)‖Hs ≤ ‖

d

dt
g‖Hs · ‖Pg(t0)(k)‖Hs + ‖Pg(t0)(

d

dt
Pg(t)(k))‖Hs

≤ C‖
d

dt
g‖Hs · ‖k‖L2 + ‖

d

dt
Pg(t)(k)‖L2 ≤ C‖

d

dt
g‖Hs · ‖k‖L2.

This completes the proof of Proposition 2.1 for metrics g contained in the slice. We now
pull back these estimates to the full Hs neighbourhoodW of g0 given by the slice-theorem
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2.3. The key observation allowing us to do so is that the projection onto the horizontal
space commutes with the pull-back

f∗Pg(k) = Pf∗g(f
∗k).

Thus, given a C1 curve g in W , we write it (uniquely) in the form g(t) = f(t)∗ḡ(t), for
f(t) ∈ V ⊂ Ds+1

0 and ḡ(t) ∈ S and recall that ‖ d
dt ḡ‖Hs and ‖ d

dtf‖Hs+1 are controlled

by ‖ d
dtg‖Hs , see Theorem 2.3. Indeed, since the diffeomorphisms f are contained in

a neighbourhood of the identity, also ‖ d
dtf

−1‖Hs+1 is bounded in this way. Applying
estimates (2.2) and (2.3) for ḡ ∈ S, we thus find

‖Pg(k)‖Hs = ‖f∗(Pḡ((f
−1)∗k)‖Hs ≤ C · ‖Pḡ((f

−1)∗k)‖Hs ≤ C‖k‖L2

as well as

‖
d

dt
Pg(t)(k)‖Hs ≤ C · ‖

d

dt
f‖Hs+1 · ‖Pḡ((f

−1)∗k)‖Hs + C‖
d

dt
(Pḡ(t)((f(t)

−1)∗k)‖Hs

≤ C ·
(

‖
d

dt
f‖Hs+1 + ‖

d

dt
ḡ‖Hs + ‖

d

dt
f−1‖Hs+1

)

· ‖k‖L2

≤ C · ‖
d

dt
g‖Hs · ‖k‖L2

for any tensor k ∈ Sym2(M) and any curve in W as claimed in Proposition 2.1. �

Proof of Proposition 2.2. For any number s > 3 we define a function θ : Ms
−1 → [0,∞]

as follows. For any metric g0 ∈ Ms
−1 we let θ(g0) be the supremum of all numbers

θ ≥ 0 such that there exists a number C < ∞ for which estimate (2.4) holds true for
all (piecewise) horizontal curves in Ms

−1 of length LL2(g) ≤ θ and with g(0) = g0. We
stress that both this constant C, as well as the constant in Proposition 2.2, are allowed
to depend on the metric g0.

We first claim that the function θ is strictly positive for all smooth metrics. So let
g0 ∈ M−1 and let W be the neighbourhood of g0 in Ms

−1 for which Proposition 2.1

applies. Writing the velocity of any horizontal curve as d
dtg = Pg(

d
dtg) and applying

Proposition 2.1 we find that

‖
d

dt
g‖Hs ≤ C‖

d

dt
g‖L2(M,g)

for as long as the curve is contained in W . But W is an Hs neighbourhood, so this
estimate implies that any curve of small enough L2 length and with g(0) = g0 is fully
contained in W and thus that indeed θ(g0) > 0.

Secondly, we observe that θ is invariant under the pull-back by diffeomorphisms. More
precisely let Ds+1 be the set of all diffeomorphism of class Hs+1 (not necessarily homo-
topic to the identity). Then we claim that for any g ∈ Ms

−1 and any f ∈ Ds+1

θ(f∗g0) = θ(g0).

Indeed, pulling-back any horizontal curve g in Ms
−1 by a fixed diffeomorphism f ∈ Ds+1

results in another horizontal curve of the same L2-length and with velocity bounded
by ‖ d

dt(f
∗g(t))‖Hs ≤ C · ‖ d

dtg(t)‖Hs , with C < ∞ a constant depending on f . But we
defined θ(g) asking only for an estimate of the form (2.4) to be satisfied for some constant
C <∞, allowed to depend on the considered metric, so the claim follows.

We conclude that θ induces a positive map θ̄ on moduli space M−1/D and now want to
prove that this function is continuous with respect to the Weyl-Peterson metric dWP .
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We recall that the length of a C1 curve [g] in moduli space (with respect to the Weyl-
Peterson metric) is given by

LWP ([g]) =
1

2
LL2(g̃)

for g̃ a ‘horizontal lift’ of [g], that is a horizontal curve g̃ ∈ M−1 with [g̃(t)] = [g(t)] for
each t.

Given any two points [g1] and [g2] in M−1/D we now claim that

θ̄([g2]) ≥ θ̄([g1])− 2 · dWP ([g1], [g2]),

and thus switching the roles of [g1] and [g2] that θ̄ is Lipschitz continuous on moduli space
(M−1/D, dWP ). So let δ > 0 be any fixed number and choose a (piecewise) horizontal
path g̃ of L2-length less than 2 · dWP ([g1], [g2])+ δ/2 that connects a representative f∗g1
of [g1] with g2. Let now g be any given (piecewise) horizontal curve with g(0) = g2 and of
length LL2(g) ≤ θ̄([g1])− 2dWP ([g1], [g2])− δ. Precomposing it with g̃ we obtain a curve
G of length LL2(G) ≤ θ̄([g1])−δ/2 = θ(f∗g1)−δ/2 and with starting point G(0) = f∗g1.
By definition of θ(f∗g1), the estimate (2.4) is satisfied for the extended curve G and thus
in particular for g itself, with a constant C depending on f∗g1 and possibly δ but not on
g. We obtain the claim since δ > 0 can be chosen arbitrarily small.

Given any number ε > 0 we now consider the subset Kε of moduli space consisting of
the equivalence classes of smooth metrics with shortest closed geodesic of length no less
than ε. This set Kε is compact by the Mumford compactness theorem, see e.g. [17], p.75.
As a positive and continuous function, θ̄ is thus bounded away from zero uniformly on
Kε which implies Proposition 2.2 for smooth metrics.

