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Abstract
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of an AdS solution. We determine the structure of the linearized perturbations
and their boundary fall-off behaviour. The linearized modes exhibit the expected
Jordan block structure and their inner products are shown to be those of a non-
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the polycritical gravity theory at the linearized level for odd rank.
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1 Introduction

The perturbative properties of ordinary general relativity in d = 4 space-time dimensions can
be improved by adding higher derivative terms to the action. The price one has to pay for
rendering the theory renormalizable in this way is typically the loss of unitarity [1, 2]. Recently,
specific models in d ≥ 3 with special choices of higher derivative terms have attracted renewed
attention for several reasons. One is that they can provide consistent ghost-free theories of
massive gravitons. This was first observed in d = 3 in the parity violating ‘topologically
massive theory of gravity’ (TMG) [3, 4] with three derivatives and more recently in d = 3 for
the parity preserving ‘new massive gravity’ (NMG) [5] with four derivatives. The construction
was later extended to higher dimensions by the discovery of ‘critical gravity’ theories with four
derivatives where at special critical points of the parameter space (of the coefficients of the
higher derivative terms) the massive excitations become massless and the theory can become
ghost-free and possibly renormalizable [6–11]. At the critical points one typically encounters
logarithmic graviton modes that emerge as the replacement for the massive modes. These
theories importantly have a non-vanishing cosmological constant. Similar parity preserving
theories now also exist in arbitrary dimension and with an arbitrary (even) number of space-
time derivatives and critical points, the so-called polycritical gravities [12]. (For other work
on massive gravity see [13–18].)
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Another reason for studying polycritical models is provided by the AdS/CFT correspon-
dence where one would expect a non-unitary logarithmic CFT as the dual of a polycritical
gravity theory [8, 19, 20] (see also [21–23]). The non-unitarity of the logarithmic CFT is re-
lated to the fact that the Hamiltonian cannot be diagonalized on the fields; there is a Jordan
structure [24, 25]. However, the precise structure of the two-point correlation functions sug-
gests the existence of unitary truncations, and by AdS/CFT also in the gravity theory [20].
The example of six-derivative gravity in d = 3 was treated recently in [26] whereas four-
derivative critical gravity in d = 4 appeared in [27].

To explore this question further, the present paper analyzes the structure of the various
gravitational modes in polycritical gravity in space-time dimensions d ≥ 3 at the linear level.
We find that an inner product can be defined that reproduces the structure expected from
logarithmic CFTs. The linearized graviton excitations around an AdS background can be
organized into a hierarchy of higher and higher logarithmic dependence near the boundary of
AdS. The lowest mode is the usual Einstein mode, the next one has an additional logarithmic
dependence on the AdS radius, the next one contains log2 terms and so on. This allows us to
truncate the linearized theory by imposing appropriate boundary conditions on the graviton
fall-off behaviour. A suitable truncation then renders the inner product matrix between the
various modes positive semi-definite. The null states can also be factored out, but the resulting
theory is quite different depending on the rank of the polycritical gravity theory. The rank is
defined as half the maximum number of space-time derivatives. When the rank is odd, one
arrives at a unitary model of a single graviton mode. By contrast, the theory becomes trivial
for even rank; the surviving mode has zero energy. This confirms a conjecture of [20]. An
alternative description of this truncation can be given by defining a hierarchy of (conserved)
charges and then restricting to a superselection sector in this charge hierarchy.

While this paper was being completed, the preprint [28] appeared that discusses the
specific case of non-linear critical gravity of rank 3 in d = 3 and d = 4 with the result
that truncations that appear to be unitary at the linearized level may be inconsistent at the
non-linear level, i.e., the truncation is flawed by a linearization instability. The argument
given there seems to extend to the general case independently of how the linearized theory
is completed and this would suggest that our unitary subsectors exist only in the linearized
approximation.

Our paper is structured as follows. In section 2, we give the Lagrangian of the polycritical
theory around AdS space whose various modes will be obtained in section 3. Then in section 4
we define and compute the inner product for these modes. Using either the hierarchy of
charges established in section 5 or appropriate boundary conditions, we will be able to define
a unitary truncation of the polycritical model in section 6. An appendix shows that our inner
product is equivalent to one derived canonically from a two-derivative master action.

2 Quadratic Lagrangian

In this section we briefly review the quadratic Lagrangian around AdS space of polycritical
models of arbitrary rank. But before doing so, it is useful to first go over the rank one (i.e. two
derivative) case: Einstein gravity with a cosmological constant.
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2.1 Rank one: Einstein gravity

Recall that for Einstein gravity with a cosmological constant, we have the Lagrangian

L =
√−g(R − 2Λ). (1)

The equations of motion state that the cosmological Einstein tensor (that is, the Einstein
tensor plus a term proportional to the cosmological constant) vanishes,

GΛ
µν = Gµν + Λgµν = 0. (2)

We will perform perturbations around solutions of the equations of motion as follows,

gµν = ḡµν + gLµν = ḡµν + hµν . (3)

The bar indicates the background solution, and the superscript L the linear perturbations
around it. Thus the linear perturbation of the metric is given by hµν . We take the background
solution to be an AdS space, which means that the curvature tensors satisfy

R̄µνρσ =
2Λ

(d− 2)(d − 1)
(ḡµρḡνσ − ḡµσ ḡνρ) , (4a)

R̄µν =
2

(d− 2)
Λḡµν , (4b)

R̄ =
2d

(d− 2)
Λ, (4c)

