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Abstract

The structure of tree–level open and closed superstring amplitudes is analyzed. For the

open superstring amplitude we find a striking and elegant form, which allows to disentangle

its α′–expansion into several contributions accounting for different classes of multiple zeta

values. This form is bolstered by the decomposition of motivic multiple zeta values, i.e. the

latter encapsulate the α′–expansion of the superstring amplitude. Moreover, a morphism

induced by the coproduct maps the α′–expansion onto a non–commutative Hopf algebra.

This map represents a generalization of the symbol of a transcendental function. In terms

of elements of this Hopf algebra the α′–expansion assumes a very simple and symmetric

form, which carries all the relevant information. Equipped with these results we can also

cast the closed superstring amplitude into a very elegant form.
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1. Introduction

One important question in quantum field theory is finding a simple principle to easily

compute physical quantities such as Feynman integrals describing higher–order quantum

corrections. Analytic results for Feynman integrals are encoded by transcendental functions

such as multiple polylogarithms or elliptic functions [1]. These functions, which depend

on the kinematic invariants, have a rich algebraic structure and obey a variety of different

classes of relations among each other. Although these equations may allow to obtain a

short and simple answer in practice it is not straightforward how to concretely apply and

disentangle these relations to arrive at this simple answer. Hence, a guiding principle to

get a grip on these relations is important.

A recent step towards an implicit application of these relations, which also leads to

quite remarkable simplifications [2], is the concept of the symbol of a transcendental func-

tion, which maps the combinatorics of relations among different multiple polylogarithms

to the combinatorics of a tensor algebra [3]. All the functional identities between the poly-

logarithms are mapped to simple algebraic relations in the tensor algebra over the group

of rational functions. A generalization of the symbol approach is the coproduct structure

of multiple polylogarithms [4,5]. The advantage of the coproduct structure is, that it also

keeps track of multiple zeta values (MZVs) in contrast to the symbol S, for which we

have S(π), S(ζ) = 0. Recently, in Ref. [6] the coproduct structure has been applied for a

concrete physical amplitude.

The properties of scattering amplitudes in both gauge and gravity theories suggest a

deeper understanding from string theory, cf. Ref. [7] for a recent review. Many field theory

objects and relations such as Bern–Carrasco–Johansson (BCJ) [8] or Kawai–Lewellen–Tye

(KLT) [9] relations can be easily derived from and understood in string theory by tracing

these identities back to the monodromy properties of the string world–sheet [10,11]. In this

context we also like to mention the concept of transcendentality of Feynman integrals [12],

which has a natural explanation from superstring amplitudes given by generalized Euler

integrals [13]. Moreover, the concept of symbols and coproduct structure for Feynman

integrals might have a natural appearance in string theory. In fact, in this work we shall

demonstrate, that the aforementioned coproduct structure allows to cast the α′–expansion

of the tree–level open and closed superstring amplitude into a short and symmetric form.

Generically, the string amplitudes are given by integrals over vertex operator positions

on the Riemann surface describing the interacting string world–sheet. At higher loops there

is also an integral over the moduli space of this manifold. At tree–level such integrals over

positions boil down to generalized Euler integrals [14]. Expanding the latter w.r.t. to

powers in the string tension α′ yields higher–order string corrections to Yang–Mills (YM)

theory. Their expansion coefficients are given by MZVs multiplying some polynomials in
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the kinematic invariants: at each order in α′ only a set of MZVs of a fixed transcendentality

degree (transcendentality level [12]) appears. In practice extracting these orders from the

integrals [14,15], which boils down to computing generalized Euler–Zagier sums, is both

cumbersome and provides quite complicated expressions: the appearance of various MZVs

of different depth seems to lack any sorted structure. Furthermore, there is no selection

principle to choose the right basis of MZVs in the α′–expansion. Just as computing ampli-

tudes in field theory a lot of their simplicity and symmetry structure is lost by using not

the most appropriate approach. In other words, though the final result may have a simple

structure, the actual computation might not be able to reproduce this simplicity and yield

a difficult answer.

In fact, by passing from the MZVs to their motivic versions [4,5] and then mapping

the latter to elements of a Hopf algebra endows the superstring amplitude with its motivic

structure. More precisely, the isomorphism φ, which is induced by the coproduct, maps

the α′–expansion of the open superstring amplitude A into the very short and intriguing

form in terms of elements fi of a non–commutative Hopf algebra:

A
φ

−→

(
∞∑

k=1

fk
2 P2k

) 



∞∑

p=0

∑

i1,...,ip

∈2N+−1

fi1fi2 . . . fip Mip . . .Mi2Mi1





A . (1.1)

In Eq. (1.1) the vector A encompasses a basis of YM subamplitudes, the matrices P2k

and M2n+1 encode polynomials of degree 2k and 2n + 1, respectively in α′ and the kine-

matic invariants. As the vector A the string amplitude A represents a vector of the same

dimension, cf. section 3 for further notational details. All the relevant information of the

α′–expansion of the open superstring amplitude is encapsulated in (1.1) without further

specifying the latter explicitly in terms of MZVs. This way all relations between MZVs

are automatically built in as simple algebraic relations following from the coalgebra struc-

ture. Furthermore, the result is independent on any particular selection of a basis of

MZVs. Finally, in contrast to the symbol the map φ, which is invertible, does not lose any

information on the amplitude.

The organization of the present work is as follows. In section 2 we review those aspects

of MZVs, which will be needed in the sequel. In section 3 we present our findings for the

α′–expansion of the N–point open superstring amplitude. After some short exhibition on

the work [5] of F. Brown on motivic MZVs in section 4 we compute the decompositions of

motivic MZVs from weight 11 until weight 16 and compare the result with the structure

of the open superstring amplitude. Equipped with these results in section 5 we investigate

the motivic structure of the open superstring amplitude and derive (1.1). In section 6 we

use our open superstring results to also cast the closed string amplitude into a compact

form. In Appendix A we present some more results on the decomposition of motivic MZVs.
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2. Aspects of multiple zeta values

One prime object in both quantum field theory and string theory are multiple zeta

values (MZVs):

ζn1,...,nr
:= ζ(n1, . . . , nr) =

∑

0<k1<...<kr

r∏

l=1

k−nl

l , nl ∈ N+ , nr ≥ 2 . (2.1)

In this section we review some of their aspects. They can be written as special cases [16]

ζn1,...,nr
= (−1)r G(0, . . . , 0︸ ︷︷ ︸

nr−1

, 1 . . . , 0, . . . , 0︸ ︷︷ ︸
n1−1

, 1; 1) (2.2)

of multiple polylogarithms [16,17]

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , (2.3)

with G(z) = 1 and ai, z ∈ C. In (2.1) the sum w =
∑r

l=1 nl is called the transcendentality

degree or weight of (2.1) and r its depth. The integral representation (2.2) is useful to

establish various properties and relations of (2.1). The set of integral linear combinations

of MZVs (2.1) is a ring, since the product of any two values can be expressed by a (positive)

integer linear combination of the other MZVs [18], e.g.

ζm ζn = ζm,n + ζn,m + ζm+n . (2.4)

This relation is known as quasi–shuffle or stuffle relation. There are many relations over Q

among MZVs, e.g. ζ1,4 = 2ζ5−ζ2ζ3. We define the (commutative)Q–algebra Z spanned by

all MZVs over Q. The latter is the (conjecturally direct) sum over the Q–vector spaces ZN

spanned by the set of MZVs (2.1) of total weight w = N , with nr ≥ 2, i.e. Z =
⊕

k≥0 Zk.

For a given weight w ∈ N the dimension dimQ(ZN ) of the space ZN is conjecturally given

by dimQ(ZN ) = dN , with dN = dN−2 + dN−3, N ≥ 3 and d0 = 1, d1 = 0, d2 = 1

[18]. Starting at weight w = 8 MZVs of depth greater than one r > 1 appear in the

basis. By applying stuffle, shuffle, doubling, generalized doubling relations and duality

it is possible to reduce the MZVs of a given weight to a minimal set [19]. For Dw,r

being the number of independent MZVs at weight w > 2 and depth r, which cannot

be reduced to primitive MZVs of smaller depth and their products, it is believed, that

D8,2 = 1, D10,2 = 1, D11,3 = 1, D12,2 = 1 and D12,4 = 1 [20]. For Z = Z>0

Z>0Z>0
the space

of irreducible MZVs we have: dim(Zw) ≡
∑

r Dw,r = 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5 for

w = 3, . . . , 16, respectively [20,19].
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The selection of a basis of MZVs can be performed by following some principles. For

instance a minimal depth representation may be preferable. In addition, one may write as

many elements of the basis as possible with positive odd indices nl only. However, it is not

possible to achieve this for the whole basis, i.e. a number of basis elements needs at least

two even entries [19]. Up to weight w = 16, one can choose the following basis elements,

displayed in the following three tables, cf. Tables 1–3.

w 2 3 4 5 6 7 8 9 10 11 12

Zw ζ2 ζ3 ζ22 ζ5 ζ23 ζ7 ζ3,5 ζ9 ζ3,7 ζ3,3,5 ζ2 ζ33 ζ1,1,4,6 ζ2 ζ3,7

ζ2 ζ3 ζ32 ζ2 ζ5 ζ3 ζ5 ζ33 ζ3 ζ7 ζ3,5 ζ3 ζ2 ζ9 ζ3,9 ζ22 ζ3,5

ζ22 ζ3 ζ2 ζ23 ζ2 ζ7 ζ25 ζ11 ζ22 ζ7 ζ3 ζ9 ζ2 ζ25

ζ42 ζ22 ζ5 ζ2 ζ3,5 ζ23 ζ5 ζ32 ζ5 ζ5 ζ7 ζ2 ζ3 ζ7

ζ32 ζ3 ζ2 ζ3 ζ5 ζ42 ζ3 ζ43 ζ22 ζ3 ζ5

ζ22 ζ23 ζ32 ζ23

ζ52 ζ62

dw 1 1 1 2 2 3 4 5 7 9 12

Table 1: Basis elements for Zw, with 2 ≤ w ≤ 10.

w 13 14 15

Zw ζ3,3,7 ζ2 ζ3,3,5 ζ3,3,3,5 ζ2 ζ1,1,4,6 ζ1,1,3,4,6 ζ2 ζ3,3,7 ζ22 ζ3,3,5

ζ3,5,5 ζ2 ζ3 ζ3,5 ζ3,11 ζ2 ζ3,9 ζ3,3,9 ζ2 ζ3,5,5 ζ22 ζ3 ζ3,5

ζ13 ζ2 ζ11 ζ5,9 ζ2 ζ3 ζ9 ζ5,3,7 ζ2 ζ13 ζ22 ζ11

ζ3,7 ζ3 ζ2 ζ23 ζ5 ζ3,3,5 ζ3 ζ2 ζ5 ζ7 ζ15 ζ2 ζ3 ζ3,7 ζ22 ζ23 ζ5

ζ3,5 ζ5 ζ22 ζ33 ζ3,5 ζ23 ζ2 ζ43 ζ1,1,4,6 ζ3 ζ2 ζ5 ζ3,5 ζ32 ζ33

ζ23 ζ7 ζ22 ζ9 ζ3 ζ11 ζ22 ζ3,7 ζ3,9 ζ3 ζ2 ζ23 ζ7 ζ32 ζ9

ζ3 ζ25 ζ32 ζ7 ζ33 ζ5 ζ32 ζ3,5 ζ9 ζ23 ζ2 ζ3 ζ25 ζ42 ζ7

ζ42 ζ5 ζ5 ζ9 ζ22 ζ25 ζ3 ζ5 ζ7 ζ52 ζ5

ζ52 ζ3 ζ27 ζ22 ζ3 ζ7 ζ53 ζ62 ζ3

ζ32 ζ3 ζ5 ζ3,7 ζ5

ζ42 ζ23 ζ35

ζ72 ζ3,5 ζ7

dw 16 21 28

Table 2: Basis elements for Zw, with 13 ≤ w ≤ 15.
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w 16

Zw ζ1,1,6,8 ζ2 ζ3 ζ3,3,5 ζ2 ζ3,3,3,5 ζ22 ζ1,1,4,6

ζ3,3,3,7 ζ2 ζ23 ζ3,5 ζ2 ζ3,11 ζ22 ζ3,9

ζ3,3,5,5 ζ2 ζ3 ζ11 ζ2 ζ5,9 ζ22 ζ5 ζ7

ζ3,13 ζ2 ζ33 ζ5 ζ2 ζ5 ζ9 ζ32 ζ3,7

ζ5,11 ζ22 ζ43 ζ2 ζ27 ζ42 ζ3,5

ζ3 ζ3,3,7 ζ22 ζ3 ζ9 ζ32 ζ25

ζ3 ζ3,5,5 ζ32 ζ3 ζ7 ζ82

ζ3 ζ13 ζ42 ζ3 ζ5

ζ3,7 ζ23 ζ52 ζ23

ζ3,5 ζ3 ζ5

ζ33 ζ7

ζ23 ζ25

ζ7 ζ9

ζ23,5

ζ5 ζ11

ζ3,3,5 ζ5

dw 37

Table 3: Basis elements for Z16.

A slight generalization of (2.3) represents the integral Iγ over a product of closed

one–forms [16]

Iγ(a0; a1, . . . , an; an+1) =

∫

γ

dz

z − a1
. . .

dz

z − an
, (2.5)

with γ a path in M = C/{a1, . . . , an} with endpoints γ(0) = a0 ∈ M, γ(1) = an+1 ∈ M .

For the map

ρ(n1, . . . , nr) = 10n1−1 . . .10nr−1 , (2.6)

with nr ≥ 2 Kontsevich observed that:

ζn1,...,nr
= (−1)r Iγ(0; ρ(n1 . . . nr); 1) . (2.7)

This defines an element in the category MT (Z) of mixed Tate motives over Z. It is an

Abelian tensor category, whose simple objects are the Tate motives Q(n). The periods of

MT (Z) are Q–linear combinations of ζn1,...,nr
[21].

3. Open superstring amplitude

The string S–matrix, which describes string scattering processes involving on–shell

string states as external states, comprises a perturbative expansion in the string tension α′

6



and the string coupling constant gstring. From this expansion one may extract for a given

order in α′ and gstring the relevant interaction terms of the low–energy effective action.

Open superstring theory contains a massless vector identified as a gauge boson. Its

interactions are studied by gluon scattering amplitudes. Geometrically, at tree–level the

latter are described by a disk with (integrated) insertions of gluon vertex operators. Due

to the extended nature of strings the amplitudes generically represent non–trivial functions

of the string tension α′. In the effective field theory description this α′–dependence gives

rise to a series of infinitely many higher order gauge operators governed by positive integer

powers in α′. The classical YM term is reproduced in the zero–slope limit α′ → 0, while

its modification can be derived by studying the higher orders in α′ of the tree–level gluon

scattering amplitudes.

At string tree–level the complete open string N–point superstring amplitude has been

computed in [22,23]. The main result is written in a strikingly compact form1

A(1, . . . , N) =
∑

σ∈SN−3

AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N) F σ
(1,...,N)(α

′) , (3.1)

where AYM represent (N − 3)! color ordered Yang–Mills (YM) subamplitudes, F σ(α′) are

generalized Euler integrals encoding the full α′–dependence of the string amplitude and

iσ = σ(i). The labels (1, . . . , N) in F σ
(1,...,N) are related to the integration region of the

integrals: choosing an ordering of the vertex operator positions zi along the boundary of

the disk determines the color–ordering of the superstring subamplitude. The system of

(N − 3)! multiple hypergeometric functions F σ appearing in (3.1) are given as generalized

Euler integrals

F
(23...N−2)
(1,...,N) (sij) = (−1)N−3

∫

zi<zi+1

N−2∏

j=2

dzj

(
∏

i<l

|zil|
sil

) {
N−2∏

k=2

k−1∑

m=1

smk

zmk

}
,

= (−1)N−3

∫

zi<zi+1

N−2∏

j=2

dzj

(
∏

i<l

|zil|
sil

)

×








[N/2]∏

k=2

k−1∑

m=1

smk

zmk








N−2∏

k=[N/2]+1

N−1∑

n=k+1

skn
zkn







 , (3.2)

with permutations σ ∈ SN−3 acting on all indices within the curly brace. Above, [. . .]

denotes the Gauss bracket [x] = maxn∈Z,n≤x n, which picks out the nearest integer smaller

1 A very compact expression for D = 4 maximal helicity violating N–gluon amplitudes has

been derived in [13].
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than or equal to its argument. The α′–dependence of (3.2) is encoded in the kinematic

invariants sij = α′(ki + kj)
2 with the external gluon momenta ki satisfying the on-shell

condition k2i = 0. For further details we refer the reader to Refs. [22,23].

