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Group field cosmology: a cosmological field theory of quantum geometry
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Following the idea of a field quantization of gravity as realized in group field theory, we con-
struct a minisuperspace model where the wavefunction of canonical quantum cosmology (either
Wheeler–DeWitt or loop quantum cosmology) is promoted to a field, the coordinates are minisuper-
space variables, the kinetic operator is the Hamiltonian constraint operator, and the action features
a nonlinear and possibly nonlocal interaction term. We discuss free-field classical solutions, the
quantum propagator, and a mean-field approximation linearizing the equation of motion and aug-
menting the Hamiltonian constraint by an effective term mixing gravitational and matter variables.
Depending on the choice of interaction, this can reproduce, for example, a cosmological constant, a
scalar-field potential, or a curvature contribution.

PACS numbers: 98.80.Qc, 04.60.Ds, 04.60.Kz, 98.80.Cq

I. INTRODUCTION AND MOTIVATION

Despite much recent progress [1], background-
independent approaches to quantum gravity face several
open challenges. These concern: (i) the definition of the
quantum dynamics of the fundamental degrees of free-
dom of spacetime that they identify, and the full control
over it; (ii) the recovery of an effective description in
terms of a smooth spacetime and geometry, once the dy-
namics is somehow defined, and in particular when the
fundamental degrees of freedom are not continuous geo-
metric data; (iii) the contact with the effective dynamics
of general relativity and quantum field theory, and with
phenomenology.
An example is given by loop quantum gravity (LQG),

a background-independent framework aiming to quantize
the gravitational degrees of freedom in a nonperturba-
tive way [2, 3]. To this purpose, a canonical quantization
scheme is employed where the constraints are written in
terms of the densitized triad and of the Ashtekar–Barbero
connection. The end result at the kinematical level is a
Hilbert space of (spin network) states associated with
graphs embedded in the spatial manifold and labeled by
algebraic data (Lorentz group elements or correspond-
ing representation labels). As in any canonical scheme,
while geometry is fully dynamical, the topology of the
universe is fixed by construction, at least at the begin-
ning. In general, however, one may ask whether it is
possible to build a quantum theory inclusive of topology
change or, in other words, if one can envisage an interact-
ing multiverse scenario obeying a set of quantum rules.
Since the degrees of freedom of a single universe are al-
ready fields, eventually to be quantized, such a scenario
is sometimes said to be one of “third quantization.” This
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can be achieved, at least at a formal level, by defining a
field theory over the space of geometries, for given spatial
topology [4, 5].1 Other (albeit inconclusive) arguments
from a canonical quantum gravity perspective in favor of
going to a “third-quantization” setting were also offered
in [9, 10].2

Beside the issue of topology change, the main difficulty
faced by the LQG approach is the complete definition of
the quantum dynamics and the proof that the result-
ing theory leads back to Einstein’s gravity in an appro-
priate limit. A tentative but complete definition of the
quantum dynamics of spin network states is obtained, via
spin foam models [11, 12] (a covariant definition of LQG
dynamics), by embedding LQG states into the larger
framework of group field theories (GFT) [13–15], in turn
strictly related to tensor models [16]. These are quantum
field theories on group manifolds whose states are indeed
spin networks and whose Feynman amplitudes are spin-
foam models. This embedding has several advantages,
from the LQG point of view. First of all, as said, it
provides a complete definition of the quantum dynamics.
Second, it defines such dynamics as the superposition of
interaction processes (creation and annihilation) of spin-
network vertices, forming complexes of arbitrary topol-
ogy, such that topology is naturally made dynamical; it
provides, in other words, a sort of local field-quantization
scheme [13, 14]. Third, the field-theory framework offers

1 String field theory is an example of a “third-quantized” model.
While the free Polyakov string is a collection of particle fields, a
string field is a collection of strings interacting via certain ver-
tices. One of the advantages to consider a field of strings is in the
possibility to describe highly nonperturbative phenomena where
the initial and final geometry and topology are different, such as
brane decays into vacuum or into other branes (e.g., [6–8] and
references therein).

2 To avoid confusion, from now on we employ the adjectives “field”
or “second” instead of “third” to indicate this type of quantiza-
tion.
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powerful mathematical and conceptual tools for tackling
the issue of the continuum limit and of the extraction of
effective dynamics for better contact with phenomenol-
ogy. In doing so, however, one has to abandon the fa-
miliar framework of canonical quantization of a classical
(and local) field theory of gravitation, and is forced to
face new types of conceptual and mathematical difficul-
ties.

