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We consider the phenomenology of the gauged abelian symmetry B + 3(Le − Lµ − Lτ ). Right-
handed neutrinos necessary to cancel triangle anomalies are used in a type-I seesaw scheme to create
active neutrino masses. Breaking the B+3(Le−Lµ−Lτ ) symmetry spontaneously below the seesaw
scale generates low energy neutrino mass matrices with the approximate symmetries Le (leading to
normal hierarchy) or Le − Lµ − Lτ (inverted hierarchy). For the latter we need to introduce a Z2

symmetry which decouples one of the right-handed neutrinos. If exact, this Z2 leads to a Majorana
dark matter candidate that interacts with the Standard Model via the Z′ and a scalar s originating
from spontaneous breaking of the new symmetry. The measured relic abundance of the dark matter
particle can be obtained around the scalar and Z′ resonances, while direct detection experiments
are mainly sensitive to scalar exchange, which is induced by mass mixing of s with the standard
Higgs.
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I. INTRODUCTION

The observed neutrino mixing angles and mass-squared differences have launched an avalanche of
models trying to explain their values. One possible starting point is the Majorana mass matrix in flavor
basis, on which one then imposes symmetries. As far as continuous abelian symmetries of lepton numbers
go, three interesting linear combinations have been identified for the zeroth-order approximation: Le,
L ≡ Le − Lµ − Lτ and Lµ − Lτ , leading to normal hierarchy (NH), inverted hierarchy (IH) and quasi-
degeneracy in the neutrino mass spectrum [1]. The flavor structure of the mass matrices is

MLe

ν ∼





0 0 0
0 × ×
0 × ×



 , ML
ν ∼





0 × ×
× 0 0
× 0 0



 , MLµ−Lτ

ν ∼





× 0 0
0 0 ×
0 × 0



 , (1)

where × denotes a non-zero entry. The last matrix conserving Lµ − Lτ has the interesting property of
being anomaly-free [2] (in the Standard Model (SM) with massless neutrinos), so the symmetry can be
gauged, which leads to numerous interesting effects [3]. The other two symmetries have been considered
as global symmetries [4–6] (or as an anomalous U(1) [7]), but no effort has been put forward to construct
a local version.
The reason why it is not easily possible to promote Le or L to a local symmetry with the SM particle

content is due to arising quantum anomalies, even if we introduce SM-singlet right-handed neutrinos
(RHNs). Extending the chiral fermion content of the model could serve as a viable way to cancel these
triangle anomalies and construct a renormalizable Lagrangian. In the case of the above symmetries it
can be shown that a complete fourth generation of fermions suffices to accomplish this task.1 However,
the strict bounds on the fourth-generation fermions complicate model building severely, especially when
it comes to the mass matrix of the—then four—active neutrinos.
A different way to cancel anomalies is the modification of the symmetry itself. For example, the

quantum number B − 3Le is anomaly free in the SM plus RHNs [8], and leads to an Le symmetric
neutrino mass matrix for the right-handed neutrinos (see Eq. (1)). Models based on symmetries of the
type B − ∑ℓ xℓLℓ and

∑

ℓ yℓLℓ (with the constraints
∑

ℓ xℓ = 3 and
∑

ℓ yℓ = 0, respectively) have
been discussed for example in Refs. [9–12]. Seesaw neutrino models with an additional U(1)′ are also
discussed in Ref. [13]. Some of the phenomenological aspects of such models (the scalar sector, dark
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Le =

(

ν

e

)

L

∼ (1,2,−1)(3) ecR ∼ (1, 1,+2)(−3) Nc
i ∼ (1,1, 0)(Y ′(Nc

i ))

Qu
L =

(

u

d

)

L

∼ (3,2,+ 1
3
)(+ 1

3
) uc

R ∼ (3,1,− 4
3
)(− 1

3
) dcR ∼ (3,1,+ 2

3
)(− 1

3
)

Table I: SU(3)C × SU(2)L ×U(1)Y ×U(1)B+3(Le−Lµ−Lτ ) representations of left-handed SM fermions (only first
generation shown) and right-handed neutrinos Ni. For the second and third generation the U(1)B+3L charge of
the leptons changes sign.

matter candidates, etc.) are similar to frequently discussed B − L analyses. However, choosing gauge
groups that include flavor information makes it possible to provide predictions on neutrino mixing and
mass spectrum, which is impossible in theories based solely on B − L. This interesting connection of
flavor and gauge physics motivates us here to discuss the minimal gauged B + 3L model, which is free
of anomalies if right-handed neutrinos with proper charges under the new U(1)′ are introduced. Active
neutrino masses are a result of a type-I seesaw mechanism, which is applicable only in the case of a
broken symmetry, because the zeroth order right-handed neutrino mass matrix obeying L symmetry has
rank 2. Interestingly, the resulting low energy neutrino mass matrix Mν does not necessarily obey a
flavor structure resembling the one required from L conservation. Indeed, in what follows we will see that
details of the breaking of B + 3(Le −Lµ −Lτ ) can lead to low energy neutrino physics with a normal or
inverted hierarchy for the active neutrinos. As a possibility to force the inverted hierarchy in the active
neutrino sector, we introduce a Z2 symmetry. Interestingly, the very same Z2 turns out to render one of
the right-handed neutrino stable, and to become a dark matter candidate.
The paper is build up as follows: we will show the anomaly freedom of our symmetry in Sec. II. In

Sec. III we show that the model can lead to either Le or L symmetric low-energy neutrino mass matrices
via type-I seesaw, depending on the number of right-handed neutrinos and additional discrete symmetries.
The Z ′ phenomenology of B + 3L has already been briefly considered in Ref. [14], as a special case of
B −∑ℓ xℓLℓ, so we devote only a small section to its discussion (Sec. IV). Since the minimal scalar
sector consists only of one additional complex scalar, the effects are well known from, e.g., minimal B−L
models. The resulting mixing among the scalars is briefly derived in Sec. V. The discussion of the neutrino
mass matrix naturally leads to an additional exchange symmetry, which—properly implemented—yields
a stable right-handed neutrino as a dark matter candidate. We discuss the relic abundance of said dark
matter candidate around the scalar and Z ′ resonances in Sec. VI. We conclude our findings in Sec. VII.
The calculation of anomalies is presented in App. A, while appendices B and C contain brief calculations
that are not of utter importance to follow the main text.