The result (3.1) is valid in any space–time dimension D, for any compactification

and any amount of supersymmetry. Furthermore, the expression (3.1) does not make

any reference to any kinematical or helicity choices. Hence, the same is true for our

results throughout this article. The integrals (3.2) share a very interesting mathematical

structure [14,23]. For a given N the functions (3.2) represent integrals on the moduli

space of Riemann spheres with N marked points M0,N [24,25]. These spaces have an

N–fold symmetry following from N–fold cyclic transformations on the disk, cf. [23] for

more details. The lowest terms of the α′–expansion of the functions F σ assume the form

[23]

F σ = 1 + α′2 pσ2 ζ(2) + α′3 pσ3 ζ(3) + . . . , σ = (23 . . .N − 2) ,

F σ = α′2 pσ2 ζ(2) + α′3 pσ3 ζ(3) + . . . , σ 6= (23 . . .N − 2) ,
(3.3)

with some polynomials pσn of degree n in the dimensionful kinematic invariants ŝij =

(ki + kj)
2 = sij/α

′ and ŝi...l = (ki + . . . + kl)
2 = si...l/α

′. Note that starting at N ≥ 7

subsets of F σ start at even higher order in α′, i.e. pσ2 , . . . , p
σ
ν = 0 for some ν ≥ 2. In

Refs. [24,25] it is proven, that at lowest order in α′ these integrals always lead to linear Q

combinations of MZVs of weight w ≤ N − 3.

In the following let us discuss the cases N = 4 and N = 5 in more detail before moving

to the general case afterwards.

3.1. N = 4

For N = 4 Eq. (3.1) becomes:

A(1, 2, 3, 4) = AYM (1, 2, 3, 4)
Γ(1− s) Γ(1− u)

Γ(1− s− u)
, (3.4)

with the two kinematic invariants s = α′(k1+k2)
2 and u = α′(k1+k4)

2. With the identities

∞∑

n=1

x2n+1

2n+ 1
ζ2n+1 =

1

2
ln

{
e−2γEx Γ(1− x)

Γ(1 + x)

}
,

π
s u

s+ u

sin[π(s+ u)]

sin(πs) sin(πu)
= exp

{
2

∞∑

n=1

ζ2n
2n

[ s2n + u2n − (s+ u)2n ]

}
,

we may bring (3.4) into the following form

A(1, 2, 3, 4) = P exp




∑

n≥1

ζ2n+1 M2n+1



 AYM (1, 2, 3, 4) , (3.5)
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with:

P = exp

{
∞∑

n=1

ζ2n
2n

[ s2n + u2n − (s+ u)2n ]

}
,

M2n+1 =
1

2n+ 1

[
s2n+1 + u2n+1 − (s+ u)2n+1

]
.

(3.6)

In (3.5) we observe a disentanglement of Riemann zeta functions of even and odd argu-

ments. Furthermore, no MZVs of depth greater than one r > 1 appear.

3.2. N = 5

For N = 5 we have a basis of two color ordered superstring amplitudes A(1, 2, 3, 4, 5)

and A(1, 3, 2, 4, 5). According to (3.1) they take the form:

A(1, 2, 3, 4, 5) = AYM (1, 2, 3, 4, 5) F1 +AYM (1, 3, 2, 4, 5) F2 ,

A(1, 3, 2, 4, 5) = AYM (1, 3, 2, 4, 5) F̃1 +AYM (1, 2, 3, 4, 5) F̃2 ,
(3.7)

with the functions (3.2)

F1 := F
(23)
(12345) = s12 s34

∫ 1

0

dx

∫ 1

0

dy xs45 ys12−1 (1− x)s34−1 (1− y)s23 (1− xy)s24 ,

F2 := F
(32)
(12345) = s13 s24

∫ 1

0

dx

∫ 1

0

dy xs45 ys12 (1− x)s34 (1− y)s23 (1− xy)s24−1, (3.8)

where si ≡ α′(ki+ ki+1)
2 subject to cyclic identification ki+N ≡ ki. Furthermore, we have

F̃1 = F1|2↔3 , F̃2 = F2|2↔3 . (3.9)

When investigating the α′–expansions of (3.7) one makes the following intriguing

observation2:

A = P Q : exp





∑

n≥1

ζ2n+1 M2n+1




 : A , (3.10)

with the vectors

A =

(
AYM (1, 2, 3, 4, 5)

AYM (1, 3, 2, 4, 5)

)
, A =

(
A(1, 2, 3, 4, 5)
A(1, 3, 2, 4, 5)

)
, (3.11)

and the matrices

M2n+1 =

(
F1 F2

F̃2 F̃1

)∣∣∣∣
ζ2n+1

, (3.12)

P =




∑
m≥0

p2m ζm2
∑
m≥0

q2m ζm2

∑
m≥0

q̃2m ζm2
∑
m≥0

p̃2m ζm2


 = 1 +

∑

n≥1

ζn2 P2n ,

2 We have tested this formula up to weight 16. Work beyond this order is in progress [26].
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where p̃2m = p2m|2↔3 , q̃2m = q2m|2↔3. Furthermore, we have the matrix:

Q = 1 +
∑

n≥8

Qn , (3.13)

with:

Q8 =
1

5
ζ3,5 [M5,M3] , Q9 = 0 ,

Q10 =

{
3

14
ζ25 +

1

14
ζ3,7

}
[M7,M3] ,

Q11 =

{
9 ζ2 ζ9 +

6

25
ζ22 ζ7 −

4

35
ζ32 ζ5 +

1

5
ζ3,3,5

}
[M3, [M5,M3]] ,

Q12 =

{
2

9
ζ5 ζ7 +

1

27
ζ3,9

}
[M9,M3]

+
48

691

{
18

35
ζ32 ζ23 +

1

5
ζ22 ζ3 ζ5 − 10 ζ2 ζ3 ζ7 −

7

2
ζ2 ζ25 −

3

5
ζ22 ζ3,5 − 3 ζ2 ζ3,7

−
1

12
ζ43 −

467

108
ζ5 ζ7 +

799

72
ζ3 ζ9 +

2665

648
ζ3,9 + ζ1,1,4,6

}
{ [M9,M3]− 3 [M7,M5] } ,

Q13 =

{
11

4
ζ2 ζ11 −

2

35
ζ22 ζ9 −

16

245
ζ32 ζ7 −

3

35
ζ3,5,5 +

1

14
ζ3,3,7

}
[M3, [M7,M3]]

+

{
11

2
ζ2 ζ11 +

2

5
ζ22 ζ9 +

1

5
ζ5 ζ3,5 +

1

25
ζ3,5,5

}
[M5, [M5,M3]] ,

Q14 =

{
4 ζ2 ζ5 ζ7 +

4

175
ζ32 ζ3,5 −

647287

11880
ζ27 −

12775

198
ζ5 ζ9 +

232

81
ζ5,9

+
2

3
ζ2 ζ3,9 −

12841

1188
ζ3,11 +

1

5
ζ3,3,3,5

}
[M3, [M3, [M5,M3]]]

+

{
−
235

396
ζ27 −

23

33
ζ5 ζ9 +

1

27
ζ5,9 −

23

198
ζ3,11

}
[M11,M3]

+

{
55

36
ζ27 +

5

3
ζ5 ζ9 +

5

18
ζ3,11 −

2

27
ζ5,9

}
[M9,M5] ,

Q15 =

{
1339

30
ζ2 ζ13 +

128

45
ζ22 ζ11 −

236

4725
ζ32 ζ9 −

184

2625
ζ24 ζ7 −

64

5775
ζ52 ζ5

−
2

45
ζ35 −

1

15
ζ7 ζ3,5 −

2

45
ζ5 ζ3,7 +

1

27
ζ3,3,9

}
[M3, [M9,M3]]

+

{
−
143

20
ζ2 ζ13 −

11

35
ζ22 ζ11 +

68

1225
ζ32 ζ9 +

11

70
ζ35 +

24

875
ζ42 ζ7 +

48

13475
ζ52 ζ5
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+
1

5
ζ7 ζ3,5 +

3

35
ζ5 ζ3,7 −

1

70
ζ5,3,7

}
[M5, [M7,M3]] +

2

15
ζ5,3,7 [M3, [M7,M5]]

+
48

7601

{
−8 ζ2 ζ3 ζ25 +

21

2
ζ2 ζ5 ζ3,5 −

14

5
ζ2 ζ3,5,5 + 2 ζ2 ζ3,3,7 − 26 ζ2 ζ23 ζ7

−
6417649

2880
ζ2 ζ13 − 6 ζ2 ζ3 ζ3,7 −

8495287

15120
ζ22 ζ11 −

23

10
ζ22 ζ23 ζ5 −

8

5
ζ22 ζ3 ζ3,5

+ 4 ζ22 ζ3,3,5 +
12

35
ζ32 ζ33 +

54263011

396900
ζ32 ζ9 +

57847

15750
ζ42 ζ7 −

1714624

121275
ζ52 ζ5

+
1451972

716625
ζ62 ζ3 +

1185701

30240
ζ35 −

74

3
ζ3 ζ5 ζ7 −

1

15
ζ53 +

6775

144
ζ23 ζ9 +

2188

945
ζ5 ζ3,7

−
12199

720
ζ7 ζ3,5 +

29

9
ζ3 ζ3,9 + ζ3 ζ1,1,4,6 +

17203

3360
ζ5,3,7 −

853

648
ζ3,3,9 + ζ1,1,3,4,6

}

×
{
[M3, [M9,M3]]− 3 [M3, [M7,M5]]

}
,

Q16 =
1

50
ζ23,5 ([M5,M3])

2 +

{
210

121
ζ9 ζ7 +

9

11
ζ11 ζ5 −

5

242
ζ5,11 +

3

22
ζ3,13

}
[M11,M5]

+

{
−
1275

1573
ζ9 ζ7 −

57

143
ζ11 ζ5 +

3

242
ζ5,11 −

19

286
ζ3,13

}
[M13,M3]

+

{
24

35
ζ7 ζ5 ζ22 +

6

245
ζ25 ζ32 +

2

245
ζ3,7 ζ32 +

4

35
ζ3,9 ζ22 +

967

56
ζ27 ζ2

+
363

14
ζ9 ζ5 ζ2 −

47

42
ζ5,9 ζ2 +

121

28
ζ3,11 ζ2 −

2272973

330330
ζ9 ζ7 −

601677

40040
ζ11 ζ5

+
23181

67760
ζ5,11 −

200559

80080
ζ3,13 −

3

35
ζ3,3,5,5 +

1

14
ζ3,3,3,7

}
[M3, [M3, [M7,M3]]]

+

{
−

8

25
ζ7 ζ5 ζ22 −

2

35
ζ25 ζ32 −

4

75
ζ3,9 ζ22 −

333

20
ζ27 ζ2

− 21 ζ9 ζ5 ζ2 + ζ5,9 ζ2 −
7

2
ζ3,11 ζ2 −

299373

7150
ζ9 ζ7 −

21033

1300
ζ11 ζ5

+
909

2200
ζ5,11 −

7011

2600
ζ3,13 +

1

5
ζ5 ζ3,3,5 +

1

25
ζ3,3,5,5

}
[M3, [M5, [M5,M3]]]

+
720

3617

{
−
21331

525
ζ5 ζ7 ζ22 −

284

245
ζ25 ζ32 +

108

875
ζ3,5 ζ42 −

62

245
ζ3,7 ζ32

−
8954

1575
ζ3,9 ζ22 −

78201

140
ζ27 ζ2 −

12443

14
ζ5 ζ9 ζ2 +

697

21
ζ5,9 ζ2 −

1991

14
ζ3,11 ζ2
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− 137 ζ11 ζ3 ζ2 −
11

7
ζ9 ζ3 ζ22 +

848

245
ζ7 ζ3 ζ32 +

48

35
ζ5 ζ3 ζ42 +

408

2695
ζ23 ζ52

−
4

7
ζ23 ζ25 −

1

3
ζ33 ζ7 +

4850713

6600
ζ7 ζ9 +

455534

525
ζ5 ζ11 +

8497

42
ζ3 ζ13 +

1

7
ζ23 ζ3,7

−
114307

7392
ζ5,11 +

2217053

16800
ζ3,13 −

2

5
ζ5 ζ3,3,5 −

6

7
ζ3 ζ3,5,5 +

5

7
ζ3,3,7 ζ3

+
542

175
ζ3,3,5,5 −

19

7
ζ3,3,3,7 + ζ1,1,6,8

} {
7

11
[M11,M5]−

2

11
[M13,M3]− [M9,M7]

+
6493

9240
[M3, [M3, [M7,M3]]]−

751

100
[M3, [M5, [M5,M3]]]

}
. (3.14)

Finally, in (3.10) the ordering colons : . . . : are defined such that matrices with larger

subscript multiply matrices with smaller subscript from the left,

: Mi Mj :=

{
Mi Mj , i ≥ j ,
Mj Mi , i < j .

(3.15)

The generalization to iterated matrix products : Mi1Mi2 . . .Mip : is straightforward. The

expression (3.10) allows to conveniently extract any order in α′ of the superstring amplitude

by simple matrix manipulations. E.g. at weight eight from (3.10) we obtain the expressions

A |ζ3ζ5 = M5 M3 A ,

A |ζ3,5 =
1

5
[M5,M3] A ,

A |ζ2ζ2
3
=

1

2
P2 M3 M3 A ,

A |ζ4
2
= P8 A , (3.16)

while for weight ten we get:

A |ζ3ζ7 = M7 M3 A ,

A |ζ3,7 =
1

14
[M7,M3] A ,

A |ζ2
5
=

(
1

2
M5 M5 +

3

14
[M7,M3]

)
A ,

A |ζ2ζ3ζ5 = P2 M5 M3 A ,

A |ζ2ζ3,5 =
1

5
P2 [M5,M3] A ,

A |ζ2
2ζ

2
3
=

1

2
P4 M3 M3 A ,

A |ζ5
2
= P10 A . (3.17)
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Above P2n means taking the coefficient ζ(2)n of the matrix P , i.e.

P2n = P |ζn
2

. (3.18)

The terms M5M3A in (3.16) and M7M3A, P2M5M3 in (3.17) use the ordering prescription

(3.15) introduced in (3.10) for the matrices Mi stemming from the exponential.

3.3. General N

For generic N in (3.1) we have a basis of (N−3)! color ordered superstring amplitudes

A(1, 2σ, . . . , (N − 2)σ, N − 1, N). Putting these (N − 3)! amplitudes into an (N − 3)!–

dimensional vectorA according to (3.1) the latter can be expressed by an (N−3)!×(N−3)!–

matrix F acting on the vector A encoding an (N − 3)!–dimensional YM–basis as:

A = F A . (3.19)

The matrix F encodes the full α′–dependence of the superstring amplitude (3.19). We

conjecture, that the α′–dependence of the latter assumes the same form (3.10) as for the

case N = 5

A = P Q : exp




∑

n≥1

ζ2n+1 M2n+1



 : A , (3.20)

with the matrices P,M and Q now being (N − 3)!× (N − 3)! matrices, following from

M2n+1 = F |ζ2n+1
, (3.21)

P = 1 +
∑

n≥1

ζn2 P2n := 1 +
∑

n≥1

ζn2 F |ζn
2

,

with P2n = P |ζn
2
and Q given in (3.13). The polynomial structure of the matrices M,P

and Q is further exhibited in [26].

What makes the form (3.20) appealing is the disentanglement of the full α′–expansion

into several contributions accounting for different classes of MZVs: P comprising powers

of ζ2, M accounting for ζ2n+1 and powers thereof and Q encapsulating the MZVs ζn1,...,nr

of depth r > 1 greater than one. As we shall see in section 4 the specific form (3.20) is

bolstered by the decomposition of motivic MZVs. It is interesting to note, that in (3.13)

MZVs of depth greater than one r > 1 appear with commutators as:

ζn1,...,nr
[Mn2

, [Mn3
, . . . , [Mnr

,Mn1
]] . . .] . (3.22)

This property turns out to have a crucial impact on the closed string amplitude, cf. sec-

tion 6.
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At weight 16 in (3.13) the term 1
50 ζ23,5 ([M5,M3])

2 gives rise to speculate, that all

terms in Q follow from expanding an exponential:

Q = exp

{
1

5
ζ3,5 [M5,M3] +

(
3

14
ζ25 +

1

14
ζ3,7

)
[M7,M3] + . . .

}
. (3.23)

In fact, at weight 18 we find the following terms3

A|ζ3,5ζ3,7 =
1

5

1

14
[M7,M3] [M5,M3] +

208926

894845
[M3, [M3, [M7,M5]]]

−
69642

894845
[M3, [M3, [M9,M3]]] , (3.24)

A|ζ3,5ζ2
5
=

1

2

1

5
[M5,M3]M

2
5 +

1

5

3

14
[M7,M3] [M5,M3] +

1

5
[M5, [M5,M3]]M5

+
1800

43867
[M11,M7]−

22500

570271
[M13,M5] +

7200

570271
[M15,M3]

−
7044111243797

6415252209080
[M3, [M3, [M7,M5]]] +

2792059

5702710
[M5, [M5, [M5,M3]]]

−
2432943

7983794
[M5, [M3, [M7,M3]]]−

2818807834641

6415252209080
[M3, [M3, [M9,M3]]] ,

in agreement with the Ansatz (3.23).