For non-smooth metrics g ∈ Ms
−1 \M−1, we finally obtain the claim of Proposition 2.2

using the invariance of θ under Hs+1 diffeomorphisms as well as

Lemma 2.8. Given any g ∈ Ms
−1 there exists a smooth metric ḡ ∈ M−1 and a diffeo-

morphism f of class Hs+1 such that

g = f∗ḡ.

For the sake of completeness we provide a proof of this fact in the appendix.

For most arguments in the rest of the paper the estimates of Proposition 2.1 and 2.2,
controlling the L2-orthogonal projection in terms of the L2 norms of the involved tensors,
would be sufficient, though would in some cases lead to slightly weaker regularity results.
For the proof of uniqueness of weak solutions carried out in section 4 it is however crucial
that we can extend Pg continuously onto the space of tensors with finite L1 norm

Lemma 2.9. For any g0 ∈ M−1 and any s > 3 there exists a neighbourhood W of g0
in Ms

−1 such that the following holds true. The map Pg is Lipschitz-continuous as a
map from W to the space of linear maps from (Sym2(M), ‖‖L1) to the tangent bundle
TMs

−1, i.e. there exists a constant C = C(g0, s) < ∞ such that for all g1, g2 ∈ W and
k ∈ Sym2(M)

(2.15) ‖Pg1(k)‖Hs ≤ C · ‖k‖L1 and ‖Pg1(k)− Pg2(k)‖Hs ≤ C · dMs
−1
(g1, g2) · ‖k‖L1.

We remark that there is no need to specify with respect to which metric g ∈ W the L1

norm is computed as all metrics in W are equivalent.

We prove these refined estimates on Pg using the following consequence of Proposition
2.1
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Lemma 2.10. For any g0 ∈ M−1 and any s > 3 there exists a neighbourhood W of
g0 in Ms

−1 and a constant C < ∞ so that we can assign to each metric g in W an

L2(M, g)-orthonormal basis {Θj(g)}6γ−6
j=1 of H(g) satisfying

‖Θj(g1)−Θj(g2)‖Hs ≤ C · dMs
−1
(g1, g2), gi,2 ∈W, j = 1 . . . 6γ − 6 = dim(H(g))

Lemma 2.9 then immediately follows from Pg(k) =
∑

j〈k,Θ
j(g)〉L2(M,g)Θ

j(g).

Proof of Lemma 2.10. Let g0 ∈ Ms
−1 and let W be the neighbourhood of g0 given by

Proposition 2.1. We fix any L2(M, g0)-orthonormal basis Θj(g0), j = 1 . . . 6γ − 6, of
H(g0) and define

Θj
0(g) := Pg(Θ

j(g0)).

According to Proposition 2.1 this auxiliary family of tensors depends continuously on g,

‖Θj
0(g1)−Θj

0(g2)‖Hs ≤ C · dMs
−1
(g1, g2)

so that {Θj
0} is a basis of H(g) provided the neighbourhood W is chosen sufficiently

small. Furthermore, as the map asigning to each metric g the inner products

g 7→ 〈Θj
0(g),Θ

k
0(g)〉L2(M,g)

is also Lipschitz-continuous on W , so are the coefficients aji of the orthonormal basis

Θj(g) =
∑j

i=1 a
j
i (g)Θ

i
0(g) of H(g) obtained by Gram-Schmidt orthogonalisation and

thus the basis itself. �

3. Existence of solutions

In this section we establish the existence of weak solutions to (1.1) satisfying the prop-
erties claimed in Theorem 1.1, in particular existing for all times unless the metric com-
ponent degenerates in moduli space. As a first step, we prove the following short-time
existence result

Lemma 3.1. For any initial metric g0 ∈ M−1 and any initial map u0 ∈ C∞(M,N)
there exists a smooth solution (u, g) of equation (1.1) to initial data (u(0), g(0)) = (u0, g0)
defined on an interval [0, T ), T = T (u0, g0) > 0.

Proof of Lemma 3.1. We first recall that the metric evolves by

(3.1)
dg

dt
=
η2

4
Re(PH

g (Φ(u, g))) =
η2

4
Pg(k(u, g)),

where k(u, g) = Re(Φ(u, g)), compare (1.1b) and (2.1).

To simplify notations and without loss of generality, we shall from now on consider the
flow with coupling constant η = 2. We also remark that computing the variation

d

ds
E(u, g + sl)|s=0 = −

1

4
〈Re(Φ(u, g)), l〉L2 for all l ∈ Sym2(M)

in local coordinate charts, allows us to write the real part of the Hopf-differential in
general (not necessarily conformal) coordinate charts as

k(u, g) = Re(Φ(u, g)) = 2u∗GN − 2e(u, g)g,

e(u, g) = 1
2 |∇u|

2
g = 1

2g
ij∂xiu · ∂xju the energy density.

Using the results of the previous section we can consider equation (1.1) as a system
consisting of a semilinear parabolic PDE coupled with a differential equation on a Banach
manifold Ms

−1 that is defined by a locally Lipschitz continuous vector field. In such a
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setting we obtain the existence of a classical solution on a short time interval using
a standard iteration argument, which, for the sake of completeness, we outline in the
appendix. Given any (u0, g0) ∈ C2,α(M,N) ×M−1 and any number s > 3 we obtain a
solution

(u, g) ∈ C2,1,α([0, Ts)×M,N)× C1([0, T ),Ms
−1)

of (1.1), defined on a maximal interval [0, Ts). This interval might a priori depend not
only on (u0, g0) but also on the Banach manifold Ms

−1 on which we solve (1.1b). Indeed,
the key step needed to prove that the obtained solution (u, g) is actually smooth is to
show that this is not the case. So suppose that for some 3 < s1 < s2 we have Ts1 6= Ts2 .
Since classical solutions of (1.1) are uniquely determined by their initial data, compare
section 4, we remark that the two solutions obtained for the different values of s agree
for as long as they both exist, that is until time Ts2 < Ts1 . Since the metric component
is continuous (as a map into Ms1

−1) up to time Ts1 there exists a number ε > 0 such
that the length ℓ(g(t)) of the shortest closed geodesic of (M, g(t)) is no less than ε on
the smaller interval [0, Ts2 ]. Using the Hs estimates of Proposition 2.2 this allows us to
conclude that g is C1 as a curve into Ms2

−1 on the closed interval [0, Ts2 ], compare with
the proof of Lemma 3.2 below.

