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Abstract. We introduce a notion of relative isospectrality for surfaces with boundary
having possibly non-compact ends either conformally compact or asymptotic to cusps. We
obtain a compactness result for such families via a conformal surgery that allows us to reduce
to the case of surfaces hyperbolic near infinity recently studied by Borthwick and Perry, or
to the closed case by Osgood, Phillips and Sarnak if there are only cusps.
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Introduction

Despite the negative answer to Mark Kac’s famous question

Can one hear the shape of a drum?

there have been many interesting positive results. The line most relevant to our current
investigation starts with a seminal paper by Melrose [Mel83]. For bounded planar domains,
or ‘drumheads’, the geometry is encoded in the geodesic curvature of the boundary and
Melrose showed that the short-time asymptotics of the trace of the heat kernel determines
this curvature to within a compact subset of the space of smooth functions.

A stronger compactness result was obtained by Osgood, Phillips, and Sarnak [OPS88c,
OPS88b, OPS89, OPS88a] by making use of the determinant of the Laplacian, in addition
to the short-time asymptotics of the heat trace. Indeed, they were able to show that on a
given closed surface a family of isospectral metrics is compact in the space of smooth metrics
(and similarly for planar domains). Their proof can be conveniently understood in terms
of the Cheeger compactness theorem: a set of metrics with lower bounds on the injectivity
radius and volume, and uniform pointwise upper bounds on the curvature and its covariant
derivatives is compact. The short-time asymptotics of the heat trace determine the volume
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and upper bounds on the Sobolev norms of the curvature [Mel83,OPS88b,Gil88,BG94] while
for surfaces the determinant of the Laplacian gives a lower bound on the injectivity radius
[OPS88b]. The control on the injectivity radius and the Sobolev norms of the curvature
can then be parlayed into uniform pointwise bounds on the curvature and its covariant
derivatives.

There have been many extensions of the Osgood-Phillips-Sarnak results. For instance,
it is only recently that their result for planar domains has been extended to flat sur-
faces with boundary by Kim [Kim08]. In higher dimensions there are results of Brooks-
Perry-Yang [BPY89], Chang-Yang [CY90], and Chang-Qing [CQ97] studying compactness
of isospectral metrics in a given conformal class, as well as results establishing compactness of
isospectral metrics with an additional assumption on the curvature or the injectivity radius,
e.g., by Anderson [And91], Brooks-Glezen [BG94], Brooks-Perry-Petersen [BPP92], Chen-
Xu [CX96], and Zhou [Zho97]. For a well-written survey of positive and negative isospectral
results we refer the reader to [GPS].

The first extension of these compactness results to non-compact surfaces is the paper by
Hassell and Zelditch [HZ99]. These authors consider exterior domains on R2, i.e., each of
their surfaces is the exterior of a compact subset of R2 and they consider the Laplacian with
Dirichlet boundary conditions. The spectrum of such a Laplacian is always equal to [0,∞), so
they propose a replacement of the isospectrality condition, isophasality. For manifolds that
coincide with Rn outside a compact set, or more generally for non-compact manifolds with
an asymptotically regular structure at infinity, one can define a scattering operator λ 7→ S(λ)
(see e.g., [Mel94]) and the scattering phase is defined to be s(λ) = −i log detS(λ). In the
context of exterior domains, the scattering phase is a natural replacement for the counting
function of the spectrum, and requiring that two manifolds have the same scattering phase is
a natural replacement for isospectrality. Hassell and Zelditch show that a family of isophasal
exterior domains is compact in the space of smooth domains.

More recently, Borthwick and Perry [BP11] consider non-compact surfaces whose ends
are hyperbolic funnels. For these metrics the resolvent R(s) = (∆ − s(1 − s))−1 admits a
meromorphic continuation to the whole complex plane [MM87, Gui05, GZ95]. Two metrics
whose resolvents have the same poles (with multiplicity) are called isoresonant. Borthwick
and Perry prove that any set of isoresonant metrics that coincide, and are hyperbolic funnel
metrics, in a fixed ‘neighborhood of infinity’ form a C∞-compact subset in the space of
metrics. This generalizes earlier work of Borthwick, Judge, and Perry [BJP03].

One of the authors [Ald10] has shown that metrics that are conformally equivalent to
a hyperbolic surface with cusps, with conformal factors supported in a fixed compact set,
and mutually isoresonant form a C∞-compact set. Note that due to the vanishing of the
injectivity radius, one cannot use Sobolev inequalities to transform Sobolev bounds on the
curvature to uniform bounds. We shall face the same problem below (see, e.g., Lemma 2.2).

The results in the noncompact setting are similar in the sense that the metrics are assumed
to coincide outside of a compact set, but they differ in the definition of isospectrality. We
propose a notion of isospectrality for noncompact manifolds that unifies these approaches.
Let us say that two Riemannian manifolds (M1, g1) and (M2, g2) coincide cocompactly if there
exist compact subsets Ki ⊆ Mi \ ∂Mi and an isometry M1 \K1 −→ M2 \K2. In this case,
we say that the manifolds coincide on U∞ = Mi \Ki. By embedding each L2(Mi, gi) into

L2(K1, g1)⊕ L2(K2, g2)⊕ L2(U∞, gi),
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we can consider the difference of the heat kernels

e−t∆g1 − e−t∆g2 .

Often this difference is trace-class even if the individual heat kernels are not. Indeed, results
of Bunke [Bun92] and Carron [Car02] guarantee that for complete metrics the difference of
heat kernels is trace-class.

Definition 1. Two Riemannian manifolds (M1, g1) and (M2, g2) are relatively isospectral
if they coincide on Mi \Ki with Ki ⊂Mi \ ∂Mi compact sets and if their relative heat trace
is (defined and) identically zero,

(1) Tr(e−t∆1 − e−t∆2) = 0 for all t > 0.

We also say that they are isospectral relative to U∞ to emphasize the neighborhood where
they coincide.

Notice that, on a closed manifold, two metrics are isospectral if and only if the traces of
their heat kernels coincide for all positive time, motivating this definition. Indeed asking
that the spectrum of two Laplacians coincide with multiplicity is the same as asking that
the trace of their spectral measures coincide as measures on the positive real line. Taking
Laplace transforms this is equivalent to asking that the trace of the heat kernels coincide.

If the manifolds are complete, then (1) can be interpreted as a condition on the ‘Krein
spectral shift function’ ξ of the pair ∆1, ∆2, as one has, e.g., [Car02, Theorem 3.3]1

(2) Tr(e−t∆1 − e−t∆2) = −
∫
R
ξ(λ)te−tλ dλ.

Thus with mild regularity assumptions on ξ, relatively isospectral complete metrics have
ξ ≡ 0, i.e., are isophasal.

As mentioned above, the metrics considered by Borthwick-Perry are relatively isospectral,
as are those considered by Hassell-Zelditch, if one allows the compact sets Ki to have bound-
ary. In the case of Borthwick-Perry this is a consequence of a Poisson formula [BP11, The-
orem 2.1], due in this context to Borthwick, that shows that the resonance set determines
the (renormalized) trace of the wave kernel, and hence the (renormalized) trace of the heat
kernel. Similarly, in [HZ99, (1.6)], it is pointed out that the scattering phase determines a
renormalized trace of the heat kernel. It is straightforward to write the relative trace of the
heat kernels as the difference of their renormalized traces.