Obviously, for N = 4 in (3.20) we have Q = 1 as all commutators vanish for the

scalars M2n+1 given in (3.6). With this information (3.20) boils down to (3.5). So far, for

N = 6 we have verified (3.20) up to α′8. Further tests are in progress [26].

3.4. Minimal depth representation with Euler sums

The choice of basis elements may follow some minimal intrinsic representation guided

by the minimal depth representation and the choice of positive odd indices only. For MZVs

this is achieved by also allowing for Euler sums as basis elements:

ζ(ǫ1n1, . . . , ǫrnr) =
∑

0<k1<...<kr

r∏

l=1

ǫkl

l k−nl

l , nl ∈ N+ , nr ≥ 2 . (3.25)

with signs ǫl = ±1. For Mw,r being the number of basis elements for MZVs when expressed

in terms of Euler sums in a minimal depth representation at weight w > 2 and depth r

we have M12,2 = 2,M12,4 = 0, M15,3 = 3, M15,5 = 0,M16,2 = 3 and M16,4 = 2 [20]. At

3 Note the commutator relations: [M7,M3][M5,M3] = [M5,M3][M7,M3] and [M3, [M5, [M7,M3] =

[M5, [M3, [M7,M3].
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weight 12 one may get rid of the basis element ζ1,1,4,6 with even entries at the cost of the

introducing the Euler sum ζ5,7 := ζ(−5,−7) [19]:

ζ1,1,4,6 = −
5045

648
ζ3,9 + 3 ζ2 ζ3,7 +

3

5
ζ22 ζ3,5 −

799

72
ζ3 ζ9 −

5747

432
ζ5 ζ7 + 10 ζ2 ζ3 ζ7

+
7

2
ζ2 ζ25 −

1

5
ζ22 ζ3 ζ5 +

1

12
ζ43 −

18

35
ζ32 ζ23 +

694891

2837835
ζ62 −

64

27
ζ5,7 . (3.26)

Similarly, we may use the Euler sum ζ3,9 := ζ(−3,−9) to arrive at [27]:

ζ1,1,4,6 =
371

144
ζ3,9 + 3 ζ2 ζ3,7 +

3

5
ζ22 ζ3,5 −

3131

144
ζ3 ζ9 +

107

24
ζ5 ζ7 + 10 ζ2 ζ3 ζ7

+
7

2
ζ2 ζ25 −

1

5
ζ22 ζ3 ζ5 +

1

12
ζ43 −

18

35
ζ32 ζ23 −

117713

2627625
ζ62 +

64

9
ζ3,9 . (3.27)

In [19] the object A5,7

A5,7 = ζ5,7 + ζ5,7 (3.28)

has been argued to play a special status within the Euler sums, since it is quite similar to

the MZVs. With this (3.26) can be written:

ζ1,1,4,6 = −
7967

1944
ζ3,9 + 3 ζ2 ζ3,7 +

3

5
ζ22 ζ3,5 −

799

72
ζ3 ζ9 +

11431

1296
ζ5 ζ7 + 10 ζ2 ζ3 ζ7

+
7

2
ζ2 ζ25 −

1

5
ζ22 ζ3 ζ5 +

1

12
ζ43 −

18

35
ζ32 ζ23 −

5607853

6081075
ζ62 −

64

27
A5,7 . (3.29)

Clearly, the above three equations (3.26), (3.27) and (3.29) are related by the identities:

ζ5,7 =
14

9
ζ3,9 +

28

3
ζ5 ζ7 −

776224

1576575
ζ62 ,

ζ3,9 = −
1

3
ζ5,7 −

13429

9216
ζ3,9 +

1533

1024
ζ3 ζ9 −

7673

3072
ζ5 ζ7 +

10275263

252252000
ζ62 .

(3.30)

We can write the weight 12 part Q12 of (3.13) in terms of Euler sums in a minimal depth

representation and positive odd indices only in the following three ways corresponding to

(3.26), (3.27) and (3.29), respectively;

Q12 =

{
2

9
ζ5 ζ7 +

1

27
ζ3,9

}
[M9,M3] +

48

691
{ [M9,M3]− 3 [M7,M5] }

×

{
694891

2837835
ζ62 −

7615

432
ζ5 ζ7 −

595

162
ζ3,9 −

64

27
ζ5,7

}

=

{
2

9
ζ5 ζ7 +

1

27
ζ3,9

}
[M9,M3] +

48

691
{ [M9,M3]− 3 [M7,M5] }

×

{
−

117713

2627625
ζ62 +

29

216
ζ5 ζ7 −

511

48
ζ3 ζ9 +

8669

1296
ζ3,9 +

64

9
ζ3,9

}
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=

{
2

9
ζ5 ζ7 +

1

27
ζ3,9

}
[M9,M3] +

48

691
{ [M9,M3]− 3 [M7,M5] }

×

{
−
5607853

6081075
ζ62 +

5827

1296
ζ5 ζ7 +

7

486
ζ3,9 −

64

27
A5,7

}
. (3.31)

At weight 15 in (3.13) one may get rid of the basis element ζ1,1,3,4,6 with even entries at

the cost of the introducing the Euler sum ζ3,5,7 := ζ(−3,−5,−7) [19]:

ζ1,1,3,4,6 =
16663

11664
ζ3,3,9 +

150481

68040
ζ5,3,7 −

20651486329

4082400
ζ15 +

1903

120
ζ7 ζ3,5 −

101437

38880
ζ5 ζ3,7

−
1520827

38880
ζ35 + 10 ζ3 ζ1,1,4,6 +

162823

3888
ζ3 ζ3,9 −

93619

1296
ζ3 ζ5 ζ7 +

3601

48
ζ23 ζ9

−
17

20
ζ53 +

14

5
ζ2 ζ3,5,5 − 2 ζ2 ζ3,3,7 +

31753363

12960
ζ2ζ13 −

21

2
ζ2 ζ5 ζ3,5

− 27 ζ2 ζ3 ζ3,7 −
61

2
ζ2 ζ3 ζ25 − 84 ζ2 ζ23 ζ7 − 4 ζ22 ζ3,3,5 +

979621

1701
ζ22 ζ11

− 5 ζ22 ζ3 ζ3,5 +
9

2
ζ22 ζ23 ζ5 −

490670609

3572100
ζ32 ζ9 +

186

35
ζ32 ζ33 −

1455253

283500
ζ42 ζ7

+
4049341

311850
ζ52 ζ5 +

12073102

1488375
ζ62 ζ3 +

1408

81
A3,5,7 . (3.32)

More precisely, with the relations (3.32) and (3.29) the combination ζ3ζ1,1,4,6 + ζ1,1,3,4,6

can be eliminated to cast the weight 15 part Q15 in terms of Euler sums in a minimal

depth representation and positive odd indices only:

Q15 =

{
1339

30
ζ2 ζ13 +

128

45
ζ22 ζ11 −

236

4725
ζ32 ζ9 −

184

2625
ζ24 ζ7 −

64

5775
ζ52 ζ5

−
2

45
ζ35 −

1

15
ζ7 ζ3,5 −

2

45
ζ5 ζ3,7 +

1

27
ζ3,3,9

}
[M3, [M9,M3]]

+

{
−
143

20
ζ2 ζ13 −

11

35
ζ22 ζ11 +

68

1225
ζ32 ζ9 +

11

70
ζ35 +

24

875
ζ42 ζ7 +

48

13475
ζ52 ζ5

+
1

5
ζ7 ζ3,5 +

3

35
ζ5 ζ3,7 −

1

70
ζ5,3,7

}
[M5, [M7,M3]] +

2

15
ζ5,3,7 [M3, [M7,M5]]

+
48

7601

{
1408

81
A3,5,7 −

704

27
A5,7 ζ3 −

20651486329

4082400
ζ15 +

1149577

5184
ζ2 ζ13

+
1912097

136080
ζ22 ζ11 −

230351

357210
ζ32 ζ9 −

414007

283500
ζ42 ζ7 −

45779

39690
ζ52 ζ5 −

24257

3869775
ζ62 ζ3

+
77

648
ζ3 ζ5 ζ7 +

77

3888
ζ3,9 ζ3 +

319

3402
ζ35 −

15983

54432
ζ3,7 ζ5 −

781

720
ζ3,5 ζ7

+
1995367

272160
ζ5,3,7 +

1309

11664
ζ3,3,9

} {
[M3, [M9,M3]]− 3 [M3, [M7,M5]]

}
. (3.33)
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4. Motivic multiple zeta values

In this section we want to compare our findings (3.20) with the beautiful work of F.

Brown on the decomposition of motivic multiple zeta values [5]. For this purpose after

reviewing some aspects of motivic MZVs we determine the decomposition of motivic MZVs

for the weights 11 until 16.

4.1. Motivic aspects of multiple zeta values

An important question is to explicitly describe the structure of the algebra Z, which

eventually allows to get a grip on all algebraic MZV identities over Q. For this purpose

the actual MZVs (2.1) are replaced by symbols (or motivic MZVs), which are elements of

a certain algebra.

In this section we review some aspects of motivic MZVs [5]. The task is to lift the

ordinary iterated integrals Iγ given in (2.5) to motivic versions Im such that the standard

relations are fulfilled. With an embedding σ : F →֒ C the iterated integrals Iγ can be

upgraded to a framed mixed Tate motive over F (motivic iterated integral)

Im(a0; a1, . . . , an; an+1) ∈ H(F ) , a0, . . . , an+1 ∈ F , (4.1)

with pσ(I
m(a0; a1, . . . , an; an+1)) = I(σ(a0); σ(a1), . . . , σ(an); σ(an+1)) [4] and some num-

ber field F . The latter is a finite degree field extension of the field of rational numbers Q.

The symbols (4.1) are elements of a commutative graded Hopf algebra H(F ):

H =
⊕

n≥0

Hn . (4.2)

The Hopf algebra4 H implies a product given by the shuffle product

Im(x; a1, . . . , ar; y) · I
m(x; ar+1, . . . , ar+s; y) =

∑

σ∈Σ(r,s)

Im(x; aσ(1), . . . , aσ(r+s); y) , (4.3)

with Σ(r, s) = {σ ∈ Σ(r + s) | σ−1(1) < . . . < σ−1(r) ∩ σ−1(r + 1) < . . . < σ−1(r + s)}

and ai, x, y ∈ {0, 1} and the coproduct ∆ acting on the elements Im as [4]:

∆ Im(a0; a1, . . . , an; an+1) =
∑

0=i0<i1<...<ik<ik+1=n+1

Im(a0; ai1 , . . . , aik ; an+1)

⊗
k∏

p=0

Im(aip ; aip+1, . . . , aip+1−1; aip+1
) ,

(4.4)

4 A Hopf algebra is an algebra A with multiplication µ : A⊗A → A, i.e. µ(x1 ⊗ x2) = x1 · x2

and associativity. At the same time it is also a coalgebra with coproduct ∆ : A → A ⊗ A and

coassociativity such that the product and coproduct are compatible: ∆(x1 ·x2) = ∆(x1)⊗∆(x2),

with x1, x2 ∈ A.
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with 0 ≤ k ≤ n and ai ∈ F . As in (2.7) by (4.1) with ai ∈ {0, 1} we may define the motivic

versions ζmn1,...,nr
of the MZVs ζn1,...,nr

, i.e. by (4.1) the motivic MZVs are defined as

ζmn1,...,nr
= (−1)r Im(0; ρ(n1, . . . , nr); 1) ∈ Hw(Z) , (4.5)

with the weight w =
∑r

l=1 nl and ρ given in (2.6). Any symbol Im(a0; a1, . . . , an; an+1),

with ai ∈ {0, 1}, can be reduced to a linear combination of elements of the form (4.5),

with ni ≥ 1, nr ≥ 2 and w = N . The dimension of the space of motivic MZVs of

weight k is equal to dk, i.e. dimQ(Hk) = dk. The map Hk → Zk is surjective, i.e.

dimQ(Zk) ≤ dimQ(Hk) = dk [28,21]. By this certain identities between MZVs can be

lifted to their motivic versions [5].

There is a non–canonical isomorphism

H ≃ A ⊗Q Q[ζm2 ] , A = H
/
ζm2 H , (4.6)

with the first factor graded by the weight, i.e. A =
⊕
n≥0

An.

To explicitly describe the structure ofH one introduces the (trivial) algebra–comodule:

U = Q〈f3, f5, . . .〉 ⊗Q Q[f2] . (4.7)

The first factor U ′ = U
/
f2U is a cofree Hopf–algebra on the cogenerators f2r+1 in de-

gree 2r + 1 ≥ 3, whose basis consists of all non–commutative words in the f2i+1. The

multiplication on U ′ is given by the shuffle product III

fi1 . . . fir IIIfir+1
. . . fir+s

=
∑

σ∈Σ(r,s)

fiσ(1)
. . . fiσ(r+s)

, (4.8)

with Σ(r, s) given after Eq. (4.3). The Hopf–algebra U ′ is isomorphic to the space of non–

commutative polynomials in f2i+1. The element f2 commutes with all f2r+1. Again, there

is a grading Uk on U , with dim(Uk) = dk. Then, there exists a morphism φ of graded

algebra–comodules

φ : H −→ U , (4.9)

normalized by:

φ
(
ζmn
)
= fn , n ≥ 2 . (4.10)

The map (4.9) sends every motivic MZV to a non–commutative polynomial in the fi.

Furthermore, (4.9) respects the shuffle multiplication rule (4.8):

φ(x1x2) = φ(x1) IIIφ(x2) , x1, x2 ∈ H . (4.11)
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It is believed, that the isomorphism Zk ≃ Uk of graded algebras over Q holds.

The motivic MZVs have a hidden structure, which is revealed by the action of motivic

derivations. The latter are derived from the coaction ∆ : H → A⊗Q H [21,5]

∆ Im(a0; a1, . . . , an; an+1) =
∑

0=i0<i1<...<

<ik<ik+1=n+1

Π

(
k∏

p=0

Im(aip ; aip+1, . . . , aip+1−1; aip+1
)

)

⊗ Im(a0; ai1 , . . . , aik ; an+1) ,

(4.12)

which represents a modification of the coproduct (4.4). Here, Π is the projector Π : H → A

acting on ζm2 as ζm2
Π

−→0. The derivations Dr : Hn → Ar ⊗Q Hn−r
π⊗id
→ Lr ⊗Q Hn−r on H

are defined as the infinitesimal version of the coaction (4.12) [5]

Dr Im(a0; a1, . . . , an; an+1) =
n−r∑

p=0

π (Ia(ap; ap+1, . . . , ap+r; ap+r+1))

⊗ Im(a0; a1, . . . , ap, ap+r+1, . . . , an; an+1) ,

(4.13)

with the projection π : A → L onto the Lie coalgebra L = A>0

A>0A>0
describing all indecom-

posable (irreducible) elements of A. By this we have D2rI
m ≡ 0.

4.2. On the decomposition of motivic multi zeta values

The coalgebra structure (4.7) underlying the motivic MZVs can be used to decompose

any MZV into a basis. Let us now describe the decomposition of motivic MZVs up to some

weight M ≥ 2 [5].

We are looking for decompositions in the Q–vector space HN , 2 ≤ N ≤ M spanned

by the symbols (4.5), with w = N and ni ≥ 1, nr ≥ 2. To check, that a (conjectural)

polynomial basis B of motivic MZVs
⊕

2≤n≤M Hn up to weight M indeed represents a

polynomial basis of motivic MZVs up to weight M for n ≤ N for each set Bn of elements

of B of weight n one constructs the map (4.9):

φ : Bn −→ Un , n ≤ N . (4.14)

This map assigns to every element of our basis B (of weight at most N) a Q–linear

combination of monomials

f2i1+1 . . . f2ir+1 fk
2 , r, k ≥ 0, i1, . . . , ir ≥ 1 , 2 (i1 + . . .+ ir) + r + 2k = n , (4.15)

which are basis elements of the Q–vector space Un supplemented by the multiplication rule

III : Um×Un → Un+m given in (4.8). Actually, φ can be extended to the vector space Hn:

φ : Hn −→ Un , n ≤ N . (4.16)

19



For the basis B we must have: dimQ(〈B〉N ) = dN , 2 ≤ N ≤ M , with 〈B〉N the

Q–vector space spanned by monomials in the elements of B of total additive weight N .