Using Lemma 2.8, we then write g(Ts2) ∈ Ms2
−1 in the form g(Ts2) = f∗ḡ(Ts2) for an

Hs2+1 diffeomorphism f and a smooth metric ḡ ∈ M−1. Restarting the flow with the
pulled-back initial data (ū(Ts2), ḡ(Ts2)) = (u(Ts2) ◦ f

−1, (f−1)∗g(Ts2)) ∈ C2,α × M−1

we obtain a solution (ū, ḡ) of (1.1) in C2,1,α(M × I) × C1(I,Ms2
−1) on a time interval

I = [Ts2 , Ts2 +δ). But equation (1.1) is invariant under the pull-back by diffeomorphisms
applied simultaneously to both the map and the metric component and solutions of (1.1)
are unique. Thus the pull-back of (ū, ḡ) by f is nothing else than our original solution
(u, g) so that g is in C1([0, Ts2 + δ),Ms2

−1), leading to a contradiction.

At this point we are now in a position to argue by a standard bootstrapping argument,
using parabolic regularity theory to improve the regularity of u, as well as the explicit
formula for Pg given in (2.9) to analyse higher order time derivatives of g. We obtain
that (u, g) is indeed smooth. �

We remark that the results of section 2 allow us not only to establish short-time existence
of solutions to (1.1) but already give the following characterisation of the behaviour of
the metric component at a singular time

Lemma 3.2. Let (u, g) be a smooth solution of (1.1) defined (and smooth) on a maximal
interval [0, T1). Then one of the following three statements holds

(i) T1 = ∞, or
(ii) T1 <∞ but as tր T1 the metrics g(t) converge smoothly to a limit g(T1) ∈ M−1;

indeed g can be extended to a Lipschitz continuous curve from the closed interval
[0, T1] into each of the Banach manifold Ms

−1, s > 3, or
(iii) the metrics degenerate in moduli space at a finite time T1, i.e. limtրT1

ℓ(g(t)) =
0.

Proof of Lemma 3.2. Assume that T1 < ∞ and that the length of the shortest closed
geodesics in (M, g(t)) does not converge to zero

lim sup
tրT1

ℓ(g(t)) > ε > 0.

Then given any number s > 3 we let θ = θ(s, ε) > 0 be the constant of Proposition 2.2.
We recall that according to the energy identity (1.2) the L2-length of the curve g is finite
on intervals of finite length. We may thus choose t0 < T1 with ℓ(g(t0)) ≥ ε and close
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enough to T1 such that LL2(g|[t0,T1)) < θ. Proposition 2.2 then implies that g(t) is a
Cauchy sequence in Ms

−1 and thus converges to a limit g(T1) in Ms
−1 as tր T1. Indeed,

combining Proposition 2.2 with the energy identity (1.2) gives C1/2-Hölder estimates in
time for g considered as map into Ms

−1. Moreover, thanks to the uniform bound on the
energy of u and thus on the L1 norm of the Hopf-differential

‖k(u, g)‖L1 ≤ C · ‖∇u‖2L2 ≤ C · E(u, g) ≤ C ·E(u0, g0),

the improved estimates on Pg stated in Lemma 2.9 give uniform bounds on ‖ d
dtg(t)‖Hs .

Thus g is not only C1/2 but indeed Lipschitz continuous with respect to each Hs metric
on the closed interval [0, T1]. �

We remark that the possibility of solutions degenerating in moduli space will be addressed
in future work and that here we focus on the analysis of singularities of the second type,
essentially due to the map component becoming singular.

So let (u, g) be a smooth solution of (1.1) on a maximal interval [0, T ). Assume that the
metrics do not degenerate in moduli space as we approach the singular time and thus
that g(t) → g(T1) ∈ M−1 smoothly as t ր T1. We remark that the evolution of the
metric component is uniformly controlled,

(3.2) ‖
d

dt
g‖Hs ≤ C‖k(u, g)‖L1 ≤ C · ‖∇u‖2L2 ≤ C · E0

for times in an interval of length δ = δ(g(T1), s) > 0 not just for the one solution (u, g)
of (1.1) that becomes singular, but also for all solutions evolving from an initial data
(ū, g(T1)) with energy bounded by E0. Thanks to this strong bound on the metric
component we can carry out the analysis of the map component of solution to (1.1) near
singular times using methods familiar from the work of Struwe [15] on the harmonic map
flow. Since our analysis closely follows the ideas of [15] we shall omit some details and
calculations in the following presentation. We also remark that a similar argument was
briefly outlined in [1] in the special case of maps from a torus.

Notation: We let g1 ∈ M−1 be a fixed metric that should be thought of as a limiting
metric of a solution of (1.1) at a singular time. Then unless indicated otherwise all
occurring objects such as norms, operators (like ∆), integrals, balls and so on are to
be understood as the corresponding objects on the fixed Riemannian surface (M, g1).
Furthermore, we denote generic constants (allowed to change from line to line) by C
in case they depend only on g1 and E0 and will indicate any dependence on additional
quantities accordingly.

Based on (3.2) we henceforth restrict our attention to solutions of (1.1) satisfying

(3.3) ‖g1 − g(t)‖Hs ≤ ε1

for some fixed number s > 3 and a small ε1 = ε1(g1, s) > 0, chosen in particular such
that Lemma 2.9 applies on this Ms

−1 neighbourhood of g1.

We first remark that the evolution of the local energy is controlled by

Lemma 3.3. For solutions (u, g) of (1.1) satisfying (3.3) the following local energy
bounds hold true for any point x ∈M and any radius 0 < r < rinj

E(u(t), Br/2(x)) ≤ 2E(u(0), Br(x)) + C
t

r2

and

E(u(t), Br(x)) ≥
1

2
E(u(0), Br/2(x)) − 4

ˆ t

0

ˆ

M

ϕ2 |∂tu|
2
dvdt− C

t

r2
.