II. GAUGED B + 3(Le − Lµ − Lτ ) SYMMETRY

We introduce nN right-handed neutrinos Ni with U(1)B+3L quantum numbers Y ′(Ni). The gauge
group representations of the first-generation fermions are shown in Tab. I, for the second and third
generation the U(1)B+3L charge of the leptons changes sign. Defining for simplicity U(1)′ ≡ U(1)B+3L

and Y ′ ≡ B + 3L we can calculate the triangle anomalies of the model. As shown in App. A, the model
is free of anomalies as long as the quantum numbers of the right-handed neutrinos satisfy

nN
∑

i

Y ′(Ni) = −3 ,

nN
∑

i

Y ′3(Ni) = −33 . (2)

The minimal anomaly free model consists of only one right-handed neutrino with L charge −3. There are
no real solutions of Eq. (2) for nN = 2, but for odd nN we can choose L(NR,1) = −3 and add pairs of right-
handed neutrinos with arbitrary—but opposite—charge. Solutions without a charge ±3, and therefore
without Dirac coupling to the active neutrinos, can be obtained with five right-handed neutrinos, e.g. with
the L charges −1, 2, −5, −5 and 6, respectively. It is clear that in this case mD = 0 = MR, and hence
the massless right-handed neutrinos decouple unless L is broken in a very specific way. Since this is
cumbersome, we will restrict ourselves to RHNs with charges ±3 in the following.
The symmetry U(1)B+3L was already discussed in Ref. [14], where it is proposed as an origin for R-

parity that also forbids proton decay via higher dimensional operators like QQQL, which conserve B−L
but violate B−∑ℓ xℓLℓ if xℓ 6= 1. Since in Ref. [14] it is only briefly mentioned that the mass matrix for
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the right-handed neutrinos has no vanishing entries in the broken case, we feel it is still worth discussing
the neutrino masses in more detail, due to their interesting structure.
It should be stressed that even though we are taking a non-supersymmetric model for simplicity, a

similar discussion holds for the supersymmetric case of Ref. [14]. Supersymmetric particles aside, the
main difference is the need for a second complex scalar (super-)field to fill the vanishing entries in the
neutrino mass matrix. The model (superpotential, mass spectrum etc.) is then similar to supersymmetric
B − L models, which are intensively discussed in e.g. Refs. [15]. Assuming similar vacuum expectation
values for both scalars makes the discussion of neutrino masses identical to Sec. III. The scalar and dark
matter sectors will of course differ from Sec. V and Sec. VI in a supersymmetric context. For example,
the mixing of the Higgs doublets Hi and the new scalars Si will be severely suppressed [16], making the Z ′

boson the main mediator between the dark matter and SM sector. A discussion of dark matter (especially
in the context of the additional Z2 symmetry that leads to inverted hierarchy) would be interesting, but
lies outside the realm of this work.

III. NEUTRINO MASSES

In this section we discuss various interesting possibilities of the new gauge symmetry in the neutrino
sector.

A. Three right-handed neutrinos

The most natural quantum number assignment for three right-handed neutrinos that cancels the anoma-
lies of Eq. (2) is +3, −3 and −3. After electroweak symmetry breaking, the Dirac and (symmetric)

Majorana mass matrices for νiNj and N
c

iNj , respectively, take the form

mD =







a 0 0

0 b c

0 d e






, MR =







0 X Y

· 0 0

· · 0






. (3)

As already mentioned in the introduction, the matrix MR is singular, which means the usual seesaw
formula Mν ≃ −mDM−1

R mT
D for the light neutrinos in the limit X,Y ≫ (mD)ij is not applicable.

Instead of the 3 νlight + 3 νheavy scheme known from seesaw, the diagonalization of the full 6 × 6 matrix
leads to the hierarchy 2 νheavy+2 νelectroweak+2 νlight, which is clearly not in agreement with experiments.
Since the model looks quite different after U(1)′ breaking, let us introduce a complex scalar field

S ∼ (1,1, 0)(+6) which acquires a vacuum expectation value (VEV). Collider limits on additional heavy
neutral gauge bosons typically give limits MZ′/g′ ∼ 〈S〉 & 1–10TeV for the VEV, to be further discussed
in Sec. IV. S couples to the right-handed neutrinos, so 〈S〉 fills all texture zeros in MR. As a result, MR

is in general an invertible matrix after B + 3L breaking:

MR =







A X Y

· B C

· · D






, M−1

R = − 1

detMR







C2 −BD DX − CY BY − CX

· Y 2 −AD AC −XY

· · X2 −AB






. (4)

The scaling X,Y ≫ 〈S〉 ≫ (mD)ij leads to the order-of-magnitude structure of the low-energy neutrino
mass matrix

