
ar
X

iv
:1

11
2.

32
70

v1
  [

gr
-q

c]
  1

4 
D

ec
 2

01
1

Ten questions on Group Field Theory

(and their tentative answers)

Aristide Baratin, Daniele Oriti

E-mail: aristide.baratin@aei.mpg.de, daniele.oriti@aei.mpg.de

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1,

D-14476 Golm, Germany, EU

Abstract. We provide a short and non-technical summary of our current knowledge and some

possible perspectives on the group field theory formalism for quantum gravity, in the form of

a (partial) FAQ (with answers). Some of the questions and answers relate to aspects of the

formalism that concern loop quantum gravity. This summary also aims at giving a brief, rough

guide to the recent literature on group field theory (and tensor models).

1. Introduction

The aim of this paper is to provide a short summary of what we know about the group field

theory (GFT) formalism for quantum gravity and its longer term goals. For greater agility of

presentation and reading, the format is that of a FAQ: we outline tentative and provisional

answers to some basic questions about the GFT formalism, which aim at reflecting the current

understanding of the subject, from the strict point of view of the authors.

Having clarified our aims, let us clarify what this paper is not meant to be. First, it is not

meant to be a technical paper dwelling into any of the details of the formalism, or explaining in

detail any of the recent results. For this we will refer to the relevant literature. Second, it is not

a pedagogical, extensive introduction to GFTs. For early introductions, the reader should go to

[2, 3], and for the general idea of tensor models one should look at the early papers [4] and at

the literature on matrix models [5]. For a more extensive, and almost up to date introduction

to GFTs for quantum gravity, we refer to [6]. Third, it is not a proper review of the subject nor

of its recent developments, which are many and important. For many of the recent results on

(colored) tensor models, a complete and up-to-date (and beautifully written) review is [7]. For

many of the recent results that relate to the geometry of group field theories, we refer to the

review [8]. For a discussion of spin foam models, in particular the recent ones, and thus some

important aspects of the corresponding group field theories, we refer to the many reviews on spin

foams [9]. Many other results, concerning for example GFT and tensor model renormalization

can unfortunately only be found in the original papers.
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2. Ten questions, with their tentative answers

(i) What is a group field theory?

Group field theories are a specific class of tensor quantum field theories which generalize matrix

models to higher dimensions. The fundamental variables are in fact higher rank tensors formally

denoted by Ti1...id where the indices label points in the direct product of d domain spaces. The

domain space could be a manifold or a finite set. The dynamics of tensor models is governed by

a classical action characterized by a peculiar pairing of the indices in the interaction term:

Sint(T ) = λ
∑

~ij

T~i1 · · ·T~id+1

where ~ij = (ijj−1, ..., ij0, ijd, ..., ijj+1) is the set of indices of the j copy of the tensor in the

monomial of degree d+1, with ijk = ikj . For example the action for the independent identically

distributed 3-tensor model is

S(T ) =
1

2

∑

i,j,k

TijkTkji −
λ

4!

∑

ijklmn

TijkTklmTmjnTnli (1)

A tensor can be graphically represented as a d-valent node with an index on each line, or dually

as a (d-1)-simplex with an index on each (d-2)-face. The interaction term pairs the indices

along the links of a network with d+1 d-valent nodes; dually it patterns the glueing of d+1 (d-

1)-simplices along common faces to form a d-simplex. The kinetric term describes instead the

identification of two nodes or (d-1)-simplices. Different choices of kinetic and interaction terms,

are possible and define different models in the same class. The peculiar interaction combinatorics

of any tensor model, shows up in the perturbative expansion of the theory in Feynman diagrams

Z =

∫
DT e−S[T ] =

∑

Γ

λV

sym[Γ]
Z(Γ),

where V is the number of interaction vertices in the Feynman graph Γ, sym[Γ] is a symmetry

factor for the graph and Z(Γ) the corresponding Feynman amplitude. By construction the

Feynman diagrams will be represented as stranded diagrams dual to cellular (simplicial)

complexes of arbitrary topology, obtained by arbitrary glueings of d-simplices along (d-1)-faces.