Let us now introduce the type of Riemannian metrics considered here. Let M be a
smooth compact surface with boundary ∂M with n marked points p1, . . . , pn ∈ M \ ∂M .
We suppose ∂M is the disjoint union of two types of boundaries, ∂FM and ∂bM , each
of which being a finite union of circles. Consider then the possibly non-compact surface
M = M \ (∂FM ∪ {p1, . . . , pn}).

Definition 2. Let M be as described above. A Funnel-cusp-boundary metric (Fcb-
metric for short) is a Riemannian metric g on M such that:

(i) there exist a collar neighborhood

cF : ∂FM × [0, ν)x →M,

1The function ξ is closely related to the ‘scattering phase’, see [Car02].
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a Riemannian metric hF on ∂FM and a smooth function ϕF ∈ C∞(∂FM × [0, ν)x)
locally constant on ∂FM × {0} such that

c∗Fg = eϕF
(
dx2 + pr∗F hF

x2

)
,

where prF is the natural projection onto ∂FM ;
(ii) For each marked point pi, there exist a neighborhood Vi ⊂ M , coordinates u, v on Vi

with u(pi) = v(pi) = 0, and a function ϕi ∈ C∞(M) such that near pi,

g = eϕi
(
du2 + dv2

r2(log r)2

)
,

where r =
√
u2 + v2 .

In other words, the metric is asymptotically hyperbolic near ∂FM while it is conformal to a
cusp near each marked point pi. We say (M, g) is a Fcb-Riemannian surface.

Figure 1. (M, g) a Fcb-surface

For such a Fcb-metric g on M , we will consider the corresponding (positive) Laplacian ∆g

with Dirichlet boundary condition on ∂M := ∂bM . When ∂M = ∅, Fcb-metrics correspond
to some of the F−hc metrics considered in [AAR]. If ∂FM = ∅ and M has no marked points,
the spectrum of ∆g is discrete. Otherwise, each boundary component Y of ∂FM gives rise to a

band of continuous spectrum [ e
−cY
4
,∞) (of infinite multiplicity), where the constant cY is the

restriction of ϕF to Y , while each marked point pi gives rise to a band of continuous spectrum

[ e
−ϕi(pi)

4
,∞) (of multiplicity one). In particular, the continuous spectrum is bounded below

by a positive constant. Notice also that 0 is in the spectrum if and only if ∂FM = ∂bM = ∅.
The main result of this paper is to establish compactness for sets of relatively isospectral

Fcb-Riemannian surfaces. More precisely, we prove the following theorem.

Theorem 1. Let (Mi, gi) be a sequence of Fcb-Riemannian surfaces, isospectral relative to
U∞. Then there is a Riemannian surface (M, g∞), a subsequence (Mik , gik), and a sequence
of diffeomorphisms

φk : M −→Mik , with φ` ◦ φ−1
`′

∣∣
U∞

= Id for any `, `′

such that the metrics φ∗kgik converge to g∞ in C∞.
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The proof of Theorem 1 consists in reducing to the case treated by Borthwick and Perry
(or by Osgood, Phillips and Sarnak if there are only cusps) via a conformal surgery. Namely,
using the fact that a cusp is conformal to a punctured disk, we conformally modify the
metrics near each cusp to obtain punctured disks that we fill in. Similarly, near each bound-
ary component of M , we modify the metric conformally from an incomplete cylinder to a
complete funnel hyperbolic near infinity. Doing another conformal transformation, we can
assume that these metrics are also hyperbolic at the other funnel ends. Under these confor-
mal surgeries, the new metrics will generally no longer be relatively isospectral. However,
since each metric undergoes the same conformal transformation in a region where all the
metrics were the same, the relative local heat invariants stay the same. From the local
nature of Polyakov’s formula for the variation of the determinant, one can also hope that
the relative determinant will remain unchanged. Using a finite speed propagation argument,
we are able to show that this is indeed the case – even though for a conformal surgery at
a point, the deformation does not have uniformly bounded curvature nor global Sobolev
inequalities. This reduces the problem to the situations treated in [OPS88b, BP11], from
which the compactness of the set of relatively isospectral Fcb-metrics follows.

Acknowledgements. The authors are grateful to David Borthwick, Gilles Carron, Andrew
Hassell, Rafe Mazzeo and Richard Melrose for helpful conversations.

1. Conformal surgeries

Let (M, g) be a Fcb-Riemannian surface. Fix a marked point p ∈ M \ ∂M and choose
coordinates u and v in a neighborhood V of p such that u(p) = v(p) = 0 and such that in
these coordinates the metric takes the form

g = ef
du2 + dv2

r2(log r)2
= ef

dr2 + r2dθ2

r2(log r)2
= ef

(
dρ2

ρ2
+ ρ2dθ2

)
, f ∈ C∞(V),

where we are using the polar coordinates u = r cos θ, v = r sin θ and ρ = −1
log r

.Without loss

of generality, we can assume that the neighborhood V is given by the open disk of radius
r = 4

5
. Let σ ∈ C∞c (V) be a function taking values between 0 and 1 with σ ≡ 1 for r < 1

4

and σ ≡ 0 for r > 1
2
. Consider then the function ψ(ε, r) given by

(1.1) ψ(ε, r) = σ(r)

(
r2(log r)2

ε2 + (ε2 + r2)(log
√
r2 + ε2 )2

)
+ (1− σ(r))

Extending ψε(r) = ψ(ε, r) by 1 outside the neighborhood V allows us to consider the family
of metrics

gε = ψεg.

For ε > 0, this metric is smooth at the marked point p. However, as ε approaches 0, the
point p is pushed to infinity so that in the limit we recover the metric g. We say the metric
g undergoes a conformal surgery at the marked point p.

Similarly, suppose now that ∂M is nonempty and fix a boundary component ∂iM . Instead
of a conformal surgery at pi, we can consider one at ∂iM . Thus, we take now V ∼= ∂iM×[0, 1)r
to be a collar neighborhood of ∂iM in M and let θ be the angular variable on ∂iM ∼= S1.
Near the boundary, the metric is of the form

g = ef (dr2 + dθ2), f ∈ C∞(V).
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ε = 0

sp

ε = 1
2

sp
ε = 1

Figure 2. Conformal surgery at a point p

In V , consider a function ψ(ε, r) such that

(1.2)

(ε2 + r2)ψ(ε, r) ∈ C∞(V),

ψ(ε, r) = 1 if ε > 1/2 or r > 1/2,

(ε2 + r2)ψ(ε, r) = ew if ε2 + r2 ≈ 0,

where w ∈ C∞(V) is such that w+ f is constant on ∂iM . For instance, we can take w = −f .
Extending ψε(r) = ψ(ε, r) by 1 outside the neighborhood V allows us to consider the family
of metrics

gε = ψεg.

In this case, the boundary component ∂iM is pushed to infinity as ε approaches zero, so that
in the limit the metric becomes asymptotically hyperbolic in that end,

g0 = ew+f dr
2 + dθ2

r2
, r small.

If we pick w = −f , then g0 is in fact hyperbolic near infinity. We think of this family of
metrics as a conformal surgery at ∂iM .

ε = 0

∂iM

ε = 1
2

∂iM

ε = 1

Figure 3. Conformal surgery at a boundary component ∂iM

To study the determinant, it will be important for us to know that the spectra stay away
from zero under conformal surgeries at a point or at a boundary component.
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Theorem 1.1. Let (M, g) be a Fcb-Riemannian surface. Let the family gε be a conformal
surgery at point p or at boundary component ∂iM . Then the smallest non-zero eigenvalue of
∆gε is bounded below by a constant c > 0 independent of ε.

