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Kinetic and mass mixing with three abelian groups

Julian Heeckﬁ and Werner Rodejohamﬂ
Maz—Planck—Institut fiir Kernphysik,
Postfach 103980, D-69029 Heidelberg, Germany

We present the possible mixing effects associated with the low-energy limit of a Standard-Model
extension by two abelian gauge groups U(1); x U(1)2. We derive general formulae and approximate
expressions that connect the gauge eigenstates to the mass eigenstates. Applications using the
well-studied groups U(1)5, U(1)p-1, U(1)L,-1,4 (La being lepton flavor numbers), and U(1)pm (a
symmetry acting only on the dark matter sector) are discussed briefly.

I. INTRODUCTION

Augmenting the Standard Model (SM) gauge group Gsm = SU(3)c x SU(2)r x U(1)y by
an additional abelian group U(1)’ is well motivated by grand unified theories (GUTs) [1], flavor
symmetries [2], and dark matter (DM) models [3]. Depending on the symmetry breaking scheme a
non-diagonal mass matrix for the neutral gauge bosons is possible, so the physical mass eigenstates
are linear combinations of the original gauge eigenstates (henceforth referred to as mass mixing).
The precise measurements of the masses and couplings of the SM gauge bosons Zsy and W+
at LEP put stringent constraints on the mixing parameters and consequently on the symmetry
breaking sector. An entirely different type of mixing is associated with the kinetic terms of the
gauge fields: Since the field strength tensor F* of an abelian gauge group is a gauge invariant
object of mass dimension 2, a renormalizable Lagrangian can contain non-canonical kinetic cross-
terms o sin xF{" F5 ., if the gauge group includes U(1); x U(1)2. The kinetic mixing angle x
modifies the coupling of the corresponding gauge bosons and can therefore lead to observable
effects [4]. The case of two abelian groups — one of them being the hypercharge gauge group
U(1)y - is well studied and widely used in model building, but the generalization to more abelian
factors is seldom discussed, even though this structure naturally occurs in some string theory
and GUT models [5]. Renormalizability of the theory requires the gauge group to be free of
anomalies, which drastically limits the allowed additional U(1)’ groups, unless additional fermions
are introduced. This condition is of course even more constraining in gauge extensions with several
new abelian factors; even without tapping into the various GUT-inspired symmetries, there are
several interesting combinations of well-studied symmetries that lead to valid models, e.g. U(1)r, x
U(l)B [6], U(l)B X U(l)DM, or U(I)B,L X U(l)LquT-

We will present the generalization of the well-studied gauge group Gsm x U(1) to Ggm X
U(1) x U(1)”, which introduces three kinetic mixing angles and three mass-mixing parameters.
To demonstrate possible applications in model building we show that U(1)p x U(1)pm generates
isospin-dependent nucleon-DM scattering and that U(1)p—r x U(1)r, -1, can in principle induce
non-standard neutrino interactions (NSIs).

The remaining part of this work is organized as follows. In Sec. [Tl we will derive the connection
between gauge and mass eigenstates for the neutral vector bosons and give approximate expressions
for the mixing matrix and mass shifts. Specific models for dark matter model building and flavor
symmetries will be presented in Sec. [[IIl We summarize and conclude our findings in Sec. [Vl
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II. KINETIC AND MASS MIXING

The most general effective Lagrange density after breaking Gem x U(1)1 x U(1)2 to SU(3)¢ %
U(1)gm can be written as £ = Lgm + Lx, + Lx, + Lmix, with

1. - 1. 1 0~ 4 é é .
Lsy = —=~ B, BY — ~We W + ZM2Z, 7" — — 4B, el
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+ m% Zqu + m% ZA#XQL + m§ Xl #)A(é‘ .
The currents are defined as

_ 1 _ _
g =- Z [Ley* L+ 2Cry"lR) + 3 Z [Q:Y"QrL +4Try"ur — 2dry"dr] ,

{=e,u,T quarks
- o — o®
E L27”7Le+ E QL’YM7QLa
l=e,u,T quarks

with the left-handed SU(2)y, doublets Qr and Ly and the Pauli matrices 0®. We also define the
electromagnetic current jpm = ji +1 5 Jy and the weak neutral current jnc = 2]W 2SWjEM, the

(2)

currents j; and jp are left unspecified for now. We furthermore define the fields A= CWB + Swwg
and Z = ¢wWs3 — S B, corresponding to the photon and the Zgy boson in the absence of Lyix.
Here and in the following we will often omit the Lorentz indices on currents and gauge fields,
expressions such as jA are to be read as j*A4,,.

