Balance of human choline kinase isoforms is critical for cell cycle regulation

Implications for the development of choline kinase-targeted cancer therapy

Jens Gruber1,*,†, Wei Cun See Too1,2,*, Mun Teng Wong2, Arnon Lavie3, Theresa McSorley1 and Manfred Konrad1

1 Enzyme Biochemistry Research Group, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
2 School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
3 Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA

Keywords
anti-cancer strategy; cell cycle regulation; choline kinase; siRNA knockdown; subcellular localization

Correspondence
M. Konrad, PhD, Am Fassberg 11, D-37077 Goettingen, Germany
Fax: +49 551 2011074
Tel: +49 551 2011706
E-mail: mkonrad@gwdg.de
or
W. C. See Too, PhD, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
Fax: +60 9 7677515
Tel: +60 9 7677537
E-mail: stweicun@kb.usm.my

*These authors contributed equally to this work
†Present address
German Primate Center, D-37077 Goettingen, Germany

The enzyme choline kinase (CK), which catalyzes the phosphorylation of choline to phosphorylcholine in the presence of ATP, has an essential role in the biosynthesis of phosphatidylcholine, the major constituent of all mammalian cell membranes. CK is encoded by two separate genes expressing the three isoforms CKα1, CKα2 and CKβ that are active as homodimeric or heterodimeric species. Metabolic changes observed in various cancer cell lines and tumors have been associated with differential and marked up-regulation of the CKα genes, and specific inhibition of CKα activity has been proposed as a potential anti-cancer strategy. As a result, less attention has been given to CKβ and its interaction with CKα. With the aim of profiling the intracellular roles of CKα and CKβ, we used RNA interference (RNAi) as a molecular approach to down-regulate the expression of CK in HeLa cells. Individual and simultaneous RNAi-based silencing of the CKα and CKβ isoforms was achieved using different combinations of knockdown strategies. Efficient knockdown was confirmed by immunodetection using our isoform-specific antibodies and by quantitative realtime PCR. Our analyses of the phenotypic consequences of CK depletion showed the expected lethal effect of CKα knockdown. However, CKβ- and CKα + CKβ-silenced cells had no aberrant phenotype. Therefore, our results support the hypothesis that the balance of the α and β isoforms is critical for cancer cell survival. The suppression of the cancer cell killing effect of CKα silencing by simultaneous knockdown of both isoforms implies that a more effective CK-based anti-cancer strategy can be achieved by reducing cross-reactivity with CKβ.

Abbreviations
AKT, serine/threonine-specific protein kinase, a downstream target of PI3K; CCl4, carbon tetrachloride; CK, choline kinase; FITC, fluorescein isothiocyanate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GL2, Photinus pyralis luciferase gene; MAPK, mitogen-activated protein kinase; PAH, polycyclic aromatic hydrocarbon; PCho, phosphocholine; PI3K, phosphatidylinositol 3-kinase; RNAi, RNA interference; siRNA, small interfering RNA; TUNEL, TdT-mediated biotin–dUTP nick-end labeling.
Introduction

Choline kinase (CK) (EC 2.7.1.32) catalyzes the phosphorylation of choline by ATP in the presence of Mg$^{2+}$ to yield phosphocholine (PCho) and ADP [1]. This step commits choline to the so-called Kennedy or CDP-choline pathway for the biosynthesis of phosphatidylcholine, which represents the most abundant class of phospholipids in eukaryotic cells, constituting 40–60% of the phospholipid content in cell membranes [2]. In addition to forming the major structural component of the membrane bilayer, phosphatidylcholine also serves as a precursor for the production of lipid second messengers [3].

In mammals, including humans, CK is encoded by two separate genes named ck-α and ck-β. While ck-β codes for a single protein, CKβ (395 amino acids; NCBI accession number NP_005189), ck-α undergoes alternative splicing and is thus responsible for producing the two CK isoforms, α_1 (439 amino acids; NCBI accession number NP_997634) and α_2 (457 amino acids; NCBI accession number NP_001268), which differ by the presence of an 18-residue insert in α_2 [4]. Human CKα_1 and CKβ are 60% identical. Multiple genes, splice variants and studies showing differential regulation of multiple isoforms suggest that modulation of CK activity may occur predominantly at the level of gene expression [5]. However, in vivo and in vitro evidence for protein kinase-dependent phosphorylation of yeast and human CK indicates that the regulation of CK may also take place at the protein level [6–9]. Mammalian CK α and β isoforms are ubiquitously expressed in different tissues, as shown by northern and western blots [10]. One of the most intriguing characteristics of mammalian CK is its inducibility under various experimental conditions [1]. Polycyclic aromatic hydrocarbon (PAH) carcinogens caused long-lasting activation of rat and mouse hepatic CK [11,12], and the hepatotoxin carbon tetrachloride (CCL$_4$) also caused strong, but transient, induction of hepatic CK activity. The induction of hepatic CK by PAH and CCL$_4$ was found to be associated with increased expression of CK genes [11,13].