Proof. Suppose first that gε is a conformal surgery at a point p. Let λε > 0 be the smallest
positive eigenvalue of ∆gε and let u ∈ C∞(M)∩L2(M, gε) be the corresponding eigenfunction,
so that ∆gεu = λεu. When ε > 0, notice that u ∈ C∞(M), so its restriction to M \ {p} will
be in L2(M, g0), in fact, in the domain of ∆g0 . Now, we can find a constant C > 0 such that

dvolgε ≤ C dvolg0 , ∀ ε ≥ 0.

On the other hand, since our change of metric is conformal, ‖du‖2
L2(M,gε)

= ‖du‖2
L2(M,g0).

Thus, if zero is not in the spectrum, that is, if (M, g) has at least one funnel end or if it has
a non-empty boundary, we have that

λε =
‖du‖2

L2(M,gε)

‖u‖2
L2(M,gε)

≥ 1

C

‖du‖2
L2(M,g0)

‖u‖2
L2(M,g0)

≥ λ0

C
,

where λ0 = inf Spec(∆0). It therefore suffices to take c = λ0
C

in this case. If instead (M, g)
has an empty boundary and no funnel end, we know that zero is an eigenvalue. Thus, in
this case, we have instead

λε = inf
Π

max
v∈Π

‖dv‖2
L2(M,gε)

‖v‖2
L2(M,gε)

,

where Π runs over 2-dimensional subspaces of C∞c (M). Since C∞c (M) is densely contained in
the domain of ∆g0 , we have again

λε = inf
Π

max
v∈Π

‖dv‖2
L2(M,gε)

‖v‖2
L2(M,gε)

≥ 1

C
inf
Π

max
v∈Π

‖dv‖2
L2(M,g0)

‖v‖2
L2(M,g0)

≥ λ0

C
,

where λ0 = inf(Spec(∆0) \ {0}), so that we can still take c = λ0
C

to obtain the result.
If instead gε is a conformal surgery at a boundary component ∂iM , notice that if u ∈
C∞(M) is an eigenfunction of ∆gε for ε > 0, then, since u is zero on ∂iM , it is in L2(M, g0),
in fact in the domain of ∆g0 . On the other hand, we can clearly find a constant C > 0 such
that

dvolgε ≤ C dvolg0 ∀ε ∈ [0, 1].

With these two facts, we can proceed as before to obtain the result. �

2. L2-estimates for the heat kernel

In [CGT82], some L2 estimates are obtained for the heat kernel using a finite speed
propagation argument. More precisely, they obtained a bound on the norm of the heat kernel
acting on L2-functions. As observed by Donnelly in [Don87], using the Sobolev embedding,
this also gives an estimate for the Hilbert-Schmidt norm of the heat kernel. Since we will
use this observation several times, we will, for the convenience of the reader, go through this
argument in detail.

Lemma 2.1. Let (M, g) be a Fcb-Riemannian surface. Let U and G be two open sets in M
and let d = dg(U , G) ≥ 0 be the distance between them. Suppose the closure of G is compact
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in M \ ∂M . If d > 0 there exists a constant CG depending on G such that

∫
U
|e−t∆g(x, y)e−t∆g(x, y′)|dx ≤ CGe

−d2
8t ∀ y, y′ ∈ G, ∀ t > 0.

If instead d = 0 then, given ν > 0, there exists a constant CG,ν > 0 such that

∫
U
|e−t∆g(x, y)e−t∆g(x, y′)|dx ≤ CG,ν ∀ y, y′ ∈ G, ∀ t ≥ ν.

Proof. Suppose first that d > 0. Let G̃ be an open set relatively compact in M such that

G ⊂ G̃ with ∂G̃ smooth and d̃ = dg(U , G̃) > d√
2

. Let χ ∈ C∞c (G̃) be a nonnegative cut-off

function with χ ≡ 1 in a neighborhood of G. On G̃× G̃, consider the distribution

(2.1) W (y, y′) :=

∫
U
e−t∆g(x, y)χ(y)e−t∆g(x, y′)χ(y′)dx.

The reason for inserting the cut-off function χ in the definition of W is to be able to integrate
by parts later on.

To prove the lemma we will first show that the distributions ∆k
G̃,y

∆`
G̃,y′

W (y, y′) are in

L2, where k, ` ∈ N and ∆G̃ is the Laplacian of the metric g on G̃ with Dirichlet boundary

conditions. Let {ui}, i ∈ N, be an orthonormal basis of L2(G̃, g) given by eigenfunctions
of ∆G̃ and let 0 < λ1 ≤ λ2 ≤ · · · be the corresponding eigenvalues. Then {ui(y)uj(y

′)},
i, j ∈ N is an orthonormal basis of L2(G̃× G̃, g× g). On G̃, we know from the Weyl law that
there exists a constant c > 0 such that λj ∼ cj as j tends to infinity, so that

K :=

√∑
i,j

1

λ2
iλ

2
j

<∞.

On the other hand, by the L2-estimate of [CGT82, Corollary 1.2] applied to the heat kernel,
we know that, for any k, ` ∈ N, there exists a constant Ck,` > 0 such that

(2.2)

∣∣∣∣∫
G̃×G̃

(∆k
G̃,y

∆`
G̃,y′

W (y, y′))ui(y)uj(y
′)dydy′

∣∣∣∣ ≤ Ck,`e
− d̃

2

4t < Ck,`e
− d

2

8t ,

for all i, j ∈ N, and t > 0. Now, given v ∈ L2(G̃× G̃, g × g), it can be written as

v(y, y′) =
∑
i,j

µijui(y)uj(y
′), with ‖v‖2

L2 =
∑
i,j

|µij|2.
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Using (2.2), we can pair it with ∆k
G̃,y

∆`
G̃,y′

W (y, y′), namely,

(2.3)∣∣∣∣∫
G̃×G̃

(∆k
G̃,y

∆`
G̃,y′

W (y, y′))v(y, y′)dydy′
∣∣∣∣ =

∣∣∣∣∫
G̃×G̃

(∆k+1

G̃,y
∆`+1

G̃,y′
W (y, y′))∆−1

G̃,y
∆−1

G̃,y′
v(y, y′)dydy′

∣∣∣∣
=

∣∣∣∣∣∑
i,j

µij
λiλj

∫
G̃×G̃

(∆k+1

G̃,y
∆`+1

G̃,y′
W (y, y′))ui(y)uj(y

′)dydy′

∣∣∣∣∣
≤
(∑ 1

λ2
iλ

2
j

) 1
2

(∑
i,j

|µij|2
) 1

2

Ck+1,`+1e
− d

2

8t

= K‖v‖L2Ck+1,`+1e
− d

2

8t , ∀ t > 0.

Since v is arbitrary, this means by Riesz theorem that ∆k
G̃,y

∆`
G̃,y′

W is in L2 with

‖∆k
G̃,y

∆`
G̃,y′

W‖L2 ≤ KCk+1,`+1e
− d

2

8t .

We can thus apply the Sobolev embedding theorem to bound the C0-norm of W on G×G,
giving the desired estimate. Notice also that we have shown W is smooth on G×G.

If instead d = 0, we can follow the same argument, except that instead of (2.2), there is
a constant Ck,`,ν depending on ν > 0 such that∣∣∣∣∫

G̃×G̃
(∆k

G̃,y
∆`
G̃,y′

W (y, y′))ui(y)uj(y
′)dydy′

∣∣∣∣ ≤ Ck,`,ν , ∀ i, j ∈ N, ∀ t ≥ ν.