Ḡµν = −Λḡµν , (4d)

with d being the number of space-time dimensions and Λ < 0. Instead of the cosmological
constant, we can also use the AdS length ℓ as a measure for the background curvature. The
two are related via

1

ℓ2
= − 2Λ

(d− 2)(d− 1)
. (5)

Note that (4d) indeed solves the equations of motion (2). On this background, the linear
equations of motion become

(

GΛ
µν

)L
= RL

µν −
2Λ

(d− 2)
hµν −

1

2
ḡµνR

L = 0, (6)

with

RL = ∇̄ρ∇̄σh
ρσ − ¯h− 2

d− 2
Λh, (7a)

RL
µν = ∇̄ρ∇̄(µhν)

ρ − 1

2
¯hµν −

1

2
∇̄µ∇̄νh. (7b)

Taking the trace of the linear equation of motion (6) is the same as linearizing the trace of
the non-linear equation of motion (2), because the cosmological Einstein tensor vanishes by
construction on the background. Either way, we find

ḡµν
(

GΛ
µν

)L
=
(

gµνGΛ
µν

)L
=

(

1− d

2

)

RL = 0. (8)
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Furthermore, the linear equations of motion (6) have a gauge invariance that stems from the
diffeomorphism invariance of the non-linear theory. To be precise, they are invariant under
the gauge transformation

hµν → h′µν = hµν + ∇̄(µvν), (9)

for any vector vµ. This gauge invariance, combined with the on-shell vanishing of the linearized
Ricci scalar RL, implies [29] that we can go to the so-called ‘transverse traceless’ gauge,

∇̄µhµν = 0, (10)

h = 0. (11)

This gauge eliminates the scalar mode (that would otherwise be a ghost) of hµν , making it a
proper spin-2 field.1

In the transverse traceless gauge, the linearized equation of motion (6) simplifies consid-
erably to

(

GΛ
µν

)L
= −1

2

(

¯ + 2ℓ−2
)

hµν = 0. (12)

The term 2ℓ−2 may look like a mass term, but it is not. Mass terms in general break
gauge invariance, but the linearized equations of motion were in fact gauge invariant. In-
stead, if one were to introduce a mass for the spin-2 field, its equation of motion would read
(

¯ + 2ℓ−2 −m2
)

hµν = 0, with m being the proper mass parameter.
Lastly, the linear equations of motion (6) can also be obtained from the quadratic pertur-

bation of the Lagrangian (1), which, after partial integration, reads

L2 = −1

2

√−ḡ hµν
(

GΛ
µν

)L
. (13)

Indeed, upon varying this quadratic action with respect to hµν we recover (6).

2.2 Einstein and Schouten operators

The fact that the Lagrangian (13) is quadratic in hµν is obscured as the linear Einstein tensor
(

GΛ
µν

)L
also contains hµν . We can make the quadratic dependence a bit more transparent by

introducing the so-called Einstein operator G, upon which the Lagrangian reads

L2 = −1

2

√−ḡ hµνGhµν . (14)

The (cosmological) Einstein operator G is defined as

Ghµν ≡
(

GΛ
µν

)L
. (15)

Here and in the following we have suppressed the indices on G. But it is in fact a tensorial
operator, so when we write Ghµν we implicitly mean Gµν

ρσhρσ. Reading off from equation
(6), the explicit form of the Einstein operator is

Gµν
ρσ = ∇̄ρ∇̄(µδ

σ
ν) − 1

2
¯ δρµδ

σ
ν − 1

2∇̄µ∇̄ν ḡ
ρσ − 1

2 ḡµν∇̄
ρ∇̄σ

+ 1
2 ḡµν

¯ ḡρσ − 2Λ

d− 2
δρµδ

σ
ν +

Λ

d− 2
ḡµν ḡ

ρσ. (16)

The Einstein operator has a few nice properties:

1As is clear from equation (7a), the transverse traceless gauge ‘gauges away’ the linear Ricci scalar. This
might seem counter-intuitive, as the linear Ricci scalar is gauge-invariant. But we must not forget that we
used the fact that it vanishes on-shell in order to arrive at the above gauge. Thus in using this gauge one
automatically goes (partially) on-shell.
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1. It is self-adjoint under partial integration:

Aµν(GBµν) = (GAµν)B
µν + total derivative. (17)

2. It is conserved:
∇̄µGAµν = 0. (18)

3. It is gauge invariant:
G
[

Aµν + ∇̄(µvν)
]

= GAµν . (19)

Here the symmetric Aµν , Bµν , and vµ are completely arbitrary.
In the following we will also need another operator, the so-called (cosmological) Schouten

operator S [12]. It is defined similarly as the Einstein operator, the difference being that it
yields the linearized cosmological Schouten tensor when applied to hµν :

Shµν ≡
(

SΛ
µν

)L
. (20)

In turn, the cosmological Schouten tensor is the usual Schouten tensor2 plus a term propor-
tional to the cosmological constant:

SΛ
µν = Sµν −

Λ

d− 1
gµν

= Rµν −
1

2(d− 1)
gµνR− Λ

d− 1
gµν . (21)

The extra term proportional to the cosmological constant is chosen such that the cosmological
Schouten tensor vanishes on AdS backgrounds,

S̄Λ
µν = 0. (22)

The linearized cosmological Schouten tensor reads

(

SΛ
µν

)L
= RL

µν −
2Λ

(d− 2)
hµν −

1

2(d− 1)
ḡµνR

L. (23)

Note that it differs from the linearized cosmological Einstein tensor (6) by a factor of RL:

(

SΛ
µν

)L
=
(

GΛ
µν

)L
+

1

2

d− 2

d− 1
ḡµνR

L. (24)

The Schouten operator on its own does not have striking properties: it is not self-adjoint,
nor is it conserved. However, in combination with the Einstein operator, things become more
interesting:

1. GS is self-adjoint under partial integration:

Aµν(GSBµν) = (GSAµν)B
µν + total derivative. (25)

And because G on its own is also self-adjoint, GSk (the k-fold application of S followed
by G) is so too.