Interaction between the CK α and β isoforms to generate different combinations of dimeric complexes was first shown in mouse tissues [10]. More recently, physical interaction between the CK α and β isoforms to form different, enzymatically active, dimeric complexes was confirmed by the co-expression of mouse CKα and CKβ in COS-7 cells [4]. It was shown that about 60% of the total CK activity in mouse liver was attributable to the α/β heterodimeric species of the enzyme [10]. It has also been reported that the specific activity of α/α can be much higher than that of β/β [4]. Thus, the activity of CK in a given cell type could be regulated not only at the level of each isoform, but also through combination of the three isoforms (α_1, α_2 and β). However, the effect of interaction between different isoforms on the catalytic properties of dimeric (or higher oligomeric) CK still awaits further investigation. Recently, several essential domains and amino-acid residues important for the formation of active dimers have been identified by structural and mutational analyses of human and mouse CKα and CKβ [14,15].

Both CK and its reaction product, PCho, have been implicated in cell proliferation and transformation [16]. Generation of PCho was described as an essential event in growth factor-induced mitogenesis in fibroblasts [17,18] and PCho was found to cooperate with several mitogens [19]. Increased CK activity was reported in human breast cancer, and overexpression of CK is frequently observed in lung, prostate and colorectal cancers [20]. Increased levels of CKα were also detected in epithelial ovarian cancer [21] and in bladder carcinomas [22]. Furthermore, overexpression of several oncogenes (ras, src and mos) induces increased levels of CK and of PCho [23–26]. CK is activated by Ras proteins through a signaling pathway that involves two of their best-known effectors: Ral guanine nucleotide dissociation stimulator (Ral-GDS) and phosphatidylinositol 3-kinase (PI3K) [24]. CK, itself, was also shown to behave as an oncogene and was found to lie downstream of the RhoA GTPase-dependent signaling cascade [27]. Increased CK activity and elevated levels of PCho were found in human colon cancer [28] and in 1,2-dimethylhydrazine-induced rat colon cancer [29], as well as in human breast carcinomas [30]. Overexpression of CK was detected in a large panel of tumor-derived cell lines and in lung, prostate and colorectal cancers [31]. In addition, studies using NMR techniques have also shown elevated levels of PCho in various human tumoral tissues [32–34]. Elevation of the PCho content in breast cancer, detected by NMR spectroscopy, was consistent with the overexpression of CK as detected by microarray analyses [35]. These findings strongly support the role of CK in human cancer pathogenesis and suggest that the levels of CK and PCho could be used as tumor markers [36]. More recently, higher levels of CKα, but not of CKβ, were detected in multiple human breast cancer cell lines [37,38]. CKα was also considered as a potential prognostic factor for identifying nonsmall-cell lung cancer patients with a high risk of recurrence [39].
Specific inhibition of CK activity has been proposed as a promising anti-cancer strategy [26,40], and CK small-molecule inhibitors have been demonstrated to be potent anti-tumor drugs, both in vitro and in vivo [41,42]. Although the toxicity and side effects of CK inhibitors have largely been minimized [26], the long-term effect of such CK inhibitors on the tumor phenotype is still unknown [43]. As an alternative to enzyme inhibition, RNA interference (RNAi) offers a molecular approach to down-regulate the expression of specific target genes in mammalian cells. RNAi has also been used for dissecting the molecular basis of human diseases such as cancer [44]. Efforts to translate RNAi technologies into therapies for human diseases have surged in recent years, and RNAi-based drugs were found to have the potential of being more selective than traditional drugs [45]. RNAi knockdown of CKα in breast cancer cells was shown to reduce proliferation and to promote differentiation [43], and lentivirus-mediated CKα knockdown inhibited the growth of a human breast cancer xenograft [46]. Specific blockage of expression of the CKα isoform stimulated apoptosis [47] and selectively killed tumor cells, but not normal cells [48]. At the organismal level, the critical role of CK was shown in mice where CKα knockout resulted in early embryonic lethality [49], while CKβ knockout caused rostrocaudal muscular dystrophy [50]. Mutations in the gene encoding CKβ were also found in individuals with congenital muscular dystrophy [51].