�

For some of the applications of this estimate, we will allow the open set G to move
towards infinity and it will be essential to understand how the constant CG grows under
such a change. From the proof Lemma 2.1, this constant depends in a subtle way on the
eigenvalues of the Laplacian ∆G̃. To control the growth of CG, we will instead derive the
estimate, using the fact (established in the proof of Lemma 2.1) that W is smooth. This
requires some preparation.

Consider the hyperbolic metric

gH2 =
dx2 + dy2

y2

on the upper-half plane H2 = {z = x + iy ∈ C ; y > 0}. The hyperbolic cusp metric
(also called the horn metric) is obtained from this metric by taking the quotient of H2 by
the isometric action of Z generated by z 7→ z + 1. By making the change of coordinates
u = log y, we can write the hyperbolic cusp metric as

ghc = du2 + e−2udx2 on H = R× (R/Z).

With respect to the change of variable x = θ and ρ = e−u, we see this simply corresponds

to the metric dρ2

ρ2
+ ρ2dθ2 considered in the conformal surgery at a point. However, for the

study of the constant CG, it will be more convenient to work with the coordinates (u, x).
For a > 0, consider the open set

Ua = {(u, x) ∈ R× (R/Z) : u < a}.



10 PIERRE ALBIN, CLARA L. ALDANA, AND FRÉDÉRIC ROCHON

Lemma 2.2. Let W ∈ C∞(H × H) be such that there exist constants Ca,k,l depending on
a, k and l such that∣∣∣∣∫

Ua×Ua
W (y, y′)∆k

ghc
u(y)∆l

ghc
v(y′)dydy′

∣∣∣∣ ≤ Ca,k,l‖u‖L2(Ua,ghc)‖v‖L2(Ua,ghc)

for all u, v ∈ L2(Ua, ghc) with supports compactly included in Ua. Then there exists a constant
C independent of a, k, and l such that

sup
Ua×Ua

|W | ≤ C(e4a + 1)

(
3∑

k,l=0

Ca+1,k,l

)

Proof. Notice first that for y0, y
′
0 in Ua, we have that

(2.4) W (y0, y
′
0) =

∫
Ua×Ua

W (y, y′)δy0(y)δy′0(y
′)dydy′,

where δy0 is the Dirac delta function centered at y0. Let ψ ∈ C(H2) be a cut-off function
taking values between 0 and 1 such that

ψ(u, x) =

{
1, 0 ≤ x ≤ 1

4
and u ≤ 0,

0, |x| ≥ 1
2

or u ≥ 1.

Then define the translated function ψa,b(u, x) = ψ(u− a, x− b). Clearly, there is a constant
K independent of a and b such that

(2.5) sup |∆H2ψa,b| ≤ K(e2a + 1), sup |∇ψa,b|gH2 ≤ K(ea + 1), sup |ψ| = 1.

Let q : H2 → H2/Z be the quotient map. Given y0 ∈ Ua, choose ỹ0 ∈ H2 such that q(ỹ0) = y0

and let uỹ0 be the unique solution in the Sobolev space L2
1(H2, gH2) to

δỹ0 = ∆3
H2uỹ0 .

By symmetry, there is a constant K1 independent of ỹ0 ∈ H2 such that

(2.6) ‖uỹ0‖L2
1(H2,gH2 ) ≤ K1.

Take b := x(ỹ0) to be the x coordinate of ỹ0 so that ψa,b ≡ 1 in a neighborhood of ỹ0. Using
this cut-off function, this means the equality

(2.7) δỹ0 =
3∑
j=0

∆j
H2αj,

descends to an equality on Ua+1, where

(2.8)

α0 = −(∆H2ψa,b)∆
2
H2uỹ0 + 2∇ψa,b · ∇(∆H2uỹ0)

α1 = −(∆H2ψa,b)∆H2uỹ0 − ψa,b∆2
H2uỹ0 + 2∇ψ · ∇(∆H2uỹ0)

α2 = −(∆H2ψa,b)uỹ0 + 2∇ψa,b · ∇uỹ0
α3 = ψa,buỹ0 .

By (2.6), ‖α3‖L2(H2,gH2 ) ≤ K1. On the other hand, since ∇ψa,b is supported away of ỹ0,
notice by elliptic regularity and using (2.5) and (2.6) that there is a positive constant K2

independent of a and ỹ0 such that

(2.9) ‖αj‖L2(H2,gH2 ) ≤ K2(e2a + 1), j = 0, 1, 2.
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Thus, plugging (2.7) in (2.4) and using the hypothesis of the lemma, we obtain

sup
Ua×Ua

|W | ≤ C(e4a + 1)(
3∑

k,l=0

Ca+1,k,l)

for a constant C depending only on K, K1 and K2.
�

3. Long time behavior of the relative trace

As mentioned in the introduction, the crux of the proof of compactness of relatively
isospectral metrics is showing that the relative determinant of the Laplacian and the relative
heat invariants are unchanged by conformal surgery. The Laplacian is conformally covariant
in dimension two, so this will follow from knowing that the variation of these invariants is
continuous, so ultimately from showing that the relative trace of the heat kernel is uniformly
continuous along a conformal surgery. This section provides one of the ingredients for such
a result, namely, a good uniform control of the relative trace for large time.

Fix a family of functions ψε as in (1.1) or (1.2) with support in an open set V containing
the point or the boundary component at which the conformal surgery is performed. Let g
and h be two Fcb-metrics on M such that h = g on U ∪ V , where U = M \ K and K is
a compact set. For these metrics, we can consider the corresponding conformal surgeries
gε = ψεg and hε = ψεh. Clearly, for all ε > 0, we have that hε = gε on U ∪V , while for ε = 0,
we have that h0 = g0 on (U ∪ V) \ {p} for a conformal surgery at a point p, and h0 = g0

on (U ∪ V) \ ∂iM for a conformal surgery at a boundary component ∂iM . By the results of
Bunke [Bun92] and Carron [Car02], we know the difference of heat kernels

(3.1) e−t∆gε − e−t∆hε

is trace-class for all ε ≥ 0 and all t > 0. We will in fact need a more precise statement about
the trace norm of this difference of heat kernels.

Proposition 3.1. Given T > ν > 0, there exists a positive constant C such that

‖e−t∆gε − e−t∆hε‖Tr ≤ C ∀ε ∈ [0, 1], ∀ t ∈ [ν, T ].

Proof. For metrics that coincide outside a compact set, Bunke [Bun92] established a bound
on the trace norm of the relative heat kernel. By partially following his proof, but also
adding a new twist, we will show that this bound can be achieved uniformly in ε.

Let S be the point or the boundary component where the conformal surgery is taking
place. Let us choose two open sets in M, W1 and W2, such that

(i) M =W1 ∪W2;
(ii) W1 ⊂ V ∪ U and W2 is compact;

(iii) gε|W1
= hε|W1

for all ε ∈ [0, 1];
(iv) gε|W2

= g0|W2
and hε|W2

= h0|W2
for all ε ∈ [0, 1].

We will also choose W1 and W2 so that they are contained in bigger open sets W̃1 and W̃2

satisfying the same properties and such that

gε = hε = g = h on W̃1 \W1 and W̃2 \W2, ∀ ε ∈ [0, 1].
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In [Bun92], the strategy is to estimate the trace-norm of the difference of the heat kernels by
considering the restriction of the difference to W1 ×W1, W2 ×W2, W1 ×W2 and W2 ×W1,
and then applying finite propagation speed estimates.