Mν ≃ −mDM−1
R mT

D ∼







ε2 ε ε

· 1 1

· · 1






, (5)

with ε ≡ 〈S〉/X . Consequently, a low B+3L breaking scale (compared to MR, not mD) ε ∼ 0.1 actually
leads to a mass matrix that approximately conserves Le instead of L (see Eq. (1)). It is however not the
most general Le symmetric matrix, because the zeroth-order mass matrix has the structure

Mν ∼







0 0 0

· (cX − bY )2 (cX − bY )(eX − dY )

· · (eX − dY )2






+O(ε) , (6)
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which gives only one massive neutrino ν3 ∼ (cX − bY ) νµ + (eX − dY ) ντ .
The solar mixing angle is still undefined at this order, due to an accidental O(2) symmetry of the matrix

(see Ref. [17]). Since the symmetry allows for mixing of µ and τ , the charged lepton mass matrix is not
diagonal in general and contributes to θ23. The atmospheric mixing angle will therefore be a combination
of the charged-lepton mixing and the neutrino one

tan θν23 ≃ cX − bY

eX − dY
, (7)

so we expect large but non-maximal mixing.
While not particularly predictive, we show the distribution of the mixing angles θ12 and θ13 in Fig. 1

(left). For these we generated random Yukawa couplings |(mD)ij | ≤ 1, |A|, |B|, · · · < ε and |X |, |Y | > 1
that lead to neutrino mixing parameters in their 3σ range [18]. Here and in the following we restrict the
parameters to real values for simplicity, resulting in vanishing CP-violating phases in the mixing matrix.
In any case, since the Yukawa couplings can have arbitrary phases, we do not expect our model to be
able to predict the CP-violating phases. The solar angle tends to be large while the reactor angle θ13 is
generally small, but in good agreement with the recent T2K [19], Double-Chooz [20], Daya Bay [21] and
RENO [22] results of sin2 θ13 ≃ 0.025–0.03.
The units of mD and MR have not been specified yet, because they only fix the overall neutrino mass

scale—and hence the ∆m2
ij—but not the mixing angles. In the usual seesaw manner, the magnitude

m2
D/MR ≃ 0.1 eV does not fix the seesaw scale, but naturalness hints at a high scale.
Since the NH structure (5) has already been recognized before as a byproduct of the softly broken

global L (see for example Refs. [5]), we will not attempt to redo all the calculations done before. Instead,
we construct a model with a true L symmetry (and therefore inverted hierarchy) instead of the effective
Le as above. It turns out we are just a Z2 symmetry away.

B. Three right-handed neutrinos and Z2 symmetry

The reason for the different approximate symmetries in MR and M−1
R is the occurring vanishing

eigenvalue of MR in the unbroken case. Since the number of right-handed neutrinos is fixed by anomaly
cancellations to be odd, we cannot simply remove one of the Ni to make MR invertible. We can however
forbid its coupling to all other particles by means of an additional discrete symmetry. We will discuss
the simplest example below.
Defining an additional Z2 symmetry under which N3 transforms as N3 → −N3 while all other fields

are even,2 the only allowed interactions for N3 are

LN3
= iN3γ

µ
(

∂µ − i(−3)g′Z ′
µ

)

N3 − YχS N3
c
N3 + h.c.

=
i

2
χTCγµ∂µχ− 3

2
g′Z ′

µχ
TCγµγ5χ− Yχ

vS√
2
χTCχ

(

1 +
s

vS

)

,
(8)

making it stable and heavy after B + 3L breaking. In the last line we replaced the right-handed Dirac
fermion N3 by a Majorana fermion χ (see App. C) and used unitary gauge to make the Z ′ boson massive
and eliminate Im(S). The stable Majorana fermion χ is therefore a candidate for dark matter, to be
further examined in Sec. VI. Note that the stability is due to the Z2, which was introduced to implement
an inverted hierarchy for the active neutrinos.
The active neutrinos then couple only to N1 and N2, so at most two active neutrinos acquire mass at

tree level. The B+3L symmetry is broken in MR by the parameters A and B, so with the usual seesaw
mechanism we find

Mν ≃ −







a 0

0 b

0 c







(

A X

X B

)−1(

a 0 0

0 b c

)

=
1

X2 −AB







a2B −abX −acX

· b2A bcA

· · c2A






, (9)

2 This is equivalent to an exchange symmetry N2 ↔ N3 as can be seen using the basis Ψ1 ∼ N2 +N3, Ψ2 ∼ N2 −N3.
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Figure 1: Left: scatter plots using the broken B + 3L low-energy neutrino mass matrix (5) (ε = 0.05) that leads
to NH. Right: scatter plots using the neutrino mass matrix (10) (ε = 0.1) with five right-handed neutrinos and a
Z2, which leads to IH. The accepted values of the mixing parameters satisfy the 3σ bounds from Ref. [18], except
for θ23, because it can be arbitrarily adjusted by the charged-lepton contribution.

which features an interesting structure [6, 23]: The decoupling of N3 results in an invertible M2×2
R , so