The involvement of CKα in cancer pathogenesis has been well established, and drug inhibition of its activity or the knockdown of its gene expression, was proposed for potential cancer therapy [20,52]. However, the effect of simultaneous knockdown of both CKα and β isoforms on cancer cell growth has yet to be studied. Only recently was it shown that single or combined knockdown of CKα and CKβ reduced Akt(Ser473) phosphorylation to a similar level [53].

In this study, we explored a way of further profiling the intracellular roles of CKα and CKβ by individual and simultaneous RNAi knockdown of these two isoforms in HeLa cells. We designed siRNAs to induce the knockdown of human CKα and β isoforms and showed that single and double knockdowns can be achieved efficiently. Knockdown of CKα displayed a lethal phenotype; however, knockdown of CKβ resulted in no evident change in phenotype. Interestingly, the double knockdown appeared to reverse the lethality induced by the CKα single knockdown. Our results show the importance of interaction between CKα and CKβ, or their balanced expression levels, for cell cycle regulation. In addition, we observed both cytoplasmic and nuclear localization of CKα. These data may have implications for targeting CKα as a potential anti-cancer strategy.

Results

Both CKα and β isoforms were successfully silenced, individually or simultaneously, in HeLa cells by siRNA transfection

The efficient silencing of CKα and CKβ in single- and double-knockdown experiments was confirmed by western blotting and quantitative RT-PCR. Cells were examined 24 and 48 h after transfection. Both single and double silencing resulted in the reduction of target isoforms below the levels detectable by western blotting (Fig. 1A). The results showed that silencing of CKα and CKβ had already taken place 24 h after transfection, even though the lethal phenotype of α-specific siRNA-transfected HeLa cells was only evident 48 h after transfection (see later). The real-time PCR results (Fig. 1B) showed that our siRNAs efficiently knocked down the targeted CK isoforms with efficiencies of 60–80%. The relative mRNA levels of CK isoforms under different siRNA treatments are shown in Fig. S1.

The highly specific CKα polyclonal antibody [38] was used to detect CKα by indirect immunofluorescence (Fig. 1C). The immunofluorescence data were consistent with the results obtained by immunoblotting and quantitative RT-PCR. Lower Rhodamine Red staining intensities in siCKα single knockdown and double siCKα+β double-knockdown cells, compared to cells treated with siGL2 or siCKβ, indicate efficient silencing of CKα. The CKβ siRNA-treated cells showed Rhodamine Red staining intensity that was very similar to cells treated with negative-control siRNA, indicating that the single silencing of CKβ did not affect the cellular level of CKα.

The basic goal of this study, namely the specific silencing of the individual human CK isoforms as well as the simultaneous knockdown of both genes, was achieved with proven efficiency. The phenotypic outcomes observed with different combinations of CKα- and CKβ-specific siRNA treatments (presented later) also provide additional support for the successful knockdown of both isoforms. The possibility of reduced CKα RNAi knockdown efficiency as a result of competition between CKα and CKβ siRNAs during co-transfection can be ruled out because western blotting and quantitative real-time PCR confirmed the drastically reduced level of CKα in double-knockdown cells.
CKα locates to the cytoplasm and also to the nucleoplasm, and its protein levels increase during mitosis

For a more quantitative view of the subcellular localization of CKα, we compared the protein levels in immunoblotted extracts of the nuclear and cytoplasmic fractions as well as in the total cell extract of HeLa cells using the CKα-specific antibody. In addition, we included extracts from mitotic cells in this assay. To exclude cross-contamination with nucleoplasmic or cytoplasmic components, the purity of extracts was confirmed by parallel probing of the blots with antibodies against cytoplasmic vimentin and nucleoplasmic lamin A/C.

Lamin A/C was detected in whole-cell extract, nucleoplasm and, to a lower extent, in the extract of mitotic cells, but not in cytoplasmic extract. The opposite was observed for cytoplasmic vimentin, which was present only in whole-cell and cytoplasmic extracts. However, CKα was found in all extracts tested (Fig. 2A). A higher level of CKα was detected in HeLa mitotic cell extract compared with whole-cell extract (Fig. 2A, lanes 1 and 4). These data indicate an unexpectedly high level of the enzyme within the nuclei of cells (compare lanes 2 and 3) and increased expression levels of CKα during mitosis (compare lanes 1 and 4). This finding was supported by separate indirect immunofluorescence microscopy in which a majority of cells displayed a higher level of CKα in the cytoplasm, but also a smaller fraction of cells (about 20%) with increased levels of CKα in their nuclei, as shown for a...
population of HeLa cells in Fig. 2B. High levels of CKα were also present in mitotic cells (Fig. 2B, right panel), and staining with antibody showed a strong overlap of CKα with the mitotic spindle apparatus (see indirect immunofluorescence of mitotic spindle described below).