_Due to our parameterization of the kinetic mixing angles, the hypercharge field strength tensor
B,,,, and the field strength tensors X! of U(1); x U(1)y share the symmetric mixing matrix

1. . R 1 sina sinf ABW
£> -7 (Brr, X7, Xgv) |- 1 siny | | Xy ] (3)
. . 1 Ko

In complete analogy to Ref. [4] we can transform the gauge fields (B, X, Xs) into a basis
(B, X1, X5) with canonical (diagonal) kinetic terms

B 1 —to (tasy—ss/ca)/D\ [ B
X1 | =10 1/ca (tasg—sy/ca)/D| | X1 ], (4)
Xz 0 0 Ca/D Xo

where D = \/1 — 82 — 5% - s% + 254585y, Sz =sinz, ¢, = cosz, and t; = tanx. The transforma-

tion (@) diagonalizes the kinetic terms and yields the massless photon A and the mass matrix for
the massive neutral fields in the basis (Z, X1, X3)

M% m2/co + M%éwta M2,
M? = . M)Q(l/ca + 8wta(2m? + M23wsa)/ca Mz | (5)
. . M??s

with the three extra long expressions
M3 -caD = (M%‘éW(SB — $a8y) + mi(sasp — 54) +m3es),
M- caD = M;Q(I(SaSﬁ — 5,) + M38iysa(ss — sasy) + midw(ss — 25as, + spsa)
+ mQSWsac + mgci )
My - 2D = Ny + W13, (5, — s053)? + N353 (55 — 5052’
—2mP8w (Sass — S4)(SaSy — 85) + 2m3cadw (S5 — SaSy)

+2mic2 (sasp — Sv) -



M? is a real symmetric matrix and can therefore be diagonalized by an orthogonal matrix U:
UT M2U = diag(M?, M2, M2), with M2 being the physical fields. This diagonalization introduces
in general three more mixing angles &; that are connected to the entries in M2, The gauge
eigenstates A, Z, X1, and X, couple to the currents éjgm, Jzinc," §1j1, and Goja, respectively,
and are connected to the physical mass eigenstates A, Z1, Zo, and Z3 via

A 10 —éwta éw(Sasy—ss)/caD\ /1 0 0 0\ /A
Z 01 Swta Sw(sg— SaSy)/caD 0 71 (7)
X, 100 1/ca  (sasp—sy)/caD 0 U Zy |’
X 00 0 ¢a/D 0 Zs
or, inverted:
A 10 0 0\ /10 éwsa éw s A
Z1 _ 0 01 —§Wsa 7§ng Z (8)
Zy| o UT 00 ¢ (5y—5as8)/ca ] | X1
Zs 0 00 0 D/ca X,

Due to our parameterization, we can identify é = e = \/4magy with the usual electric charge. The
physical Weinberg angle is defined via

ﬁOzEM(Ml)

V2G M}’ ©)

22 =
which leads to the identity swew My = Swew My [4].

The general case is complicated to discuss and hardly illuminating, which is why we will work
with several approximations from here on out. In the limit m? < M2, M%j, a, 3,7 < 1 the mass

matrix (B) simplifies to

M2 M%émfomLm% M%éWﬂer%
M? ~ . M)2(1 -M% y+m3 . (10)

Diagonalization leads to the resulting connection between gauge and mass eigenstates

1 0 76Wot 7éwﬂ

A 0 1 swaMyx +m]  dwBM%,+mj A

5 M% —MZ M%, — N 7

o | = Sw oy +m? M, —m} ! (11)
X, | |0 -2z 1 _ 0T X, My Zy |

1 M2 — M2 M2 —M?2

~ X1 z R Xo X1 VA
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and one can calculate the mass shift of the Z boson