Tensors models are thus a straightforward combinatorial generalization of matrix models for

2d quantum gravity. In matrix models, the Feynman amplitudes associated to each diagram

can be re-interpreted in terms of a discretization of 2d general relativity on an equilateral

triangulation, and the overall sum as a generalization of a lattice path integral for 2d gravity to

arbitrary triangulations and arbitrary topologies. Among the key results in matrix models [5] are

the large N topological expansion dominated by trivial topologies (where N is the dimension of

the matrix) and the identification of critical behaviour for some value of the coupling constant.

This critical behaviour defines the continuum limit, shown by various methods to match the

effective continuum dynamics to 2d Liouville quantum gravity. Tensors models try to export

these ideas and results to higher dimensions. However, while even simple tensor models of the

type (1) have an interest for quantum gravity, as they relate directly to the approach of dynamical

triangulations, both the richness of spacetime geometry in higher dimensions (especially in 4

dimensions) and the results obtained by other approaches to quantum gravity suggest that a



richer set of data and symmetries should be added to the tensors, and that a more involved

dynamics should be chosen, to have a better chance to describe quantum geometry and gravity.

Group field theories (GFT) is the name used, in fact, for those tensor models where the

domain space is chosen to be the local gauge group G of gravity (i.e. the Lorentz group or its

euclidean counterpart), so that tensors thus turn into fields ϕ∈L2(Gd). An additional symmetry

is invoked which captures local gauge invariance:

ϕ(hg1, · · · hgd) = ϕ(g1 · · · gd) ∀h ∈ G,

and, possibly, kinetic and interaction terms are characterized by non-trivial kernels. In turn,

alternative representations in terms of group representations or as non-commutative quantum

field theories over R|G|, where |G| is the dimension of G, become available, thanks to the group

structure and tools from representation theory and non-commutative geometry. An example is

the Boulatov model for 3d Riemanian quantum gravity [10], where G=SU(2) and with action:

S3d[ϕ] =
1

2

∫
[dg]3 ϕ123ϕ321 −

λ

4!

∫
[dg]6 ϕ123ϕ345ϕ526ϕ641 (2)

where ϕijk is a short notation for ϕ(gi, gj , gk) and dg is the Haar measure on the gauge group.

The GFT formalism thus attempts to define a theory of quantum spacetime as a superposition

of discrete spaces, each generated as a possible interaction process of fundamental building

blocks, tentative quanta of space, by incorporating into the tensor model framework lessons

and insights of other approaches to quantum geometry – quantum Regge calculus, quantum

simplicial geometry and Loop Quantum Gravity (LQG) [11], as well as mathematical tools

taken from non-commutative geometry:

• The insight from quantum simplicial geometry suggests the variables needed to describe a

‘quantum geometric (d-1)-simplex’ which has to become the fundamental atom of quantum

space, the basic ‘quantum’ in our enriched tensor model.

• A characterization of the geometry and of the whole kinematical phase space to be associated

to a simplex is also provided by the analysis of discretized gravity actions in various

dimensions and in various formulations. In particular, 1st order formulations of gravity

in terms of connection and (conjugate) vielbein variables suggest to use group and Lie

algebra manifolds to define the phase space of such simplices, and the domain spaces of

tensor models, leading then to group field theories.

• Loop Quantum Gravity provides further justification for the kinematical structures used

for defining the Hilbert space of quantum states of these models, several insights on their

interpretation, and a main source of inspiration for constructing models and specifying the

correct dynamics.

• Simplicial gravity path integrals, and in particular quantum Regge calculus, provide a

template to analyze the corresponding Feynman amplitudes, and to evaluate to what extent

they capture correctly the dynamics of discrete geometry that can be associated to each

Feynman diagram/simplicial complex.

• Tools from non-commutative geometry then provide the means to define different

representations of the same models, and to analyze their properties.

(ii) How does the GFT formalism relate to loop quantum gravity?



Polynomial gauge invariant observables of the group field theory correspond to functions of

a finite number of gauge group elements associated to the links of a (d-valent) graph (plus

possible additional variables) satisfying a gauge invariance condition at each node. A basis of

such observables is written in terms of so-called spin networks functionals, generically labelled by

a graph (Γ, je, ıv) with edges e and vertices v respectively group representations je and invariant

tensors ıv. GFT n-point functions can thus be expressed in terms of LQG-like states. The exact

matching holds for some models, at least in representation space (and as far as the spectrum of

some quantum geometric operators is concerned).