Let us consider first the region W2 ×W2. Let φ ∈ C∞c (M) be a function with φ ≡ 1 near

W2 and suppφ ⊂ W̃2. Let χ ∈ C∞c (M) be another function such that χ ≡ 1 on suppφ and

suppχ ⊂ W̃2. Finally, let γ ∈ C∞(M) be a function with γ ≡ 1 on supp(1 − φ) and γ ≡ 0
on W2. Consider then the approximate heat kernel

Hε(t, x, y) = γ(x)e−t∆g0 (x, y)(1− φ(y)) + χ(x)e−t∆gε (x, y)φ(y).

Since limt→0Hε(t, x, y) = δx,y, we obtain via Duhamel’s principle that

e−t∆g0 (x, y)−Hε(t, x, y) = −
∫ t

0

∫
M\S

e−s∆g0 (x, z)

(
∂

∂t
+ ∆g0

)
Hε(t− s, z, y)dzds.

Thus, for x and y in W2, we have that Hε(t, x, y) = e−t∆gε , so that

e−t∆g0 (x, y)− e−t∆gε (x, y) = −
∫ t

0

∫
G

e−s∆g0 (x, z)Eε(t− s, z, y)dzds,

where G ⊂ W̃2 \W2 is the support of dχ and

Eε(t, z, y) = (∆gχ)(z)e−t∆gε (z, y)− 2〈∇zχ(z),∇ze
−t∆gε (z, y)〉g

If PG and PW2 are the projection operators obtained by multiplying by the characteristic
functions of G and W2, this can be rewritten as

(3.2) PW2(e
−t∆g0 − e−t∆gε )PW2 = −

∫ t

0

(PW2e
−s∆g0PG)(PGEε(t− s)PW2)ds.

If d = distg(G,W2) is the distance between G and W2 with respect to the metric g, then
using the L2 estimates of [CGT82], we know by Lemma 2.1 (cf. [Bun92, p.69]) that there
exists a positive constant C depending on G such that

‖PW2e
−s∆g0PG‖HS ≤ Ce−

d2

8s , ‖PGEε(t− s)PW2‖HS ≤ Ce−
d2

8(t−s) ,

where ‖ · ‖HS is the Hilbert-Schmidt norm. Since we have ‖AB‖Tr ≤ ‖A‖HS‖B‖HS for two
Hilbert-Schmidt operators A and B, we see from (3.2) that

‖PW2(e
−t∆g0 − e−t∆gε )PW2‖Tr ≤ C

for a positive constant C independent of t ∈ (0, T ] and ε ∈ [0, 1]. We obtain similarly that

‖PW2(e
−t∆h0 − e−t∆hε )PW2‖Tr ≤ C.

Combining these two inequalities, this means that for t ∈ [ν, T ],

‖PW2(e
−t∆gε − e−t∆hε )PW2‖Tr ≤ 2C + max

t∈[ν,T ]
‖PW2(e

−t∆g0 − e−t∆h0 )PW2‖Tr,

giving the desired uniform bound in ε in that region.
For the regionW1×W1, Bunke writes the difference of heat kernels as a sum of products of

Hilbert-Schmidt operators whose norm is bounded by Ce−
d2

8t using a finite speed propagation
argument, see [Bun92, Theorem 3.4]. Here, the positive constants C and d depend on a choice

(independent of ε) of compact region G in W̃1 \ W1 and on the metric h = hε = gε = g
in that region. In particular, the constants C and d can be chosen to be the same for all
ε ∈ [0, 1].



COMPACTNESS VIA CONFORMAL SURGERIES 13

For the regionsW1×W2, we cannot proceed as in [Bun92], since we do not have a uniform
bound on the curvature in ε for a conformal surgery at a point. Instead, we will use a finite
speed propagation argument. Since we already control the trace norm on W1 × W1 and

W2 ×W2, it suffices to control the trace norm in a smaller open set Ŵ1 × Ŵ2 ⊂ W1 ×W2,

where the open sets Ŵ1 and Ŵ2 can be chosen to be disjoint and such that

M \W2 ⊂ Ŵ1 ⊂ W1 and M \W1 ⊂ Ŵ2 ⊂ W2,

with gε = hε = g0 = h0 on W1 \ Ŵ1 and W2 \ Ŵ2.
Let φ1, φ2 ∈ C∞(M) be nonnegative functions such that

(i) φi ≡ 1 in an open neighborhood of Ŵi for i = 1, 2;
(ii) suppφ1 ∩ suppφ2 = ∅.

Since the kernel

Eε(t, x, y) = φ1(x)(e−t∆gε (x, y)− e−t∆hε (x, y))φ2(y)

is supported away from the diagonal, its limit as t→ 0 is zero. Thus, by Duhamel’s principle,
we have that

Eε(t, x, y) =

∫ t

0

∫
M\S

e−s∆gε (x, z)

(
∂

∂t
+ ∆gε

)
Eε(t− s, z, y)dzds.

Using the fact gε = hε on W1 and suppφ1 ⊂ W1, we see that this can be rewritten as

Eε(t, x, y) =

∫ t

0

∫
G

e−s∆gε (x, z)Gε(t− s, x, y)dzds,

where G ⊂ W1 \ Ŵ1 is the support of dφ1 and

(3.3) Gε(t, z, y) = (∆gφ1)(z)(e−t∆gε (z, y)− e−t∆hε (z, y))

+ 2〈∇zφ1(z),∇z(e
−t∆hε (z, y)− e−t∆gε (z, y))〉g.

If PŴ1
, PŴ2

and PG are the projection operators obtained by multiplying by the characteristic

functions of Ŵ1, Ŵ2 and G, then this can be reformulated as follows,

PŴ1
(e−t∆gε − e−t∆hε )PŴ2

=

∫ t

0

(PŴ1
e−s∆gεPG)(PGGε(t− s)PŴ2

)ds.

Then, for d := mini=1,2 distg(G, Ŵi) > 0, we see from Lemma 2.1 that there is a positive
constant C depending on G such that

‖PŴ1
e−s∆gεPG‖HS ≤ Ce−

d2

8s , ‖PGGε(t− s)PŴ2
‖HS ≤ Ce−

d2

8(t−s) .

We can thus conclude as before that there is a constant C1 > 0 such that

(3.4) ‖PŴ1
(e−t∆gε − e−t∆hε )PŴ2

‖Tr ≤ C1, ∀t ∈ [0, T ], ∀ε ∈ [0, 1].

Finally, for the regionW2×W1, we also only need to control the trace norm on Ŵ2×Ŵ1.
Since PŴ2

(e−t∆gε−e−t∆hε )PŴ1
is the adjoint2 of PŴ1

(e−t∆gε−e−t∆hε )PŴ2
, the desired estimate

follows from (3.4) in this case. �

Using Theorem 1.1 and Proposition 3.1, we obtain the following estimate for the behavior
of the relative trace as t tends to infinity.

2When acting on half-densities
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Corollary 3.2. Let µ > 0 be a uniform lower bound for the positive spectrum of ∆gε and
∆hε for all ε ∈ [0, 1]. Then there exist T > 0 and K > 0 independent of ε such that

‖e−t∆gε − e−t∆hε‖Tr ≤ Ke−
µ
2
t, ∀t ≥ T.