2Strictly speaking, the usual Schouten tensor has an additional overall 1

d−2
factor. However, for our purposes

it is more convenient to normalize slightly differently.
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2. S can be traded for a cosmological constant when taking the trace:

ḡµνGSAµν =
d− 2

2ℓ2
ḡµνGAµν . (26)

3. S is gauge invariant:
S
[

Aµν + ∇̄(µvν)
]

= SAµν . (27)

4. For a symmetric, transverse and traceless tensor (say Cµν), G and S are the same:

SCµν = GCµν = −1

2

(

¯ + 2ℓ−2
)

Cµν . (28)

The first two properties are crucial for constructing a quadratic theory of general rank, which
we will do now.

2.3 General rank

The rank r polycritical Lagrangian around an AdS background is given by

L(r)
2 = − 1

2τ

√−ḡ hµνG
r−1
∏

i=1

(

2S +m2
i

)

hµν , (29)

with τ =
∏r−1

i=1

(

m2
i +

d−2
ℓ2

)

. For rank one, it reduces to the quadratic Einstein Lagrangian
(14), as required.

The non-linear completion for rank one is unique [30]; it is simply the Einstein-Hilbert
Lagrangian (1). For rank two in d = 3 [5] or d = 4 [7] the non-linear completion is also unique,
because the number of independent curvature invariants is sufficiently small in those cases.
However, for higher rank the quadratic theory no longer uniquely fixes the non-linear theory,
due to the growth of curvature invariants. One can still find some non-linear Lagrangian that
reproduces the above theory (29) for quadratic perturbations. For d ≥ 4 and arbitrary rank
this was done in [12], while [26] has a non-linear action for r = 3, d = 3. However, finding a
unitary interacting theory is not so easy [1, 2]. We will content ourselves with knowing one
can always write down a non-linear completion.

Since GSk is self-adjoint, the equations of motion that follow from (29) are simply

1

τ
G

r−1
∏

i=1

(

2S +m2
i

)

hµν = 0. (30)

Upon taking the trace of this, we find with the help of (26),

1

τ
ḡµνG

r−1
∏

i=1

(

2S +m2
i

)

hµν = ḡµνGhµν =

(

1− d

2

)

RL = 0. (31)

Note that the use of Schouten operators is crucial in order for the trace to reduce to the linear
Ricci scalar. If one were to use only Einstein operators in the action (29), the trace of the
equations of motion would not be equal to the linear Ricci scalar.
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Similarly as in the rank one case, the on-shell vanishing of the linear Ricci scalar allows
us to go to the transverse and traceless gauge. The equations of motion then become

∇̄µhµν = 0, (32a)

h = 0, (32b)r−1
∏

i=0

(

¯ + 2ℓ−2 −m2
i

)

hµν = 0, (32c)

with m0 = 0. The theory thus contains r propagating gravitons h
[i]
µν , one of which is always

massless while the others can be massive. Such a graviton mode is a solution to a different
equation of motion than (32). Instead it is annihilated by a single factor of the product of
(32c),

h[i]µν :
(

¯ + 2ℓ−2 −m2
i

)

h[i]µν = 0, (33)

while of course still being transverse and traceless. Their on-shell quasilocal energies can be
computed by taking an appropriate integral of the effective stress-energy tensor, as we will
explain in more detail in subsection 4.1. For the modes h[i] defined above the result is [12]

E[i] =
E0

τ

r−1
∏

j=0
j 6=i

(

m2
j −m2

i

)

. (34)

Here E0 is the energy of the massless graviton for rank one, that is, the usual graviton energy
in Einstein gravity. If we arrange the masses by size,

m2
1 < . . . < m2

i−1 < m2
i < m2

i+1 < . . . < m2
r−1, (35)

the sign of the energies alternates:

sgn
(

E[i]
r

)

= − sgn
(

E[i+1]
r

)

. (36)

So unfortunately, when the masses are not degenerate some of the gravitons will always be
ghosts, no matter how one chooses the overall sign of the action. A notable exception is the
d = 3, r = 2 case, NMG [5]. In three dimensions the massless graviton does not propagate,
but the massive one does. One can then choose the overall sign of the action such that massive
graviton has positive energy and is not a ghost.

However, for generic dimensions and rank, such a thing is not possible. In an attempt to
ameliorate the situation, one can send all the masses to zero, thereby reaching the polycritical
point.

2.4 Polycritical point

We define the maximally polycritical point to be the point in parameter space where all the
masses are zero. The Lagrangian (29) then reads

L(r)
2 = −1

2

(

2ℓ2

d− 2

)r−1

hµνGSr−1hµν , (37)

and the equations of motion that follow from it are

GSr−1hµν = 0. (38)
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We know from before that this allows us to let hµν be transverse and traceless. In this gauge,
the Schouten and Einstein operator become the same, and the remaining equations of motion
read

Grhµν = 0. (39)

It is worth stressing that the above is not the correct complete equation of motion; one must
take into account that hµν is already transverse and traceless. If this was not the case we
would have to go back to (38).

