
Spin dynamics in the Kapitza-Dirac effect

Sven Ahrens,1 Heiko Bauke,1, ∗ Christoph H. Keitel,1 and Carsten Müller1, 2, †
1Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

2Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
(Dated: July 25, 2012)

Electron spin dynamics in Kapitza-Dirac scattering from a standing laser wave of high frequency and high
intensity is studied. We develop a fully relativistic quantum theory of the electron motion based on the time-
dependent Dirac equation. Distinct spin dynamics, with Rabi oscillations and complete spin-flip transitions, is
demonstrated for Kapitza-Dirac scattering involving three photons in a parameter regime accessible to future
high-power X-ray laser sources. The Rabi frequency and, thus, the diffraction pattern is shown to depend crucially
on the spin degree of freedom.
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Introduction The diffraction of an electron beam from
a standing wave of light is referred to as the Kapitza-Dirac
effect [1, 2]. This process points out the quantum wave nature
of the electron and may be considered as an analogue of the
optical diffraction of light on a grating, but with the roles of
light and matter interchanged. Predicted already in 1933, a
clear experimental confirmation of the Kapitza-Dirac effect
as originally proposed has been achieved only recently [3].
It has stimulated renewed theoretical interest in the process
[4], advancing earlier treatments [5, 6]. A related success-
ful experiment observed the (classical) scattering of electrons
in a standing laser wave [7]. Both experiments operated at
moderate light intensities between 109 W/cm2 and 1014 W/cm2

and near optical wavelengths. The existing theoretical stud-
ies, accordingly, have treated the electron quantum dynamics
nonrelativistically. The nonrelativistic Kapitza-Dirac effect has
been observed experimentally also using atomic beams [8].

The current development of novel light sources, envisaged
to provide field intensities in excess of 1020 W/cm2 and field
frequencies in the hard X-ray domain [9, 10], raises the ques-
tion as to how the Kapitza-Dirac effect is modified in this
hitherto unexplored parameter regime. This calls for a fully
relativistic treatment of the process within the Dirac theory,
valid at high electron energies and, in particular, accounting
for the electron spin. Relativistic considerations of quantum
mechanical electron scattering in two counterpropagating light
waves were provided, but assuming nonequal laser frequen-
cies and disregarding the electron spin degree of freedom [11].
Spin signatures in the Kapitza-Dirac effect have so far been
examined within the nonrelativistic framework of the Pauli
equation [12] and by solving the classical equations of motion
[13]. Both studies found negligibly small spin effects. We note
that the influence of the electron spin has also been investi-
gated with respect to free-electron motion [14], bound-electron
dynamics [15], atomic photoionization [16], and Compton and
Mott [17] scattering in strong plane-wave laser fields.

In this Letter, we present a fully relativistic consideration
of the Kapitza-Dirac effect within the framework of Dirac the-
ory. We focus on the relevance of spin-flip transitions when
the process occurs in X-ray laser fields of high intensity. We

demonstrate that under suitable conditions, the diffraction prob-
ability depends considerably on the electron spin. Thus, the
spin degree of freedom significantly influences the quantum
mechanical scattering dynamics.

Relativistic theory We consider a quantum electron
wave packet in a standing linearly polarized light wave (see
Fig. 1) with maximal electric field strength E, wave vector k,
and wavelength λ = 2π/|k| = 2π/k, respectively. The laser is
modeled by the vector potential

A(x, t) = −E
k

cos(k · x) sin(ckt)w(t) (1)

introducing the speed of light c and the temporal envelope
function w(t). The relativistic quantum dynamics of an electron
with mass m and charge −e is governed by the Dirac equation
[18]

i
∂

∂t
ψ(x, t) =

[
c
(
−i∇ +

e
c

A(x, t)
)
· α + βmc2

]
ψ(x, t) . (2)

In (2), we have introduced the vector α = (α1, α2, α3), where
αi and β are the Dirac matrices in standard representation [19].
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FIG. 1: (Color online.) Schematic setup. An electron with momentum
p is incident at an angle ϑ on a linearly polarized standing laser wave
with electric and magnetic components E and B. The momentum p
has components pE and pk along the laser’s electric field E and wave
vector k, respectively. The electron is initially spin-polarized along
the electric field component. After Kapitza-Dirac scattering, parts of
the electron wave packet may have flipped their spin orientation.

ar
X

iv
:1

20
4.