Furthermore, we have

B ⊃ B0 = {ζm2 } ∪ {ζm3 , . . . , ζm2r+1} , (4.17)

with r = ⌊(M − 1)/2⌋. For the elements of B0 the map φ is given by (4.10). For the

remaining elements of B the explicit construction of φ is performed inductively, i.e. from

(4.14) the case n = N + 1 is determined. To find φ(ξ) for a general ξ ∈ BN+1, with

ξ = Im(a0; a1, . . . , aN+1; aN+2) according to (4.5), we need to compute the coefficients

ξ2r+1 =
N−2r∑

p=0

cφ2r+1 (I
m(ap; ap+1, . . . , ap+2r+1; ap+2r+2)) (4.18)

× φ (Im(a0; a1, . . . , ap, ap+2r+2, . . . , aN+1; aN+2)) ∈ UN−2r , 3 ≤ 2r + 1 ≤ N

in the expansion:

φ(ξ) =
∑

3≤2r+1≤N

f2r+1 ξ2r+1 ∈ UN+1 . (4.19)

Above the operator cφ2r+1(ξ), with ξ ∈ H2r+1 determines the rational coefficient of f2r+1 in

the monomial φ(ξ) ∈ U2r+1. Note, that the right hand side of (4.18) only involves elements

Im from H≤N for which φ has already been determined.

The above construction allows to assign a Q–linear combination of monomials to every

element ζmn1,...,nr
. The map5 φ sends every motivic MZV of weight less or equal to N to

a non–commutative polynomial in the fi’s. Inverting this map gives the decomposition

of ζmn1,...,nr
w.r.t. the basis Bn, with n =

∑r
l=1 nl. In other words, the derivations (4.20)

are used to detect elements in U and to decompose any motivic MZV ξ into a candidate

basis B.

In [5] the map (4.14) and the decomposition are explicitly worked out up to weight

10. E.g. one finds

φ(ζm3,5) = −5 f5f3 , φ(ζm3,7) = −14 f7f3 − 6 f5f5 , (4.21)

5 The choice of φ describes for each weight 2r+1 the motivic derivation operators ∂φ
2r+1 acting

on the space of motivic MZVs ∂
φ
2r+1 : H → H [5]

∂
φ
2r+1 = (cφ2r+1 ⊗ id) ◦D2r+1 , (4.20)

with D2n+1 given in (4.13) and the coefficient function c
φ
2r+1, introduced above.

20



and at weight 10 one has for ξ10 ∈ H10 the following decomposition

ξ10 = a0 (ζm2 )5 + a1 (ζm2 )2 (ζm3 )2 + a2 ζm2 ζm3 ζm5

+ a3 (ζm5 )2 + a4 ζm2 ζm3,5 + a5 ζm3 ζm7 + a6 ζm3,7 , (4.22)

with the operators:

a1 =
1

2
c22 ∂2

3 , a2 = c2 ∂5∂3, a3 =
1

2
∂2
5 +

3

14
[∂7, ∂3] ,

a4 =
1

5
c2 [∂5, ∂3], a5 = ∂7∂3, a6 =

1

14
[∂7, ∂3] . (4.23)

acting on φ(ξ10). The derivation operators ∂2n+1 : U → U are defined as [5]:

∂2n+1(fi1 . . . fir ) =

{
fi2 . . . fir , i1 = 2n+ 1 ,
0 , otherwise ,

(4.24)

with ∂2n+1f2 = 0. Furthermore, we have the product rule for the shuffle product:

∂2n+1(a III b) = ∂2n+1a III b+ a III∂2n+1b , a, b ∈ U ′ . (4.25)

Finally, cn2 takes the coefficient of fn
2 .

It seems very amusing, that the coefficients (4.23) and the commutator structure agree

exactly with (3.17). Therefore, motivic multi zeta values encapsulate the α′–expansion of

the open superstring amplitude.

4.3. Decomposition of motivic multi zeta values for weights 11 through 16

In order to bolster this connection, in the following subsections we determine the

decompositions ξw of any motivic MZV for the weights 11 ≤ w ≤ 16.

For a given weight w we proceed as described in [5]: in lines of the Tables 1–3 at

weight w we first detect the new elements Bw to be added to constitute the conjectural

basis B up to weight w. For these new elements Bw we then compute their coefficients

(4.18) or motivic derivations ∂φ
2r+1 by applying the relations (R0)− (R4) given in section

5.1 of [5]. Equipped with these results we then determine the map (4.19) by using the

findings from the lower weights. After having derived the map (4.19) for all dw basis

elements of 〈B〉w we can construct the basis for Uw and eventually the operator ξw.

For the depth two case ζmn1,n2
there exists a closed formula, which computes the map

φ(ζmn1,n2
), directly [29]. Our results for φ(ζm3,9), φ(ζ

m
3,11), φ(ζ

m
5,9), φ(ζ

m
3,13) and φ(ζm5,11) agree

with what this formula gives. However, as it will become clear in the following, beyond

depth two the computations involve new aspects and become rather involved.
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4.3.1. Decomposition at weight 11

At weight 11 we take the following set of motivic MZVs

B = { ζm2 , ζm3 , ζm5 , ζm7 , ζm3,5, ζm9 , ζm3,7, ζm11, ζm3,3,5 } (4.26)

as independent algebra generators up to weight 11. In [5] up to weight n ≤ 10 to each

element of B an element of U is associated by the map φ given in (4.14). Hence, we only

need to compute φ(ζm3,3,5), which according to (4.18) requires the following derivatives:

∂φ
3 ζ

m
3,3,5 = 0 ,

∂φ
7 ζ

m
3,3,5 = −

6

5
(ζm2 )2 ,

∂φ
5 ζ

m
3,3,5 = −5 ζm3,3 = −

5

2
(ζm3 )2 +

4

7
(ζm2 )3 ,

∂φ
9 ζ

m
3,3,5 = −45 ζm2 .

(4.27)

From these results the expression (4.19) gives rise to:

φ(ζm3,3,5) = −
5

2
f5(f3 IIIf3) +

4

7
f5f

3
2 −

6

5
f7f

2
2 − 45 f9f2 . (4.28)

Gathering the information about the lower weight basis Uk≤10 with (4.28) we can construct

the following basis for U11:

−
5

2
f5(f3 IIIf3) +

4

7
f5f

3
2 −

6

5
f7f

2
2 − 45 f9f2 ,

− 5 (f5f3) IIIf3, f11, f3 IIIf3 IIIf5, f3 IIIf3 IIIf3f2 ,

f9f2, f7f
2
2 , f5f

3
2 , f3f

4
2 . (4.29)

This basis gives rise to the following decomposition of any motivic MZV ξ11 of weight 11

ξ11 = a1 ζm3,3,5 + a2 ζm3,5 ζm3 + a3 ζm11 + a4 (ζm3 )2 ζm5 + a5 ζm2 (ζm3 )3

+ a6 ζm2 ζm9 + a7 (ζm2 )2 ζm7 + a8 (ζm2 )3 ζm5 + a9 (ζm2 )4 ζm3 (4.30)

with6 the following operators

a1 =
1

5
[∂3, [∂5, ∂3]], a2 =

1

5
[∂5, ∂3]∂3 ,

a3 = ∂11, a4 =
1

2
∂5∂

2
3 , a5 =

1

6
c2 ∂3

3 ,

a6 = c2 ∂9 + 9 [∂3, [∂5, ∂3]], a7 = c22 ∂7 +
6

25
[∂3, [∂5, ∂3]] ,

a8 = c32 ∂5 −
4

35
[∂3, [∂5, ∂3]], a9 = c42 ∂3 (4.31)

acting on φ(ξ11).

6 The following relations [∂3, [∂5, ∂3]]f3 III f3 III f5 = 0 and [∂3, [∂5, ∂3]]f5f3 III f3 = 0 are useful.

More generally, we have: [∂a, [∂b, ∂c]]fa III fb III fc = 0 and [∂a, [∂b, ∂a]]fbfa III fa = 0.
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4.3.2. Decomposition at weight 12

Next, at weight 12 we take the set of motivic MZVs

B = { ζm2 , ζm3 , ζm5 , ζm7 , ζm3,5, ζm9 , ζm3,7, ζm11, ζm3,3,5, ζm3,9, ζm1,1,4,6 } (4.32)

as independent algebra generators up to weight 12. We need to compute φ(ζm3,9) and

φ(ζm1,1,4,6), which require the following derivatives

∂φ
3 ζ

m
3,9 = 0 ,

∂φ
5 ζ

m
3,9 = −6 ζm7 ,

∂φ
7 ζ

m
3,9 = −15 ζm5 ,

∂φ
9 ζ

m
3,9 = −27 ζm3 ,

(4.33)

and

∂φ
3 ζ

m
1,1,4,6 =

1

3
(ζm3 )3 −

799

72
ζm9 + 10 ζm7 ζm2 −

1

5
ζm5 (ζm2 )2 −

36

35
ζm3 (ζm2 )2 ,

∂φ
5 ζ

m
1,1,4,6 = 29 ζm7 − 11 ζm5 ζm2 −

16

5
ζm3 (ζm2 )2 ,

∂φ
7 ζ

m
1,1,4,6 =

1133

16
ζm5 − 32 ζm3 ζm2 ,

∂φ
9 ζ

m
1,1,4,6 =

1799

18
ζm3 ,

(4.34)

respectively. With the derivatives (4.33) and (4.34) we determine the following maps:

φ(ζm3,9) = −6 f5f7 − 15 f7f5 − 27 f9f3 ,

φ(ζm1,1,4,6) =
1799

18
f9f3 − 32 f7f3f2 +

1133

16
f7f5 + 29 f5f7 − 11 f2

5 f2 −
16

5
f5f3f

2
2

+
1

3
f3(f3 IIIf3 IIIf3)−

799

72
f3f9 + 10 f3f7f2 −

1

5
f3f5f

2
2 −

36

35
f2
3 f

3
2 .

(4.35)

Inspecting the lower weight basis Uk≤12 with (4.35) we have the following basis for U12:

1799

18
f9f3 − 32 f7f3f2 +

1133

16
f7f5 + 29 f5f7 − 11 f2

5 f2 −
16

5
f5f3f

2
2

+
1

3
f3(f3 IIIf3 IIIf3)−

799

72
f3f9 + 10 f3f7f2 −

1

5
f3f5f

2
2 −

36

35
f2
3 f

3
2 ,

− 6 f5f7 − 15 f7f5 − 27 f9f3, f3 IIIf9, f5 IIIf7, f3 IIIf3 IIIf3 IIIf3,

(−14f7f3 − 6f2
5 )f2, −5 f5f3f

2
2 , f5 IIIf5f2, f3 IIIf7f2,

f3 IIIf5f
2
2 , f3 IIIf3f

3
2 , f6

2 . (4.36)
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Therefore, the decomposition of any motivic MZV ξ12 of weight 12 assumes the form

ξ12 = a1 ζm1,1,4,6 + a2 ζm3,9 + a3 ζm9 ζm3 + a4 ζm7 ζm5 + a5 (ζm3 )4 + a6 ζm3,7 ζm2

+ a7 ζm3,5 (ζm2 )2 + a8 (ζm5 )2 ζm2 + a9 ζm7 ζm3 ζm2 + a10 ζm5 ζm3 (ζm2 )2

+ a11 (ζm3 )2 (ζm2 )3 + a12 (ζm2 )6 , (4.37)

with the following operators

a1 =
48

691
([∂9, ∂3]− 3 [∂7, ∂5]) , a2 =

1

27
[∂9, ∂3] +

2665

648
a1,

a3 = ∂9∂3 +
799

72
a1, a4 = ∂7∂5 +

2

9
[∂9, ∂3]−

467

108
a1, a5 =

1

24
∂4
3 −

1

12
a1,

a6 =
1

14
c2 [∂7, ∂3]− 3 a1, a7 =

1

5
c22 [∂5, ∂3]−

3

5
a1,

a8 = c2

(
1

2
∂2
5 +

3

14
[∂7, ∂3]

)
−

7

2
a1, a9 = c2 ∂7∂3 − 10 a1,

a10 = c22 ∂5∂3 +
1

5
a1, a11 =

1

2
c32 ∂2

3 +
18

35
a1, a12 = c62 (4.38)

acting on φ(ξ12).

4.3.3. Decomposition at weight 13

At weight 13 the following set of motivic MZVs

B = { ζm2 , ζm3 , ζm5 , ζm7 , ζm3,5, ζm9 , ζm3,7, ζm11, ζm3,3,5, ζm3,9, ζm1,1,4,6, ζm3,3,7, ζm3,5,5 } (4.39)

represents independent algebra generators up to weight 13. We need to compute φ(ζm3,3,7)

and φ(ζm3,5,5), which require the following derivatives

∂φ
3 ζ

m
3,3,7 = 0 ,

∂φ
5 ζ

m
3,3,7 = −6 ζm3,5 ,

∂φ
7 ζ

m
3,3,7 = −7 (ζm3 )2 +

32

35
(ζm2 )3 ,

∂φ
9 ζ

m
3,3,7 = −

56

5
(ζm2 )2 ,

∂φ
11ζ

m
3,3,7 = −

407

2
ζm2 ,

(4.40)

and
∂φ
3 ζ

m
3,5,5 = 0 ,

∂φ
5 ζ

m
3,5,5 = −5 ζm3,5 ,

∂φ
7 ζ

m
3,5,5 = 0 ,

∂φ
9 ζ

m
3,5,5 = −10 (ζm2 )2 ,

∂φ
11ζ

m
3,5,5 = −

275

2
ζm2 ,

(4.41)
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respectively. The derivatives (4.40) and (4.41) give rise to the maps:

φ(ζm3,3,7) = 30 f2
5 f3 − 7 f7(f3 IIIf3) +

32

35
f7f

3
2 −

56

5
f9f

2
2 −

407

2
f11f2 ,

φ(ζm3,5,5) = 25 f2
5 f3 − 10 f9f

2
2 −

275

2
f11f2 .

(4.42)

Collecting the information about the lower weight basis Uk≤13 with (4.42) we have the

following basis for U13:

30 f2
5 f3 − 7 f7(f3 IIIf3) +

32

35
f7f

3
2 −

56

5
f9f

2
2 −

407

2
f11f2 ,

25 f2
5 f3 − 10 f9f

2
2 −

275

2
f11f2, f13, (−14f7f3 − 6f2

5 ) IIIf3 ,

− 5 (f5f3) IIIf5, f7 IIIf3 IIIf3, f5 IIIf5 IIIf5, (4.43)

−
5

2
f5(f3 IIIf3)f2 +

4

7
f5f

4
2 −

6

5
f7f

3
2 − 45 f9f

2
2 , −5(f5f3) IIIf3f2,

f11f2, f5 IIIf3 IIIf3f2, f3 IIIf3 IIIf3f
2
2 , f9f

2
2 , f7f

3
2 , f5f

4
2 , f3f

5
2 .