At the polycritical point the r − 1 massive modes degenerate with the massless mode

into a single mode. In addition r − 1 new modes appear, the so-called log modes h
(I)
µν (with

I = 1, . . . , r − 1). These log modes satisfy different equations of motion than the massless
mode; they are annihilated by two or more Einstein operators:

h(I)µν :
GI+1h

(I)
µν = 0,

GIh
(I)
µν 6= 0,

(40)

with I = 0, 1, . . . , r − 1. Note that h
(0)
µν is the usual massless graviton. The action of a single

Einstein operator on a log mode gives a ‘lower’ log mode,

Gh(I)µν =
d− 2

2ℓ2
h(I−1)
µν . (41)

If we use the convention h
(−1)
µν = 0 then (40) reproduces the equations of motion.

The main aim of this paper is to analyse the inner product of the log modes and study the
unitarity of the linearized theory. Next, we will examine explicit solutions to the equations
of motion of the log modes.

3 Linearized log modes

In this section we explicitly present modes of the linearized equations of motion of the polycrit-
ical gravities at their maximally polycritical point. We first recall certain basic facts about
constructing such modes from [21, 31] and then give some explicit expressions. A similar
analysis has been recently performed by other authors [28, 31, 32].

To construct log modes, one first constructs massive as well as massless transverse traceless
spin-2 modes in terms of the highest weight representations of the symmetry group SO(2, d−1)
of AdSd spacetime. From the highest weight states all other states are obtained by acting
with the negative root generators of the algebra. Recall that the mass parameter for spin-2
modes is defined as in (33), therefore a general transverse traceless massive spin-2 mode ψµν

satisfies

ḡµνψµν = 0, (42a)

∇̄µψµν = 0, (42b)
(

¯ +
2

ℓ2
−m2

)

ψµν = 0. (42c)

In higher derivative theories at the maximally polycritical point the equations of motion read
(39) in the transverse traceless gauge. At the critical points log modes emerge that satisfy
different equations of motion (40).
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It has been previously observed [31, 32] that the highest weight log modes are related to
the corresponding massless mode. The relation is through an overall factor. For the log mode

h
(I)
µν of index I, the factor is a polynomial of order I in a function f . To introduce the function
f , we first introduce global coordinates on AdSd in which the metric of AdSd takes the form

ds2 = ℓ2
(

− cosh2 ρdτ2 + dρ2 + sinh2 ρ dΩ2
d−2

)

, (43)

where dΩ2
d−2 is the unit metric on the round d− 2 sphere. In terms of the coordinates τ and

ρ the function f takes the form

f =
1

2

(

− 2iτ − log sinh 2ρ+ log tanh ρ
)

. (44)

The highest weight massless spin-2 mode ψµν in general dimension d is constructed in [32]. We
will present explicit expressions for ψµν in four-dimensions in subsection 6.2. The massless

spin-2 mode ψµν is exactly the mode h
(0)
µν of the preceding section.

We observe the following properties of the function f and of the highest weight massless
spin-2 mode ψµν in general dimension d,

¯ f = −(d− 1)

ℓ2
, (45a)

∇̄σf∇̄σf =
1

ℓ2
, (45b)

∇̄σf∇̄σψµν =
d− 1

ℓ2
ψµν . (45c)

From these equations it follows that

¯ (f Iψµν) =
I(I − 1)

ℓ2
f I−2ψµν +

(d− 1)I

ℓ2
f I−1ψµν −

2

ℓ2
f Iψµν , (46)

where I = 0, . . . , r − 1. As a result,

G(f Iψµν) = −I(I − 1)

2ℓ2
f I−2ψµν −

(d− 1)I

2ℓ2
f I−1ψµν . (47)

Using the above equations one can easily find log modes in the basis (41). The first few modes
are

h(0)µν = ψµν , (48a)

h(1)µν =

[

−d− 2

d− 1
f

]

ψµν , (48b)

h(2)µν =

[

(d− 2)2

2(d− 1)2
f2 − (d− 2)2

(d− 1)3
f

]

ψµν , (48c)

h(3)µν =

[

− (d− 2)3

6(d− 1)3
f3 +

(d− 2)3

(d− 1)4
f2 − 2(d− 2)3

(d− 1)5
f

]

ψµν , (48d)

h(4)µν =

[

(d− 2)4

24(d − 1)4
f4 − (d− 2)4

2(d− 1)5
f3 +

5(d− 2)4

2(d− 1)6
f2 − 5(d− 2)4

(d− 1)7
f

]

ψµν . (48e)

To find a general expression for the index I mode, one needs to solve a combinatorial equation.
This equation can perhaps be solved explicitly, but the resulting expressions will not be
illuminating. Instead one can develop a recursive algorithm to find log modes that solves (41)
to whatever order one wants. This is how we have obtained (48).
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4 Quasilocal energies and the inner product

In this section we define an inner product on the (log) solutions. The first step is to define
a bilinear norm 〈·|·〉 by means of the quasilocal energy of a solution. Once we have such a
norm, the inner product between two states follows readily. It turns out that the formulas
for the generic case involve the inner product of Einstein-Hilbert gravity. So, as a starting
point, let us see how things work for rank one.