The nuclear localization of CKα was also supported by structure analysis using the sequence-based subcellular localization prediction program, PSORT II [54]. Both human CKα1 and CKα2 are predicted to localize in the nucleus, with a nuclear localization probability of 60.9% for CKα2 and of 52.2% for CKα1.

Individual silencing of CKα leads to a lethal phenotype and is rescued by simultaneous knockdown of CKα and CKβ

Silencing of human CK isoforms was originally aimed at investigating the phenotypic effect that might arise from elimination of these enzymes in vivo. At the same time, silencing of CKα and CKβ, separately and in combination, would answer the question of whether the two isoforms could complement each other’s function, and whether knockdown of these two isoforms would result in a lethal phenotype, which would indicate that these two isoforms are essential enzymes for phosphatidylcholine synthesis.

Figure 3 shows the live cell imaging of HeLa cells treated with siRNAs targeting CKα and CKβ. The same adherent population of cells was located on CELLocate™ coverslips (Eppendorf) and photographed at 24- and 48-h time-points after transfection. The fate of a specific cell cluster could be followed during the entire course of the experiment. For single silencing of CKα, no apparent abnormal phenotype was detectable 24 h after transfection, and the cells appeared to multiply normally, with confluence similar to that of the negative control. However, a lethal phenotype was observed 48 h after transfection. Almost 90% of the total cell population died at this stage. Upon single silencing of CKβ, the cells showed no sign of abnormality up to 48 h after transfection. Surprisingly, however, double silencing of CKα and CKβ did not lead to lethality. Cells undergoing this combined silencing displayed a normal phenotype up to 48 h post-transfection. Thus, the siCKα single knockdown was lethal, although the level of CKβ protein was unchanged. On the other hand, the cells survived when the levels of both isoforms were reduced in double-knockdown experiments. Similar results were obtained with the MCF-7 cell line (Fig. S2). The lethal phenotype of single CKα knockdown was apparent at 72 h post-transfection, with more than 60% cells being dead at this stage, whereas single CKβ and double CKα + CKβ knockdowns displayed a phenotype similar to that of the control. The onset of effects was observed ~24 h later than in HeLa cells. This is a result of the longer doubling times of MCF-7 cells (~36 h) [55] when compared with HeLa cells (~22 h). These results strongly suggest that the balance between CKα and CKβ dictates cell survival such that knockdown of CKβ reduces, or abolishes, the cell-killing effect of single CKα knockdown.

Only individual silencing of CKα leads to aberrant mitotic arrest and subsequent apoptosis

Indirect immunofluorescence (Fig. 4A) showed defects of the mitotic spindles of HeLa cells in the absence of...
Surprisingly, these abnormal spindle structures were not observed when both CKα and CKβ were silenced in parallel. Similarly, the single knockdown of CKβ also did not produce an aberrant mitotic phenotype. The siGL2 control showed normal mitotic spindles (Fig. S3, upper panels).

To further investigate the mechanism of cell death observed in single CKα silencing, a TdT-mediated biotin–dUTP nick-end labeling (TUNEL) assay was performed to identify cells with apoptosis-typical DNA double-strand breaks. An apoptotic effect was seen only in HeLa cells transfected with CKα-selective siRNA. The cells underwent aberrant mitotic arrest followed by apoptotic cell death in the gross majority of cells (> 75%) (Fig. 4B). Silencing of CKβ did not induce mitotic arrest and/or apoptosis. Also, simultaneous knockdown of both CKα and CKβ did not induce the effects observed for CKα silencing alone, and only a very small subpopulation (< 10%) of the cells displayed severe apoptotic effects.

A higher percentage of cells with mitotic defects and apoptosis was only observed for siCKα-treated HeLa cells 44 h after transfection (Fig. 4C). The level of mitotic defects and apoptosis for control, siCKβ and siCKα + siCKβ-transfected cells were similar throughout the experiment. As shown in Fig. 4D, the growth of siCKα-treated cells started to decline 48 h after transfection. Although the overall growth rates of the cells transfected with siCKβ alone, or with both siCKα and siCKβ, were slightly reduced when compared with wild-type (untreated) and control (siGL2-transfected), the general appearance of the cells upon transfection was normal.
Levels of CKα and CKβ play an essential role in progression through mitosis, but not in resting cells or during DNA replication