Proof. Recall that any Fcb metric has a punctured neighborhood of 0 disjoint from its
spectrum. Assume first that 0 is not in the spectrum. Since there is a constant C ≥ 1 such

that gε
C
≤ hε ≤ Cgε for all ε, we know by the spectral theorem that for t0 = log(2C2)

µ
, we have

‖e−t0∆gε‖ ≤ 1

2
, ‖e−t0∆hε‖ ≤ 1

2
,

where ‖ · ‖ is the operator norm defined with respect to the norm of L2(M, gε). For t ≥ 2t0,
notice that

(3.5)

‖e−t∆gε − e−t∆hε‖Tr = ‖e−
t
2

∆gε (e−
t
2

∆gε − e−
t
2

∆hε ) + (e−
t
2

∆gε − e−
t
2

∆hε )e−
t
2

∆hε‖Tr

≤ (‖e−
t
2

∆gε‖+ ‖e−
t
2

∆hε‖)‖e−
t
2

∆gε − e−
t
2

∆hε‖Tr

≤ ‖e−
t
2

∆gε − e−
t
2

∆hε‖Tr.

Applying this inequality finitely many times, we see that for all t ≥ 2t0,

‖e−t∆gε − e−t∆hε‖Tr ≤ max
τ∈[t0,2t0]

‖e−τ∆gε − e−τ∆hε‖Tr.

By Proposition 3.1, this means the relative trace is uniformly bounded for t ≥ 2t0 and
ε ∈ [0, 1]. Now, using the fact that ‖e−t∆gε‖ ≤ e−tµ and ‖e−t∆hε‖ ≤ ce−tµ for some constant
c > 0 only depending on g and h and proceeding as in (3.5), we thus have for t ≥ 2t0,

(3.6)
‖e−t∆gε − e−t∆hε‖Tr ≤ (‖e−

t
2

∆gε‖+ ‖e−
t
2

∆hε‖)‖e−
t
2

∆gε − e−
t
2

∆hε‖Tr

≤ (1 + c)e−
µ
2
t max
τ∈[t0,2t0]

‖e−τ∆gε − e−τ∆hε‖Tr.

By Proposition 3.1, maxτ∈[t0,2t0] ‖e−τ∆gε − e−τ∆hε‖Tr is bounded above by a positive constant
independent of ε. This gives the desired result. If zero is in the spectrum, we can obtain the
same result by first projecting off the constants. �

4. Finite time behavior of the relative trace

To introduce and study the relative determinant, we need to obtain some good control on
the relative trace as ε tends to 0. We will adapt the methods used in [Don87] to show that
the relative heat trace is continuous in ε for small t.

Theorem 4.1. For T > 0, the functional

ε 7→ Tr(e−t∆gε − e−t∆hε )

is continuous at ε = 0 uniformly with respect to t ∈ (0, T ].

Intuitively, we expect Theorem 4.1 to hold from the fact the singular behavior of gε and
hε should cancel out. What allows us to turn these local considerations into a statement
about the heat kernels is a finite propagation speed argument. We will proceed in three
steps. We will use the notation S to denote either {p} or ∂iM depending on whether we are
considering a conformal surgery at a point or at boundary component.
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Lemma 4.2. There exist constants d > 0 and C > 0 such that

|Tr(e−t∆gε − e−t∆hε )− Tr(e−t∆g0 − e−t∆h0 )| < Cte−
d2

8t

for all t > 0 and ε ∈ [0, 1].

Proof. Note that we expect such a rapid decay as t tends to zero from the fact that the short
time asymptotics of these heat kernels cancel out. The precise estimate will be obtained via
a finite speed propagation argument.

Let W1, W̃1, W2 and W̃2 be open sets as in the proof of Proposition 3.1. To estimate the
difference of relative traces on W1, let φ ∈ C∞(M) be a function with φ ≡ 1 near W1 and

suppφ ⊂ W̃1. Let χ ∈ C∞(M) be another function with χ ≡ 1 on suppφ and suppχ ⊂ W̃1.
Let also γ ∈ C∞c (M) be a function with γ ≡ 1 on supp(1−φ). Consider then the approximate
heat kernel

E(t, x, y) = γ(x)e−t∆gε (x, y)(1− φ(y)) + χ(x)e−t∆hε (x, y)φ(y).

By Duhamel’s principle, we have that

(4.1) e−t∆gε (x, y)− E(t, x, y) = −
∫ t

0

∫
M\S

e−s∆gε (x, z)

(
∂

∂t
+ ∆gε

)
E(t− s, z, y)dzds.

If we assume now that x and y are equal and lie in W1, then Eε(t, x, x) = e−t∆hε (x, x), so
proceeding as in [Don87, Proposition 5.1], we have that

(4.2)

∫
W1\S

|e−t∆gε (x, x)− e−t∆hε (x, x)|dx ≤

C

∫ t

0

∫
G

(∫
W1\S

|e−s∆gε (x, z)|2dx
) 1

2

((∫
W1\S

|∇ze
−(t−s)∆hε (z, x)|2dx

) 1
2

+

(∫
W1\S

|e−(t−s)∆hε (z, x)|2dx
) 1

2

)
dzds,

where C > 0 is a constant depending on the norm of dχ and ∆hχ and G ⊂ W̃1 \ W1 is a
compact set containing the support of dχ. By Lemma 2.1, we have

(4.3)

∫
W1\S

|e−s∆gε (x, z)|2dx ≤ C1e
− d

2

8s ,

∫
W1\S

|e−(t−s)∆hε (z, x)|2dx ≤ C1e
− d2

8(t−s) ,∫
W1\S

|∇ze
−(t−s)∆hε (z, x)|2dx ≤ C1e

− d2

8(t−s) ,

where C1 is a constant depending on G, so is independent of ε, while d > 0 is chosen to be
smaller than the distance between W1 and supp dχ with respect to the metric h (recall that

h = hε = gε = g on W̃1 \W1). Combining (4.2) and (4.3), we obtain

(4.4)

∫
W1\S

|e−t∆gε (x, x)− e−t∆hε (x, x)|dx < 2 Vol(G)CC1te
− d

2

8t ∀ ε ∈ [0, 1],∀ t > 0.
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Using the fact that gε = g0 and hε = h0 on W̃2 and that gε = hε = g = h on W̃2 \W2, we
can proceed in a similar way to obtain that

(4.5)

∫
W2

|e−t∆gε (x, x)− e−t∆g0 (x, x)|dx < Cte−
d2

8t ,∫
W2

|e−t∆hε (x, x)− e−t∆h0 (x, x)|dx < Cte−
d2

8t ,

for all ε ∈ [0, 1] and t > 0, for potentially different constants C > 0 and d > 0. Finally,
combining (4.4) and (4.5) gives the result.

�

An easy consequence of Lemma 4.2 is the following.

Corollary 4.3. The relative heat invariants in the asymptotic expansion

(4.6) Tr(e−t∆gε − e−t∆hε ) ∼ t−1
∑
k≥0

ak(gε, hε)t
k.

are preserved under conformal surgery, i.e. ak(gε, hε) = ak(g0, h0) for all k and all ε.

Lemma 4.4. Given δ > 0 and T > 0, there exist an open set A ⊂ V containing S and
ε0 > 0 such that for all t < T and all ε ∈ [0, ε0),∫

A\S
|e−t∆gε (x, x)− e−t∆hε (x, x)|dx < δ.