4.1 Rank one

The on-shell energy of a solution of the equations of motion can be computed by

E =

∫

Σ
dd−1x

√−ḡ nµξ̄νTµν , (49)

where ξ̄ν is a time-like Killing vector, nµ is the normal to the Cauchy surface that is being
integrated over. The effective stress-energy tensor Tµν is given by varying the action w.r.t. the
background metric as if it were dynamical [33],

Tµν = − 2√−ḡ
δL
δḡµν

. (50)

In computing the on-shell stress-energy tensor, one has to be a bit careful in first taking
the variation and then going on-shell, because the on-shell Lagrangian vanishes. For the
Einstein-Hilbert case (14), the on-shell stress-energy tensor can be written as

Tµν = hρσ
δG
δḡµν

hρσ, (51)

where we have used the short-hand notation δG
δḡµν hρσ = δ

δḡµν (Ghρσ) . There would have been
other contributions, such as the variation w.r.t. the background metrics that contract hρσ and
Ghρσ , but since they are proportional to the equations of motion they vanish on-shell. The
complete form of the energy of a mode hµν is thus

E(h) =

∫

Σ
dd−1x

√−ḡ nµξ̄νhρσ δG
δḡµν

hρσ . (52)

For physical excitations on AdS spaces this yields a real number. We can use the above
expression to define a norm:

〈h|h〉 ≡ E(h). (53)

We have dropped the indices on the fields in the norm 〈·|·〉 in order to simplify notation, but
it is to be understood that we mean the ‘full’ tensor hµν in the above, not its trace. The
norm defines an inner product on the space of solutions as follows:

〈h|k〉 = 1

2

(

〈h+ k|h+ k〉 − 〈h|h〉 − 〈k|k〉
)

=
1

2

(

E(h+ k)− E(h) − E(k)
)

=
1

2

∫

Σ
dd−1x

√−ḡ nµξν
(

hρσ
δG
δḡµν

kρσ + kρσ
δG
δḡµν

hρσ

)

. (54)

Because the expression hρσ δG
δḡµν kρσ is not obviously symmetric in h and k, we have kept the

symmetrization in the above formula for clarity.

11



4.2 General rank

For general rank one can define an inner product on the space of solutions in a similar manner
as for Einstein gravity. At the polycritical point, the effective stress-energy tensor is

Tµν =

(

2ℓ2

d− 2

)r−1 r
∑

i=1

(

Gi−1hρσ
δG
δḡµν

Gr−ihρσ

)

. (55)

Here we have used the fact that when acting on transverse and traceless tensors, the Einstein
and Schouten operator are the same. Furthermore we made use of their variation w.r.t. the
background metric being identical after going on-shell:

δG
δḡµν

hρσ

∣

∣

∣

∣

∣

∇̄µhµν=h=0

=
δS
δḡµν

hρσ

∣

∣

∣

∣

∣

∇̄µhµν=h=0

. (56)

The norm for rank r, 〈·|·〉r, then becomes

〈h|h〉r =
(

2ℓ2

d− 2

)r−1 r
∑

i=1

〈

Gi−1h
∣

∣Gr−ih
〉

1
, (57)

where 〈·|·〉1 is the norm of the rank one (Einstein-Hilbert) case, as calculated in the last
section. This leads to the following inner product on the log modes:

〈

h(I)
∣

∣

∣h(J)
〉

r
=

r
∑

i=1

〈

h(I−i+1)
∣

∣

∣h(J+i−r)
〉

1
. (58)

Since h
(−1)
µν = 0, the inner product between log modes h

(I)
µν and h

(J)
µν vanishes if I + J < r− 1.

Furthermore, we can relate the inner product for rank r to the inner product at lower rank if
I > J :

〈

h(I)
∣

∣

∣
h(J)

〉

r
=

r
∑

i=2

〈

h(I−i+1)
∣

∣

∣
h(J+i−r)

〉

1

=
r−1
∑

i=1

〈

h(I−i)
∣

∣

∣
h(J+i−r+1)

〉

1

=
〈

h(I−1)
∣

∣

∣
h(J)

〉

r−1
. (59)

In the first line we used the fact that h(J−r+1) = 0 for J < I ≤ r − 1, and in the second we
relabeled the summation index. This allows us to inductively compute the complete inner
product matrix for generic rank starting from rank 1. The only new bit of information at

every step is
〈

h(r−1)
∣

∣

∣
h(r−1)

〉

r
, which is the energy of the maximal log mode at the given rank.

We denote this quantity by Er−1:

Er−1 ≡
〈

h(r−1)
∣

∣

∣
h(r−1)

〉

r
. (60)
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The inner product matrix for generic rank then reads

〈

h(I)
∣

∣

∣
h(J)

〉

r
=





















0 0 0 · · · 0 E0

0 0 · · · 0 E0 E1

0
... 0 E0 E1

...
... 0 E0 E1

... Er−3

0 E0 E1 · · · Er−3 Er−2

E0 E1 · · · Er−3 Er−2 Er−1





















. (61)

In Appendix A we show that the structure of this inner product is same as the one derived
canonically from a two-derivative master action. Since E0 is the energy of the massless
graviton in Einstein gravity, it is a positive number. In four dimensions E1 was also found
to be positive [7]. Based on the explicit solutions of the log modes (48) and the form of the
inner product, we expect all norms to be non-zero.

The inner product matrix is indefinite. Regardless of the exact values of the energies EI ,
one can always find linear combinations whose energies have opposite sign. One example is

〈

h(r−1)
∣

∣

∣h(r−1)
〉

r
= −

〈

h(r−1) − Er−1

E0
h(0)

∣

∣

∣h(r−1) − Er−1

E0
h(0)

〉

r

. (62)

Thus one of the above modes is a ghost, implying that the untruncated linear theory is not
unitary.