Therefore, we have the following decomposition of any motivic MZV ξ13 of weight 13:

ξ13 = a1 ζm3,3,7 + a2 ζm3,5,5 + a3 ζm13 + a4 ζm3,7 ζm3 + a5 ζm3,5 ζm5 + a6 ζm7 (ζm3 )2 (4.44)

+ a7 (ζm5 )2ζm3 + a8 ζm3,3,5 ζm2 + a9 ζm3,5 ζm3 ζm2 + a10 ζm11 ζm2 + a11 ζm5 (ζm3 )2 ζm2

+ a12 (ζm3 )3 (ζm2 )2 + a13 ζm9 (ζm2 )2 + a14 ζm7 (ζm2 )3 + a15 ζm5 (ζm2 )4 + a16 ζm3 (ζm2 )5 ,

with the following operators

a1 =
1

14
[∂3, [∂7, ∂3]], a2 =

1

25
[∂5, [∂5, ∂3]]−

3

35
[∂3, [∂7, ∂3]], a3 = ∂13,

a4 =
1

14
[∂7, ∂3]∂3, a5 =

1

5
∂5[∂5, ∂3], a6 =

1

2
∂7∂

2
3 , a7 =

3

14
[∂7, ∂3]∂3 +

1

2
∂2
5∂3,

a8 =
1

5
c2 [∂3, [∂5, ∂3]], a9 =

1

5
c2[∂5, ∂3]∂3,

a10 = c2∂11 +
11

2
[∂5, [∂5, ∂3]] +

11

4
[∂3, [∂7, ∂3]], a11 =

1

2
c2∂5∂

2
3 , a12 =

1

6
c22∂

3
3 ,

a13 = c22∂9 + 9 c2[∂3, [∂5, ∂3]] +
2

5
[∂5, [∂5, ∂3]]−

2

35
[∂3, [∂7, ∂3]],

a14 = c32∂7 +
6

25
c2[∂3, [∂5, ∂3]]−

16

245
[∂3, [∂7, ∂3]],

a15 = c42∂5 −
4

35
c2[∂3, [∂5, ∂3]], a16 = c52∂3 (4.45)

acting on φ(ξ13).
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4.3.4. Decomposition at weight 14

At weight 14 we take the following set of motivic MZVs

B = { ζm2 , ζm3 , ζm5 , ζm7 , ζm3,5, ζm9 , ζm3,7, ζm11, ζm3,3,5, ζm3,9, ζm1,1,4,6, ζm3,3,7, ζm3,5,5,

ζm3,3,3,5, ζm3,11, ζm5,9 }
(4.46)

as independent algebra generators up to weight 14. Hence, we only need to compute the

maps φ(ζm3,11), φ(ζm5,9) and φ(ζm3,3,3,5), which require the following derivatives

∂φ
3 ζ

m
3,11 = 0 ,

∂φ
5 ζ

m
3,11 = −6 ζm9 ,

∂φ
7 ζ

m
3,11 = −15 ζm7 ,

∂φ
9 ζ

m
3,11 = −28 ζm5 ,

∂φ
11ζ

m
3,11 = −44 ζm3 ,

(4.47)

and
∂φ
3 ζ

m
5,9 = 0 ,

∂φ
5 ζ

m
5,9 = 0 ,

∂φ
7 ζ

m
5,9 = −15 ζm7 ,

∂φ
9 ζ

m
5,9 = −69 ζm5 ,

∂φ
11ζ

m
3,5,5 = −165 ζm3 ,

(4.48)

and

∂φ
3 ζ

m
3,3,3,5 = 0 ,

∂φ
5 ζ

m
3,3,3,5 = −

5

6
(ζm3 )3 −

5

3
ζm9 +

4

7
ζm3 (ζm2 )3 ,

∂φ
7 ζ

m
3,3,3,5 = −51 ζm7 + 30 ζm5 ζm2 ,

∂φ
9 ζ

m
3,3,3,5 = −

405

2
ζm5 + 90 ζm3 ζm2 ,

∂φ
11ζ

m
3,3,3,5 = −15 ζm3 ,

(4.49)

respectively. These derivatives give rise to :

φ(ζm3,11) = −6 f5f9 − 15 f2
7 − 28 f9f5 − 44 f11 f3 ,

φ(ζm5,9) = −15 f2
7 − 69 f9f5 − 165 f11 f3 ,

φ(ζm3,3,3,5) = −
5

6
f5 (f3 IIIf3 IIIf3)−

5

3
f5f9 +

4

7
f5f3f

3
2 − 51f2

7

+ 30 f7f5f2 −
405

2
f9f5 + 90 f9f3f2 − 15 f11f3 ,

(4.50)

respectively. Gathering the information about the lower weight basis Uk≤13 with (4.50)

we can construct the basis for U14 displayed in (A.1). This basis (A.1) gives rise to the

following decomposition of any motivic MZV ξ14 of weight 14

ξ14 = a1 ζm3,3,3,5 + a2 ζm3,11 + a3 ζm5,9 + a4 ζm3,3,5 ζm3 + a5 ζm3,5 (ζm3 )2 + a6 ζm3 ζm11
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+ a7 (ζm3 )3 ζm5 + a8 ζm5 ζm9 + a9 (ζm7 )2 + a10 ζm1,1,4,6 ζm2 + a11 ζm3,9 ζm2

+ a12 ζm3 ζm9 ζm2 + a13 ζm5 ζm7 ζm2 + a14 (ζm3 )4 ζm2 + a15 ζm3,7 (ζm2 )2

+ a16 ζm3,5 (ζm2 )3 + a17 (ζm5 )2 (ζm2 )2 + a18 ζm7 ζm3 (ζm2 )2 + a19 ζm5 ζm3 (ζm2 )3

+ a20 (ζm3 )2 (ζm2 )4 + a21 (ζm2 )7 (4.51)

with the operators ai acting on φ(ξ14) and given in (A.2).

4.3.5. Decomposition at weight 15

At weight 15 we have the following set of motivic MZVs

B = { ζm2 , ζm3 , ζm5 , ζm7 , ζm3,5, ζm9 , ζm3,7, ζm11, ζm3,3,5, ζm3,9, ζm1,1,4,6, ζm3,3,7, ζm3,5,5,

ζm3,3,3,5, ζm3,11, ζm5,9, ζm5,3,7, ζm3,3,9, ζm1,1,3,4,6}
(4.52)

as independent algebra generators up to weight 15. Hence, we only need to compute the

maps φ(ζm5,3,7), φ(ζm3,3,9) and φ(ζm1,1,3,4,6), which require the following derivatives

∂φ
3 ζ

m
5,3,7 = 0 ,

∂φ
5 ζ

m
5,3,7 = −3 (ζm5 )2 +

96

385
(ζm2 )5 + 6 ζm3,7 ,

∂φ
7 ζ

m
5,3,7 = −14 ζm5,3 = −14 ζm3 ζm5 + 14 ζm3,5 +

48

25
(ζm2 )4 ,

∂φ
9 ζ

m
5,3,7 =

136

35
(ζm2 )3 ,

∂φ
11ζ

m
5,3,7 = −22 (ζm2 )2 ,

∂φ
13ζ

m
5,3,7 = −

1001

2
ζm2

(4.53)

and

∂φ
3 ζ

m
3,3,9 = 0 ,

∂φ
5 ζ

m
3,3,9 = −6 ζm3,7 ,

∂φ
7 ζ

m
3,3,9 = −

72

175
(ζm2 )4 − 15 ζm3,5 ,

∂φ
9 ζ

m
3,3,9 = −

27

2
(ζm3 )2 −

116

35
(ζm2 )3 ,

∂φ
11ζ

m
3,3,9 = −

252

5
(ζm2 )2 ,

∂φ
13ζ

m
3,3,9 = −

1209

2
ζm2 ,

(4.54)

and

∂φ
3 ζ

m
1,1,3,4,6 =

74

3
ζm5 ζm7 − 83 ζm3 ζm9 −

29

9
ζm3,9 − ζm1,1,4,6 + 6 ζm3,7 ζm2 +

8

5
ζm3,5 (ζm2 )2

+ 8 (ζm5 )2 ζm2 + 42 ζm3 ζm7 ζm2 +
24

5
ζm3 ζm5 (ζm2 )2 −

1451972

716625
(ζm2 )6

∂φ
5 ζ

m
1,1,3,4,6 = −

12263

112
(ζm5 )2 −

245

2
ζm3 ζm7 +

145

112
ζm3,7 −

25

2
ζm3,5ζ

m
2 +

87

2
ζm3 ζm5 ζm2
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+
15

2
(ζm3 )2(ζm2 )2 +

19939

1617
(ζm2 )5 ,

∂φ
7 ζ

m
1,1,3,4,6 =

31

4
ζm3 ζm5 +

481

20
ζm3,5 − 12 (ζm3 )2ζm2 +

6404

2625
(ζm2 )4 ,

∂φ
9 ζ

m
1,1,3,4,6 = −

5599

72
(ζm3 )2 +

25687

630
(ζm2 )3 ,

∂φ
11ζ

m
1,1,3,4,6 =

28519

60
(ζm2 )2 ,

∂φ
13ζ

m
1,1,3,4,6 =

56717

120
ζm2 , (4.55)

respectively. These derivatives give rise to :

φ(ζm5,3,7) = −3 f5 (f5 IIIf5) +
96

385
f5f

5
2 − 6 f5 (14f7f3 + 6f2

5 )− 14 f7(f3 IIIf5)

− 70 f7f5f3 +
48

25
f7f

4
2 +

136

35
f9f

3
2 − 22 f11f

2
2 −

1001

2
f13f2 ,

φ(ζm3,3,9) = 6 f5 (14f7f3 + 6f2
5 )−

72

175
f7f

4
2 + 75 f7f5f3 −

27

2
f9 (f3 IIIf3)

−
116

35
f9f

3
2 −

252

5
f11f

2
2 −

1209

2
f13f2 ,

φ(ζm1,1,3,4,6) = −
29

9
f3 φ(ζm3,9)− f3 φ(ζm1,1,4,6) +

74

3
f3(f5 IIIf7)− 83 f3(f3 IIIf9)

− 6 f3(14f7f3 + 6f2
5 )f2 − 8 f3f5f3f

2
2 + 8 f3(f5 IIIf5)f2

+ 42 f3(f3 IIIf7)f2 +
24

5
f3(f3 IIIf5)f

2
2 −

1451972

716625
f3f

6
2

−
12263

112
f5(f5 IIIf5)−

245

2
f5(f3 IIIf7)−

145

112
f5(14f7f3 + 6f2

5 )

+
125

2
f2
5 f3f2 +

87

2
f5(f3 IIIf5)f2 +

15

2
f5(f3 IIIf3)f

2
2 +

19939

1617
f5f

5
2 ,

+
31

4
f7(f3 IIIf5)−

481

4
f7f5f3 − 12 f7(f3 IIIf3)f2 +

6404

2625
f7f

4
2 ,

−
5599

72
f9(f3 IIIf3) +

25687

630
f9f

3
2 +

28519

60
f11 f2

2 +
56717

120
f13f2 , (4.56)

respectively. The maps φ(ζm3,9) and φ(ζm1,1,4,6) are given in (4.35). With the information

about the lower weight basis Uk≤14 with (4.56) we can construct the basis for U15 shown

in (A.6). This basis (A.6) gives rise to the following decomposition of any motivic MZV

ξ15 of weight 15

ξ15 = a1 ζm1,1,3,4,6 + a2 ζm3,3,9 + a3 ζm5,3,7 + a4 ζm15 + a5 ζm1,1,4,6 ζm3 + a6 ζm3,9 ζm3

28



+ a7 ζm9 (ζm3 )2 + a8 ζm3 ζm5 ζm7 + a9 (ζm3 )5 + a10 ζm3,7 ζm5 + a11 (ζm5 )3 + a12 ζm3,5 ζm7

+ a13 ζm2 ζm3,3,7 + a14 ζm2 ζm3,5,5 + a15 ζm2 ζm13 + a16 ζm2 ζm3 ζm3,7 + a17 ζm2 ζm5 ζm3,5

+ a18 ζm2 (ζm3 )2 ζm7 + a19 ζm2 ζm3 (ζm5 )2 + a20 (ζm2 )2 ζm3,3,5 + a21 (ζm2 )2 ζm3 ζm3,5

+ a22 (ζm2 )2 ζm11 + a23 ζm5 (ζm2 )2 (ζm3 )2 + a24 (ζm2 )3 (ζm3 )3 + a25 (ζm2 )3 ζm9

+ a26 (ζm2 )4 ζm7 + a27 (ζm2 )5 ζm5 + a28 (ζm2 )6 ζm3 , (4.57)

with the operators ai acting on φ(ξ15) and collected in (A.7).

4.3.6. Decomposition at weight 16

Finally, at weight 16 we have the following set of motivic MZVs

B = { ζm2 , ζm3 , ζm5 , ζm7 , ζm3,5, ζm9 , ζm3,7, ζm11, ζm3,3,5, ζm3,9, ζm1,1,4,6, ζm3,3,7, ζm3,5,5, ζm3,3,3,5,

ζm3,11, ζm5,9, ζm5,3,7, ζm3,3,9, ζm1,1,3,4,6, ζm3,3,3,7, ζm3,3,5,5, ζm3,13, ζm5,11, ζm1,1,6,8}

(4.58)

as independent algebra generators up to weight 16. Hence, we only need to compute the

maps φ(ζm3,3,3,7), φ(ζm3,3,5,5), φ(ζm3,13), φ(ζm5,11) and φ(ζm1,1,6,8), which require the following

derivatives

∂φ
3 ζ

m
3,3,3,7 = 0, ∂φ

5 ζ
m
3,3,3,7 = −6 ζm3,3,5 ,

∂φ
7 ζ

m
3,3,3,7 = −

775

6
ζm9 −

7

3
(ζm3 )3 + 63 ζm7 ζm2 +

36

5
ζm5 (ζm2 )2 +

8

5
ζm3 (ζm2 )3 ,

∂φ
9 ζ

m
3,3,3,7 = −476 ζm7 + 280 ζm5 ζm2 ,

∂φ
11ζ

m
3,3,3,7 = −

3723

4
ζm5 + 407 ζm3 ζm2 , ∂φ

13ζ
m
3,3,3,7 = −165 ζm3 ,

(4.59)

∂φ
3 ζ

m
3,3,5,5 = 0, ∂φ

5 ζ
m
3,3,5,5 = −5 ζm3,3,5 ,

∂φ
7 ζ

m
3,3,5,5 =

381

2
ζm9 − 105 ζm7 ζm2 − 6 ζm5 (ζm2 )2,

∂φ
9 ζ

m
3,3,5,5 = 70 ζm7 + 25 ζm5 ζm2 − 36 ζm3 (ζm2 )2 ,

∂φ
11ζ

m
3,3,5,5 = −

1881

4
ζm5 + 275 ζm3 ζm2 , ∂φ

13ζ
m
3,3,5,5 =

99

2
ζm3 ,

(4.60)

∂φ
3 ζ

m
3,13 = 0 ,

∂φ
5 ζ

m
3,13 = −6 ζm11 ,

∂φ
7 ζ

m
3,13 = −15 ζm9 ,

∂φ
9 ζ

m
3,13 = −28 ζm7 ,

∂φ
11ζ

m
3,13 = −45 ζm5 ,

∂φ
13ζ

m
3,13 = −65 ζm3 ,

(4.61)
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∂φ
3 ζ

m
5,11 = 0 ,

∂φ
5 ζ

m
5,11 = 0 ,

∂φ
7 ζ

m
5,11 = −15 ζm9 ,

∂φ
9 ζ

m
5,11 = −70 ζm7 ,

∂φ
11ζ

m
5,11 = −209 ζm5 ,

∂φ
13ζ

m
5,11 = −429 ζm3 ,

(4.62)

and

∂φ
3 ζ

m
1,1,6,8 = −

5

7
ζm3,3,7 +

6

7
ζm3,5,5 −

2

7
ζm3 ζm3,7 −

8497

42
ζm13 +

8

7
ζm3 (ζm5 )2 + (ζm3 )2ζm7

+ 137 ζm11ζ
m
2 +

11

7
ζm9 (ζm2 )2 −

848

245
ζm7 (ζm2 )3 −

48

35
ζm5 (ζm2 )4 −

816

2695
ζm3 (ζm2 )5 ,

∂φ
5 ζ

m
1,1,6,8 = −

2

5
ζm3,3,5 −

18211

240
ζm11 + (ζm3 )2ζm5 +

71

2
ζm9 ζm2 +

163

25
ζm7 (ζm2 )2

+
36

35
ζm5 (ζm2 )3 −

132

175
ζm3 (ζm2 )4 ,

∂φ
7 ζ

m
1,1,6,8 = 72 ζm9 + (ζm3 )3 − 22 ζm7 ζm2 − 7 ζm5 (ζm2 )2 −

116

35
ζm3 (ζm2 )3 ,

∂φ
9 ζ

m
1,1,6,8 =

26921

72
ζm7 −

277

2
ζm5 ζm2 − 41 ζm3 (ζm2 )2 ,

∂φ
11ζ

m
1,1,6,8 =

11536

15
ζm5 −

727

2
ζm3 ζm2 , ∂φ

13ζ
m
1,1,6,8 =

28513

25
ζm3 ,

(4.63)

respectively. These derivatives give rise to :

φ(ζm3,3,3,7) = −6 f5 φ(ζm3,3,5)−
775

6
f7f9 −

7

3
f7(f3 IIIf3 IIIf3) + 63 f2

7 f2 +
36

5
f7f5f

2
2

+
8

5
f7f3f

3
2 − 476 f9f7 + 280 f9f5f2 −

3723

4
f11f5 + 407 f11f3f2 − 165 f13f3,

φ(ζm3,3,5,5) = −5 f5 φ(ζm3,3,5) +
381

2
f7f9 − 105 f2

7 f2 − 6 f7f5f
2
2 + 70 f9f7 + 25 f9f5f2

− 36 f9f3f
2
2 −

1881

4
f11f5 + 275 f11f3f2 +

99

2
f13f3 ,

φ(ζm3,13) = −6 f5f11 − 15 f7f9 − 28 f9f7 − 45 f11f5 − 65 f13f3 , (4.64)

φ(ζm5,11) = −15 f7f9 − 70 f9f7 − 209 f11f5 − 429 f13f3 ,

φ(ζm1,1,6,8) = −
5

7
f3 φ(ζm3,3,7) +

6

7
f3 φ(ζm3,5,5) +

2

7
f3[f3 III (14f7f3 + 6f2

5 )]−
8497

42
f3f13

+
8

7
f3(f3 IIIf5 IIIf5) + f3(f3 IIIf3 IIIf7) + 137 f3f11f2 +

11

7
f3f9f

2
2

−
848

245
f3f7f

3
2 −

48

35
f3f5f

4
2 −

816

2695
f3f3f

5
2 −

2

5
f5 φ(ζm3,3,5)−

18211

240
f5f11
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+ f5(f3 IIIf3 IIIf5) +
71