Proof. This is a finite propagation speed argument as in [Don87, Proposition 5.1], namely
we consider the approximate heat kernel

(4.7) E(t, x, y) = γ(x)e−t∆gε (x, y)(1− φ(y)) + χ(x)e−t∆hε (x, y)φ(y),

where φ, χ and γ are smooth functions on M with φ ≡ 1 near p and φ ≡ 0 when r > 1
2

on V
(and more generally outside of V), χ ≡ 1 when r ≤ 1

2
and χ ≡ 0 when r > 3

4
, and γ ≡ 1 on

supp(1−φ) and supp γ is disjoint from p. Let G be a compact set containing the support of
dχ and choose A ⊂ V such that φ ≡ 1 on A. By choosing A and ε0 > 0 sufficiently small, we
can insure dgε(A,G) > d when ε ∈ [0, ε0], where d is a large positive number to be chosen
later. Using Duhamel’s principle as in [Don87, Proposition 5.1], we have

(4.8)

∫
A\S
|e−t∆gε (x, x)− e−t∆hε (x, x)|dx ≤

C

∫ t

0

∫
G

(∫
A\S
|e−s∆gε (x, z)|2dx

) 1
2

((∫
A\S
|∇ze

−(t−s)∆hε (z, x)|2dx
) 1

2

+

(∫
A\S
|e−(t−s)∆hε (z, x)|2dx

) 1
2

)
dzds,
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where C is a constant depending on G. By Lemma 2.1 and using the fact gε = g and hε = h
near G, we have

(4.9)

∫
A\S
|e−t∆gε (x, z)|2dx ≤ C1e

− d
2

8t ,

∫
A\S
|e−t∆hε (z, x)|2dx ≤ C1e

− d
2

8t ,∫
A\S
|∇ze

−t∆hε (z, x)|2dx ≤ C1e
− d

2

8t ,

where the positive constant C1 only depends on G and is thus independent of ε. By taking
A and ε0 sufficiently small, we can make d as large as we want. From (4.8), given δ > 0 and
T > 0, we can thus choose A and ε0 so that∫

A\S
|e−t∆gε (x, x)− e−t∆hε (x, x)|dx < δ,

for all ε ∈ [0, ε0] and t ∈ (0, T ]. �

We need also to control the trace on the complement of A.

Lemma 4.5. Let N ⊂M be an open set with N ∩S = ∅. Then given δ > 0 and T > ν > 0,
there exists ε0 > 0 such that for all ε ∈ [0, ε0] and t ∈ [ν, T ],∫

N

|e−t∆gε (x, x)− e−t∆g0 (x, x)|dx < δ,

∫
N

|e−t∆hε (x, x)− e−t∆h0 (x, x)|dx < δ.

Proof. We will prove the lemma for the metric gε, the proof being the same for the metric hε.
Without loss of generality, by taking N bigger if needed, we can assume M \N is contained
in the neighborhood V . This time, we consider φ ∈ C∞(M) with φ ≡ 1 on N and φ ≡ 0 near
S, χ ∈ C∞(M) with the same properties and such that χ ≡ 1 on the support of φ, and we
choose a function γ ∈ C∞c (V) with γ ≡ 1 on supp(1 − φ). With these functions, we define
the approximate heat kernel

(4.10) E(t, x, y) = γ(x)e−t∆g0 (x, y)(1− φ(y)) + χ(x)e−t∆gε (x, y)φ(y).

Using Duhamel’s principle, we have

(4.11) e−t∆g0 (x, y)− E(t, x, y) = −
∫ t

0

∫
M\S

e−s∆g0 (x, z)

(
∂

∂t
+ ∆g0

)
E(t− s, z, y)dzds.

Suppose now that x and y are equal and lie in N . Then E(t, x, x) = e−t∆gε (x, x). Writing
gε = eϕεg0, we also have,

(4.12)

(
∂

∂t
+ ∆g0

)
e−t∆gε =

(
∂

∂t
+ ∆gε + (eϕε − 1)∆gε

)
e−t∆gε

= (eϕε − 1)∆gεe
−t∆gε .
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Thus, from (4.11), when x and y are equal and lie in N , we have
(4.13)

e−t∆g0 (x, x)− e−t∆gε (x, x) = 2

∫ t

0

∫
G

e−s∆g0 (x, z)〈∇zχ,∇ze
−(t−s)∆gε (z, x)〉dzds

−
∫ t

0

∫
G

e−s∆g0 (x, z)(∆g0χ(z))e−(t−s)∆gε (z, x)dzds

+

∫ t

0

∫
G′
e−s∆g0 (x, z)(1− eϕε)χ(z)∆gεe

−(t−s)∆gε (z, x)dzds,

where G = supp dχ ⊂ M \ S is a compact set and G′ ⊂ V \ S is a compact set containing
suppχ ∩ supp(1− eϕε).

When we integrate with respect to x on N , the first two terms on the right hand side of
(4.13) can be bounded as before by

C

∫ t

0

∫
G

(∫
N

|e−s∆g0 (x, z)|2dx
) 1

2

·((∫
N

|e−(t−s)∆gε (z, x)|2dx
) 1

2

+

(∫
N

|∇ze
−(t−s)∆gε (z, x)|2dx

) 1
2

)
dzds,

where C is a constant depending on the norm of dχ and ∆g0χ on G with respect to the norm
of gε. By Lemma 2.1, we can bound this expression by

(4.14) C̃
√

Vol(G, g0) Vol(G, gε)
√
CG,g0CG,gε e

− d
2
0+d

2
ε

16t

where dε is the distance between G and N with respect to the metric gε, C̃ is a constant
depending on C and ν, and CG,gε is the optimal constant for the estimate of Lemma 2.1 for
gε on G.

In the case of a surgery at a boundary component, using the fact g0 is quasi-isometric to
a Fcb-metric which is hyperbolic near infinity, we see using Lemma 2.2 with the constant a
fixed that we can take CG,g0 to be independent of G. On the other hand, for fixed G, we can
take the constant CG,gε to be as close as we want to CG,g0 by taking ε sufficiently small. Now,
at the cost of changing χ and taking ε sufficiently small, we can make d0 and dε as large as
we want. Choosing χ to be independent of θ near p, this can be achieved while keeping the
norm of dχ bounded by a fixed constant K with respect to g0, so that its norm with respect
to gε will be bounded by K + 1 if ε is small enough. During such a procedure, the volume
of G with respect to g0 satisfies an estimate of the form Vol(G, g0) ≤ C0e

d0 for some fixed
constant C0, and again, for fixed G, by taking ε small enough, we can make Vol(G, gε) as
close as we want to Vol(G, g0). This means that by choosing χ and ε suitably, we can make
(4.14) as small as we want.

In the case of a conformal surgery at a point, we need to use the fact that g0 is quasi-
isometric to a hyperbolic cusp metric near the point p, so that by Lemma 2.2, the Sobolev
constant of g0 on G satisfies an estimate of the form

CG,g0 ≤ K(e4d0 + 1)

for some constant K. Thus, by choosing G sufficiently far away from N , we can make the

term CG,g0e
− d

2
0

8t as small as we want. Since a cusp end has finite area, this can be done in such
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a way that the volume of G with respect to gε is bounded above by a constant independent
of d0 and ε.

Since on the other hand we can, for fixed G, make CG,gε arbitrarily close to CG,g0 by
taking ε sufficiently small, we see we can again make (4.14) as small as we want by taking
G sufficiently far away from N and ε sufficiently small.