Mν conserves Le − Lµ − Lτ in the limit A,B → 0. This model also gives a simple explicit realization
of “scaling” [24], seeing as the second and third column of Mν are proportional. Therefore we have an
inverted hierarchy solution with θ13 = 0, whereas the atmospheric mixing angle is once again large but
random, also due to the contributions of the charged leptons. At 2-loop level radiative corrections induce
a non-zero θ13, but of practically irrelevant magnitude [25]. The solar mixing angle becomes maximal for
A,B → 0, so the breaking scale needs to be close to the bare mass terms to lower θ12.
Since a vanishing reactor angle is by now excluded at ∼ 6σ, we have to modify our model to make

it phenomenologically viable. Here, θ13 and the mass of the lightest neutrino are linked [24], so we
need to break Z2 to couple N3 to the active neutrinos if we want θ13 6= 0. Therefore, a non-zero θ13
will lead to an unstable DM candidate χ, with a short lifetime compared to the age of the Universe in
general (see App. B for an estimate). Note that an explicit (soft) Z2 breaking by the coupling N

c

1N3

does not lead to IH, but rather an Le symmetric Mν (1). Correspondingly, the scalar sector needs to be
enlarged quite a bit to achieve IH with non-vanishing θ13, which is why we will not discuss this model
any further. Without touching the Z2 symmetry we could of course introduce a Higgs triplet (type-II
seesaw) to generate θ13 6= 0, but once again the scalar sector blows up. Another solution would be the
introduction of additional scalar doublets—charged under U(1)′—which generate off-diagonal mass terms
for the charged leptons and consequently modify the PMNS mixing matrix. Obviously this once again
complicates the scalar sector of the model and will therefore not be discussed further.
In the next section we will show that an extension of the fermion sector can easily generate a non-

vanishing reactor angle while maintaining a simple scalar sector and the exact Z2 symmetry.

C. Five right-handed neutrinos and Z2 symmetry

Since the extension by scalars is cumbersome, we seek out a different solution to generate θ13 6= 0.
The anomaly condition (2) can be fulfilled for five right-handed neutrinos with B + 3L charges +3, +3,
−3, −3, and −3, respectively. To obtain an invertible MR—and therefore an approximate L symmetric
Mν—we once again decouple one of the right-handed neutrinos (χ ≡ N3) by imposing a Z2 symmetry.
Again, χ will be our dark matter candidate, to be discussed in Sec. VI.
After symmetry breaking with the scalars H ∼ (1,2,+1)(0) and S ∼ (1,1, 0)(+6) we obtain the mass

matrix

Mν ≃ −







a b 0 0

0 0 c d

0 0 e f







(

A X
X T B

)−1











a 0 0

b 0 0

0 c e

0 d f











, (10)
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where X is an arbitrary 2×2 matrix (the gauge invariant mass terms for the right-handed neutrinos) and
A, B are symmetric 2× 2 matrices generated by spontaneous B + 3L breaking. For cf − ed 6= 0 there is
no massless neutrino α νµ+β ντ , so we have θ13 6= 0 in general. The solar mixing angle becomes maximal
for A,B → 0, so the breaking scale needs to be close to the bare mass terms to lower θ12. A large θ13 in
agreement with recent results also forbids a too low breaking scale, meaning that the breaking parameter
should be at least ε ≃ 0.1 in our minimal model. For the scatter plots in Fig. 1 (right) we generated
random Yukawa couplings |(mD)ij | ≤ 1, |(A)ij |, |(B)ij | ≤ ε and |(X )ij | > 1. Except for the approximate

L symmetry in the limit Aij ,Bij ≪ Xmn (and the corresponding inverted hierarchy) there is no further
structure in Mν , so we refrain from any analytical discussion.
We conclude the section by stressing once more that the spontaneously broken B + 3L symmetry can

provide mass matrices for either normal or inverted hierarchy, just depending on whether the number of
“active” right-handed neutrinos is odd or even, respectively. Since anomaly cancellation requires an odd
number of Ni—at least for physically interesting charge assignments—the decoupling to get IH needs
to be imposed by additional symmetries, which can easily lead to stable dark matter candidates. While
we discussed only the simplest decoupling symmetry Z2, one can of course implement a more elaborate
structure on this sub-sector.

IV. GAUGE SECTOR

In this section we will briefly discuss constraints on the neutral gauge boson of the gauged B + 3L
symmetry and possible detection prospects. The presented results are independent of the neutrino sector.
Extending the gauge group of the SM GSM ≡ SU(3)C ×SU(2)L×U(1)Y by U(1)′ leads to possible Z–Z ′

mixing, either from the VEV of a scalar in a non-trivial representation of SU(2)L × U(1)Y and U(1)′ or
via the kinetic mixing angle χ that connects the U(1) field strength tensors [26]. The relevant Lagrange
density L = LSM + LZ′ + Lmix after breaking SU(2)L × U(1)Y × U(1)′ to U(1)EM then consists of:

LSM = −1

4
B̂µνB̂

µν − 1

4
Ŵ a

µνŴ
aµν +

1

2
M̂2

ZẐµẐ
µ − ê

ĉW
jµY B̂µ − ê

ŝW
jaµ
SU(2)Ŵ

a
µ ,

LZ′ = −1

4
Ẑ ′
µνẐ

′µν +
1

2
M̂2

Z′Ẑ ′
µẐ

′µ − ĝ′j′µẐ ′
µ ,

Lmix = − sinχ

2
Ẑ ′µνB̂µν + δM̂2Ẑ ′

µẐ
µ .

(11)

Since the above gauge eigenstates have a non-diagonal mass matrix and kinetic terms, the physical mass
eigenstates are linear combinations of the hatted fields. Setting for simplicity the kinetic mixing angle χ
to zero, the transformation to the mass eigenstates Z1 and Z2 takes the simple form

(

Z1

Z2

)

=

(

cos θ sin θ

− sin θ cos θ

)(

Ẑ

Ẑ ′

)