It is possible, however, to truncate some of the log modes such that the resulting submatrix
of (61) is semi-positive definite. After we have developed some of the necessary machinery in
the next section, we will demonstrate this in section 6.

5 Conserved charges

We now turn to the construction of conserved charges in these models following the method
of Abbott–Deser for asymptotically AdS spaces [34–36]. It will turn out that one can define
an extended hierarchy of charges that makes reference to the hierarchy of graviton modes
defined above.

5.1 Abbott–Deser charge

The method of [34–36] was applied to polycritical theories in [12] and makes use of the split of
the metric into background and perturbation gµν = ḡµν +hµν , where hµν does not need to be
small. In the formalism, one splits the equations of motion for hµν into linear terms and non-
linear terms. The non-linear terms are then interpreted as an effective energy-momentum
tensor Tµν that, by the equations of motion, can be equivalently expressed linearly in hµν
on-shell. Tµν is then conserved by the linearised equations of motion.

From Tµν one can define a conserved current by

Jµ = Tµν ξ̄ν (63)

in terms of a time-like Killing vector ξ̄ν . Writing this current in terms of a divergence is
possible by virtue of ∇̄µJ

µ = 0 and leads to

Jµ = ∇̄νFµν , (64)
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where Fµν = F [µν]. In our specific case we have [12]

Fµν = Fξ̄S
r−1hµν (65)

where

Fξ̄hµν = ξ̄ρ∇̄[µhν]ρ + ξ̄[µ∇̄ν]h− ξ̄[µ∇̄ρhν]ρ + hρ[mu∇̄ν]ξ̄ρ +
1

2
h∇̄µξ̄ν . (66)

Fξ̄ is an operation that creates an antisymmetric tensor out of a symmetric one. It is con-
structed in such a way that its derivative relates to the Einstein operator by

∇̄νFξ̄Aµν = ξ̄νGAµν , (67)

when acting on any symmetric tensor Aµν . This ensures that

∇̄νFµν = ξ̄νGSr−1hµν , (68)

which vanishes by the linearized equations of motion (39). The conserved Abbott-Deser (AD)
charge is then given (up to normalization) by the integral at infinity via

Q =

∫

S∞

F0idSi. (69)

5.2 Hierarchy of charges

We can define a more refined object by considering the following generalization of (65)

F (I)
µν := Fξ̄S

I−1hµν for I = 1, . . . , r. (70)

A generalized current can be defined as the divergence of this antisymmetric tensor via

J (I)
µ := ∇̄νF (I)

µν = ξ̄νGSI−1hµν . (71)

For I = r this gives the conserved Abbott–Deser current (64): Jµ
(r) ≡ Jµ. For I < r, the

divergence of this current does not vanish in general and hence the current is not conserved
on the full space of solutions of the linearized theory. But we see from the definition of Jµ

(I)
that it is proportional to the equations of motion for a lower log graviton mode. Explicitly,
for a transverse traceless mode

J (I)
µ = ξ̄νGIhµν , (72)

since the Einstein and Schouten operators then coincide. Hence, by virtue of the definition

of the various graviton modes in (40), we find that Jµ
(I) = 0 when evaluated for modes h

(K)
µν

with K < I. So, if one restricts to the part of the space of solutions spanned by modes h
(K)
µν

with K < I, the current Jµ
(I)

is conserved and can be used to define a conserved charge Q(I)

on that subspace. Hence, the AD charge Q of (69) is equal to Q(r).
Whether a given ‘charge’ Q(I) vanishes or not can be calculated explicitly for the various

modes h
(I)
µν . We find the distribution of charges displayed in Table 1. In that table we use

“n.d.” to indicate when a certain charge is not well-defined for a given mode. It is easy to see
that the only mode that has a non-vanishing charge Q(I−1) is the mode h(I), all others have
vanishing charge (if it is defined). This means that the only mode that has non-vanishing AD

charge Q(r) is the highest log-mode h
(r−1)
µν .
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charge
mode

h(r−1) h(r−2) h(r−3) · · · h(2) h(1) h(0)

Q(r) 1 0 0 · · · 0 0 0

Q(r−1) n.d. 1 0 · · · 0 0 0

Q(r−2) n.d. n.d. 1 · · · 0 0 0
... ...

...
...

. . .
...

...
...

Q(3) n.d. n.d. n.d. · · · 1 0 0

Q(2) n.d. n.d. n.d. · · · n.d. 1 0

Q(1) n.d. n.d. n.d. · · · n.d. n.d. 1

Table 1: Charges of the various modes, normalized conveniently. Only the top-most charge Q(r) is
conserved in the full theory, but when the most logarithmic modes are truncated by deleting
columns from the left, lower charges also become well-defined. We have used the abbreviation
“n.d.” to indicate when a certain charge is not well-defined for a given mode.

6 Unitary subsectors

In this section, we discuss possible unitary truncations of the polycritical theory at the lin-
earized level. As anticipated in [20] we will find a difference between odd and even rank.

6.1 Truncation by superselection

Looking at Table 1 one sees that one can consistently truncate to superselection sectors by
demanding that certain charges vanish.

Starting with the AD-charge Q(r) = 0 we truncate out the mode h(r−1) ∼ logr−1. In
the linearized approximation this truncated sector is dynamically closed. Furthermore, the
‘charge’ Q(r−1) becomes a perfectly well-defined conserved charge in this truncated model.
We can repeat the superselection now to further truncate consistently to Q(r−1) = 0.