2
f5f9f2 +

163

25
f5f7f

2
2 +

36

35
f5f5f

3
2 −

132

175
f5f3f

4
2 ,

+ 72 f7f9 + f7(f3 IIIf3 IIIf3)− 22 f7f7f2 − 7 f7f5f
2
2 −

116

35
f7f3f

3
2 +

26921

72
f9f7

−
277

2
f9f5f2 − 41 f9f3f

2
2 +

11536

15
f11f5 −

727

2
f11f3f2 +

28513

25
f13f3,

respectively. The maps φ(ζm3,3,5), φ(ζ
m
3,3,7) and φ(ζm3,5,5) are given in (4.28) and (4.42),

respectively. Gathering the information about the lower weight basis Uk≤15 with (4.64) we

can construct the basis for U16 shown in (A.8). This basis (A.8) gives rise to the following

decomposition of any motivic MZV ξ16 of weight 16

ξ16 = a1 ζm1,1,6,8 + a2 ζm3,3,3,7 + a3 ζm3,3,5,5 + a4 ζm3,13 + a5 ζm5,11 + a6 ζm3 ζm3,3,7

+ a7 ζm3 ζm3,5,5 + a8 ζm13 ζm3 + a9 ζm3,7 (ζm3 )2 + a10 ζm3,5 ζm3 ζm5 + a11 ζm7 (ζm3 )3

+ a12 (ζm5 )2 (ζm3 )2 + a13 ζm9 ζm7 + a14 (ζm3,5)
2 + a15 ζm11 ζm5 + a16 ζm3,3,5 ζm5

+ a17 ζm2 ζm3 ζm3,3,5 + a18 ζm3,5 (ζm3 )2 ζm2 + a19 ζm11 ζm3 ζm2 + a20 ζm5 (ζm3 )3 ζm2

+ a21 (ζm3 )4 (ζm2 )2 + a22 ζm9 ζm3 (ζm2 )2 + a23 ζm7 ζm3 (ζm2 )3 + a24 ζm5 ζm3 (ζm2 )4

+ a25 (ζm3 )2 (ζm2 )5 + a26 ζm3,3,3,5 ζm2 + a27 ζm3,11 ζm2 + a28 ζm5,9 ζm2 + a29 ζm9 ζm5 ζm2

+ a30 (ζm7 )2 ζm2 + a31 ζm1,1,4,6 (ζm2 )2 + a32 ζm3,9 (ζm2 )2 + a33 ζm7 ζm5 (ζm2 )2

+ a34 ζm3,7 (ζm2 )3 + a35 ζm3,5 (ζm2 )4 + a36 (ζm5 )2 (ζm2 )3 + a37 (ζm2 )8 , (4.65)

with the operators ai acting on φ(ξ16) and listed in (A.9).

4.3.7. Comments on regularizing the coproduct and the map φ

Some terms in the sum of the coproduct (4.4) may imply divergences [16,4,6]. Diver-

gences of multiple polylogarithms are end–point divergences, i.e. the poles in the integrand

(2.5) coincide with the endpoints of the path γ. A canonical regularization has been in-

troduced in [16] by shifting the endpoints by a small parameter ǫ:

Im(0; a1, . . . , an; 1) → Im(ǫ; a1, . . . , an; 1− ǫ) . (4.66)

Expanding the latter w.r.t. small ǫ gives a polynomial in ln ǫ. Its constant term defines

the regularized value Îm(0; a1, . . . , an; 1). The coproduct in the non–generic case is defined

by replacing in the sum of (4.4) every multiple polylogarithm Im(0; a1, . . . , an; 1) by its

regularized value Îm(0; a1, . . . , an; 1) [16,4].

Also the coaction (4.12) and therefore (4.13) and (4.18) may be plagued by divergences.

We have regularized the terms in the sum (4.18) in the same way as described above for the
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coproduct (4.4). The problem, which only affects the first factor cφ2r+1(. . .) of the terms in

(4.18), occurs only in the computation of the maps φ(ζm1,1,4,6), φ(ζ
m
1,1,3,4,6) and φ(ζm1,1,6,8).

In addition, in the above three cases cφ2r+1(. . .) computes the coefficient of ζm2r+1, which

does not depend on the regularization, i.e. it is independent on ǫ.

Let us demonstrate the regularization at the computation of ∂φ
3 (ζ

m
1,1,6,8), whose result

is given in (4.63). With ζm1,1,6,8 = Im(0; 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 1) computing

(4.18) for r = 1 yields:

ξ3 = cφ3 [I
m(0; 1, 1, 0; 1) + Im(0; 1, 0, 1; 1)] Im(0; 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 1)

− cφ3 [I
m(0; 0, 0, 1; 1)] Im(0; 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 1) .

(4.67)

Above, the integral Im(0; 1, 0, 1; 1) has to be replaced by its regularized value Îm(0; 1, 0, 1; 1).

The latter is computed from expanding

Im(ǫ; 1, 0, 1; 1− ǫ) ≃

∫ 1−ǫ

ǫ

dt3
1− t3

∫ t3

ǫ

dt2
t2

∫ t2

ǫ

dt1
1− t1

= −ζm2 ln ǫ− 2 ζm3 +
[
2 + ζm2 − (ln ǫ)2

]
ǫ+O(ǫ2)

(4.68)

w.r.t. small ǫ. Hence, we have7:

Îm(0; 1, 0, 1; 1) = −2 ζm3 . (4.69)

Note, that this agrees, with what one would obtain by applying the shuffle rule (4.3)

Im(0; 1, 0; 1) Im(0; 1; 1) = Im(0; 1, 0, 1; 1) + 2 Im(0; 1, 1, 0; 1) , (4.70)

from which we obtain:

Im(0; 1, 0, 1; 1) = Im(0; 1, 0; 1) Im(0; 1; 1)− 2 Im(0; 1, 1, 0; 1) . (4.71)

With Im(0; 1, 1, 0; 1) = ζm1,2 = ζm3 the two expressions (4.68) and (4.71) give the same

finite piece. This is a consequence of the fact, that the shuffle relation also holds for the

canonical regularization of multiple polylogarithms [16]. An other way to arrive at the

conclusion (4.69) follows from simply identifying Im(a0; a1; a2) ≃ 0 for ai ∈ {0, 1} in the

shuffle relation (4.70), cf. [5].

7 With this result Eq. (4.67) becomes: ξ3 = c
φ
3

(
ζm1,2 − 2ζm3

)
φ(ζm5,8) + c

φ
3 (−ζm3 ) φ(ζm1,4,8) =

−φ(ζm5,8)− φ(ζm1,4,8).
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4.4. Motivic decomposition operators and powers in α′

By comparing the decomposition operators ξl given for l = 10, . . . , 16 in (4.23), (4.31),

(4.38), (4.45), (A.2), (A.7) and (A.9), respectively with the corresponding order α′l in the

expansion of (3.20) (with the operators (3.21) and (3.14)) we see an exact match in the

coefficient and commutator structure by identifying the motivic derivation operators (4.20)

and the matrix operators (3.21)

∂2n+1 ≃ M2n+1 , (4.72)

and the coefficient operator c2 with the matrix operators (3.18):

ck2 ≃ P2k , k ≥ 1 . (4.73)

We can further strengthen this connection. Let F be the free graded Lie algebra

(some vector space over some field F ) freely generated by the generators e2r+1 of degree

−(2r + 1) with the Lie–bracket (ei, ej) 7→ [ei, ej ] and the Jacobi relations:

[ei, [ej, ek]] + [ej , [ek, ei]] + [ek, [ei, ej ]] = 0 . (4.74)

E.g. at weight 11 the elements e11 and [e3, [e3, e5]] generate F11. For f3, f5, . . . being the

functionals on the vector space generated by the vectors e3, e5, . . . such that 〈fi, ej〉 = δij

the dual to the universal enveloping algebra U(F) is isomorphic to the space U of non–

commutative polynomials in f2n+1 with the shuffle product [16,30].

In fact, the Lie algebra generators ei can be identified with the matrices Mi introduced

in (3.21), i.e.

ei ≃ Mi , (4.75)

and of course the matrices Mi fulfill the Jacobi identity (4.74):

[Mi, [Mj,Mk]] + [Mj, [Mk,Mi]] + [Mk, [Mi,Mj]] = 0 . (4.76)

To conclude, motivic MZVs encapsulate the α′–expansion of the open superstring

amplitude.

5. Motivic structure of the open superstring amplitude

The symbol of a transcendental function represents a motivic road map encoding all

the relevant information about the function without further specifying the latter explicitly

in terms of multiple polylogarithms [3,2,31]. In particular, the various relations among
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different multiple polylogarithms become simple algebraic identities in the corresponding

tensor algebra. In this section we show, that the isomorphism φ, which is induced by the

coaction (4.12), encapsulates all the relevant information of the α′–expansion of the open

superstring amplitude without further specifying the latter explicitly in terms of MZVs. By

passing from the MZVs ζ ∈ Z to their motivic versions ζm ∈ H and then mapping the latter

to elements φ(ζm) of the Hopf algebra U the map φ endows the superstring amplitude with

its motivic structure: it maps the α′–expansion into a very short and intriguing form in

terms of the non–commutative Hopf algebra U . In particular, the various relations among

different MZVs become simple algebraic identities in the Hopf algebra U . Moreover, in

this writing the final result for the superstring expansion does not depend on the choice of

a specific set8 of MZVs as basis elements.

5.1. Motivic structure up to weight 16

In this section we apply the isomorphism φ to the motivic version the open superstring

amplitude expression (3.20), with the matrices P,M defined in (3.21) and Q given in (3.14).

The action (4.9) of φ on the motivic MZVs is explained in the previous section. The first

hint of a simplification under φ occurs in (3.16) at weight w = 8, where the commutator

term [M5,M3] together with the prefactor 1
5ζ

m
3,5 conspires into:

φ

(
ζm3 ζm5 M5M3 +

1

5
ζm3,5 [M5,M3]

)
A = (f3f5 M5M3 + f5f3 M3M5) A . (5.1)

The right hand side obviously treats the objects f3,M3 and f5,M5 in a democratic way.

The effect of the map φ becomes even more drastic at weight w = 11 at the permutations

of M3M3M5:

φ ( A|w=11 ) = φ

(
1

5
ζm3,3,5 [M3, [M5,M3]] +

1

5
ζm3,5ζ

m
3 [M5,M3]M3 + ζm11 M11

+ ζm3 (ζm2 )4P8M3 +
1

2
(ζm3 )2ζm5 M5M

2
3 +

1

6
(ζm3 )3ζm2 P2M

3
3

+ ζm9 ζm2 {P2M9 + 9 [M3, [M5,M3]]}

+ ζm7 (ζm2 )2
{
P4M7 +

6

25
[M3, [M5,M3]]

}

+ ζm5 (ζm2 )3
{
P6M5 −

4

35
[M3, [M5,M3]]

} )
A (5.2)

8 For instance instead of taking a basis containing the depth one elements ζm2n+1 one also could

choose the set of Lyndon words in the Hoffman elements ζmn1,...,nr
, with ni = 2, 3 [21,19].
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=
[
f11 M11 + f2

3 f5 M5M
2
3 + f3f5f3 M3M5M3 + f5f

2
3 M2

3M5

+P2f2
(
f9 M9 + f3

3 M3
3

)
+ P4f

2
2 f7 M7 + P6f

3
2 f5 M5 + P8f

4
2 f3 M3

]
A .

We observe from (5.1) and (5.2) that in the Hopf algebra U , every non–commutative word

of odd letters f2k+1 multiplies the associated reverse product of matricesM2k+1. Powers f
k
2

of the commuting generator f2 are accompanied by P2k, which multiplies all the operators

M2k+1 from the left. Most notably, in contrast to the representation in terms of motivic

MZVs, the numerical factors become unity, i.e. all the rational numbers in (3.13) drop

out. Our explicit results confirm, that the beautiful structure with the combination of

operators Mip . . .Mi2Mi1 accompanying the word fi1fi2 . . . fip , continues to hold through

weight w = 16:

φ (A) =
(
1 + f2P2 + f2

2P4 + f3
2P6 + f4

2P8 + f5
2P10 + f6

2P12 + f7
2P14 + f8

2P16 + . . .
)

×
{
1 + f3 M3 + f5 M5 + f2

3 M2
3 + f7 M7 + f3f5 M5M3 + f5f3 M3M5

+ f9 M9 + f3
3 M3

3 + f2
5 M2

5 + f3f7 M7M3 + f7f3 M3M7 + f11 M11

+ f2
3 f5 M5M

2
3 + f3f5f3 M3M5M3 + f5f

2
3 M2

3M5 + f4
3 M4

3 + f3f9 M9M3

+ f9f3 M3M9 + f5f7 M7M5 + f7f5 M5M7 + f13 M13 + f2
3 f7 M7M

2
3

+ f3f7f3 M3M7M3 + f7f
2
3 M2

3M7 + f3f
2
5 M2

5M3 + f5f3f5 M5M3M5

+ f2
5 f3 M3M

2
5 + f2

7 M2
7 + f3f11 M11M3 + f11f3 M3M11 + f5f9 M9M5

+ f9f5 M5M9 + f3
3 f5 M5M

2
3 + f2

3 f5f3 M3M5M
2
3 + f3f5f

2
3 M2

3M5M3

+ f5f
3
3 M3

3M5 + f15 M15 + f3
5 M3

5 + f5
3 M5

3 + f2
3 f9 M9M

2
3 + f3f9f3 M3M9M3

+ f9f
2
3 M2

3M9 + f3f5f7 M7M5M3 + f3f7f5 M5M7M3 + f5f3f7 M7M3M5

+ f5f7f3 M3M7M5 + f7f3f5 M5M3M7 + f7f5f3 M3M5M7 + f7f9 M9M7

+ f9f7 M7M9 + f11f5 M5M11 + f5f11 M11M5 + f3f13 M13M3 + f13f3 M3M13

+ f2
3 f

2
5 M2

5M
2
3 + f2

5 f
2
3 M2

3M
2
5 + f3f

2
5 f3 M3M

2
5M3 + f5f

2
3 f5 M5M

2
3M5

+ f3f5f3f5 M5M3M5M3 + f5f3f5f3 M3M5M3M5 + f3
3 f7 M7M

3
3

+f2
3 f7f3 M3M7M

2
3 + f3f7f

2
3 M2

3M7M3 + f7f
3
3 M3

3M7 + . . .
}

A. (5.3)

This writing of the amplitude in terms of elements of the algebra comodule U encodes all

the information contained in (3.14).

5.2. Motivic structure at general weight

Motivated by the observation that every non–commutative word constructed from

odd generators f2k+1 shows up in (5.3) we conjecture the following all–weight–formula for
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image φ(A):

φ(A) =

(
∞∑

k=1

fk
2 P2k

)


∞∑

p=0

∑

i1,...,ip

∈2N+−1

fi1fi2 . . . fipMip . . .Mi2Mi1


 A . (5.4)

In (5.4) the sum over the combinations fi1fi2 . . . fipMip . . .Mi2Mi1 includes all possi-

ble non–commutative words fi1fi2 . . . fip with coefficients Mip . . .Mi2Mi1 graded by their

length p. Matrices P2k associated with the powers fk
2 always act by left multiplication.

The commutative nature of f2 with respect to the odd generators f2k+1 ties in with the

fact that the P2k matrices have the well defined place left of M2k+1 in the matrix ordering.

One can easily check that (5.4) is compatible through weights ≤ 16, see (5.3), and we shall

give further evidence that the validity extends to higher weights.

We have already pointed out in subsection 4.4 that the decomposition formulae for

MZVs ξw of weight w exactly match the corresponding α′w part of the superstring ampli-

tude subject to the replacements (4.72) and (4.73) in the differential operators ai. If this

mapping holds to arbitrary weight, then the simplicity of our final result (5.4) reflects the

role of φ(ξw) being the unit operator projected to weight w, e.g.

φ(ξ10) = f5
2 c

5
2 + f2

2 f
2
3 c22∂

2
3 + f2

(
f3f5 ∂5∂3 + f5f3 ∂3∂5

)
c2

+ f2
5 ∂2

5 + f7f3 ∂3∂7 + f3f7 ∂7∂3 = id
∣∣
w=10

maps any non-commutative weight ten polynomial of f2, f3, f5, f7, f9 to itself. More

generally, the differential operator ck2∂ip . . . ∂i2∂i1 annihilates all U elements except for

fk
2 fi1fi2 . . . fip . Hence, the weight w identity operator is given by

φ(ξw) =

∞∑

k=1

fk
2 c

k
2

∞∑

p=0

∑

i1,...,ip

∈2N+−1

fi1fi2 . . . fip ∂ip . . . ∂i2∂i1

× δ
(
2(i1 + i2 + . . . ip) + p + 2k − w

)
= id

∣∣
w

(5.6)

where the δ(. . .) function makes sure that the correct weight is picked out. Clearly, (5.6)

maps to the weight w contributions of (5.4) under the replacements (4.72) and (4.73). In

this sense, the image under φ of the disk amplitude at weight w is closely related to the

identity operator in the algebra comodule U , restricted to weight w.