~ 2 R 2
(swa+mi/niz)"  (swB+m3/nz)

M?Z/MZ ~1+ s + s (12)
1 NI /0 1- M3, /013
With this formula we can express M% in terms of measurable masses:
- 2 2
My syciy (swa+m2/ME) B (swpB+ m3/ME) (13)

FYER S R VYAV T = MZ/ 7

I Here we defined the coupling strength of the Z boson gz = é/2¢w Sw.
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The direction of the shift depends on the hierarchy of M% and M)Q(, a cancellation is possible

for M)Q(l < M% < M)Q(Q, which would reduce stringent constraints from the p parameter (hiding
one Z' with another). A different way of relaxing the limits on a Z’ model by adding additional
heavy bosons with specific charges was recently discussed in Ref. [7]. For completeness we show
the effects of heavy Z’ bosons in terms of the oblique parameters S and T, which can be read off
the modified Z; couplings to j3, and jgy in the limit g1 2 = 0 [4]:

sipa® —mi /MY sy 87 —ms /MY
17M22/M12 1*M§/M12 ’

swa+m3/M?
1— M2/M?

QEMT ~

sw B+ m3/ M}

4 2
+ SWcWﬂ 1_ M32/M12

apmS ~ 4SW612/V04

III. APPLICATIONS

We will now show some applications of the framework laid out above. It is not our intention to
examine the models in complete detail, but only to consider a few interesting effects. In most cases
it suffices to work with the approximation in Eq. (), which is used to read off the couplings of the
mass eigenstates to the different currents/particles. Once a proper model is defined by additional
scalars and fermions, one can perform more sophisticated analyses which make use of numerical
diagonalization of the neutral boson mass matrix in Eq. (B). In particular, in specific models the
loop-induced kinetic mixing angles can be calculated.

A. Crossing the streams

Model building with mixing between U(1); and U(1)s often makes use of the induced coupling
of currents, i.e. Lyix ~ € j1j2, which connects the two gauge sectors even if no particle is charged
under both groups. We will now derive a necessary condition for such a non-diagonal term at tree
level. Taking all of the mixing parameters in Eq. () to be zero except for ms and 7, we obtain
the coupling of the mass eigenstates Z> and Z3 to the currents

N 1 —t — Z A Z
LD — (g1, G272) (0 1/01) (ZZ C‘Zf) (Zz) = — (0151, G2j2) V4 Ue (Zi) , (15)

where Ug diagonalizes the mass matrix. Integrating out the heavy mass eigenstates yields an
effective four-fermion interaction of the form

1, /M3 0 Ty (91
[,eﬁ::fg(gl]l, 92j2) V’YU§< 0 i 1/M3%) et

G272
~ -1
1 P P M)Q( m% gljl
—_—— 1 ~ ~ . .
) (gljl ) 92]2) ( % M)2(2 G272

It is obvious that the coupling matrix is diagonal if ms = 0, independent of 4. An analogous
calculation can be performed for the coupling of j; to jnc via m; and «, 3, respectively, although
it is a bit more tedious because of the additional Weinberg rotation. Nevertheless, the result is
the same: an off-diagonal effective coupling j; jnc only arises for m; # 0, i.e. Log m%Q J1,2 JNC-
Since the Weinberg rotation induces a coupling of j; to the electromagnetic current (first row in
Eq. (II)), interesting couplings can arise even for my 2 = 0.