, tan 2θ =
2 δM̂2

M̂2
Z − M̂2

Z′

, (12)

which modifies the couplings of the gauge bosons to fermions (see Ref. [27] for more details). Using
a modified version of GAPP [28] to fit our model with an arbitrary scalar sector we obtain the 95%
C.L. limit |g′ sin θ| . 10−4 (see Fig. 2) from electroweak precision data. Constraints for the mass MZ′

are obtained from collider searches, as the gauge boson of U(1)B+3L couples directly to first-generation
particles. LEP-2 searches for new physics give a stronger limit than Tevatron, namely MZ′/g′ & 13.5TeV
at 95% C.L. [29], because the Z ′ couples strongly to the electron (Y ′(e) = 3).
In the following we will ignore any Z–Z ′ mixing, be it mass mixing (not induced at tree-level in our

minimal model) or kinetic mixing; with Lmix = 0 we can omit all the hats of the parameters in Eq. (11).
With nN heavy neutrinos below MZ′—and with charges |Y ′(N)| = 3—we can calculate the Z ′ width:

Γ(Z ′ → ff) ≃ g′
2

12π
MZ′

(

3Y ′
ν

2
/2 + nNY ′

N

2
/2 + 3Y ′

ℓ

2
+ 3NcY

′
u

2
+ 3NcY

′
d

2
)

=
g′

2

24π
MZ′ (85 + 27nN) ,

(13)

with the number of colors Nc = 3. The main contribution comes from the leptons, because of the large
B+3L charge, which can be used to distinguish this model from the similar B−L model at colliders. The
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Figure 2: χ2 contours (90%, 95% and 99% C.L.) in the M2-sin(θ) plane. The horizontal dashed line is the 95%
C.L. lower limit from LEP-2 [29].

prospects of detecting the heavy Z ′ at the LHC were discussed in Ref. [14]; for g′ = 0.1 the final stage of
the LHC (

√
s = 14TeV, integrated luminosity L ≃ 100 fb−1) can probe the model up to MZ′ ≃ 3.6TeV

via the dilepton Z ′ resonance.
We note that the non-universal lepton coupling ofB+3L gives rise to non-standard neutrino interactions

(NSIs), which are usually parameterized by the non-renormalizable effective Lagrangian

Leff
NSI = −2

√
2GF ε

fP
αβ

[

f̄γµPf
]

[ν̄αγµPLνβ ] , (14)

in our case obtained upon integrating out the heavy gauge boson Z ′. Without going into details, we can
estimate

εαβ ∼ v2EW

(MZ′/g′)2
diag(1,−1,−1) =

v2EW

(MZ′/g′)2
diag(2, 0, 0) +

v2EW

(MZ′/g′)2
diag(1, 1, 1) . (15)

The magnitude is very small (ε ∼ 10−4) and since the term proportional to the identity matrix does not
affect oscillations, we actually only induce εee, i.e. modify the usual matter potential, which is hard to
measure.

V. MINIMAL SCALAR SECTOR

In this section we will discuss the scalar sector of the theory, which is again independent on the neutrino
physics. In addition to the usual scalar doublet H ∼ (1,2,+1)(0) of the SM, we introduce a complex
scalar S ∼ (1,1, 0)(+6) that will break the B+3L symmetry spontaneously. The discussion is analogous
to the highly discussed minimal B − L scalar sector [30]. The potential has the simple form

V (H,S) = −µ2
1|H |2 + λ1|H |4 − µ2

2|S|2 + λ2|S|4 + δ|S|2|H |2 , (16)

where we assume µ2
i > 0 to generate VEVs v ≡

√
2|〈H〉| and vS ≡

√
2|〈S〉|. The positivity of the potential

gives the constraints λi > 0 and λ1λ2 > δ2/4. In unitary gauge the charged component of H is absorbed
by W±, the pseudoscalar neutral component by Z, and the pseudoscalar component of S by Z ′, hence
we may go to the physical basis H → (0, (h+ v)/

√
2)T , S → (s + vS)/

√
2, which after the replacement

of µ2
i by the VEVs gives the potential:

V (h, s) = λ1v
2h2 + λ2v

2
Ss

2 + δvvShs

+ λ1vh
3 +

λ1

4
h4 + λ2vSs

3 +
λ2

4
s4 +

δ

4
h2s2 +

δ

2
vhs2 +

δ

2
vSh

2s .
(17)

The resulting mass matrix for the neutral scalars h and s

M2
scalar =

(

2λ1v
2 δvvS

δvvS 2λ2v
2
S

)

(18)
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leads to the mass eigenstates φ1 and φ2:
(

φ1

φ2

)

=

(

cosα − sinα

sinα cosα

)(

h

s

)

, tan 2α =
δvvS

λ2v2S − λ1v2
, (19)

with the masses m2
1,2 = λ1v

2 + λ2v
2
S ∓

√

(λ2v2S − λ1v2)2 + δ2v2Sv
2. In the limit vS ≫ v we obtain

α ≃ δv/2λ2vS and m2
1 ≃ 2(λ1 − δ2/4λ2)v

2, so the Higgs mass is reduced compared to the SM.
The LEP-2 bounds on MZ′/g′ translate into the constraint vS > 2.3TeV, which is to be compared to

the VEV in minimal B − L models vB−L > 3–3.5TeV. The masses of Z ′, φ2 and χ can of course be
smaller, since they involve additional coupling constants (that are completely independent of each other):

MZ′ = 6g′vS , m2 ≃ ms ≃
√

2λ2vS , Mχ =
√
2YχvS . (20)

Seeing as the VEV vS is connected to the seesaw scale (Eqs. (5),(9)) one could also consider vS ∼
1015GeV, which would make Z ′ and s pretty much impossible to observe. We will therefore focus on the
low-energy end of the seesaw scale, which can lead to observable effects. The arising effects are nearly
identical to the highly discussed minimal B − L scalar sector [30], the main difference being a larger Z ′

coupling to leptons, right-handed neutrinos and the scalar s; for these particles, B − L results can be
translated via g′ → 3 g′, while the coupling strength to quarks does not change. A future lepton collider
would therefore be the ideal machine to test this model and distinguish it from B − L by the decay
products of the Z ′ resonance.