02
39

v2
  [

qu
an

t-
ph

] 
 2

4 
Ju

l 2
01

2



2

The monochromatic light wave (1) allows us to decompose the
wave function ψ(x, t) into a discrete set of plane waves, viz.,

ψ(x, t) =
∑
n,ζ

cζn(t)ψζn,p(x) , ψ
ζ
n,p(x) = uζn,pei(p+nk)·x . (3)

The function ψζn,p(x) denotes a free particle Dirac eigenfunc-
tion of momentum p + nk (n = 0,±1,±2, . . . ). The index
ζ ∈ {+ ↑,+ ↓,− ↑,− ↓} labels the sign of the energy and the
spin projection along the laser electric field vector. Taking
advantage of the basis functions’ orthonormality the ansatz (3)
yields

iċγn(t) = i 〈ψγn,p|ψ̇〉 = εγE(p + nk)cγn(t)

− w(t)e sin(ckt)
2k

∑
ζ

〈uγn,p|E · α|uζn−1,p〉 cζn−1(t)

− w(t)e sin(ckt)
2k

∑
ζ

〈uγn,p|E · α|uζn+1,p〉 cζn+1(t) , (4)

where we have introduced the relativistic energy momentum
dispersion relation E(p) =

√
m2c4 + c2 p2 and the signum εγ,

which is 1 for γ ∈ {+ ↑,+ ↓} and −1 for γ ∈ {− ↑,− ↓}.
Generalized Bragg condition The elastic scattering of

an electron on a standing light wave may be characterized by a
Bragg condition [1] provided that the ponderomotive energy
of the electron is small (so-called Bragg regime) [5, 20]. This
Bragg condition may be generalized to an inelastic process
of absorbing and emitting an arbitrary number of photons by
utilizing momentum conservation p′ = p + (nr − nl)k and
energy conservation E(p′) = E(p) + (nr + nl)ck , where p and
p′ are the initial and final electron momenta. The integers nr

and nl denote the net numbers of photons exchanged with the
right- and left-traveling laser waves, respectively, with positive
(negative) values indicating photon absorption (emission). The
momentum and energy conservation laws yield the relativistic
generalized Bragg condition

cosϑ
λp

=

− nr − nl

2λ
+

nr − nl

|nr − nl|
nr + nl

2

√
1
λ2 −

1
nrnl

 sin2 ϑ

λ2
p

+
1
λ2

C

 (5)

by introducing the angle ϑ (see Fig. 1), the de Broglie wave-
length λp = 2π/|p|, and the Compton wavelength λC =

2π/(mc). To be consistent with the nonrelativistic limit nr

and nl must have opposite signs. Equation (5) reduces to the
Bragg condition of the two-photon Kapitza-Dirac effect [1, 20]
by setting nr = −nl = 1.

From Eq. (5), it follows that for inelastic processes
(nr + nl , 0) either the initial electron momentum p or the
laser photon momentum k must be of the order of mc, i. e., rela-
tivistic, except we allow for a very large number of interacting
photons. Thus, an analysis of inelastic Kapitza-Dirac scattering
demands a relativistic treatment by the Dirac equation.
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FIG. 2: Rabi oscillations of the spin resolved diffraction probabilities
as a function of the interaction time T for a three-photon Kapitza-
Dirac effect. Starting from a pure spin-up state the electron is either
diffracted with probability |c+↑

3 (T )|2 + |c+↓
3 (T )|2 or passes the laser

beam without momentum transfer with probability |c+↑
0 (T )|2. Laser

parameters of this simulation correspond to two counterpropagating
X-ray laser beams with a peak intensity of 2.0 × 1023W/cm2 each
and a photon energy of 3.1 keV. The electron impinges at an angle
of inclination of ϑ = 0.4° and a momentum of 176 keV/c, in order to
fulfill the Bragg condition (5).

A setup for spin-sensitive Kapitza-Dirac scattering
Equation (4) couples momentum components having momenta
that differ by ±k and equal or opposite spin orientation. An
explicit calculation of 〈uγn,p|E · α|uζn±1,p〉 reveals that if p and E
are orthogonal then cγn(t) couples only to components cζn±1(t)
having opposite spin orientation. Therefore, a distinct spin
dynamics may be expected for Kapitza-Dirac scattering with
an odd number of photons provided that the initial electron
momentum p is almost orthogonal to the electric field E. Thus,
we focus on a three-photon Kapitza-Dirac effect, i. e., nr = 2,
nl = −1, in the subsequent sections.

The condition (5) allows us to determine the initial electron
momentum p and the laser wave number k for a resonant
three-photon Kapitza-Dirac effect. The impinging electron is
modeled by a plane wave; thus, the initial condition c+↑

0 (0) = 1
and cζn(0) = 0 else will be applied for the remainder of the
Letter. We solve the Dirac equation (4) until time T to compute
the transition amplitudes cζn(T ).