The significance of alteration of endogenous CKα and CKβ expression levels on the cell cycle was analyzed using synchronized HeLa cells. Cells arrested in the G0/G1 phase by serum starvation for 24–28 h were transfected with CKα, CKβ, or both, siRNAs (Fig. 5A). Apoptosis of these cells was not observed for up to 70 h after transfection (Fig. 5B). After release of the cells from serum starvation, by addition of fetal bovine serum to 10% v/v to the culture medium, the majority of cells re-entered cell cycle and died by apoptosis in the absence of CKα. Simultaneous silencing of CKα and CKβ in G0/G1-arrested cells did not induce apoptotic cell death after release from arrest in the G0/G1 phase. These cells properly completed their progression through mitosis. This indicates a critical importance of CKα expression levels relative to CKβ expression levels for progression through mitosis, whereas this imbalance does not play an essential role in resting cells.

To determine whether crucial effects arise during S phase (i.e. during DNA replication prior to mitotic entry), a double thymidine block was applied in combination with siRNA delivery. In this approach, DNA replication was inhibited by an excess of thymidine in the medium, or by addition of the DNA polymerase inhibitor, aphidicholin, resulting in a cell population stalled in S phase. As in the case of resting cells, no apparent differences between cells treated with control siRNA or siRNAs targeting CKα and/or CKβ were observed, indicating that the lack of CKα alone has no essential role in this phase of the cell cycle. After release from double thymidine-induced S-phase arrest, siCKα-treated cells displayed disordered microtubular structures, and cells that could not progress to metaphase showed apoptotic cell death (Fig. 6A). Double-silenced cells (siCKα + siCKβ), as well as cells transfected with siCKβ only, progressed successfully to mitosis. Silencing-linked apoptosis was not observed for either of these treatments. In both populations, ~50% of the cells showed synchronous transition to mitosis. The siGL2 control had a normal microtubular structure and no apoptosis after release from S-phase arrest (Fig. S3, lower panels). Figure 6B shows efficient knockdown of CKα by siCKα and siCKαβ in aphidicholin-induced S-phase arrest cells. Quantitative analysis of S-phase arrested cells (Fig. 6C) confirmed that CKα is not required during S phase but is essential for mitotic progress (metaphase or later). Few mitotic cells were seen during the double-thymidine block, and apoptosis was hardly observable in the blocking period. The absence of apoptosis in siCKα-transfected cells during S-phase arrest indicates that CKα is not essential in S phase. After release from the arrest, a majority of cells passed synchronously through mitosis, except for those cells transfected only with siCKα, which progressed directly into apoptotic cell death.

Microtubule-destabilizing agents are used to arrest cells at the mitotic entry point by inhibiting kinetochore attachment and thereby chromosome congression. In
our study, we used colchicine to suppress mitotic spindle formation in CK-silenced cells. In contrast to the cells that were transfected with siCKα alone, or with both siCKα and siCKβ, the CKα-knockdown cells were not capable of establishing proper mitotic spindle formation after release from mitotic entry arrest (Fig. 6D). Immediately after release from colchicine treatment, control cells and those lacking both CKs synchronously progressed to the metaphase without major defects. CKα-deficient cells suffered from severe mitotic defects and directly underwent apoptotic cell death, as shown by α-tubulin staining and by staining chromatin with Hoechst 33342. Double-knockdown of CKα and CKβ did not result in highly disordered spindle microtubules, inadequate kinetochore attachment and severely disturbed chromosome congression, as seen in the case of single CKα knockdown (Fig. 6D).

Discussion

Systematic knockdown of human CK isoforms by the RNAi technique is an attractive way to analyze the role of different isoforms, as well as to probe for any...
unexpected functions of these enzymes. In this study, we have confirmed, by immunodetection and quantitative RT-PCR, that siRNAs efficiently silence CKα and CKβ in both single- and double-knockdown experimental conditions. Our work demonstrates the potent apoptotic effect displayed by the CKα-specific siRNA. More importantly, we found that simultaneous knockdown of CKα and CKβ did not enhance the lethal effect of single knockdown of CKα, but rather prevented cell killing. Our results are in accordance with previous reports on reduced proliferation of malignant cell lines by specific CKα knockdown [43,46,48,56]. Large-scale RNAi knockdown screening, aiming to identify human kinases that regulate cell survival and apoptosis, also showed that single knockdown of human CKα increased apoptosis by about twofold [47]. Owing to the relevance of CKα in human carcinogenesis, the role of CKβ has been largely neglected. Only recently was RNAi knockdown of CKβ plus CKα performed to investigate the effect of CK knockdown on Akt protein kinase phosphorylation [53]. However, the authors did not analyze the effect of double knockdown on cell proliferation.