14 MELANIE RUPFLIN

Sketch of proof. Given x ∈ (M, g1) and 0 < r < rinj(M, g1) we let ϕ ∈ C∞
0 (Br(x), [0, 1])

be a standard cut-off function, i.e. such that ϕ ≡ 1 on Br/2(x) and |∇ϕ| ≤ C
r . A short

calculation shows that for a solution (u, g) of (1.1)

(3.4)

0 =

ˆ

ϕ2 |∂tu|
2
dv −

ˆ

ϕ2∂tu ·∆g(t)u dv

=

ˆ

ϕ2 |∂tu|
2
dv +

1

2

d

dt

ˆ

ϕ2 |∇u|
2
g(t) dv +R(u(t), g(t))

with an error term that is bounded by

|R(u, g)| ≤ (
C

r2
+ C‖

d

dt
g‖C0) ·E(u,Br(x)) +

1

8

ˆ

M

ϕ2 |∂tu|
2 dv.

Since ‖ d
dtg‖C0 is uniformly bounded, this estimate integrates to give an upper and a lower

bound on
´

ϕ2 |∇u|
2
g(t) −

´

ϕ2 |∇u(0)|g(0). Combined with the fact that 1
2g ≤ g̃ ≤ 2g for

all g, g̃ satisfying (3.3), we obtain the claims of Lemma 3.3. �

An important consequence of the previous calculation is

Corollary 3.4. Suppose (u, g) is a smooth solution of (1.1) defined on a maximal interval
[0, T1) for which (3.3) is satisfied. Then for any ε0 > 0 the set of points

S := {x ∈M : lim sup
tրT1

E(u(t), BR(x)) ≥ ε0 for all R > 0},

is finite.

In fact #S ≤ E0/ε0, since energy concentrates near points of S not just along a suitable
sequence tj ր T1 but indeed for all sequences tր T1, compare (3.4).

Away from the finite set S we control the map component of the flow using the following
lemma which should be seen as the analogue of Lemmas 3.10 and 3.10’ of [15]

Lemma 3.5. There exists a number ε0 > 0 depending only on g1 and E0 such that
the following statement holds true. Let (u, g) be a smooth solution of (1.1) on an open
interval (0, T ) and assume that (3.3) is satisfied. Let M ′ ⊆ M be an open set such that
there exists a number R > 0 with

(3.5) E(u(t), BR(x)) ≤ ε0 for all (x, t) ∈M ′ × (0, T ).

Then the parabolic Hölder-norms of u and its spatial derivatives (upto order s − 2) are
bounded uniformly on the sets [τ, T ]×M ′, τ > 0, with bounds depending only on τ , R,
g1, T , s, M

′ and the energy bound E0.

Remark 3.6. If the initial map u(0) is smooth on a neighbourhood of M ′ then the
above result can be extended to give bounds on the Hölder norms of u|M ′ and its spatial
derivatives on M ′ up to time t = 0, now with bounds depending additionally on u(0),
compare with remark 3.11 and 3.11’ of [15].

Remark 3.7. Because of the non-local nature of the projection operator Pg these esti-
mates on u|M ′ allow us to improve the regularity of g|M ′ from the a priori known C0,1

dependence on time only in case M = M ′. For M ′ 6= M we can improve the bounds
of Lemma 3.5 to give C1,α bounds in time on u|M ′ and its spatial derivatives while for
M = M ′, i.e. away from singluar times, a bootstrapping argument gives estimates on
any Ck norm (in space and time) of (u, g) in terms of the quantities specified in Lemma
3.5.

Proof of Lemma 3.5. For the proof of this lemma we follow largely the ideas of [15]. We
make use of the well known interpolation estimate, see e.g. [2]
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Lemma 3.8. There are numbers ε0 > 0 and C < ∞ (depending on (M, g1) and the
target manifold) such that for all maps u ∈ H2(M,N), a bound on the local energy of

E(u,Br(x)) ≤ ε0

implies an H2-bound of the form

(3.6)

ˆ

ϕ2
∣

∣∇2u
∣

∣

2
dv ≤

C

r2
E(u,Br(x)) + C

ˆ

ϕ2 |τ(u)|2 dv,

as well as an estimate of

(3.7)

ˆ

ϕ2 |∇u|4 dv ≤ CE(u,Br(x)) ·

[

1

r2
E(u,Br(x)) +

ˆ

ϕ2 |τ(u)|2 dv

]

.

Here ϕ ∈ C∞
0 (Br(x)) denotes a cut-off function.

Let now (u, g), M ′ and R > 0 be as in Lemma 3.5, let x ∈ M ′ and choose a cut-off
function ϕ ∈ C∞

0 (BR/2(x)). We first remark that for ε1 > 0 sufficiently small, the

pointwise bound |τg(u)− τ(u)| ≤ Cε1(
∣

∣∇2u
∣

∣+ |∇u|2) implies that (3.6) and (3.7) remain
valid with τ(u(t)) replaced by τg(t)(u(t)) = ∂tu(t).

As in [15] we now differentiate equation (1.1a) in time and multiply with ϕ2∂tu. Af-
ter carefully analysing all occurring terms, in particular the terms due to the time-
dependence of the metric, we find

1

2

d

dt

ˆ

ϕ2 |∂tu|
2
+

ˆ

ϕ2 |∇∂tu|
2
≤ (

1

4
+ Cε1) ·

ˆ

ϕ2 |∇∂tu|
2
+ C

ˆ

ϕ2 |∂tu|
2
|∇u|

2

+ C(R)
(

1 + ‖
dg

dt
‖2C2 +

ˆ

|∂tu|
2 ).

Since we know that the Hs norm, and thus also the C2 norm, of d
dtg is uniformly bounded

by a multiple of the energy, we obtain that for ε1 = ε1(g1) > 0 chosen small enough

(3.8)
d

dt

ˆ

ϕ2 |∂tu|
2 +

ˆ

ϕ2 |∇∂tu|
2 ≤ C(R)(1 +

dE

dt
) + C

ˆ

ϕ2 |∂tu|
2 |∇u|2 .