For the third term in (4.13), we note that its integral with respect to x on N can be
bounded by

(4.15) C

∫ t

0

∫
G′

(∫
N

|e−s∆g0 (x, z)|2dx
) 1

2
(∫

N

|∆gεe
−(t−s)∆gε (z, x)|2dx

) 1
2

(1− eϕε(z))dzds.

Since we are assuming t ≥ ν > 0, each integral in x can be uniformly bounded (for G′ fixed)
using Lemma 2.1 with d = 0. Thanks to the term (1 − eϕε), the overall expression can be
made arbitrarily small by taking ε > 0 sufficiently small. �

These three lemmas can then be combined to give the proof of Theorem 4.1.

Proof of Theorem 4.1. Given T > 0 and δ > 0, we need to find ε0 > 0 such that when
ε ∈ [0, ε0],∫

M\S
|(e−t∆gε (x, x)− e−t∆hε (x, x))− (e−t∆g0 (x, x)− e−t∆h0 (x, x))|dx < δ ∀ t ∈ (0, T ].

By Lemma 4.2, we can find ν > 0 such that this integral is smaller than δ
3

for t ≤ ν. By
Lemma 4.4, we can find ε0 > 0 and an open set A ⊂ V containing S such that the integral
restricted to A \ S is smaller than δ

3
when ε ∈ [0, ε0] and t ∈ (0, T ]. On the other hand,

choosing an open set N ⊂ (M \S) containing the complement of A, we know by Lemma 4.5
that by taking ε0 smaller if needed, we can insure the integral restricted to N is also bounded
by δ

3
for ε ∈ [0, ε0] and t ∈ [ν, T ], from which the result follows. �

5. The relative determinant

By Corollary 3.2 and Corollary 4.3, the relative zeta function given by

ζ(∆gε ,∆hε , s) =
1

Γ(s)

∫ ∞
0

ts−1 Tr(e−t∆gε − e−t∆hε )dt

is well defined for Re s > 1. In fact, using the short-time asymptotic expansion (4.6), the
relative zeta function can be extended meromorphically to s ∈ C with at worst simple poles
in s, but with s = 0 a regular point. Thus, a relative determinant can be defined by

(5.1) det(∆gε ,∆hε) = exp (−ζ ′(∆gε ,∆hε , 0)) .

Lemma 5.1. For ε > 0, we have

d

dε
det(∆gε ,∆hε) = 0.

Proof. Using the regularized trace as in [AAR], we can write the relative trace as a difference
of two regularized traces. Similarly, we can write the relative determinant as a quotient of
two regularized determinants. Applying the Polyakov formula of [AAR] to this ratio of regu-
larized determinants, we see that the contribution coming from one regularized determinant
is canceled by the other, from which the result follows. �
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Remark 1. In [AAR] the surfaces considered have no boundary, but since the discussion
about the regularized trace and the Polyakov formula is local near the cusps and the funnels,
the extension to the boundary case is automatic. As in [OPS88c], one simply needs to add
an extra term in the Polyakov formula of [AAR] expressed in terms of the geodesic curvature
of the boundary.

This gives immediately the following.

Theorem 5.2. For the families of metrics gε and hε, the relative determinant det(∆gε ,∆hε)
is independent of ε.

Proof. By Corollary 3.2, Lemma 4.2 and Theorem 4.1, the relative determinant is a continu-
ous function of ε. On the other hand, by Lemma 5.1, it is constant for ε > 0. By continuity,
it is therefore constant for ε ≥ 0. �

We can use this to obtain a similar result for conformal deformations near ∂FM .

Corollary 5.3. Let ψF ∈ C∞(M) be a smooth function supported near ∂FM such that

ψF |∂FM is locally constant and consider the new Fcb-metrics g̃ = eψF g, h̃ = eψFh. Then we
have that

det(∆g̃,∆h̃) = det(∆g,∆h).

Proof. We could use the Polyakov formula of [AAR], but this would require some extra decay
behavior in ψF . Instead, we simply apply the previous theorem twice by undoing and doing
again a conformal surgery at each boundary component of ∂FM to go from g to g̃ and from

h to h̃. �

6. Compactness of families of relatively isospectral surfaces

As mentioned in the introduction, Borthwick and Perry [BP11] prove a compactness theo-
rem for isoresonant metrics that coincide cocompactly and whose ends are hyperbolic funnels.
Their proof of compactness, like the proof of compactness of Osgood-Phillips-Sarnak, uses
the spectral assumption only through the equality of the relative heat invariants (4.6) and
relative determinants (5.1). We restate their theorem with these assumptions.

Theorem 6.1 (Borthwick-Perry [BP11]). Let (Mi, gi) be a family of Riemannian surfaces
that coincide cocompactly, whose ends are hyperbolic funnels, and assume that the relative
heat invariants and relative determinants satisfy

ak(gi, gj) = 0, det(∆gi ,∆gj) = 1, for all i, j, k.

Then there is a Riemannian surface (M, g∞), a subsequence (Mik , gik), and a sequence of
diffeomorphisms

φk : M −→Mik , with φ` ◦ φ−1
`′

∣∣
U∞

= Id for any `, `′

such that the metrics φ∗kgik converge to g∞ in C∞.

We can now finally give a proof of our main result.
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Proof of Theorem 1. We need first to check that the various surfaces have the same topology.
This can be deduced from the relative heat invariants. Namely, given two of the relatively
isospectral surfaces (Mi, gi) and (Mk, gk), we can deform conformally gi and gk in U∞ in the
same way to obtain metrics ĝi and ĝk also having vanishing relative heat invariants and such
that,

(i) the metrics ĝi and ĝk have no cusp, the cusps being removed by a conformal surgery
at each marked point;

(ii) The metrics ĝi, ĝk define incomplete metrics on M i and Mk with boundary having
no geodesic curvature.

Since these metrics ĝi, ĝk have the same heat invariants, we know from [MS67] that M i

and Mk have the same Euler characteristic, so the same topology. Thus, the isometry
Mi \ Ki → Mk \ Kk can be extended to a diffeomorphism Mi → Mk. This means we can
assume all the relatively isospectral metrics are defined on the same surface M∞ and agree
on U∞ = M \K where K ⊂M \ ∂M is a compact set.

Going back to the initial metrics gi, we can, by doing a conformal surgery on U∞, remove
all the cusps and transform each boundary into a funnel end hyperbolic near infinity. We
can also modify conformally the metrics in the remaining funnels to make them hyperbolic
near infinity. We thus get a new sequence of metrics g̃i = eψgi on M , where ψ is a function
supported on U∞ and M is obtained from M by filling each cusp end with a point. In doing
so, the relative local heat invariants remains zero, and the relative determinant remains 1
by Theorem 5.2. We can thus apply Theorem 6.1 to find a Riemannian surface (M, g̃∞)
and to extract a subsquence g̃ik and a sequence of diffeomorphisms φik : M → Mik such
that φ∗ikgik converges to g̃∞ in C∞(M, g̃∞). As explained in [BP11], we can choose the

diffeomorphisms such that φik ◦ φ−1
ik′

= Id near each funnels of (M, g̃∞). The same argument

can be carried out near each (filled) cusp, so that the diffeomorphisms can be chosen so that
φik ◦ φ−1

ik′
= Id on U∞. Undoing the conformal transformation on the metric g̃∞ to obtain

the metic g∞ = e−ψg̃∞ on M , we obtain the desired result with the subsequence gik and the
diffeomorphisms φik . �
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