Up until now we discussed only one non-zero m; and kinetic mixing angle at a time, corresponding
to the well-known case of Z—Z' mixing. A more general analysis including all our mixing parameters
from Eq. () yields the effective four-fermion interactions

(16)

-1

~ . T ~ .
1 9zJNC M3 m% m3 9zJNC
Leg =—= | 91J1 — eCwsajEM - M%, mj3 911 — eCwSajEM | - (17)

G2J2 — eCw SgJEM . . M}Q G2J2 — eCw SJEM



Because the 3 x 3 coupling matrix takes the explicit form
N 1 ~ ~ ~ N
2 2 2 2 2 4 2772 2,2 2 2 2,2
M7 mi  mj Mx My, —m3 —miMy, +mams —Mx, m3; + mim;
2 2 _ T2 N2 4 M2 002 2,2
My, m3 = . MZM%, —my  —Mzmz+mims |, (18)
2 12 4
. Mz M5, —mj

with A® = M2M% M% —M2Zmi—M% mi—M% mi+2m3mim3, we end up with new off-diagonal
couplings like m2m3 ji1 jnc, even if there is no direct coupling m? j1 jnc-

B. U(l)s x U(1)pm

It was recently shown that the seemingly incompatible results of the dark matter (DM) direct
detection experiments DAMA/CoGeNT and XENON can be alleviated with the introduction of
isospin-dependent couplings of nucleons to dark matter [8]. One of the models used in Ref. [9]
to explain this coupling is based on gauged baryon number U(1); = U(1)p.2 With dark matter
charged under this gauge group, the resulting cross section turns out to be too small to explain
the observed events, unless the coupling of Z’ to dark matter is significantly stronger than to
quarks (i.e. DM carries a large baryon number). However, in a model with another gauge group
U(1)2 = U(1)pm — acting only on the DM sector 3] — the dark matter coupling constant gpy can
be naturally large compared to gp, which allows for a sizable cross section as long as the mass
mixing between the groups is not too small.> We only introduce one DM Dirac fermion y, so the
U(1)2 current takes the form j5 = jf,; = X7*x. For clarity we take all mixing parameters in
Eq. (@) to be zero — except for mz and  — and assume Zy 3 to be light (M3, < M7) to generate
a large cross section. Eq. () then gives the approximate couplings

2
€ . . . m .
LD — | =——jnc + Bswgpmiom | Z1 — | 9BiB — g9pM—5—-5JpM | Z2
2cw Sw Mgz — M;
) (19)
- oM — Bew e + 9B~ i | Zs

gpMIDM Mg — M22 .

These terms couple dark matter to nucleons via ms, and because of 3, proton and neutron couple

differently, i.e. the interaction is isospin-dependent. Integrating out all the gauge bosons gives the
effective vector-vector interactions in the usual parameterization

Let O fpXuXPV'P+ fn Xuxmy'n, (20)
with the ratio of the neutron and proton couplings

1 8 M2
— ~ —_— . 21
1+T’ r eCWgB g ( )

fulf P =
We can easily find parameters to generate f,,/f, ~ —0.7 (r ~ —2.4). The overall DM-neutron
cross section can be calculated to be [13]

1 My My, 2 ,  m2 m3 2 5 (1GeV * _31 9
= — [ —X1 ~ —3 ) ~2 — ] 10 , (22
o = Gar (mX + mn) In ™ Gam \9BIPM )2 R 7 em?, - (22)

where we defined apy = g3, /4m and assumed m, > m,. To obtain the last equation we
replaced gpm3 with the demanded value for r from Eq. @I)). For 8 ~ 1073 it is possible to
generate the required DAMA /CoGeNT cross section o, ~ 1073810737 cm? []] without being in

2 Tt was pointed out in Ref. [10] that a gauge boson coupled to the baryon number B can be light. The drawback
of such a symmetry is the unavoidable introduction of new chiral fermions to cancel occurring triangle anomalies.
An anomaly-free symmetry (SM + right-handed neutrinos) with similarly weak constraints is U(1)g_sr, |11].

3 A similar model was proposed very recently in the same context, see Ref. [12].



conflict with other constraints |10, [14]. We note that the dark matter fine-structure constant apm
is not restricted to be small.

Due to the required non-zero m% we will have a non-trivial scalar sector that also serves as a
mediator between the SM and the dark sector. We assume these scalars to be heavy enough to
not alter our foregoing discussion.

Aside from the group U(1)p x U(1)pm discussed above, further interesting models using this
framework in the dark matter sector could be build using leptophilic groups like U(1)r, -z, X
U(1)pm, with the possibility to resolve the PAMELA positron excess via the small leptophilic
admixture [15].