Using the Sobolev embedding W 1,1 →֒ L2 as well as Lemma 3.8, we find

C

ˆ

ϕ2 |∂tu|
2
|∇u|

2
≤ C‖ϕ |∂tu|

2
‖L2 ·

(

ˆ

ϕ2 |∇u|
4 )1/2

≤ C(‖∇(ϕ |∂tu|
2
)‖L1 + ‖ |∂tu|

2
‖L1)ε

1/2
0

[

C(R) +

ˆ

ϕ2 |∂tu|
2 ]1/2

≤

ˆ

ϕ2 |∇∂tu|
2
+ Cε0

dE

dt

ˆ

ϕ2 |∂tu|
2
+ C(R) · (

dE

dt
+ 1).

Integrating the resulting estimate (3.8) over any interval [t1, t2] ⊂ (0, T ) we thus obtain
ˆ

ϕ2 |∂tu|
2
dv

∣

∣

∣

t2

t1
≤ Cε0 · sup

t∈[t1,t2]

ˆ

ϕ2 |∂tu|
2
dv + C(R, T ).

After possibly reducing ε0 = ε0(E0, g1) > 0 so that the factor Cε0 ≤ 1
2 , we conclude that

for any τ > 0

sup
t∈[τ,T )

ˆ

BR/4(x)

|∂tu|
2 dv ≤ 2 inf

t∈[0,τ)

ˆ

ϕ2 |∂tu(t)|
2 dv + C(R, T )

≤ 2
E0

τ
+ C(R, T ).
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Repeating the above argument for a finite cover of balls BR/4(xi) of M ′ we obtain a
uniform estimate of

ˆ

U

|∂tu(t)|
2
dv ≤ C for all t ∈ [τ, T )

on a small neighbourhood U of M ′. According to Lemma 3.8 this implies a bound on
´

U ′

∣

∣∇2u(t)
∣

∣

2
dv on a slightly smaller neighbourhood of M ′. Applying Sobolev’s embed-

ding theorem we then conclude that for any exponent p <∞
ˆ

U ′

|∇u(t)|
p
dv ≤ Cp t ∈ [τ, T ).

Then as in [15] we think of (1.1a) as an inhomogeneous heat equation

∂tu−∆gu = Ag(u)(∇u,∇u) ∈ Lp(U ′ × [τ, T ))

allowing us to apply standard regularity results for parabolic equations, see e.g. [8], chap-
ter VII; we get bounds in the parabolic Sobolev-spaces W 2,1

p , and thus in the parabolic
Hölder spaces Cα, on setsM ′× [τ ′, T ], τ ′ > τ . We finally obtain estimates on the Hölder
norms of spatial derivatives of u (up to order s − 2) by a standard bootstrapping ar-
gument which relies on the strong bounds on the velocity of horizontal curves given in
Lemma 2.9. �

Let now (u, g) be a smooth solution of (1.1) on [0, T1) whose metric component does
not degenerate and thus smoothly converges g(t) → g(T1) =: g1 ∈ M−1 as t ր T1. We
first remark that the uniform bounds on the energies E(u(t)) ≤ 2E(u(t), g(t)) ≤ 2E0

combined with the fact that ∂tu ∈ L2([0, T1) ×M) imply that the maps u(t) converges
weakly in H1(M) to a limit u(T1) as t ր T1. Additionally, Lemma 3.5 gives uniform
Hölder bounds on u and its spatial derivatives away from the finite set S of concentration
points so that u(t) converges also in C∞

loc(M \ S).

We now remark that any concentration of energy must be due to the so-called bubbling
off of (at least) one harmonic sphere. Indeed, the analysis carried out in [15] (p. 578/9)
remains unchanged as long as the local energy estimates and H2 bounds used in [15] are
replaced by Lemmas 3.3 and 3.8. We obtain the following: For any point x0 ∈ S there
are sequences of times ti ր T1, radii ri → 0 and points xi → x0 with energies on balls
around xi of

E(u(ti), B2ri(xi)) ≤ ε0 and E(u(ti), Bri(xi)) ≥ cε0, c = c(M, g1) > 0

and with tension satisfying

r2i

ˆ

B2ri
(xi)

|τ(u(ti))|
2
→ 0 as i→ ∞.

The rescaled maps ui(x) = u(expxi
(rix), ti), defined on larger and larger subsets of R2

are then bounded uniformly in H2 and subconverge (weakly in H2, strongly in W 1,p,
p <∞) to a non-constant harmonic map of finite energy that is defined on R

2∪{∞} ∼= S2,
called a harmonic sphere or bubble. The amount of energy that concentrates near x0,
and that is consequently lost as we pass to the limit tր T1, is no less than ε∗ = ε∗(N),
the minimal energy of such a non-constant harmonic map from S2 to the target.

Finally, as in [15], we (weakly) continue the flow past any such singular time by restarting
from initial data g(T1) ∈ M−1 and u(T1) ∈ H1(M,N) ∩ C∞

loc(M \ S) as follows: let
uj,0 ∈ C∞(M,N) be a sequence of maps that converge to u(T1) in H1(M) as well as
in C∞

loc(M \ S) and let (uj , gj) be the smooth solution of (1.1) corresponding to initial
data (uj,0, g(T1)) that exists at least on some interval [T1, T1 + δj) according to Lemma
3.1. We remark that the metrics gj are uniformly Lipschitz continuous and thus that the
estimates derived above can be applied on [T1, T1+min(δj , δ0)) for a number δ0(g(T1)) > 0
independent of j.
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We now choose r > 0 such that supx∈M E(uj,0, Br(x)) < ε0/4, which is possible due to
the strongH1-convergence of the initial maps. Then the local energy estimates of Lemma
3.3 imply that there is no concentration of energy and thus in particular no blow-up for
any of the maps uj , on a uniform interval I = [T1, T1 + cr2], c = c(g1) > 0, in the sense
that

E(uj(t), Br/2(x)) < ε0 for all j ∈ N, x ∈M, t ∈ I.