Mammalian Cks are thought to be cytoplasmic enzymes [1]. Yet, the nuclear localization of CKα, as observed in this study, supports the notion that the presence of CDP-choline pathway enzymes, including CK in the nucleus, is required for the synthesis of endonuclear phosphatidylcholine, which, in turn, is an important source of diacylglycerol for nuclear lipid signaling [57–59].

Inhibition of, or defects in, the CDP-choline pathway are known to result in cell cycle arrest and apoptosis [60,61]. The same phenotypes were observed in the case of our single CKα knockdown. In this report, we highlight the absence of apoptosis when both isoforms were knocked down in proliferating HeLa cells. Double-knockdown cells were able to enter mitosis without showing disrupted chromosome congression, as seen in the single CKα knockdown cells. According to our observation, we propose that a higher level of CKα compared with CKβ is required for the proliferation of cancer cells. Under single CKα knockdown, the level of CKβ exceeds that of CKα, which suppressed cell growth and induced apoptosis. However, under double knockdown of CKα and CKβ with similar knockdown efficiencies, the level of CKα became higher than the level of CKβ (as a result of its higher initial level in cancer cells), thus fulfilling the requirement for cell proliferation. Our results clearly show that double knockdown of CKα and CKβ can rescue the cells from apoptotic cell death in single CKα-silenced cells. Therefore, exclusive silencing of CKα is critical when using RNAi as a potential novel anti-cancer approach. More importantly, if the effects of CKα and CKβ knockdown are related to the activities of these enzymes, this would imply that specific inhibition of CKα alone is the best way to induce apoptosis. Therefore, we believe that inhibition of CK activity as an anti-cancer strategy must focus on the specific inhibition of CKα, without affecting the activity of CKβ, in order to induce maximum apoptosis in the target cancer cells.

Furthermore, the results of CKα and CKβ silencing experiments performed in this work suggest other unexpected and essential roles of the interaction between these enzymes in the cell cycle, particularly in the progression to the mitotic phase. The apoptotic effect seen in cells treated with single CKα knockdown cannot be explained by the simple loss-of-function hypothesis because cells treated with double CKα and CKβ knockdown displayed a viable phenotype. According to Yalcin et al. [62], selective RNAi inhibition of CKα decreases the steady-state concentrations of phosphatidylcholine and phosphatidic acid, attenuates mitogen-activated protein kinase (MAPK) and PI3K serine/threonine-specific protein kinase (AKT) survival pathways, and markedly reduces the survival of HeLa cells. In our study, the simultaneous depletion of both CKα and CKβ might re-activate MAPK and PI3K/AKT pathways through the production of phosphatidic acid, the key activator of these two signaling pathways. Overexpression of CKα and CKβ in HEK293T cells revealed a distinct metabolic role of the two isoforms in vivo and showed that both were regulated differently by Ras and Rho GTPases [52]. Our results suggest that CKα and CKβ are components of different signaling pathways that might interact to determine cell survival and proliferation.

In summary, this work has shown efficient siRNA-mediated individual and simultaneous knockdown of human CKα and CKβ isoforms in HeLa and MCF-7 cells. Silencing of CKα alone inhibited progression of cells into the mitotic phase and subsequently resulted in apoptosis. Remarkably, double knockdown of both CKα and CKβ isoforms rescued the cells from undergoing apoptosis. Our work implies that RNAi-based silencing of CK expression can be used as a potential anti-cancer strategy by emphasizing the specific knockdown or inhibition of the CKα isofrom to induce apoptosis.

Experimental procedures

Cell lines and cell cycle synchronization

Human cervix epithelial carcinoma cells, HeLa SS6, and human breast adenocarcinoma cells, MCF-7, were maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 10% (v/v) fetal calf serum and supplemented with...
100 U·mL⁻¹ of penicillin/streptomycin antibiotic mix (Sigma, St Louis, MO, USA). For G0/G1 arrest, cells were cultured under serum-starvation conditions (0.25% fetal calf serum in culture medium) for 24 h prior to siRNA transfection and continued to starve until final examination of the samples. S-phase arrest was induced by a double-thymidine block, by adding 0.2 mM thymidine to the culture medium for 10 h to block DNA replication. The medium was replaced with standard culture medium for 3 h and subsequently supplemented with 0.2 mM thymidine, again for 10 h prior to transfection. Alternatively, S-phase arrest was forced by adding 0.5 µg·mL⁻¹ of aphidicholin to the culture medium for 16 h to inhibit polymerase activities. Mitotic entry arrest was induced by supplementing the culture medium with 7.5 µg·mL⁻¹ of microtubule-destabilizing colchicine for 60 min shortly after siRNA transfection. Release from mitotic or S-phase arrests was performed by removing the medium, washing the cells twice with prewarmed sterile NaCl/Pi, and adding fresh standard culture medium. To determine the percentage of mitotic and apoptotic cells, 1000–1500 cells per probe were counted manually, and the number of mitotic or apoptotic cells in the same population was determined.