One would like to continue the truncation until one obtains a standard positive semi-
definite inner product matrix from (61). Every new step in the truncation corresponds to
removing the last row and column of the inner product matrix. For even rank this leads to
removing all the modes h(r/2), . . . , h(r−1); the resulting inner product matrix is identically
zero and the theory has become trivial. This was already observed in the rank r = 2 case
(four derivatives) in [7, 9].

For odd rank, a truncation to a theory with positive semi-definite two-point functions can

be achieved by restricting to the sector Q(r) = . . . = Q( r+1

2
+1) = 0. In this case the inner

product matrix becomes almost identically zero except for one standard correlator in the
lower right-hand corner. This is the structure of a theory with many null states that need to

be quotiented out. The resulting theory then is that of a single mode h(
r−1

2
) (defined up to the

definition of lower log-modes). This mode has the standard correlator and positive energy. It
appears to be the same model as standard Einstein gravity in the linearized approximation.

For low rank, the truncated models (before removing unphysical null states) have the
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following inner product matrices:

r = 2 :

(

0 E0

E0 E1

)

−→
(

0
)

r = 3 :





0 0 E0

0 E0 E1

E0 E1 E2



 −→
(

0 0
0 E0

)

r = 4 :









0 0 0 E0

0 0 E0 E1

0 E0 E1 E2

E0 E1 E2 E3









−→
(

0 0
0 0

)

(73)

Factoring out the null states (that decouple) one is then left with a standard CFT for odd
rank, identical to that of Einstein–Hilbert gravity, but this time for the log(r−1)/2-mode. For
even rank, the theory trivializes completely.

6.2 Truncation by boundary condition

In this subsection we discuss fall-offs of various modes, and truncation to a unitary subsector
from the point of view of boundary conditions at spatial infinity. For concreteness we work
with explicit coordinates and we write expression only in four dimensions. We expect our
considerations to apply more generally. Let us introduce global coordinates in AdS4 in which
the metric of AdS4 takes the form

ds2 = ℓ2
(

− cosh2 ρdτ2 + dρ2 + sinh2 ρ(dθ2 + sin2 θdφ2)
)

. (74)

In these coordinates explicit expressions for the various components of the massless spin-2
highest weight mode are [31]

ψττ = −ψτφ = ψφφ = exp(−3iτ + 2iφ) sin2 θ(cosh ρ)−3 sinh2 ρ, (75a)

ψτρ = −ψρφ = i(sinh ρ)−1(cosh ρ)−1ψττ , (75b)

ψτθ = −ψθφ = i cot θψττ , (75c)

ψρρ = −(sinh ρ)−2(cosh ρ)−2ψττ (75d)

ψρθ = − cot θ(sinh ρ)−1(cosh ρ)−1ψττ , (75e)

ψθθ = − cot2 θψττ . (75f)

Physical excitations correspond to real or imaginary part of these modes. Let us now introduce
another set of global coordinates r and t as

r = ℓ sinh ρ, t = ℓτ. (76)

In these coordinates the AdS metric takes the form

ds2 = −
(

1 +
r2

ℓ2

)

dt2 +

(

1 +
r2

ℓ2

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (77)
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The boundary of AdS space lies at r → ∞, or equivalently, ρ→ ∞. In these new coordinates
it is fairly easy to check that the mode (75) satisfies the Henneaux-Teitelboim boundary
conditions [37]. In particular, we have

ψtt ∼ ψtθ ∼ ψtφ ∼ ψθθ ∼ ψθφ ∼ ψφφ ∼ O
(

1

r

)

, (78a)

ψrt ∼ ψrθ ∼ ψrφ ∼ O
(

1

r4

)

, (78b)

ψrr ∼ O
(

1

r7

)

. (78c)

In fact, except for the rr component these fall-offs saturate the Henneaux-Teitelboim bound-
ary conditions. This is expected: since we are working in the transverse traceless gauge we
do not expect to reproduce all fall offs of [37], but we do expect that the fall-offs to be strong
enough for the linearized mode (75) to be contained in the phase space defined by those
boundary conditions. We schematically denote a mode saturating the Henneaux-Teitelboim
boundary conditions as ψHT.

The index I log mode h
(I)
µν behaves asymptotically as

h
(I)
tt ∼ h

(I)
tθ ∼ h

(I)
tφ ∼ h

(I)
θθ ∼ h

(I)
θφ ∼ h

(I)
φφ ∼ O

(

logI r

r

)

, (79a)

h
(I)
rt ∼ h

(I)
rθ ∼ h

(I)
rφ ∼ O

(

logI r

r4

)

, (79b)

h(I)rr ∼ O
(

logI r

r7

)

. (79c)

This is simply because the function f behaves asymptotically as f ∼ − log r. Thus, if for a
rank r polycritical theory one imposes boundary conditions such that,

h ∼ logr−2 rψHT, (80)

then one clearly truncates away the highest logarithmic mode, that is, logr−1 rψ. One can also
choose to impose a stronger boundary condition to truncate way more logarithmic modes. In
this way one can continue truncating away higher index logarithmic modes until one arrives
at the boundary conditions where one obtains a standard positive semi-definite inner product
matrix (61). This happens for a rank r theory when one removes the highest ⌊ r2⌋ log modes.
This can be done by imposing boundary conditions

h ∼ log⌈
r
2
⌉−1 rψHT. (81)

At this stage it becomes quite clear that the discussion about the choice of boundary conditions
exactly parallels the discussion of the previous subsection based on the superselection sector.