6. Closed superstring amplitude

The string world–sheet describing the tree–level string S–matrix of N gravitons is

described by a complex sphere with N (integrated) insertions of graviton vertex operators.
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One of the key properties of graviton amplitudes in string theory is that at tree–level they

can be expressed as sum over squares of (color ordered) gauge amplitudes in the left– and

right–moving sectors. This map, known as Kawai–Lewellen–Tye (KLT) relations [9], gives

a relation between a closed string tree–level amplitude on the sphere and a sum of squares

of (partial ordered) open string disk amplitudes. We may write these relations in matrix

notation as follows

M = At S A , (6.1)

with the vector A encoding the (N − 3)! independent color ordered open string subampli-

tudes and some (N − 3)!× (N − 3)! matrix S. The latter encodes the sin–factors from the

KLT relations [9] and the contributions from the monodromy relations [10,11] to express

the both left– and right–movers in terms of the same open string basis A. Hence, in super-

string theory the tree–level computation of graviton amplitudes boils down to considering

squares of tree–level gauge amplitudes A given in (3.1). For this sector the explicit ex-

pression (3.20) and subsequent results from the previous sections can be used. The KLT

relations are insensitive to the compactification details or the amount of supersymmetries

of the superstring background. Hence, the following discussions and results are completely

general.

In the sequel we shall discuss the implication of (3.20) to the closed string amplitude

M(1, . . . , N) involving N closed strings. Especially, we shall be interested in the structure

of its α′–expansion. The latter has been already investigated up to the order α′8 for the

cases N = 4, 5 and N = 6 with the remarkable observation, that the graviton amplitudes

do not seem to allow for Riemann zeta functions involving even entries or MZVs of depth

higher than one [32]. With the explicit expression (3.20) for the open superstring amplitude

we are able to bolster these findings.

6.1. N = 4

For N = 4 the KLT relation (6.1) can be written as:

M(1, 2, 3, 4) = At S A , (6.2)

with the basis A = A(1, 2, 3, 4) of open string amplitudes (3.5) and the scalar:

S = sin(πs)
sin(πu)

sin(πt)
. (6.3)

With (3.5) and

P =

{
π

s u

s+ u

sin[π(s+ u)]

sin(πs) sin(πu)

}1/2

, (6.4)
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Eq. (6.2) yields:

M(1, 2, 3, 4) = π
su

s+ u
exp



2

∑

n≥1

ζ2n+1 M2n+1



 |A|2 , (6.5)

with the YM subamplitude A = AYM (1, 2, 3, 4) and M2n+1 given in (3.6). Obviously, in

the four–graviton amplitude (6.5), not any Riemann zeta function with even entries shows

up.

The field–theory contribution from (6.2) arises from P = 1 and A = A, i.e.

M(1, 2, 3, 4)|FT = At S0 A , (6.6)

with

S0 ≡ S|FT = −π s
u

t
. (6.7)

We observe, that:

P tSP = S0 . (6.8)

This equation guarantees the absence of powers of ζ2 in (6.5). Stated differently, the

absence of powers of ζ2 in (6.2) allows to determine P from the equation (6.8) as:

P = S
1/2
0 (S−1)1/2 . (6.9)

6.2. N = 5

For N = 5 the closed string amplitude (6.1) can be cast into

M(1, 2, 3, 4, 5) = At S A , (6.10)

with the basis A of open string amplitudes given in (3.11) and the symmetric matrix

S encoding the diagonal matrix diag{sin(πs12) sin(πs34), sin(πs13) sin(πs24)} from the

KLT relation [9] and further sin–factors from the monodromy relations [10,11] express-

ing the string amplitudes A(2, 1, 4, 3, 5) and A(3, 1, 4, 2, 5) in terms of the basis elements

A(1, 2, 3, 4, 5) and A(1, 3, 2, 4, 5). More precisely, we have

S = [sin(πs35) sin(πs25) sin(πs14)]
−1

(
Σ11 Σ12

Σ12 Σ22

)
, (6.11)

with:

Σ11 =
1

4
sin(πs1) sin(πs3) [ sinπ(s1 − s2 − s3)− sinπ(s1 + s2 − s3)

+ sinπ(s1 + s2 + s3) + sinπ(s1 + s2 − s3 − 2s4)

+ sinπ(−s1 + s2 + s3 − 2s5)− sinπ(s1 + s2 + s3 − 2s4 − 2s5) ] ,

Σ12 = − sin(πs1) sin(πs3) sin(πs13) sin(πs24) sinπ(s4 + s5) ,

Σ22 =
1

4
sin(πs13) sin(πs24) [ sinπ(s1 + s2 − s3 − s4 − s5)

− sinπ(s1 + s2 + s3 − s4 − s5) + sinπ(s1 − s2 − s3 − s4 + s5)

− sinπ(s1 − s2 − s3 + s4 + s5) + sinπ(s1 + s2 + s3 + s4 + s5) ] . (6.12)
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The field–theory contribution from (6.10) arises from P =

(
1 0
0 1

)
and A = A, with

the YM basis vector A given in (3.11), i.e.

M(1, 2, 3, 4, 5)|FT = At S0 A , (6.13)

with

S0 ≡ S|FT = (s25 s35 s14)
−1

(
σ11 σ12

σ12 σ22

)
, (6.14)

and:

σ11 = s1s3 [ s4(s3 − s5)(−s2 + s4 + s5) + s1(−s3(s4 + s5) + s5(−s2 + s4 + s5) ] ,

σ12 = −s1s3 s13 s24 (s4 + s5) ,

σ22 = −s13 s24 [ s1s4(s2 + s3) + s1s3s5 + s2s5(s3 + s4) ] . (6.15)

By considering the closed superstring amplitude (6.10) and analyzing its α′–expansion

[32] we find, that the following matrix equation holds:

P t SP = S0 . (6.16)

We have checked the validity of (6.16) up to the order α′18. In addition, we find the

relations:
S0 Q(2) +Qt

(2) S0 = 0 , Q(2) = [Ml,Mm] ,

S0 Q(3) −Qt
(3) S0 = 0 , Q(3) = [Ml, [Mm,Mn]] ,

S0 Q(4) +Qt
(4) S0 = 0 , Q(4) = [Mk, [Ml, [Mm,Mn]]] .

(6.17)

We have verified the above relations up to weight 19 for the following commutators

Q(2) = [M5,M3], [M7,M3], [M9,M3], [M7,M5], [M9,M5], [M11,M3], [M9,M7] ,

[M11,M5], [M13,M3] ,

Q(3) = [M3, [M5,M3]], [M3, [M7,M3]], [M5, [M5,M3]], [M3, [M7,M5]], [M5, [M7,M3]] ,

[M3, [M9,M3]], [M7, [M7,M3]], [M7, [M7,M5]] ,

Q(4) = [M3, [M3, [M5,M3]]], [M3, [M3, [M7,M3]]], [M3, [M5, [M5,M3]]] ,

(6.18)

respectively. The alternating sign in (6.17) can be explained through the transposition

[Mn2
, [Mn3

, . . . , [Mnr
,Mn1

]] . . .]t = (−1)r−1[M t
n2
, [M t

n3
, . . . , [M t

nr
,M t

n1
]] . . .] (6.19)

of (r − 1)–fold nested commutators.

To conclude: the consequence of the relations (6.16) and (6.17) is, that in the α′–

expansion of (6.10) the zeta function ζ2 or powers thereof and MZVs ζn1,...,nr
of depth

greater than one r > 1 drop out. This result is in agreement with the observation made

in [32]. We now have verified this observation through weight 18.
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6.3. General N

The general form of the closed string amplitude is given in (6.1),

M(1, . . . , N) = At S A , (6.20)

with the (N − 3)! × (N − 3)! matrix S specified above and the vector A encoding the

(N − 3)! open string subamplitudes (3.20). Let us now phrase the cancellation of ζ2 or

powers thereof and MZVs ζn1,...,nr
of depth greater than one r > 1 in the α′–expansion

of (6.20). With the explicit expression for (3.20) the following equation guarantees the

absence of any power of ζ2

P t SP = S0 , (6.21)

with:

S0 ≡ S|FT . (6.22)

On the other hand, the vanishing of any MZV ζn1,...,nr
of depth greater than one r > 1

demands for a cancellation of all commutator terms in Q. This fact translates into

S0 Q(r) + (−1)r Qt
(r)S0 = 0 , (6.23)

with:

Q(r) = [Mn2
, [Mn3

, . . . , [Mnr
,Mn1

]] . . .] .

With these informations (6.21) and (6.23) the closed superstring (6.20) amplitude for any

number N of external assumes the generic form

M(1, . . . , N) = At


: exp




∑

r≥1

ζ2r+1 M2r+1



 :




t

S0 : exp




∑

s≥1

ζ2s+1 M2s+1



 : A ,

(6.24)

with the (N − 3)! dimensional vector A specifying a YM basis A ≡ AYM , the (N − 3)! ×

(N −3)! matrix S0 introduced in (6.1) and the (N −3)!× (N −3)! matrices M2n+1 defined

in (3.21). The ordering colons enclosing the exponentials are defined in (3.15).

We would like to mention two final remarks: Similarly as for the N = 4 case (6.9) it

should be possible to directly determine P from the matrix equation (6.21). Furthermore,

Eq. (6.23) gives rise to a recursive relation allowing to determine higher M2l+1 from lower

M2m+1. These properties are further investigated and exhibited in more details in [26].

Of course, with the explicit expression for P and M the relations (6.21) and (6.23)

and hence (6.24) can be verified to all orders.
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6.4. Motivic structure of the closed superstring amplitude

Experiencing the simplicity in the open string sector suggests to also investigate the

image under φ of the gravity amplitude (6.20). We insert the result (5.4) for φ(A) into

(6.20). The multiplication rule (4.11) of the isomorphism φ yields:

φ(M) = At

{ ∞∑

p=0

∑

i1,...,ip

∈2N+−1

fi1fi2 . . . fipMip . . .Mi2Mi1

}t

III S0

{ ∞∑

q=0

∑

j1,...,jq

∈2N+−1

fj1fj2 . . . fjqMjq . . .Mj2Mj1

}
A . (6.25)

The sum over fk
2 P2k in the open string amplitudes At,A has already been dropped taking

into account the cancellation (6.21) of the matrix P .

The representation (6.25) for φ(M) has the shortcoming that it hides the cancellation

of MZVs of depth higher than one. In the motivic picture in terms of motivic MZVs

the cancelation of MZVs of depth ≥ 2 has its origin in the commutation relations (6.23).

Indeed, these commutation relations are required to show that all the ordered products

in fi1fi2 . . . fip in (6.25) can effectively be replaced by shuffle products. The difference

between the two products is multiplied by commutators of M2k+1 which cancel around S0

through (6.23). Once all the f2k+1 products are of shuffle type, they can be identified as

the image under φ of single zetas:

fi1 IIIfi2 III . . . IIIfip = φ
( p∏

j=1

ζmij

)
. (6.26)

An alternative approach is to start from (6.24), where the reduction to single zetas is

already manifest. One then obtains a representation in U , which appears to differ from

(6.25). However, the difference between the two is again composed of M2k+1 commutators

which ultimately drop out thanks to the relations (6.23).

7. Conclusion

In this work we have investigated the structure of the α′–expansion of the open and

closed superstring amplitude at tree–level with particular emphasis on their transcenden-

tality properties. The strict matching of powers α′w with their associated MZV prefactors

of weight w constituting a well–confirmed pattern has been considerably refined.

The main point is to replace the C valued MZVs ζ by more abstract versions thereof,

the so–called motivic MZVs ζm, which are endowed by a coalgebra structure. Further-

more, through the isomorphism φ the motivic MZVs are mapped into an algebra comodule
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generated by the non–commutative words in generators f3, f5, f7, . . . and an additional el-

ement f2. In the same way as the symbol conveniently captures patterns of field theory

amplitudes the isomorphism φ yields a strikingly simple and compact expression (5.4) for

the open superstring disk amplitude: the systematics of the α′–dependence is written in

closed and short form to all weights. In contrast to the symbol, the map φ does not lose

any information and can be inverted to recover the tree amplitude in terms of motivic

MZVs.

In the closed superstring sector the properties of the matrix P encoded in (6.21) and

the commutation relations (6.23) between different matrices M2r+1 result in the compact

form (6.24), with any power of ζ2 and all MZVs of depth greater than one cancelled. On

the other hand, after applying the map φ this result turns into (6.25), in which all matrices

M2r+1 and Hopf–algebra generators f2s+1 are treated democratically without the necessity

for the ordering prescription (3.15) in (6.24)

The polynomial structure of the matrices M and P and various other aspects of α′–

expansions are further elaborated in [26].
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Appendix A. Decomposition of motivic multi zeta values

A.1. Decomposition at weight 14

Gathering the information about the lower weight basis Uk≤13 with (4.50) we can

construct the following basis for U14:

−
5

6
f5 (f3 IIIf3 IIIf3)−

5

3
f5f9 +

4

7
f5f3f

3
2 − 51f2

7 + 30 f7f5f2 −
405

2
f9f5

+ 90 f9f3f2 − 15 f11f3 ,

− 6 f5f9 − 15 f2
7 − 28 f9f5 − 44 f11 f3, −15 f2

7 − 69 f9f5 − 165 f11 f3,
(
−
5

2
f5(f3 IIIf3) +

4

7
f5f

3
2 −

6

5
f7f

2
2 − 45 f9f2

)
IIIf3, −5 (f5f3) IIIf3 IIIf3,

f11 IIIf3, f3 IIIf3 IIIf5 IIIf3, f9 IIIf5, f7 IIIf7, (A.1)
(
1799

18
f9f3 − 32 f7f3f2 +

1133

16
f7f5 + 29 f5f7 − 11 f2

5 f2 −
16

5
f5f3f

2
2

+
1

3
f3(f3 IIIf3 IIIf3)−

799

72
f3f9 + 10 f3f7f2 −

1

5
f3f5f

2
2 −

36

35
f2
3 f

3
2

)
f2,

(−6 f5f7 − 15 f7f5 − 27 f9f3) f2, f9 IIIf3f2, f7 IIIf5f2, f3 IIIf3 IIIf3 IIIf3f2,

(−14f7f3 − 6f2
5 )f

2
2 , −5 f5f3f

3
2 , f5 IIIf5f

2
2 , f3 IIIf7f

2
2 , f3 IIIf5f

3
2 , f3 IIIf3f

4
2 , f7

2 .

The operators ai of the decomposition (4.51) are:

a1 =
1

5
[∂3, [∂3, [∂5, ∂3]]], a2 = −

23

198
[∂11, ∂3] +

5

18
[∂9, ∂5]−

12841

1188
[∂3, [∂3, [∂5, ∂3]]],

a3 = −
2

27
[∂9, ∂5] +

1

27
[∂11, ∂3] +

232

81
[∂3, [∂3, [∂5, ∂3]]],

a4 =
1

5
[∂3, [∂5, ∂3]]∂3, a5 =

1

10
[∂5, ∂3]∂

2
3 , a6 = ∂11∂3, a7 =

1

6
∂5∂

3
3 ,

a8 = ∂9∂5 −
23

33
[∂11, ∂3] +

5

3
[∂9, ∂5]−

12775

198
[∂3, [∂3, [∂5, ∂3]]] ,

a9 =
1

2
∂2
7 −

235

396
[∂11, ∂3] +

55

36
[∂9, ∂5]−

647287

11880
[∂3, [∂3, [∂5, ∂3]]]

a10 = c2a0, a11 = c2

(
1

27
[∂9, ∂3] +

2665

648
a0

)
+

2

3
[∂3, [∂3, [∂5, ∂3]]],

a12 = c2

(
∂9∂3 +

799

72
a0

)
+ 9 [∂3, [∂5, ∂3]]∂3,
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a13 = c2

(
∂7∂5 +

2

9
[∂9, ∂3]−

467

108
a0

)
+ 4 [∂3, [∂3, [∂5, ∂3]]],

a14 = c2

(
1

24
∂4
3 −

1

12
a0

)
, a15 =

1

14
c22 [∂7, ∂3]− 3 c2a0,

a16 =
1

5
c32 [∂5, ∂3]−

3

5
c2 a0 +

4

175
[∂3, [∂3, [∂5, ∂3]]],

a17 =
1

2
c22

(
∂2
5 +

3

7
[∂7, ∂3]

)
−

7

2
c2a0,

a18 = c22 ∂7∂3 − 10 c2a0 +
6

25
[∂3, [∂5, ∂3]]∂3,

a19 = c32 ∂5∂3 +
1

5
c2a0 −

4

35
[∂3, [∂5, ∂3]]∂3,

a20 =
1

2
c42∂

2
3 +

18

35
c2a0, a21 = c72 (A.2)

acting on φ(ξ14). Above we have introduced the operator:

a0 =
48

691
( [∂9, ∂3]− 3 [∂7, ∂5] ) . (A.3)

Furthermore, we have used some useful formulae exhibited in the following. Nested com-

mutators involving the derivatives ∂3 and ∂5 acting on various products of f3 and f5 have

a “diagonal” structure:

[∂3, [∂3, [∂3, ∂5]]] f5f3f3f3 = 1 ,

[∂3, [∂3, ∂5]] ∂3 (f5f3f3) IIIf3 = 1 ,

[∂3, ∂5] ∂
2
3 (f5f3) IIIf3 IIIf3 = 2 ,

∂5 ∂
3
3 f5 IIIf3 IIIf3 IIIf3 = 6 . (A.4)

On the other hand, all the other combinations of differential operators

[∂3, [∂3, [∂3, ∂5]]], [∂3, [∂3, ∂5]]∂3, [∂3, ∂5]∂
2
3 , ∂5 ∂

3
3

acting on the products {f5f
3
3 , (f5f3f3) IIIf3, (f5f3) IIIf3 IIIf3, f5 IIIf3 IIIf3 IIIf3} vanish.