According to Lemma 3.5 as well as remarks 3.6 and 3.7 we thus obtain uniform C1,α

estimates in time for the maps uj (and their spatial derivatives) in every compact subset
ofM×[T1, T1+cr

2]\(S×{T1}). Away from the singular time, we furthermore get uniform
bounds on all Ck norms of (uj , gj) in space-time. We conclude that a subsequence of
(uj , gj) converges smoothly on M × (T1, T1 + cr2] to a pair (u, g) which solves (1.1)
classically on (T1, T1+cr

2] and weakly on [T1, T1+cr
2]. This solution achieves the initial

data (u(T1), g(T1)) in the sense that for tց T1 the maps u(t) converges to u(T1) weakly
in H1(M) and smoothly away from the set S while the metric component g is Lipschitz-
continuous across the singular time. Since the energy of the approximating solutions
(uj , gj) is no more than E(uj,0, g(T1)) → E(u(T1), g(T1)), the extended weak solution
(u, g) has non-increasing energy also across the singular time T1. In particular the total

number of all singular points ∪iS(Ti)×{Ti} of such a solution is bounded by E(u(0),g(0))
ε∗ .

After possibly repeating the above argument to analyse any further singularities, we thus
obtain a weak solution satisfying the properties (i)-(iii) of Theorem 1.1 and existing for
as long as the metrics do not degenerate in moduli space.

4. Uniqueness of weak solutions

We finally discuss the issue of uniqueness of weak solutions. We prove that the solution
(u, g) of (1.1) constructed in the previous section is uniquely determined by its initial
data, not only among all solutions satisfying the properties of Theorem 1.1, but in the
natural class of all weak solutions with non-increasing energy. We remark that a further
argument as carried out in [10] actually gives uniqueness under the weaker assumption
that the total energy does not instantaneously increase by more than a certain quantum
at any time. We also remark that it is necessary to impose restrictions on the evolution
of the total energy in view of the possibility of reverse bubbling, see [16].

So let (ui, gi)i=1,2 be two weak solutions of (1.1) defined on an interval [0, T ) that evolve
from the same intial data

(u1, g1)(0) = (u0, g0) = (u2, g2)(0) ∈ H1(M,N)×M−1

and assume that the total energies t 7→ E(u1,2(t), g1,2(t)) are non-increasing. Since

I := {t ∈ [0, T ) : (u1, g1) ≡ (u2, g2) on [0, t]}

is trivially closed in [0, T ), we need to prove that I is also open.

Given any t0 ∈ I we recall that gi(t) → gi(t0) in each Ms
−1 and thus certainly uniformly

as tց t0. Combined with the fact that ui(t) → ui(t0) strongly in L2 and weakly in H1,
we thus obtain

E(ui(t0), gi(t0)) ≥ lim
tցt0

E(ui(t), gi(t)) = lim
tցt0

E(ui(t), gi(t0)) ≥ E(ui(t0), gi(t0)),

where we used the assumption on the evolution of the energy in the first step. Thus
ui(t) → ui(t0) indeed strongly in H1(M, g0), which implies in particular that local ener-
gies, say on balls, converge as tց t0. Choosing a finite cover of balls Br(xi), i = 1 . . .K,
of (M, gi(t0)) such that E(ui(t0), gi(t0), B2r(xi)) ≤ ε0/2, we may thus choose δ > 0 so
small that

E(ui(t), gi(t0), B2r(xi)) ≤ ε0 for t ∈ [t0, t0 + δ], i = 1, 2.
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Here we let ε0 > 0 be the constant of Lemma 3.8.

It is now crucial to remark that on almost every time slice the functions ui(t) weakly
solves an almost harmonic map equation, that is an equation of the form τgv = f for a
function f ∈ L2 and a metric g, here of course g = gi(t) and f = ∂tui(t). Since any
weak solution of such an elliptic equation is contained in the Sobolev space H2, see e.g.
[10], Proposition 2.1, we may apply Lemma 3.8 on almost every time slice resulting in
an estimate of

ˆ

M

|∇ui(t)|
4
+
∣

∣∇2ui(t)
∣

∣

2
dvg0 ≤ C(r) · (1 +

ˆ

M

|∂tu(t)|
2
dvg(t))

for t ∈ [t0, t0 + δ) and i = 1, 2. We can thus reduce the uniqueness statement in the
general class of weak solutions with non-increasing energy to the following lemma whose
analogue for the harmonic map flow was proven in [15]

Lemma 4.1. Let (u1, g1) and (u2, g2) be weak solutions of (1.1) to the same initial data
(u1, g1)(0) = (u2, g2)(0) and suppose that

(4.1) ∇ui ∈ L4(M × [0, T )), and ∇2ui ∈ L2(M × [0, T )) i = 1, 2.

Then (u1, g1) ≡ (u2, g2).

Proof of Lemma 4.1. Using an open-closed argument as above it is enough to prove that
the solutions agree on a possibly smaller interval [0, δ), which we can chose in particular
such that the metrics g1,2 are contained in an Hs neighbourhood of g0 = g1(0) = g2(0)
for which Lemma 2.9 applies. Here s can be chosen to be any fixed number s > 3.

Notation: For the following computations we denote by ‖ · ‖Lp the Lp(M, g0) norm and
by d(·, ·) the metric on Ms

−1 respectively by ‖ · ‖ the Hs norm on TMs
−1. Furthermore,

we use the short-hand notation of |∇V | := max{|∇u1| , |∇u2|} which, by assumption,
is a function in L4(M × [0, T ]) with L2 norm on time-slices bounded by the energy,
‖∇V (t)‖2L2(M) ≤ C · (E(u1, g1) + E(u2, g2)) ≤ CE(u0, g0).

Subtracting the equations (1.1a) for the map components ui we obtain that the difference
w = u1 − u2 satisfies

(4.2) ∂tw −∆g1w = (∆g1 −∆g2)(u2) +Ag1(u1)(∇u1,∇u1)−Ag2(u2)(∇u2,∇u2)

where A denotes the second fundamental form of the target N →֒ R
N , Ag(u)(∇u,∇u) :=

gijA(u)(∂iu, ∂ju).