Intuitively, GFTs provide a ‘second quantized’ framework for LQG: spin network vertices

become the quanta of a GFT field, and the LQG wave function associated to an individual

vertex is turned to a field operator that creates/annihilates spin network vertices from/to a ‘no-

space’ vacuum, where no geometrical nor topological structure is present. It is difficult, however,

to go beyond this intuitive picture and construct a proper Fock space of spin network vertices:

to do so, one has to face the issue of choosing a statistics for them, which is both a very difficult

and very exotic question that has never been considered in the LQG literature.

As far as the quantum dynamics of LQG is concerned, the main link lies in the structure of

the GFT Feynman amplitudes IG . These can indeed be written in terms of spin foam models

[9], which show up in LQG as a natural arena to encode the Hamiltonian evolution of spin-

networks as a sum over histories. A ‘spin foam’ (J , jf , ıe) is a higher dimensional analogue of

a spin-network (a ‘history’ of spin-network evolution): it is a system of branching surfaces J

taking the form of a 2-complex, with polygonal faces labeled by group representations jf and

edges labeled by intertwiners ıe. To each GFT Feynman diagram G corresponds a 2-complex

J : vertices and edges of G corresponds to vertices and edges of J and the loops of strands

on G corresponds to the 2d faces of J . One can show that the GFT amplitudes (in a specific

representation) takes the generic form of ‘spin foam amplitudes’:

IG =
∑

jf ,ıe

∏

f

Af (jf )
∏

e

Ae(jf , ıe)
∏

v

Av(jf , ıe) (3)

characterized by a choice of local amplitudes Af , Ae and Av assigned to the faces, edges and

vertices of the 2-complex J defined by G. For example, the Feynman amplitudes of the Boulatov

model (2) give the Ponzano-Regge model for 3d quantum gravity. This duality between GFT

and spin foam amplitudes is general: the amplitudes of any spin foam model can be obtained

as the Feynman amplitude of a GFT [12].

In a covariant, sum-over-histories formulation of loop quantum gravity, both the

combinatorial and algebraic data that specify a quantum state of geometry are randomized

with a quantum probability amplitude in order to define the full quantum theory. GFTs thus

provide a definition of this quantum dynamics, in the form of a quantum field theory expansion in

possible interaction processes for the same building blocks of quantum geometry, which includes

a sum over all topologies.

The main object of interest for the LQG dynamics is the physical inner product between

states, projecting onto the kernel of the Hamiltonian constraint. Indications of where this

object should be found in the GFT formalism stem from the interpretation of GFT as a second

quantized formalism for spin network vertices. First, one would expect that some form of

Hamiltonian constraint acting on spin network vertices can already be identified at the level

of the GFT classical action and equations of motion. Second, as we mentioned, the dynamics



encoded into a single evolution history of a spin network state can be found in all its details in

the form of a GFT Feynman amplitude. Obviously, from the field theory perspective, this is but

a tiny corner of the true quantum dynamics, which has to be looked for in the Schwinger-Dyson

equations (SDE) for the n-point functions of the GFT model [13, 2]. In other words, one would

expect that the SDE for polynomial field correlations, that is spin network functionals, would

admit (at least in a regime suppressing topology change) an interpretation and a transcription

as Hamiltonian and diffeomorphism constraints of a quantum gravity theory, and thus provide

the definition of the physical inner product. This is indeed what happens, in the appropriate

limit, in the simple case of matrix models. In particular, this should be true in the continuum

limit of the GFT model, which is necessarily a non-perturbative domain. The same continuum

dynamics can be also looked for at the level of effective actions in this continuum limit, at the

level of symmetries satisfied by the model and, if a phase transition is part of the picture, in the

nature of the critical exponents for the scaling of interesting observables.

(iii) Why is the GFT formalism useful to LQG?

This way of defining the quantum dynamics is advantageous, from a purely LQG perspective, for

a variety of reasons. The main one is that a field theory framework is the most convenient one

for dealing with the infinite number of degrees of freedom which should ultimately be present

in the full continuum theory: a generic continuum geometry will in fact be captured by a

highly complicated (superposition of) spin network state(s), that is, in GFT language, a hugely

populated many-particle state. Furthermore, contrary to direct attempts at the definition of the

continuum gravitational dynamics from the canonical quantum gravity perspective, the GFT

formalism offers a compact, but in principle complete definition of the theory: it is given by the

path integral of the GFT model. The difficulty is of course to go beyond the formal definition,

prove its well-posedness, and extract interesting physics from it.