VI. DARK MATTER

As we have seen in the previous sections, our model leads to a stable right-handed neutrino χ which
interacts with Z ′ and the φi via the Lagrangian from Eq. (8). The measured relic density [31] Ωχh

2 =
0.1123± 0.0035 can be obtained around either of the scalar s-channel resonances Mχ ≃ mi/2, but for the
φ1-resonance one needs a large mixing angle α. Choosing parameters that make the model testable at
LHC and direct DM detection experiments—Mχ ∼ 10–100GeV, m2 ∼ 100GeV—can lead to viable DM
relic abundance in complete analogy to Ref. [32], where a Z2 symmetry is added to the minimal B − L
model to make one of the right-handed neutrinos stable. We stress however that the Z2 in our model
was not introduced to make a particle stable, but to generate the right flavor symmetry in the neutrino
mass matrix. The stability of χ is in that sense just a welcome accident.3 We show the relic abundance
of χ as a function of its mass and the h-s mixing angle α in Fig. 3, as calculated with a modified version
of microMEGAs [33]. There is no difference between the B + 3L model and the B − L model in the
region Mχ ≪ MZ′ of parameter space, because the Z ′ plays a sub-dominant role for the properties of
the scalars, so we refer to Ref. [32] for exact formulae of the relevant cross sections and discussions of
direct detection signals etc. Additional work on B − L in connection with dark matter has been done in
Refs. [16, 34].
Values around Mχ ∼ 100GeV are an interesting limiting case for collider searches. However, since χ,

Ni, Z
′, and φ2 all obtain their masses from B+3L breaking (20), we naturally would expect their masses

to be similar:

MZ′ ∼ m2 ∼ Mχ ∼ MNi
. (21)

To satisfy collider constraints and give a valid seesaw mechanism one needs the scale for these masses
to be above 1–10TeV, but it can of course be even higher. A valid relic density can be obtained yet
again around the φ2 resonance, since we expect χ and φ2 to have similar masses anyway. The important
annihilation channels are then χχ → leptons, WW , ZZ and φ1φ1. The latter three have a fixed ratio at
the resonance, because for m2 ≫ m1,MZ one calculates

Γ(φ2 → W+W−) ≃ 2Γ(φ2 → ZZ) ≃ 2Γ(φ2 → φ1φ1) ≃
m3

2

16πv2
sin2 α . (22)

3 Note that we need an exact Z2 for dark matter, while a valid IH solution could also work with a broken Z2. This would
however necessitate a more complicated model, so Occam’s razor suggests an exact Z2.
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Figure 3: Left: Relic density of χ for the parameters m1 = 125GeV, m2 = 500GeV, vS = 2.3TeV, g′ = 0.25,
N1 = 1.9TeV, N2 = 2.5TeV, and sinα = 0.5 (blue), 0.3 (red) and 0.1 (black). This puts the φ1, φ2 and Z′

resonances at ∼ 60GeV, 250GeV and 1.7TeV, respectively. The green band shows the 3σ range measured by
WMAP. Right: Relative contribution to the relic density by the processes χχ → qq (sum over all quarks), leptons
(including neutrinos), ZZ, etc., for sinα = 0.3.

For Mχ ≃ m2/2 > mt there is of course the additional important decay into top quarks. However, for a
DM candidate this heavy, we also have a Z ′ resonance Mχ ≃ MZ′/2 independent of the mixing angle α.
Due to the different coupling of our Z ′ compared to B − L, this Z ′ resonance is particularly interesting
to distinguish the models. The interactions between fermions and Z ′ are given by

L ⊃ g′Z ′
µ

(

− 3

2
χγµγ5χ+

1

3

∑

q

qγµq − 3 eγµe+ 3 τγµτ

+
3

2
νeγ

µ(−γ5)νe −
3

2
ντγ

µ(−γ5)ντ +
3

2
N1γ

µ(+γ5)N1 + . . .

)

,

(23)

where χ and the neutrinos are written as Majorana fermions. The structure of the effective operators
χγµγ5χ fγµf upon integrating out Z ′ leads to spin-independent (SI) and spin-dependent (SD) interactions
in the non-relativistic limit, suppressed by v2 (velocity) and q2 (momentum transfer), respectively, as
discussed in Ref. [35].
Around the Z ′ resonance, the relevant processes χχ → Z ′ → ff lead to the thermally averaged cross

section 〈σv〉 ≃ a+ bv2 with a = 0 and

b ≃ 2g′
4

3π

M2
χ

(M2
Z′ − 4M2

χ)
2 + Γ2

Z′M2
Z′

∑

f

Y ′2
fY

′2
χ , (24)

where we neglected the fermion masses for simplicity. This can be used to calculate the freeze-out
temperature and the relic density Ωχh

2 ∼ 1/b [32] of χ. Due to the larger coupling of Z ′ to leptons

compared to B −L, the annihilation channels around the Z ′ resonance are mainly ℓℓ, νν, and also NiNi

if MNi
. MZ′/2. At this point it matters whether we take χ from Sec. III B or Sec. III C, because

the models differ in the number of heavy neutrinos. However, additional right-handed neutrinos do not
change the discussion qualitatively, so we will perform our calculations with nN = 3 (Sec. III B) for
simplicity. In Fig. 3 we already showed the relic density of χ and the contributing processes around the
Z ′ resonance.
While it is clear from Fig. 3 that the Z ′ channel can lead to the proper relic density (even for sinα = 0),

direct detection signals from Z ′ interactions are difficult to measure due to the Lorentz structure of the
effective operator χγµγ5χ fγµf . Since direct detection occurs via t-channel Z ′ exchange, there is no

resonance boost like in the annihilation case. The SD operators χγµγ5χ fγµγ5f—which do not suffer
from q2 or v2 suppression—can only be obtained via electroweak loops or Z–Z ′ mixing, which once again
suppresses them. Correspondingly, direct detection experiments will not be sensitive to Z ′ exchange, so
the cross section will be dominated by the scalar-induced operator χχ qq, which gives SI cross sections
proportional to sin2 2αM2