Following [15] we multiply equation (4.2) with w, integrate over the fixed surface (M, g0)
and estimate the resulting terms using Hölder’s inequality. This leads to

(4.3)

1

2

d

dt
‖w‖2L2 + ‖∇w‖2L2 ≤C · d(g1, g0) · ‖∇w‖

2
L2

+ C · d(g1, g2) ·
(

‖∇w‖L2 + ‖w‖L2 · (1 + ‖∇V ‖2L4)
)

+ C‖∇w‖L2 · ‖∇V ‖L4 · ‖w‖L4 + C‖∇V ‖2L4 · ‖w‖2L4

≤ (
1

4
+ C · t)‖∇w‖2L2 + C · d(g1, g2)

2

+ C(1 + ‖∇V ‖2L4) · ‖w‖2L4 .

Using the Sobolev embedding W 1,1 →֒ L2, we may furthermore estimate

‖w‖2L4 = ‖w2‖L2 ≤ C(‖∇(w2)‖L1 + ‖w2‖L1) ≤ C · ‖w‖L2 · (‖w‖L2 + ‖∇w‖L2)

so that the last term on the right hand side of (4.3) is bounded by

C(1 + ‖∇V ‖2L4) · ‖w‖2L4 ≤
1

8
‖∇w‖2L2 + Cψ(t) · ‖w‖2L2 ,
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for ψ(t) = (‖∇V (t)‖4L4 + 1) ∈ L1([0, T ]).

In order to estimate the distance of the metric components g1 and g2 in terms of w we
recall that the evolution of the tensor g1 − g2 is given by

d

dt
(g1 − g2) = Pg1(k(u1, g1))− Pg2(k(u2, g2)),

k(u, g) = 2u∗GN − 2e(u, g)g. We have a pointwise estimate of the difference of the
involved tensors of

|k(u1, g1)− k(u2, g2)| ≤ C · d(g1, g2) · |∇V |
2
+ C · |w| · |∇V |

2
+ C · |∇w| · |∇V | .

Remark, that any L2 estimate of this tensor would involve integrals of the form
´

|∇V |
4
|w|

2

and
´

|∇V |
2
· |∇w|

2
which are not controlled by the quantities of the left hand side of

(4.3). It thus crucial at this point that the improved bounds on Pg given in Lemma 2.9
only ask for L1 bounds on the involved tensors, allowing us to estimate

(4.4)

d

dt
d(g1, g2) ≤ C · d(g1, g2) · ‖k(u1, g1)‖L1 + C · ‖k(u1, g1)− k(u2, g2)‖L1

≤ C · d(g1, g2) + C · ‖∇w‖L2 + C · ψ(t)1/2‖w‖L2 .

Gronvall’s lemma thus leads to an estimate of

(4.5)

d(g1, g2)(t)
2 ≤ C ·

(
ˆ t

0

‖∇w(s)‖L2(M) ds

)2

+ C

(
ˆ t

0

ψ(s)1/2 · ‖w(s)‖L2(M) ds

)2

≤ t ·

ˆ t

0

ˆ

M

|∇w|
2
+ C

ˆ t

0

ψ(s)ds ·

ˆ t

0

ˆ

M

w2,

which we insert into (4.3). Integrating the resulting estimate over time, we find

‖w(t)‖2L2 +

ˆ t

0

ˆ

|∇w|
2
≤ C ·

ˆ t

0

ψ(s)ds · sup
s∈[0,t]

‖w(s)‖2L2 + Ct2
ˆ t

0

ˆ

|∇w|
2
.

Since ψ is integrable, we conclude that for all t sufficiently small, say t ∈ (0, t0),
ˆ

|w(t)|2 ≤
1

2
sup

s∈[0,t]

ˆ

|w(s)|2 .

Thus w must vanish identically on (0, t0) so u1 ≡ u2 and g1 ≡ g2 as desired. �

A. Appendix

A.1. Solving the equation on a fixed Banach manifold.

Let (u0, g0) ∈ C2,α(M) × M−1, α > 0 be given and let s > 3 be a fixed number.
Here we outline an iteration argument that can be used to obtain a solution (u, g) ∈
C2,1,α([0, δ)×M)× C1([0, δ),Ms

−1) of (1.1) for such initial data.

For δ0 = δ0(u0, g0, s) > 0 to be determined later, we extend u0 to a constant in time map
defined on M × [0, δ20) and define iteratively for i = 1 . . .

• gi ∈ C1([0, δ2i−1],M
s
−1) as the solution of d

dtgi = Pgi(k(ui−1, gi)) with gi(0) = g0;

• ui ∈ C2,1,α(Mδi) as the solution of ∂tui = τgi(ui), ui(0) = u0, defined and
smooth on a maximal domain Mδi :=M × [0, δ2i ), δi ≤ δi−1.

Here we use the Lipschitz-continuity of the map Pg on the Banach manifold Ms
−1 in the

first step. We also remark that the equation for ui is a semilinear parabolic equation so
standard methods, see e.g. [9] Theorem 5.2.1, lead to the existence of a solution ui of
the above equation, defined on all of [0, δ2i−1) unless there is a blow-up in the gradient at

some time δ2i , 0 < δi < δi−1.
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We claim that for δ0 initially chosen small enough, the iterates are all defined on [0, δ20)
and satisfy

(A.1)
‖ui+1 − ui‖

∗
C2,1,α(Mδ0

) ≤
1

2
‖ui − ui−1‖

∗
C2,1,α(Mδ0

)

‖gi+1 − gi‖
∗
C1([0,δ2

0
],Ms

−1
) ≤ C · δ0‖ui+1 − ui‖

∗
C2,1,α(Mδ0

),

thus converging to a classical solution (u, g) ∈ C2,1,α([0, δ20)×M)× C1([0, δ20),M
s
−1) in

the limit i→ ∞. Here, we use scaling invariant versions of the standard parabolic Hölder
norms, defined by ‖u‖∗C0,α(Mδ)

= ‖u‖C0(Mδ) + δα[u]Cα(Mδ) and more generally

‖u‖∗Ca,b,α(Mδ)
=

∑

k+2j≤a
j≤b

δ2j+k‖∂jt∇
ku‖∗Cα(Mδ)

, Mδ = [0, δ2)×M.