Note that in comparison to the corresponding three-dimensional discussion [26], our four-
dimensional discussion of boundary conditions is rather schematic. In three-dimensions there
are other independent studies checking the consistency of log- [21, 38] and log2- [39] boundary
conditions. Similar studies do not yet exist for the four- and higher-dimensional settings.
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7 Discussion and conclusions

In this paper we have analyzed the structure of polycritical gravity of rank r in d space-
time dimensions at the linear level. We found that the r different graviton modes on an
AdS background satisfy a hierarchical structure h(I) ∼ logI r in terms of the AdS radius r.
Their inner products can be calculated by using quasilocal energies and the inner product
matrix was found to exhibit a specific triangular structure as expected from a putative dual
logarithmic CFT description. In particular, the inner product matrix is indefinite, reflecting
the non-unitary structure of the theory.

Following the method of Abbott and Deser one can define a conserved charge in these
models and only the highest logarithmic mode h(r−1) carries a non-vanishing charge. Re-
stricting to a superselection sector where this charge vanishes —or equivalently modes that
have faster fall-off near the boundary— one can truncate the model. As we showed, this
process can be iterated until one ends up in a truncated model with positive semi-definite
inner product matrix. After modding out the null states one is then left with a unitary model
of a single graviton mode in the odd rank case. For even rank, the truncated model trivializes
completely. In either case, the truncated model is unitary at the linear level.

The correlator of the single remaining mode in the odd rank case is non-trivial and identical
to that of the Einstein mode in usual two-derivative general relativity theory. This raises the
question whether our truncated model is nothing but a reformulation of standard general
relativity, albeit a rather complicated one. Since one has to impose appropriate boundary
conditions on the graviton modes to implement the truncation, this idea is reminiscent of
the proposal of [40] to obtain Einstein gravity from a conformal higher-derivative gravity
theory with appropriate boundary conditions. However, since our truncation will probably
not remain unitary and consistent when embedded in a non-linear theory [28], it appears to
be impossible that our model is equivalent with general relativity.
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A Master action and the other inner product

In this appendix we relate our inner product to the symplectic inner product derived from a
two-derivative action. To this end we first observe that the equations of motion (38) can also
be obtained from an auxiliary field action, which we call the ‘master action.’ It only contains
two derivatives but it has r − 1 auxiliary fields k(I)µν . It takes the form

Lmaster = −1

2
AIJk

(I)µνGk(J)µν +
1

2
BIJ

(

k(I)µνk(J)µν − k(I)k(J)
)

, (82)

with I, J = 0, . . . , r − 1 and the symmetric matrices A and B are given by

AIJ = δI+J,r−1, (83)

BIJ = δI+J,r−2. (84)

The equations of motion for the field k
(r−1−I)
µν read

Gk(I)µν = k(I−1)
µν − ḡµνk

(I−1), (85)
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from which we have, after taking the trace,

k(I−1)
µν = Gk(I)µν − 1

d− 1
ḡµνGk(I)

= Sk(I)µν . (86)

The complete set of equations of motion become

Gk(0)µν = 0, (87a)

k(0)µν = Sk(1)µν , (87b)

k(1)µν = Sk(2)µν , (87c)

...

k(r−2)
µν = Sk(r−1)

µν . (87d)

Upon eliminating the r − 1 auxiliary fields k
(I 6=r−1)
µν , and calling k

(r−1)
µν to be hµν , we recover

the original equations of motion (38). For the rest of the discussion we take the k(I)s to be
transverse and traceless, which follows from the equations of motion. This allows us to freely
replace Schouten operators on k(I) with Einstein operators.

For the two derivative master action (82) the symplectic inner product can be simply
computed following the formalism reviewed in [11]. Up to an over-all normalization, the
symplectic inner product for a rank r theory takes the form

〈ψ||φ〉r =
∫

Σ
dd−1x

√−ḡḡ00




r−1
∑

I,J=0

AIJ(ψ
(I)
µν )

∗(∇̄0φ
(J))µν



 , (88)

where ψ(I) and φ(I) are the auxiliary field configurations associated with the configurations ψ
and φ respectively. The integration is done over a constant τ Cauchy surface Σ and the index
0 denotes the time components of the various tensors in the coordinates (43). Furthermore, to
distinguish this inner product from that of section 4 we use the double line notation 〈ψ||φ〉r .
The subscript r denotes the rank of the theory. From expression (88) and from the form of
the matrix AIJ it follows that

〈ψ||φ〉r =
∫

Σ
dd−1x

√−ḡḡ00
(

r−1
∑

I=0

(ψ(I)
µν )

∗(∇̄0φ
(r−1−I))µν

)

=

∫

Σ
dd−1x

√−ḡḡ00
(

r−1
∑

I=0

(Gr−1+Iψ(r−1)
µν )∗(∇̄0GIφ(r−1))µν

)

=

r−1
∑

I=0

〈

Gr−1+Iψ
∣

∣

∣

∣

∣

∣
GIφ

〉

1

=
r
∑

j=1

〈

Gr−jψ
∣

∣

∣

∣

∣

∣
Gj−1φ

〉

1
, (89)

where in going from the first to the second line we have used (87), in going from the second to
the third line we have used the notation 〈ψ||φ〉1 which denotes the (appropriately normalized)
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symplectic inner product for the rank one theory, and finally in going from the third to the
fourth line we have renamed the dummy variable I to j = I + 1. From this last equality and
equation (57) we immediately see that the two inner products give rise to the identical matrix
structure over log modes.
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