C. U(l)p—r XxU)L,—L,

A family non-universal model can be build using U(1); = U(1)p—r and U(1)2 = U(1)r, L,
without introducing anomalies. Each group is anomaly-free if the Standard Model is extended with
3 right-handed neutrinos V; r carrying appropriate lepton numbers, so the only potential triangle
anomalies involve both gauge groups:

UMe,—2, —U)p-L —U()L,-L, :

Z Yo =2[Yp_r(ur) +Ye-r(wu) + Ye_r(ug) + Yo_r(N5z)] =0,
w,T

UL, —U)p-L —U(1)p-r:
ZYLM*LT YBg—L :ZYE_L*ZYB?_L :0, (23)
HsT H T

U(l)LquT — U(I)B,L — U(l)y .
Z Yo,-0,Yp-LY = ZYB—L Y — Z Yp_ Y =0,

BT Iz T

where the last two relations follow from the universality of U(1)y and U(1)g_r. The anomalies
from SU(2) —U(1); —U(1)2 and SU(3) — U(1); — U(1)2 vanish trivially in any model due to the
tracelessness of the non-abelian generators. The same conclusion can, of course, be reached for any
of the anomaly-free L, — Lg symmetries. However, L, — L, is favored over L. — L, and L. — L~
because of a more reasonable flavor structure of the neutrino mass matrix [16].

The gauge boson Zy = Zp_y, is highly constrained by collider experiments (Mp_1/g95-1 2
6-7TeV at 95% C.L. [17]),* but Z3 = Zi,_1, can have a mass around the electroweak scale
and there is actually a preferred region around My, . / 9L,—L, = 200 GeV that ameliorates the
tension between the theoretical and experimental values for the anomalous magnetic moment of
the muon [18] (see [19] for earlier works).

In U(1)p—r x U(1)L,—r, models with non-vanishing mass mixing the parameter ms induces
an effective coupling of the currents jr, 1, and jp_r (see Sec. [TA)), which leads for example
to non-standard neutrino interactions, usually parameterized by the non-renormalizable effective
Lagrangian

LY = —2V2Gpell) [f4" Pf] [FayuPLvs] . (24)

The model at hand induces 5{25 = —eIP easily read off from Eq. (I8):

TT )

el - 9192 s ~ 2% 10762 ( ms )Q(GTeV)2(2OOGeV>2
K 2\/§GF M22M32 g192 \10 GeV M2/91 Mg/gz ) (25>
wV o dV __ eV

Cup = Cup = *EML/Z},

4 The limits from LEP 2 and Tevatron have been derived under the assumption of just one additional gauge boson,
but still hold approximately when additional bosons are included [7].



which are in general too small to be observable in current experiments [20]. Larger NSIs can be
generated at the price of introducing mass mixing of Zr, .  with Zgy via my (using the more
general Eq. (). Even though this kind of mixing is highly constrained by collider experiments,
the arising NSIs are testable in future facilities for My < M; [18]. Substituting U(1)p—_, in Eq. (25)
with less constrained symmetries like U(1)g or U(1)p_3z, (including fermions to cancel arising
anomalies) allows for lighter gauge bosons and therefore also larger NSIs; a recent discussion of
additional constraints on Z’ bosons with non-universal couplings to charged leptons can be found
in Ref. [21]]. Since our framework does not involve mixing with the SM gauge bosons — at least at
tree level — the bounds on the mixing parameters are less stringent.

IV. CONCLUSION

The extension of the Standard Model by an additional abelian factor U(1)’ is a well motivated
and frequently discussed area in model building. It is not far fetched to extend this even further to
Gsm X [U(1)']™, provided the full gauge group stays free of anomalies. We discussed the most general
low-energy Lagrangian for the case n = 2, including kinetic mixing among the abelian groups. We
showed how the mixing among several gauge groups — such as U(1)p_r, U(1)z,-r,, and U(1)pum
— can lead to interesting effects like non-standard neutrino interactions and isospin-dependent dark
matter scattering. This opens up new and interesting possibilities in model building.
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