We remark that the second estimate of (A.1) immediately follows from Propostion 2.1
and the Gronvall lemma, compare with (4.4). To estimate wi = ui − ui−1, we observe
that

(A.2) ∂twi − Liwi = fi

for the elliptic linear operator

Liw := ∆giw +Agi(ui−1)(∇ui−1,∇w) +
(

dAgi(ui−1)
)

(w)(∇ui−1,∇ui−1)

and a right hand side that is bounded in C0,α(Mδ) for any δ ≤ δi by

δ2‖fi‖
∗
C0,α(Mδ)

≤ C‖gi − gi−1‖
∗
C1([0,δ2],Ms

−1
) + C(‖wi‖

∗
C2,1,α(Mδ)

)2

with a constant depending on a C2,1,α bound on the previous iterate ui−1 but not on ui.
We then apply the following scaling invariant version of parabolic Schauder estimates

Proposition A.1. Let M be a closed manifold and let λ > 0, A < ∞ be fixed. Then
there exists a number C < ∞ such that the following holds true. Let L be any second
order differential operator on Mδ, δ ∈ (0, 1) any number, that is given in local coordinate
charts as Lu = ∂xi(a

ij∂xju) + bi∂xiu+ cu with

aij(x, t)ξiξj ≥ λ |ξ|
2

for all ξ ∈ R
m and (x, t) ∈Mδ

‖aij‖∗C1,0,α(Mδ)
+ δ‖bi‖∗Cα(Mδ)

+ δ2‖c‖∗Cα(Mδ)
≤ A.

Then the solution u ∈ C2,1,α(Mδ) of ∂tw − Lw = f ∈ Cα(Mδ), w(0) = 0 satisfies

‖w‖∗C2,1,α(Mδ)
≤ Cδ2‖f‖∗Cα(Mδ)

.

In terms of giving a proof of this result, we remark that standard Schauder estimates
combined with a scaling argument give in a first step an estimate of the form

(A.3) ‖w‖∗C2,1,α(Mδ)
≤ Cδ2‖f‖∗Cα(Mδ)

+ C‖w‖C0(Mδ)

for constants C independent of δ. To retain this scaling invariance, we can then use the
Ehrling-lemma and a further rescaling argument to estimate the second term of (A.3) by

‖w(t)‖C0(M) ≤ ε · ‖w‖∗Cα(Mδ)
+ Cε sup

x∈M
δ−1‖w(t)‖L2(Bδ(x))

on every time slice. Finally considering the evolution of local energy quantities of the
form

´

ϕ2
[

aij∂xiw(t)∂xjw(t) + δ−2w(t)2
]

dx, ϕ a cut-off function supported on balls of
radius 2δ, gives that the last term in this estimate is bounded by a fixed (independent
of δ) multiple of δ2‖f‖L∞, completing the proof of Propostion A.1.

Turning back to the equation (A.2) satisfied by wi, this Schauder-estimate allows us to
conclude that for any δ < δi

‖wi‖
∗
C2,1,α(Mδ)

≤ Cδ‖wi−1‖
∗
C2,1,α(Mδ)

+ C
(

‖wi‖
∗
C2,1,α(Mδ)

)2
.
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Since wi(0) = 0, the norm ‖wi‖
∗
C2,1,α(Mδ)

is small at least for δ small (a priori depending

on i). We conclude that the first estimate of (A.3) holds true, initially for δ small
and then, by a continuity argument, indeed for as long as the solution exists (provided
δ0 = δ0(u0, g0) was initially chosen small enough). But this very estimate prevents a
blow-up before time δi−1, so that δi = δi−1 = .. = δ0, completing the proof.

A.2. Proof of Lemma 2.8. We finally provide a possible proof of the fact that any
metric in Ms

−1 can be written in the form f∗ḡ with f ∈ Ds+1 and ḡ ∈ M−1.

Let s > 3 and let Ω ⊂ Ms
−1 be the subset of all metrics which can be written in the form

g = f∗ḡ for a smooth metric ḡ ∈ M−1 and a diffeomorphism f of class Hs+1.

We first prove that Ω is an open subset of Ms
−1 using the slice theorem. Given any metric

of the form g0 = f∗
0 g̃0, f0 ∈ Ds+1 and g̃0 ∈ M−1 we apply the slice-theorem 2.3 to the

smooth metric g̃0 resulting in an Ms
−1-neighbourhood W̃ of g̃0, consisting only of metrics

of the form f∗gS , gS an element of a slice S around g̃0 and thus in particular smooth. The
pull-back W = f∗

0 W̃ is then an Ms
−1-neighbourhood of the original metric g0 ∈ Ms

−1,
containing only metrics of the form g = f∗

0 (f
∗gS) = (f ◦ f0)

∗gS, gS ∈ S ⊂ M−1 and
f ◦ f0 ∈ Ds+1. So indeed W ⊂ Ω and Ω is open.

To see that Ω is also closed, we use a result due to Ebin and Palais which says that
the action of Ds+1 on Ms

−1 is proper, see e.g. Theorem 2.3.1 in [17]; in practice this
means that if we are given a sequence of diffeomorphisms fi ∈ Ds+1 and a convergent
sequence of metrics gi → g in Ms

−1 then knowing that f∗
i gi → ḡ ∈ Ms

−1 converges (in
Hs topology) is enough to conclude that also (a subsequence of) the diffeomorphisms fi
converges, fi → f in Ds+1.

Let now g ∈ Ms
−1 be such that there are diffeomorphisms fi ∈ Ds+1 and metrics gi ∈

M−1 with f∗
i gi → g (in Ms

−1). This convergence implies in particular that the length
ℓ(gi) = ℓ(f∗

i gi) of the shortest closed geodesic of (M, gi) is bounded away from zero.
Thus the Mumford compactness theorem implies that after pulling back gi by a smooth
family of diffeomorphisms f̃i, a subsequence of gi converges smoothly

(f̃i)
∗gi = (f−1

i ◦ f̃i)
∗(f∗

i gi) → ḡ ∈ M−1.

We conclude that the diffeomorphisms f−1
i ◦ f̃i converge to another diffeomorphism f ∈

Ds+1 and thus that g = (f−1)∗ḡ ∈ Ω.
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