χ/v
2
S . We show the cross sections for χp → χp in Fig. 4 (as calculated with

microMEGAs) for the same parameters as in Fig. 3. The right relic density can be obtained for example
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Figure 4: Spin-independent cross section of χ with a proton with the same parameters as Fig. 3, i.e. m1 = 125GeV,
m2 = 500GeV, vS = 2.3TeV, g′ = 0.25, N1 = 1.9TeV, N2 = 2.5TeV, and sinα = 0.5 (blue), 0.3 (red, dashed)
and 0.1 (black, dotted). Also shown is the XENON100 90% C.L. exclusion from Ref. [36].

at the φ2 resonance with Mχ ≃ 225GeV, which gives a cross section σp/ sin
2 2α ≃ 2.5 × 10−9 pb. This

evades current XENON100 bounds [36] but can be probed in future experiments like XENON1T [32].
We note that a supersymmetric extension of this model might result in α ≪ 1—making the Z ′ resonance

crucial for relic abundance—similar to a supersymmetric extension of the B−Lmodel of Ref. [32] discussed
in Ref. [16].
In any case, dark matter experiments will not be able to distinguish between the various B −∑ℓ xℓLℓ

models. This has to be done in collider experiments or with precision observables such as magnetic
moments.

VII. CONCLUSION

We presented the minimal model for a local B + 3(Le − Lµ − Lτ ) symmetry. Direct detection limits
demand a breaking scale of at least 1–10TeV and to cancel anomalies we need to introduce right-handed
neutrinos. Correspondingly, we identify the breaking scale with the seesaw scale (in fact, slightly below)
and obtain low energy neutrino mass matrices that approximately conserve Le or Le − Lµ − Lτ , which
are the championed symmetries behind normal and inverted hierarchy, respectively. The latter can be
obtained if a Z2 symmetry is added to the model, resulting in a stable, heavy right-handed neutrino
which serves as dark matter. We stress that the Z2 is introduced to obtain the flavor structure associated
with the inverted hierarchy, the DM stability is somewhat accidental. The heavy gauge boson Z ′ and the
leftover scalar from spontaneous B + 3(Le −Lµ −Lτ ) breaking are the only mediators to the DM sector
and are in principle observable at the LHC. Depending on the number nN of right-handed neutrinos, our
model can produce θ13 = 0 (nN = 3 plus Z2) or θ13 6= 0 (nN ≥ 5 (odd) plus Z2), making θ13 a parameter
to test the number of right-handed neutrinos in our model.
The dark matter candidate χ interacts with the Standard Model via scalar mixing and Z ′; the measured

relic abundance can be obtained around any of the s-channel resonances Mχ ≃ mi/2, MZ′/2. The
Z ′ contribution to direct detection measurements is highly suppressed due to the Lorentz-structure of
the effective operator χγµγ5χ fγµf , so direct detection cross sections are dominated by scalar exchange
and can be probed in future experiments.
Many of the phenomenological aspects of our models are very similar to previously discussed B − L

analyses. However, the fact that our modified gauge group includes flavor information, makes it possible
to provide predictions on neutrino mixing and mass spectrum, which is impossible in theories based on
B − L.
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Appendix A: Triangle Anomalies

We introduce nN right-handed neutrinos Ni with U(1)B−xeLe−xµLµ−xτLτ
quantum numbers Y ′(Ni).

The gauge group representations of the first-generation fermions are shown in Tab. II, for the second and
third generation xe has to be replaced by xµ and xτ respectively.

Le =

(

ν

e

)

L

∼ (1,2,−1)(−xe) ecR ∼ (1, 1,+2)(xe) Nc
i ∼ (1,1, 0)(Y ′(Nc

i ))

Qu
L =

(

u

d

)

L

∼ (3,2,+ 1
3
)(+ 1

3
) uc

R ∼ (3,1,− 4
3
)(− 1

3
) dcR ∼ (3,1,+ 2

3
)(− 1

3
)

Table II: SU(3)C × SU(2)L ×U(1)Y ×U(1)B−xeLe−xµLµ−xτLτ representations of left-handed SM fermions (only
first generation shown) and right-handed neutrinos Ni.

Defining for simplicity Y ′ ≡ B−xeLe−xµLµ−xτLτ and U(1)′ ≡ U(1)Y ′ we can calculate the triangle
anomalies of the model [9, 37]:

U(1)′ − grav− grav :
∑

Y ′ = NgNc

(

2

(

1

3

)

−
(

1

3

)

−
(

1

3

))

+
∑

ℓ

(xℓ − 2 · xℓ) +
∑

i

Y ′(N c
i )

=
∑

i

Y ′(N c
i )−

∑

ℓ

xℓ ,

U(1)′ − U(1)′ − U(1)′ :
∑

Y ′3 =
∑

i

Y ′3(N c
i )−

∑

ℓ

x3
ℓ ,

U(1)′ − U(1)′ − U(1)Y :
∑

Y ′2Y = NgNc

(

2

(

1

3

)2 (
1

3

)

+

(

−1

3

)2(

−4

3

)

+

(

−1

3

)2(
2

3

)

)