Spin-flip probability and Rabi frequency Figure 2
shows the final occupation probabilities |cζn(T )|2 after laser-
electron interaction, which have been calculated by numerical
propagation of the Dirac equation (4) by a combination of the
explicit and the implicit Euler method [21]. The laser profile
was modeled by an envelope function w(t) that starts with a
sin2-shaped turn-on ramp of 10 laser cycles and finishes with
a sin2-shaped turn-off ramp of 10 laser cycles having a flat
plateau in between. The experimental setup was chosen to
meet the Bragg condition (5) for a three-photon process. As
illustrated in Fig. 2, only zeroth-order and third-order modes
are nonzero after interaction. The occupation probabilities
oscillate in Rabi cycles of frequency ΩR

|c+↑
0 (T )|2 = cos2 (ΩRT/2) , (6a)

|c+↑
3 (T )|2 + |c+↓

3 (T )|2 = sin2 (ΩRT/2) , (6b)
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FIG. 3: The spin-flip probability Pflip as a function of the electron
momentum |pE | in electric field direction. The solid black line is given
by (8). White squares result from simulations with the Dirac equation
(4). All simulation parameters except pE are the same as those for
Fig. 2.

similarly to the two-photon Kapitza-Dirac effect [2] and the
Kapitza-Dirac effect in atomic beams [8]. In the present case,
however, the scattered portion of the electron wave packet
consists of two parts which are distinguished by opposite spin
orientations. The period of the Rabi oscillations is 2π/ΩR =

1.9 fs for parameters of Fig. 2.
For short times with ΩRT � 1, the Dirac equation (4) can

also be solved analytically via time-dependent perturbation
theory. This yields for parameters compatible with the three-
photon Bragg condition (5) the probabilities

|c+↑
3 (T )|2 =

(
1
2

Ω0T
)2 (

5√
2

|pE |
k

)2

, (7a)

|c+↓
3 (T )|2 =

(
1
2

Ω0T
)2

, (7b)

with Ω0 = e3|E|3/(24m3c5k2). The |E|3 dependence clearly in-
dicates the three-photon nature of the transition. From Eq. (7),
we can derive the spin-flip probability Pflip within the scattered
portion of the electron wave packet

Pflip ≡
|c+↓

3 (T )|2
|c+↑

3 (T )|2 + |c+↓
3 (T )|2

=
1

25
2

( |pE |
k

)2
+ 1

. (8)

The Rabi frequency may be derived by identifying (7) with the
Taylor expansion of (6b) for short times T , resulting in

ΩR = Ω0

√
25
2

( |pE |
k

)2

+ 1 . (9)

Figure 3 compares the spin-flip probability as a function of
|pE |/k, as obtained from the numerical solution of the Dirac
equation (4), with our analytical result (8). The initial elec-
tron momentum in laser propagation direction pk is adjusted
according to equation (5) for each value of pE . The analytical
formula (8) shows very good agreement with the numerical
data.

Considerations on nonrelativistic theory The spin-
flip probability (8) can be understood on a qualitative level by
analyzing the leading order of the Foldy-Wouthuysen expan-
sion [22] of the Dirac equation (2) which equals the nonrel-
ativistic Pauli equation. This equation features two coupling
terms which are linear in the fields, namely eA · p/(mc) and
eσ · B/(2mc), where σ denotes the vector of Pauli matrices.
Both terms give rise to couplings between adjacent electron
momentum components (differing by ±k), with the first term
preserving and the second term flipping the electron spin. Note
that such nearest-neighbor couplings are necessarily involved
in Kapitza-Dirac scattering with an odd number of photons.
The relative strength of the A·p term as compared with theσ·B
term is just 2|pE |/k. This results in the spin-flip probability

Pflip, nonrel. =
1

4
( |pE |

k

)2
+ 1

, (10)

which agrees with (8) up to a scale parameter 25/8. The
probability (10) can also be derived more rigorously via time-
dependent perturbation theory for the Pauli equation, which
yields the nonrelativistic Rabi frequency

ΩR, nonrel. =
243
128

Ω0

√
4
( |pE |

k

)2

+ 1 . (11)

Note that the relativistic and nonrelativistic spin-flip proba-
bilities (8) and (10) and the relativistic and nonrelativistic
Rabi frequencies (9) and (11) agree qualitatively. However,
the nonrelativistic expressions cannot be recovered from the
relativistic ones by taking a nonrelativistic limit. This is a
consequence of the three-photon Bragg condition (5) that en-
forces a relativistic photon momentum and/or a relativistic
electron momentum highlighting the relativistic nature of the
three-photon Kapitza-Dirac effect.