The GFT definition also opens the door to the application of more or less standard quantum

and statistical field theory tools (and ideas) to the study of the same dynamics, a very powerful

machinery indeed. Last, it permits to LQG structures and results to force their way out of the

“canonical quantization of continuum gravity cage ”, which is not only technically extremely

challenging, but also suspicious for a variety of reasons. Several arguments indeed (very different

in nature, each not conclusive, and still each very reasonable) can be put forward suggesting

that general relativity (GR) is but an effective field theory, and that it should not be quantized

as such, but only emerge in some corner of a fundamental theory defined in altogether different

terms. GFTs allow in principle to test and, if realized, to describe in detail this scenario.

(iv) How to define the right quantum dynamics of geometry as a GFT?

Given the ingredients entering the very definition of a GFT model, the most natural way of

proceeding to its construction relies mainly on quantum simplicial geometry. It amounts to

answering three questions:

a) what is a quantum geometric (d-1)-simplex?

b) what is a quantum geometric d-simplex, or, equivalently, how to glue d+1 (d-1)-simplices to

form a d-simplex?

c) how does the geometric information of one d-simplex propagate to a neighboring one?



The answer to a) dictates the nature and properties of the GFT field and its variables. The

answer to b) indicates what interaction kernel one should use to define the classical action of

the corresponding GFT. The answer to c) gives the form of the kinetic term of the action, that

is, the propagator of the field theory. Having all the ingredients at hand, one can write down

the GFT action, and thus the full model, in perturbative expansion.

A first source of inspiration for answering these questions comes from ideas of geometric

quantization, also at the roots of spin foam models [14]. Let us see this in the case of the

Boulatov model (2): upon Peter-Weyl expansion into irreducible SU(2) representations labelled

by ji∈
1
2N, the gauge invariant field is expressed in terms of three valent-invariant tensors

ıj1,j2,j3 ∈ Inv [Hj1 ⊗Hj2 ⊗Hj3 ]

In this picture, the Boulatov field represents a quantum triangle with fixed lengths: each

Hji represents the Hilbert space of states of a quantized vector of length ji, upon geometric

quantization that promotes the classical edge vector ~xi into the SU(2) generators X̂i; the classical

closure condition ~x1 + ~x2 + ~x3 = 0 for a triangle then projects into the subspace of invariant

tensors. Geometric quantization here also gives us the glueing rules for triangles as traces of

tensors. In such a representation of group field theory, the Feynman amplitudes take the form

of spin foam models. The challenge has been to export these ideas to four dimensions for the

construction of realistic quantum gravity models.

An elegant, complementary approach [15], which has the advantage of making the geometry

content of GFT more manifest, has recently been proved fruitful [16]. In this approach, the field

variables are data encoding classical simplicial geometry (edge vectors in 3d, area bivectors in

4d...), and their ’quantization’ results in a non-commutative star-product on the space of fields.

This non-commutative structure rests on the phase space structure of the discrete classical

theories these GFT models are set to quantize, usually given by the cotangent bundle of a group

manifold, with configuration space being a Lie group and the dual space being the corresponding

Lie algebra; it thus encodes the classical non-commutativity of the ‘momentum’ space of the

classical theory. In the case of the model (2), upon so-called group Fourier transform [17]

ϕ̂(x1, · · · x3) :=

∫
[dgi]

3 ϕ(g1, · · · g3) e
iTrx1g1 · · · eiTr x3g3 (4)

the model is expressed in terms of fields on copies of su(2) ∼ R
3 endowed with a non-commutative

star-product (dual to group convolution). Gauge invariance translates into a closure condition

x1 + x2 + x3 = 0 for the variables, thus naturally interpreted as the edge vectors of a (non-

commutative) triangle. Glueing rules for the triangles are then simply dictated by the star

product, in a way that identifies the edge vectors of the common edges by means of non-

commutative ⋆-delta functions. This result in the following expression for the action (2):

S[ϕ̂] =
1

2

∫
[d3xi]

3 ϕ̂123 ⋆ ϕ̂321 −
λ

4!

∫
[d3xi]

6 ϕ̂123 ⋆ ϕ̂345 ⋆ ϕ̂526 ⋆ ϕ̂641 (5)

where the star-product relates pairwise the variables xi with the same index i. In such a

representation of group field theory, the Feynman amplitudes take the form of simplicial gravity

path integrals. Remarkably, this approach easily extends to 4d gravity models.