= 0 ,

U(1)′ − U(1)Y − U(1)Y :
∑

Y ′Y 2 = NgNc

(

2

(

1

3

) (

1

3

)2

+

(

−1

3

)(

−4

3

)2

+

(

−1

3

)(

2

3

)2
)

+
∑

ℓ

(22xℓ − 2xℓ) = −2NgNc

(

1

3

)

+ 2
∑

ℓ

xℓ ,

U(1)′ − SU(3)− SU(3) :
∑

3,3

Y ′ = NgNc

(

2

(

1

3

)

−
(

1

3

)

−
(

1

3

))

= 0 ,

U(1)′ − SU(2)− SU(2) :
∑

2

Y ′ = 2NgNc

(

1

3

)

− 2
∑

ℓ

xℓ ,

(A1)

where we introduced the number of generations Ng = 3 and the number of colors Nc = 3. Thus the
conditions for anomaly-freedom are

nN
∑

i

Y ′(N c
i ) =

∑

ℓ

xℓ = 3 , and
∑

i

Y ′3(N c
i ) =

∑

ℓ

x3
ℓ . (A2)

In this paper we discuss the choice xe = −xµ = −xτ = −3, which leads to the conditions for the
right-handed neutrino charges

nN
∑

i

Y ′(Ni) = −3 , and
∑

i

Y ′3(Ni) = −33 . (A3)
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Figure 5: Decay of the dark matter candidate χ due to small Z2 breaking ε in the Dirac mass matrix mD.

Appendix B: Unstable dark matter from Z2 Breaking

We will discuss the connection between the lifetime of χ ≡ N3 and θ13 in the model of Sec. III B,
as they are both connected to Z2 breaking. Z2 breaking in MR does not induce a non-zero θ13, so we
assume there are breaking terms in mD:4

L ⊃ δ νµχ+ ε ντχ+ h.c. , (B1)

where δ and ε carry no B + 3L charge, wlog. The mass matrix Mν from Eq. (9) gets perturbed by

∆M = −







0 0 0

· δ2/Mχ δε/Mχ

· · ε2/Mχ






. (B2)

The lowest neutrino mass is no longer zero but rather ≃ (δ − ε)2/2Mχ, and furthermore

sin θ13 ≃ δ2 − ε2

Mχ

R√
18

1
√

|∆m2
31|

, (B3)

with R ≡ ∆m2
21/∆m2

31 ≃ 0.03.
The Lagrangian (B1) generates the χ decay via W -loop (Fig. 5) and tree-level χ → νZ → 3ν, the

latter of which dominates and can be estimated via

Γ(χ → 3ν) ≃ G2
F

192π3

(

δ

Mχ

)2

M5
χ , (B4)

where we set ε = 0 for simplicity. The decay width is therefore linear in sin θ13:

Γ(χ → 3ν) ≃
√
18

G2
F

192π3

√

|∆m2
31|

R
M4

χ sin θ13

≃ sin θ13

(

Mχ

100GeV

)4

10−14 GeV ,

(B5)

resulting in a lifetime compared to the age of the universe

τχ/τUniverse ≃
10−28

sin θ13

(

100GeV

Mχ

)4

. (B6)

Even for the smallest currently allowed sin θ13 ≃ 0.03 (at 3σ) it is not possible to make χ a sufficiently
long-lived cold dark matter candidate.

4 We do not specify the origin of these parameters; they can be obtained with an additional Higgs doublet or as effective
operators from Z2 breaking at the Planck scale. In the former case the additional scalars might contribute to the width
of χ.
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Appendix C: Majorana Interactions

Here we provide some details on the rewriting of the Lagrangian of the right-handed Dirac fermion N3

in terms of a Majorana fermion χ. After spontaneous breaking of B + 3L we have

LN3
= iN3γ

µ
(

∂µ − i(−3)g′Z ′
µ

)

PRN3 − YχS N3
c
PRN3 − YχS N3PLN

c
3

= iN3γ
µ
(

∂µ − i(−3)g′Z ′
µ

)

PRN3 − Yχ

vS√
2

(

N3
c
PRN3 +N3PLN

c
3

)

(

1 +
s

vS

)

.
(C1)

Introducing two Majorana fields φ = φc and χ = χc so that N3 = PLφ+ PRχ gives

Lχ =
i

2
χT Cγµ∂µχ− 3

2
g′Z ′

µ χ
TCγµγ5χ− Yχ

vS√
2
χT Cχ

(

1 +
s

vS

)

, (C2)

where we omitted the non-interacting φ and used the Majorana identities5

χγµχ = 0 = χγµγ
5∂µχ− (∂µχ)γµγ

5χ , (C3)

as well as the general equations [C, γ5] = 0, C = C and PL,R = PR,L. Due to the Majorana condition we

also have χTC = χ. Reading off the mass mχ/2 = YχvS/
√
2 we note that χ is to be treated as a real field

when computing functional derivatives (additional factor of 2).
A similar analysis can be performed for the neutrinos (active and right-handed), with the additional

complication of mixing (via seesaw). The only important part is actually the γ5 in the Z ′ and Z interac-
tions, which leads to spin-dependent scattering. For the active neutrinos the γ5 stems from a left-handed
projector, so we end up with

L ⊃ +
1

2
(+3g′)Z ′

µ νeγ
µ(−γ5)νe +

1

2
(−3g′)Z ′

µ ντγ
µ(−γ5)ντ

+
1

2
(+3g′)Z ′

µ N1γ
µ(+γ5)N1 +

1

2
(−3g′)Z ′

µ N2γ
µ(+γ5)N2 ,

(C4)

etc., where all fermions are Majorana particles.
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