The role of the spin Equation (7) indicates that spin-
preserving transitions in the three-photon Kapitza-Dirac effect
are completely suppressed for setups with p ⊥ E. This means
that under such conditions the scattering is rendered possi-
ble only because the electron does carry spin, which clearly
demonstrates the pivotal role the electron spin can play in
Kapitza-Dirac scattering processes.

The above argument suggests that for a spinless particle with
p ⊥ E the three-photon channel of Kapitza-Dirac scattering is
not accessible at all. This expectation is confirmed by Fig. 4 (a).
It compares numerical results on the Rabi frequency as follow-
ing from the Dirac equation (4) with corresponding numbers
that we obtained by solving the time-dependent Klein-Gordon
equation [23]. The predictions significantly differ in the limit
pE → 0. While the Rabi frequency converges to a finite value
for spin-half particles [see also (9)], it approaches zero for
spinless particles, indicating that the scattering channel closes
indeed. In the spinless case, the spin-flipped channel (7b) is
missing, which consequently yields the Rabi frequency

ΩR, spinless = Ω0
5√
2

|pE |
k

. (12)
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FIG. 4: Panel (a): The Rabi frequency ΩR as a function of the elec-
tron momentum |pE | in electric field direction for the Dirac equa-
tion (squares) and the Klein-Gordon equation (triangles). The solid
black line is given by (9) and the dashed black line is given by (12).
Panel (b): The diffraction probability after an interaction time of
0.36 fs for particles with and without spin for parameters as in Fig. 2.
The light (dark) gray bars represent the spin-up (spin-down) probabil-
ities. In the case of the Klein-Gordon equation there is no spin degree
of freedom and, therefore, no dark gray bars appear. Note that the
diffraction probability depends on the spin degree of freedom.

For nonzero values of pE , also Klein-Gordon particles may be
scattered. But the scattering probability still may be consider-
ably different from the Dirac case, as the example in Fig. 4 (b)
shows.

Experimental realization An experimental realization
of the three-photon Kapitza-Dirac effect may utilize intense
photon beams at near-future X-ray laser facilities to form stand-
ing waves. In our numerical simulations, we assumed 3.1 keV
photons as envisaged, for example, at the European X-ray free
electron laser facility (XFEL) [9], which is currently under
construction. The design value of the peak power at this pho-
ton energy is 80 GW. Assuming a focus diameter of 7 nm [25],
a field intensity of about 2 × 1023 W/cm2 results. Laser pulses
with duration of about half a Rabi period [which is about 1 fs
for the parameters in Fig. 2)] are required for experimental re-
alization [26]. Since the Rabi frequency is much lower than the
laser frequency, the photon energy and the electron momentum
must be fine-tuned to achieve a resonant transition. Numeri-
cal simulations indicate that only electrons whose momentum
varies by 0.1 keV/c around the mean value of 176 keV/c are
diffracted. The photon pulse of the European XFEL with a
seeded beam of a primary undulator is expected to be coher-
ent, featuring a photon energy uncertainty far below 0.1 keV
[27]. We note that the electron may lose energy due to sponta-
neous photoemission with resulting quantitative modification
of the presented results. Spontaneous emission (scaling with
|E|2), however, is substantially suppressed as compared with
the very fast momentum transfer through the three-photon
Kapitza-Dirac effect which takes place on a femtosecond time
scale during a Rabi period (1/ΩR ∼ 1/|E|3). A numerical so-
lution of the Landau-Lifshitz equation [28] indicates that the
momentum transfer into laser propagation direction caused
by spontaneous emission is sufficiently small in order not to
violate the resonance condition (5) for the current parameters.
Finally, the electron beam is diffracted almost in the electron
propagation direction by 3 × 3.1 keV/c. Therefore, a spec-

trometer with a resolution below 10 keV/c should be able to
separate the diffracted electron beam from the not diffracted
one. In the diffracted beam, about one out of three electrons are
spin flipped in the case of the scenario in Fig. 2. This spin-flip
fraction is independent of the interaction time T of the electron
with the laser, in accordance with (8).

Conclusions Pronounced spin effects in Kapitza-Dirac
scattering involving three X-ray laser photons interacting with
a weakly relativistic electron beam have been revealed. To this
end, we deduced a generalized Bragg condition and developed
a theoretical description of the quantum dynamics based on
the Dirac equation. The process features characteristic Rabi
oscillations and a competition between spin-preserving and
spin-flipping nearest-neighbor couplings. The spin-flipping
transition becomes dominant in the limit of small angles of
inclination, where three-photon Kapitza-Dirac scattering cru-
cially relies on the nonzero electron spin. Our predictions
may be tested with the aid of near-future high-intensity XFEL
sources.
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