(v) What are the symmetries of a GFT model and what are their consequences?



We start entering a less explored territory, despite the great importance of the issue. Symmetries

are in fact crucial, in a field theory context, to constrain model building and understanding the

true nature of the models, to define appropriate observables, to identify universality classes of

critical behaviour, to distinguish different phases of the system, and so on.

Up to now, only a few symmetries of GFT models for topological and, even less, gravity 4d

models are understood and under some control [10, 18, 19, 20, 21]. The GFT implementation

of the symmetry which becomes, at the level of the GFT Feynman amplitudes, the local gauge

invariance of simplicial path integrals is well-understood. Recently, also the GFT symmetry

corresponding to 3d simplicial diffeos (after gauge invariance is imposed) and to translation

invariance in BF models has been uncovered [20]. Interestingly, all these transformations, which

are local symmetries in the simplicial path integral, are global transformations of the GFT field,

from a field-theoretic point of view. Moreover, diffeos/translations are implemented as quantum

group symmetries. These are clearly at least partially broken in 4d gravity models, but the

details of this breaking have not been elucidated yet.

Combinatorial symmetries with respect to permutations of the arguments of the GFT field

have also been considered, but their implications beyond those on the structure of the Feynman

diagrams have not been explored. A more careful study of GFT symmetries and of their

consequences in GFT models, the 4d gravity ones in particular, is certainly needed. One class

of transformations that would be interesting to identify is the GFT and tensor models analogue

of the unitary matrix transformations that allow the re-writing of matrix models in terms of

matrix eigenvalues (the true degrees of freedom). This re-writing is crucial for many of the key

results in matrix models and one could expect a similar role in tensor models and GFTs.

(vi) Can one control the sum over diagrams and topologies?

The perturbative sum is in fact pretty wild, including both simplicial manifolds of arbitrary

topology and pseudo-manifolds [22]. A number of works have been devoted to a better

understanding of the properties of the generated complexes. An important development was

the definition of a GFT analogue of the large-N expansion of matrix models, dominated by a

particular class of triangulations of the sphere, for simple tensor models and topological GFTs in

any dimension [23]. The GFT analogue of the size N of the tensors is a cut-off in the momenta

(group representations). This expansion is yet to be understood in its physical significance and

in its subdominant terms, but it opens the way for several applications, both in quantum gravity

and statistical physics. Mathematically, it is complemented by a variety of results on the scaling

behaviour with the cut-off of the amplitudes of topological BF models (and some more limited

results on 4d gravity models), including rigorous power counting results [24]. For some models,

it was also possible to prove the Borel summability of the whole perturbative series [26].

(vii) Is the GFT perturbative expansion physically useful?

From the GFT point of view, the discrete data appearing in the GFT action and amplitudes

are physical, in the sense that they correspond to true degrees of freedom of the theory, and not

mere discretization artifacts. However, they are obviously very different from the variables we

are used to adopt for describing continuum spacetime physics. From simplicial gravity, we know

that these data correspond to (piecewise-flat) singular continuum geometries, which in turn can



be used to reconstruct smooth geometries in the limit in which large numbers of the same data

are considered (at least at the classical level). This points to the non-perturbative sector of

the GFT formalism as the locus of continuum geometric physics (as indeed shown explicitly

in the simple case of matrix models). However, being physical, even the data associated to

finite (sums of) simplicial complexes (e.g. those obtained truncating the GFT perturbative

sum to finite order) could in principle be used to describe physical phenomena, in the same

way in which a finite number of particles could be used, in some limited circumstances, to

mimic the behaviour of a fluid. What is hard, however, is to pinpoint what these circumstances

are, exactly. In general, being simplicial gravity path integrals, one would say that the Feynman

amplitudes of GFTs describe correctly gravitational phenomena to the extent in which piecewise-

flat Regge geometries can be used to approximate them. This means we could take advantage

of the expertise developed, in the use of such approximations, in numerical relativity. However,

one could expect that the perturbative GFT expansion is more and more physically relevant,

and convenient as a mathematical language, the closer we are, physically, to the spacetime

configuration represented by the GFT perturbative vacuum, which is unfortunately a very

degenerate configuration in which no geometry and no space is actually present.

(viii) Why does one want to have a renormalizable GFT? is it even possible?