E.g. [∂3, [∂3, [∂3, ∂5]]] annihilates all of (f5f3f3) IIIf3, (f5f3) IIIf3 IIIf3, f5 IIIf3 IIIf3 IIIf3.

More generally, we have:

[∂3, [∂3, [. . . , [∂3, ∂5] . . .]]]︸ ︷︷ ︸
(k−p)−fold commutator

∂p
3 (f5f

k−q
3 ) ( IIIf3)

q = p! δp,q . (A.5)
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A.2. Decomposition at weight 15

At weight 15 we collect the information about the lower weight basis Uk≤14 and with

(4.56) we can construct the following basis for U15:

φ(ζm1,1,3,4,6), φ(ζm3,3,9), φ(ζm5,3,7), f15, f3 IIIφ(ζm1,1,4,6), f3 IIIφ(ζm3,9),

f9 IIIf3 IIIf3, f3 IIIf5 IIIf7, f3 IIIf3 IIIf3 IIIf3 IIIf3,

(−14f7f3 − 6f2
5 ) IIIf5, f5 IIIf5 IIIf5, (−5f5f3) IIIf7,

φ(ζm3,3,7)f2, φ(ζm3,5,5)f2, f13f2, (−14f7f3 − 6f2
5 ) IIIf3f2, (−5f5f3) IIIf5f2,

f7 IIIf3 IIIf3f2, f5 IIIf5 IIIf3f2,

φ(ζm3,3,5)f
2
2 , (−5f5f3) IIIf3f

2
2 , f11f

2
2 , f5 IIIf3 IIIf3f

2
2 , f3 IIIf3 IIIf3f

3
2 ,

f9f
3
2 , f7f

4
2 , f5f

5
2 , f3f

6
2 , (A.6)

with φ(ζm3,3,5), φ(ζ
m
3,9), φ(ζ

m
1,1,4,6), φ(ζ

m
3,3,7), φ(ζ

m
3,5,5), φ(ζ

m
1,1,3,4,6), φ(ζ

m
3,3,9) and φ(ζm5,3,7) given

in (4.28), (4.35), (4.42) and (4.56), respectively. The operators ai of the decomposition

(4.57) are:

a1 =
48

7601
([∂3, [∂9, ∂3]]− 3 [∂3, [∂7, ∂5]]) , a2 =

1

27
[∂3, [∂9, ∂3]]−

853

648
a1,

a3 =
2

15
[∂3, [∂7, ∂5]]−

1

70
[∂5, [∂7, ∂3]] +

17203

3360
a1, a4 = ∂15,

a5 = a1 + a0 ∂3, a6 =
1

27
[∂9, ∂3]∂3 +

2665

648
a0∂3 +

29

9
a1 ,

a7 =
1

2
∂9∂

2
3 +

799

72
a0∂3 +

6775

144
a1,

a8 = ∂7∂5∂3 +
2

9
[∂9, ∂3]∂3 −

467

108
a0∂3 −

74

3
a1,

a9 =
1

5!
∂5
3 −

1

12
a0∂3 −

1

15
a1,

a10 =
1

14
[∂7, ∂3]∂5 +

2188

945
a1 +

3

35
[∂5, [∂7, ∂3]]−

2

45
[∂3, [∂9, ∂3]],

a11 =
1

6
∂3
5 +

3

14
[∂7, ∂3]∂5 +

1185701

30240
a1 +

11

70
[∂5, [∂7, ∂3]]−

2

45
[∂3, [∂9, ∂3]]

a12 =
1

5
[∂5, ∂3]∂7 −

12199

720
a1 +

1

5
[∂5, [∂7, ∂3]]−

1

15
[∂3, [∂9, ∂3]]

a13 =
1

14
c2 [∂3, [∂7, ∂3]] + 2 a1,

a14 = −
3

35
c2 [∂3, [∂7, ∂3]] +

1

25
c2 [∂5, [∂5, ∂3]]−

14

5
a1,

45



a15 = c2 ∂13 −
6417649

2880
a1 −

143

20
[∂5, [∂7, ∂3]] +

1339

30
[∂3, [∂9, ∂3]],

a16 =
1

14
c2 [∂7, ∂3]∂3 − 3 a0∂3 − 6 a1,

a17 =
1

5
c2 [∂5, ∂3]∂5 +

1

5
c2 [∂5, [∂5, ∂3]] +

21

2
a1,

a18 =
1

2
c2 ∂7∂

2
3 − 10 a0∂3 − 26 a1,

a19 =
1

2
c2 ∂2

5∂3 +
3

14
c2 [∂7, ∂3]∂3 −

7

2
a0∂3 − 8 a1,

a20 =
1

5
c22 [∂3, [∂5, ∂3]] + 4 a1, a21 =

1

5
c22 [∂5, ∂3]∂3 −

3

5
a0∂3 −

8

5
a1,

a22 = c22 ∂11 +
11

4
c2 [∂3, [∂7, ∂3]] +

11

2
c2 [∂5, [∂5, ∂3]]−

8495287

15120
a1

−
11

35
[∂5, [∂7, ∂3]] +

128

45
[∂3, [∂9, ∂3]], a23 =

1

2
c22 ∂5∂

2
3 +

1

5
a0∂3 −

23

10
a1,

a24 =
1

6
c32 ∂3

3 +
18

35
a0∂3 +

12

35
a1,

a25 = c32 ∂9 + 9 c22 [∂3, [∂5, ∂3]]−
2

35
c2 [∂3, [∂7, ∂3]] +

2

5
c2 [∂5, [∂5, ∂3]]

+
54263011

396900
a1 +

68

1225
[∂5, [∂7, ∂3]]−

236

4725
[∂3, [∂9, ∂3]],

a26 = c42 ∂7 +
6

25
c22 [∂3, [∂5, ∂3]]−

16

245
c2 [∂3, [∂7, ∂3]] +

57847

15750
a1

+
24

875
[∂5, [∂7, ∂3]]−

184

2625
[∂3, [∂9, ∂3]],

a27 = c52 ∂5 −
4

35
c22 [∂3, [∂5, ∂3]]−

1714624

121275
a1 +

48

13475
[∂5, [∂7, ∂3]],

−
64

5775
[∂3, [∂9, ∂3]], a28 = c62 ∂3 +

1451972

716625
a1 (A.7)

acting on φ(ξ15). Above we have used the operator a0 defined in (A.3).

A.3. Decomposition at weight 16

Gathering the information about the lower weight basis Uk≤15 with (4.56) we can

construct the following basis for U16:

φ(ζm1,1,6,8), φ(ζm3,3,3,7), φ(ζm3,3,5,5), φ(ζm3,13), φ(ζm5,11)
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f3 IIIφ(ζm3,3,7), f3 IIIφ(ζm3,5,5), f3 IIIf13, (−14f7f3 − 6f2
5 ) IIIf3 IIIf3,

(−5f5f3) IIIf3 IIIf5, f3 IIIf3 IIIf3 IIIf7, f3 IIIf3 IIIf5 IIIf5, f7 IIIf9,

25 (f5f3) III (f5f3), f5 IIIf11, f5 IIIφ(ζm3,3,5),

f3 IIIφ(ζm3,3,5)f2, f3 IIIf3 III (−5f5f3)f2, f3 IIIf11f2, f3 IIIf3 IIIf3 IIIf5f2

f3 IIIf3 IIIf3 IIIf3f
2
2 , f3 IIIf9f

2
2 , f3 IIIf7f

3
2 , f3 IIIf5f

4
2 , f3 IIIf3f

5
2 ,

φ(ζm3,3,3,5)f2, φ(ζm3,11)f2, φ(ζm5,9)f2, f5 IIIf9f2, f7 IIIf7f2 ,

φ(ζm1,1,4,6)f
2
2 , φ(ζm3,9)f

2
2 , f5 IIIf7f

2
2 , (−14f7f3 − 6f2

5 )f
3
2 ,−5f5f3f

4
2 ,

f5 IIIf5f
3
2 , f8

2 , (A.8)

with the maps φ(ζm3,3,5), φ(ζm3,9), φ(ζ
m
1,1,4,6), φ(ζm3,3,7), φ(ζ

m
3,5,5), φ(ζm3,3,3,5), φ(ζ

m
3,11), φ(ζ

m
5,9)

φ(ζm3,3,3,7), φ(ζ
m
3,3,5,5), φ(ζ

m
3,13), φ(ζ

m
5,11) and φ(ζm1,1,6,8) given in (4.28), (4.35), (4.42), (4.50)

and (4.64), respectively. The operators ai of the decomposition (4.65) are:

a1 =
720

3617

{
7

11
[∂11, ∂5]−

2

11
[∂13, ∂3]− [∂9, ∂7] +

6493

9240
[∂3, [∂3, [∂7, ∂3]]]

−
751

100
[∂3, [∂5, [∂5, ∂3]]]

}
, a2 = −

19

7
a1 +

1

14
[∂3, [∂3, [∂7, ∂3]]],

a3 =
542

175
a1 −

3

35
[∂3, [∂3, [∂7, ∂3]]] +

1

25
[∂3, [∂5, [∂5, ∂3]]],

a4 = −
19

286
[∂13, ∂3] +

3

22
[∂11, ∂5] +

2217053

16800
a1 −

200559

80080
[∂3, [∂3, [∂7, ∂3]]]

−
7011

2600
[∂3, [∂5, [∂5, ∂3]]]

a5 =
3

242
[∂13, ∂3]−

5

242
[∂11, ∂5]−

114307

7392
a1 +

23181

67760
[∂3, [∂3, [∂7, ∂3]]]

+
909

2200
[∂3, [∂5, [∂5, ∂3]]], a6 = −

1

14
[∂3, [∂3, ∂7]]∂3 +

5

7
a1,

a7 = −
1

25
[∂5, [∂3, ∂5]]∂3 +

3

35
[∂3, [∂3, ∂7]]∂3 −

6

7
a1, a8 = ∂13∂3 +

8497

42
a1,

a9 =
1

28
[∂7, ∂3]∂

2
3 +

1

7
a1, a10 =

1

5
[∂5, ∂3]∂5∂3 +

1

5
[∂5, [∂5, ∂3]]∂3,

a11 =
1

3!
∂7∂

3
3 −

1

3
a1, a12 =

1

2

(
1

2
∂2
5 +

3

14
[∂7, ∂3]

)
∂2
3 −

4

7
a1,

a13 = ∂9∂7 +
4850713

6600
a1 −

2272973

330330
[∂3, [∂3, [∂7, ∂3]]]−

299373

7150
[∂3, [∂5, [∂5, ∂3]]]

−
1275

1573
[∂13, ∂3] +

210

121
[∂11, ∂5], a14 =

1

50
[∂5, ∂3]

2,

47



a15 = ∂11∂5 +
455534

525
a1 −

601677

40040
[∂3, [∂3, [∂7, ∂3]]]−

21033

1300
[∂3, [∂5, [∂5, ∂3]]]

−
57

143
[∂13, ∂3] +

9

11
[∂11, ∂5],

a16 =
1

5
[∂3, [∂5, ∂3]]∂5 +

1

5
[∂3, [∂5, [∂5, ∂3]]]−

2

5
a1,

a17 =
1

5
c2 [∂3, [∂5, ∂3]]∂3, a18 =

1

10
c2 [∂5, ∂3]∂

2
3 ,

a19 = c2 ∂11∂3 −
11

4
[∂3, [∂3, ∂7]]∂3 −

11

2
[∂5, [∂3, ∂5]]∂3 − 137 a1,

a20 =
1

3!
c2 ∂5∂

3
3 , a21 =

1

4!
c22 ∂4

3 −
1

12
c22 a0,

a22 = c22 ∂9∂3 + 9 c2 [∂3, [∂5, ∂3]]∂3 +
799

72
c22 a0 −

2

35
[∂3, [∂7, ∂3]]∂3

+
2

5
[∂5, [∂5, ∂3]]∂3 −

11

7
a1,

a23 = c32 ∂7∂3 +
6

25
c2 [∂3, [∂5, ∂3]]∂3 − 10 c22 a0 −

16

245
[∂3, [∂7, ∂3]]∂3 +

848

245
a1,

a24 = c42 ∂5∂3 −
4

35
c2 [∂3, [∂5, ∂3]]∂3 +

1

5
c22 a0 +

48

35
a1,

a25 =
1

2
c52 ∂2

3 +
18

35
c22 a0 +

408

2695
a1, a26 =

1

5
c2 [∂3, [∂3, [∂5, ∂3]]],

a27 = −
23

198
c2 [∂11, ∂3] +

5

18
c2 [∂9, ∂5]−

12841

1188
c2 [∂3, [∂3, [∂5, ∂3]]]−

1991

14
a1

+
121

28
[∂3, [∂3, [∂7, ∂3]]]−

7

2
[∂3, [∂5, [∂5, ∂3]]],

a28 =
1

27
c2 [∂11, ∂3]−

2

27
c2 [∂9, ∂5] +

232

81
c2 [∂3, [∂3, [∂5, ∂3]]] +

697

21
a1

−
47

42
[∂3, [∂3, [∂7, ∂3]]] + [∂3, [∂5, [∂5, ∂3]]],

a29 = c2 ∂9∂5 + 9 [∂3, [∂5, ∂3]]∂5 −
23

33
c2 [∂11, ∂3] +

5

3
c2 [∂9, ∂5]−

12443

14
a1

−
12775

198
c2 [∂3, [∂3, [∂5, ∂3]]] +

363

14
[∂3, [∂3, [∂7, ∂3]]]− 21 [∂3, [∂5, [∂5, ∂3]]],

a30 =
1

2
c2 ∂2

7 −
235

396
c2 [∂11, ∂3] +

55

36
c2 [∂9, ∂5]−

647287

11880
c2 [∂3, [∂3, [∂5, ∂3]]]

48



−
78201

140
a1 +

967

56
[∂3, [∂3, [∂7, ∂3]]]−

333

20
[∂3, [∂5, [∂5, ∂3]]], a31 = c22 a0,

a32 =
1

27
c22 [∂9, ∂3] +

2665

648
c22 a0 +

2

3
c2 [∂3, [∂3, [∂5, ∂3]]]−

8954

1575
a1

+
4

35
[∂3, [∂3, [∂7, ∂3]]]−

4

75
[∂3, [∂5, [∂5, ∂3]]],

a33 = c22 ∂7∂5 +
2

9
c22 [∂9, ∂3] +

6

25
[∂3, [∂5, ∂3]]∂5 −

467

108
c22 a0 + 4 c2 [∂3, [∂3, [∂5, ∂3]]]

−
21331

525
a1 +

24

35
[∂3, [∂3, [∂7, ∂3]]]−

8

25
[∂3, [∂5, [∂5, ∂3]]],

a34 =
1

14
c32 [∂7, ∂3]− 3 c22 a0 −

62

245
a1 +

2

245
[∂3, [∂3, [∂7, ∂3]]],

a35 =
1

5
c42 [∂5, ∂3]−

3

5
c22 a0 +

4

175
c2 [∂3, [∂3, [∂5, ∂3]]] +

108

875
a1,

a36 = c32

(
1

2
∂2
5 +

3

14
[∂7, ∂3]

)
−

4

35
[∂3, [∂5, ∂3]]∂5 −

7

2
c22 a0

−
284

245
a1 +

6

245
[∂3, [∂3, [∂7, ∂3]]]−

2

35
[∂3, [∂5, [∂5, ∂3]]], a37 = c82 , (A.9)

acting on φ(ξ16). Again, we have used the operator a0 defined in (A.3).
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