Cell extracts and antibodies

SDS/PAGE and western blotting were performed according to standard protocols. HeLa cell lysates were prepared by suspending the cells in lysis buffer containing 10 mM K₂HPO₄, 150 mM NaCl, 5 mM EDTA, 5 mM EGTA, 1% Triton X-100, 0.2% deoxycholate and protease inhibitor cocktail (Roche, Mannheim, Germany), pH 7.4. The cell suspension was homogenized and cell debris was precipitated by centrifugation. The protein concentration of the suspension was determined by the dye-binding method. Cell extracts and antibodies

K₂HPO₄, 150 mM NaCl, 5 mM EDTA, 5 mM EGTA, 1% Triton X-100, 0.2% deoxycholate and protease inhibitor cocktail were used to prepare cell extracts. Affinity-purified horseradish peroxidase-conjugated goat anti-mouse and goat anti-rabbit immunoglobulins were from Dako. Purified horseradish peroxidase-conjugated goat anti-mouse IgG was produced by immunizing rabbits with highly purified recombinant human CKisoforms of CK, while siCKb was CKb specific. The following siRNA sequences are given in 5’ to 3’ orientation, and the position numbers are relative to the first nucleotide of the ORF.

siCKa (a2 position numbers 636–654; the sequence is also shared with a1 at position numbers 582–600): CGAUUAGAUACUGAAGAA

siCKb (position numbers 503–521): CCACGAAGAUGGCAGAAUU

Indirect immunofluorescence microscopy

Immunofluorescence staining and microscopy were performed according to standard protocols [66]. Cells were fixed in 3.7% paraformaldehyde for 30 min, followed by permeabilization in 0.2% Triton X-100 in NaCl/Pi, for 5 min. Subsequently, 30 µL of primary antibody per coverslip were applied evenly onto the cells and incubated at 37 °C for 1 h. After washing three times in NaCl/Pi, 30 µL of secondary antibody was spread evenly on the cells. The coverslips were incubated for 45 min at 37 °C followed by three washes in NaCl/Pi. Monoclonal anti-(a-tubulin) was kindly provided by M. Osborn (MPIbpc). Fluorescein isothiocyanate (FITC)- or rhodamine-conjugated goat anti-mouse and rhodamine-conjugated goat anti-rabbit IgGs were from Dako. DNA was visualized by staining with Hoechst 33342 dye.

TUNEL assay

For detection of apoptosis, a TUNEL test (In Situ Cell Death Detection Kit; Roche) was performed, as described previously [66]. Transfected cells grown for 60 h were fixed in −20 °C methanol for 6 min and treated with NaCl/Pi containing 0.1% Triton X-100 and 0.1% sodium citrate on ice for 2 min. Free 3’ ends of fragmented DNA were enzymatically labeled with FITC-tagged dNTPs using terminal deoxynucleotidyl transferase (TdT). Labeled DNA fragments were monitored by fluorescence microscopy.

Growth rate determination

The examination of growth rates after transfection, and the detection of dead cells in the cell suspension were carried out using the Cell Counter and Analysis System (CASY® Model TT; Schärfe System, Munich, Germany). For CASY measurements, medium from one well of a six-well plate containing siRNA-transfected cells was discarded and the cells were trypsinized with 0.25 mL of trypsin/EDTA solution. After 1 min of incubation at 37 °C, the trypsin was quenched by the addition of 1.5 mL of DMEM + 10% FCS. Then, 100 µL of this solution was mixed with 10 mL of CASY®ton (Schärfe System GmbH, Reutlingen, Germany) isotonic dilution liquid and used directly for cell counting. When the cell numbers were too high, the solution was diluted further with CASY®ton.

Design of siRNAs and transfection

The siCKa probe was designed to target both a1 and a2 isoforms of CK, while siCKb was CKb specific. The following siRNA sequences are given in 5’ to 3’ orientation, and the position numbers are relative to the first nucleotide of the ORF.

siCKa (a2 position numbers 636–654; the sequence is also shared with a1 at position numbers 582–600): CGAUUAGAUACUGAAGAA

siCKb (position numbers 503–521): CCACGAAGAUGGCAGAAUU

 Knockdown of human choline kinase α and β isoforms J. Gruber et al.