Being a field theory, and aiming at a fundamental description of space and time down to the

Planck scale, a GFT model should be renormalizable. Non-renormalizability would instead

implies that the GFT model considered can at best be an effective description of a more

fundamental theory. The renormalization group flow of a given GFT will tell us what type

of interaction (thus, which dynamics) is relevant at various scales.

The question becomes then whether one can hope to obtain such a renormalizable GFT [27].

The main source of doubt probably comes from the non-renormalizability of gravity around

Minkowski spacetime. However GFTs are background independent formulations of gravity

(hopefully), not limited to fluctuations of the metric around a given continuum spacetime

geometry, and their perturbative expansion is formulated around a very different vacuum, one

that corresponds to no-space at all. Being formulated in terms of fundamental structures that

are either non-geometric in nature or anyway only associated to discrete geometries, it is not

obvious what effective continuum degrees of freedom it captures. While this is obviously a

difficulty in relating GFTs to continuum physics, it also warns us against the direct application

of conventional wisdom about continuum perturbative quantum gravity.

Studies of tensor models and GFT renormalization are just beginning [25], but already one

example of a fully renormalizable non-trivial tensor model in 4 dimensions, though much simpler

than full-blown GFTs for 4d gravity, has been recently exhibited [28].

(ix) Where should one look for continuum gravity?

The dynamics of smooth geometries should emerge as an effective dynamics for many degrees of

freedom, i..e from large boundary graph-based states and the re-summation of infinite Feynman

diagrams. In other words, continuum gravitational physics resides in the non-perturbative sector

of the current definition of GFTs. This means looking for different vacua of the fundamental

GFT and for the dynamics around them, possibly accompanied by ‘large-scale’ and semi-classical

approximations. Notice, however, that not only the semi-classical limit is a distinct limit from



the continuum one (the latter being naturally a limit of increasing number of degrees of freedom,

regardless of their quantum or classical nature), but the appropriate continuum limit could even

emerge because of the quantum properties of the fundamental degrees of freedom, which should

not be washed out beforehand. The example that comes to mind is that of quantum liquids.

Obviously, this is terra incognita, at present, so it is hard to do more than speculations and

some educated guesses.

If more and more interacting degrees of freedom are to be taken into account on the way

to the continuum limit, and if the theory has to be trusted over a wide range of scales (as a

fundamental theory of quantum gravity should be), a phase transition should occur. Physically,

the occurrence of such a phase transition switching from microscopic excitations to collective

ones, would correspond to a ‘geometrogenesis’ [29], the true birth of continuum spacetime and

geometry from a fundamental non-geometric phase. This scenario has been proposed repeatedly

in the GFT context [30, 31, 27] and outside it [32]. We are gaining experience of phase transitions

following from the resummation of the perturbative series in the large-N limit, in simple [33]

and less simple [34] tensor models. But more work is needed to establish such scenario in more

involved GFT models, and to understand its physical significance.

(x) Can we do physics with GFTs?

In light of the above scenario, the answer is unfortunately ‘not yet’, given the current status of our

understanding of the subject. The task is to improve our control over the non-perturbative sector

of GFT and our tools for studying phase transitions in GFTs. In the meantime, the exploration

of approximation methods for GFT has started, to study [35, 36, 37, 38] the effective dynamics for

fluctuations around non-trivial GFT field configurations by expanding the GFT action around

them, interpreted as non-trivial quantum spacetime backgrounds. The results (including the

derivation of effective geometrodynamic equations, effective Hamiltonian constraint operators,

emergent non-commutative matter field theories) are very interesting, but there is clearly still

a long way to go. In parallel, the construction of simplified GFT-like models has also started,

in particular models with possible cosmological interpretation and application [39]. The idea is

that such simplified models could either be derived from or at least guide the mean field theory

treatment of fundamental GFT models. Again, this is just a beginning.

3. Conclusions

We have answered, to the best of our current understanding of the subject, some questions

about the GFT approach to quantum gravity, its relation with LQG and other approaches, and

its present status. In the process, we have mentioned many of the important results obtained

recently in this context, and outlined some direction for future work. We hope to have well

represented the fast growth of this area of research, and convinced the reader of its promise.

At the same time, we hope it stands clear that much more work is needed to address many of

these questions fully, and in particular those whose answer will really establish GFTs as a solid

candidate formalism for quantum gravity.
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