Noncognate siGL2, targeting firefly luciferase (position numbers 153–175): CACGUACGCGAAUAUCUUGAAA siEg5 motor protein (position numbers 1547–1569): AACUGGAUCUGUAAGAGCCAGUU

Transfection of siRNA with oligofectamine (Invitrogen) was performed as described previously [66]. The cells were seeded in 24-well plates 20 h prior to transfection, and for microscopic analysis, they were grown on glass coverslips. The oligofectamine–siRNA mixture was added to a final concentration of 100 nM siRNAs in the culture medium.

Quantitative real time-PCR

The silencing of CKα and CKβ expression was also determined by quantitative RT-PCR. Total RNA was isolated using the RNeasy Mini kit (Qiagen, Hilden, Germany). Total RNA from control and different siRNA-treated cells was reverse-transcribed using the Omniscript reverse transcription kit (Qiagen). The reaction consisted of 1.0 μL of 10× Omniscript RT buffer, 1.0 μg of total RNA and distilled deionized water to a final volume of 7.5 μL. The mixture was heated to 65 °C for 5 min to denature RNA, 1.0 μM of oligo-dT primer (Stratagene, La Jolla, CA, USA) was added and the reaction was incubated at room temperature for 10 min before the addition of 2.0 units of Omniscript reverse transcriptase and dNTPs to a final concentration of 0.5 mM. The reaction was incubated at 37 °C for 2 h.

The cDNAs generated were subjected to quantitative real time-PCR utilizing SYBR Green chemistry (Applied Biosystems, Carlsbad, CA, USA) on an ABI7500 cycler. Primer sets for total CKs α or specific for CKα2 as well as for CKβ were used, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as the normalization target. Quantitative RT-PCR (qRT-PCR) was performed, according to the manufacturer’s guidelines, for 35 cycles in 20-μL reactions with 20 ng of cDNA template and 200 nM primer. Analysis was performed as described previously [67]. DDCt is defined as the difference between the DCT threshold cycle values of each siRNA treatment and the ΔCT value of siGL2 (control). Primer sequences for CK isoform-specific sets are given as follows (each in 5 ’ to 3 ’ orientation). Total CKα forward: tcagcagaaactctggaag (position numbers 1031–1051 in the CKα1 cDNA sequence or position numbers 1085–1105 in the CKα2 cDNA sequence); reverse: ggcgttagctactgtacctcagc (position numbers 1248–1269 in the CKα1 cDNA sequence or position numbers 1302–1323 in the CKα2 cDNA sequence). CKα2 forward: ggcgttagctactgtacctcagc (position numbers 355–375 in both CKα1 and CKα2 cDNA sequences); reverse: agcttgttcagagccctctt (located in the cDNA sequence unique to CKα2, position numbers 476–495). CKβ forward: atgttcgcacttctg (position numbers 364–383 in the CKβ1 cDNA sequence); reverse: aattgcgcagctcttc (position numbers 503–521 in the CKβ cDNA sequence).

Primers for the GAPDH reference gene were from Hs_GAPDH_1_SG QuantiTect Primer Assay kit (Qiagen). All data are representative of triplicate experiments.

Acknowledgements

W.C.S.T. was supported by the Academic Staff Training Scheme of Universiti Sains Malaysia. J.G. and T.M. were supported by the German Research Foundation (DFG). M.T.W. was supported by Universiti Sains Malaysia Postgraduate Fellowship. This work was partly supported by Universiti Sains Malaysia RU grant (1001/PPSK/813034).

References

11. Ishidate K, Tsuruoka M & Nakazawa Y (1980) Induction of choline kinase by polyycyclic aromatic...
hydrocarbon carcinogens in rat liver. *Biochem Biophys Res Commun* 96, 946–952.

kinase: their role in cancer development and their potential as drug targets. Prog Cell Cycle Res 5, 191–201.

Supporting information

The following supplementary material is available:

Fig. S1. Relative levels of total CKα, CKα2 and CKβ mRNAs in HeLa cells under different siRNA treatments were determined by quantitative real-time RT-PCR.

Fig. S2. Individual and double silencing of human CK isoforms in MCF-7 cells produce similar phenotype as in HeLa cells.

Fig. S3. HeLa cells transfected with siGL2 (negative control) showed normal mitotic spindles and displayed normal microtubular structure with no apoptosis after release from S-phase arrest.

This supplementary material can be found in the online version of this article.

Please note: As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be reorganized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.