This program is just as ambitious as the original LQG
one, if not more, and is difficult to realize in a complete
and rigorous way, despite many recent advances. Toy
models inspired by the full theory then become very im-
portant. In fact, they fulfill three main purposes: (i) they
offer a simplified testing ground for ideas and techniques
developed in the full theory; (ii) as such, they also have an
important pedagogical value; (iii) they may represent, in
principle, an effective, approximate framework to which
the full quantum dynamics may reduce, in some limit,
and thus they may be directly applicable to phenomeno-
logical studies. Obviously, due to their simplicity, one
should be cautious in interpreting the result obtained in
the context of such toy models as truly physical, and their
validity can be assessed only once the relation between
toy model and full theory has been understood.

An important type of simplified scenario has been de-
veloped in the context of LQG, in a symmetry-reduced
setting of interest for cosmology. In fact, in order to un-
derstand certain features of loop quantum gravity, one
often resorts to a minisuperspace model, loop quantum
cosmology (LQC), where degrees of freedom are drasti-
cally reduced [17, 18]. In a pure Friedmann–Robertson–
Walker (FRW) universe filled with a massless free scalar
field, the classical and quantum dynamics of the universe
as a whole can be described by the same formalism used
for a free particle. In particular, the path integral is
well defined [19, 20] and two-point correlation functions
admit the usual classification [21]. By now, a wealth
of interesting results have been obtained in this context
[17, 18]. Given this analogy with the free particle, it is
all the more natural to ask oneself if one can construct
a sensible “interaction” among FRW universes and, once
this is done, to change the interpretation of the two-point
function from particle transition amplitude to field prop-
agator as in the usual field quantization. One would then
write down a field theory on minisuperspace, to obtain a
field-quantized LQC framework. Another way to see the
same field theory would then be as a toy model for group
field theory, in which many of the difficult features of the
latter are absent due to the global nature of the formu-
lation and to the simplification provided by symmetry
reduction, but where some ideas and techniques can still
be applied. As with any toy model, one would then use
it as a pedagogical testing ground and keep it available
as a possible effective description of the full theory.

We propose such a field theory for (loop) quantum cos-
mology in this paper, with the above motivations. The
presentation is organized as follows. We review some ba-
sic features of LQC in Sec. II, but the Wheeler–DeWitt

case is also easily recovered. In Sec. III the field theory
is defined by promoting the quantum Hamiltonian con-
straint to the kinetic operator of a (real) scalar field Ψ on
minisuperspace. We analyze the relation between differ-
ent kinetic operators and the gauge choice, with particu-
lar focus on exactly solvable free theories. We discuss the
various possible choices for the interaction term. Follow-
ing this general definition, we move on to analyze some
consequences of the formalism. We analyze the free prop-
agator of the theory first, corresponding to the evolution
of a single universe (Sec. IV). We show how the embed-
ding into a field-theory setting has immediate interest-
ing consequences also for the single-universe dynamics.
Then, we consider how the presence of interactions affects
this single-universe evolution. Approximating the inter-
action as a mean-field term, we find an effective equation
linear in the field Ψ, correcting the Hamiltonian quantum
constraint equation by an extra term (Sec. V). The lat-
ter mixes, in general, gravitational and matter degrees
of freedom, and its exact form depends on the chosen
initial interaction as well as on the mean-field configura-
tion considered. We conclude with a discussion of other
possible applications of this formalism.

II. BRIEF OVERVIEW OF LOOP QUANTUM

COSMOLOGY

A. Classical theory

Our starting point is the description within loop quan-
tum cosmology of the spatially flat, homogeneous and
isotropic universe with a massless scalar field as mat-
ter, which we summarize briefly in this section. In the
canonical analysis of dimensionally-reduced general rela-
tivity, one restricts integrations to a fixed fiducial three-
dimensional cell of comoving volume V0 <∞, with a flat
metric 0qab which may be taken to be δab in Cartesian
coordinates. The four-dimensional metric is then

ds2 = −N2(t) dt2 + a2(t) 0qab dx
a dxb , (1)

where a(t) is the scale factor, spatial indices are labeled
by Latin indices a, b, · · · = 1, 2, 3, and there is a freedom
in the choice of the lapse function N(t). Indices i, j, · · · =
1, 2, 3 will denote directions in the tangent space.
With a choice of frame {0eai } and dual {0eia}, or-

thonormal with respect to 0qab, the physical triad ei =
ε a 0eia dx

a (ε = ±1) and e0 = N dt are orthonormal with
respect to (1), and the Levi-Civita connection is

ωi
0 = ε

ȧ

N
0ei , ωi

j = 0 , (2)

where a dot denotes time derivative. From this one com-
putes the variables used in loop quantum gravity, the
Ashtekar–Barbero su(2) connection Ai

a and the densi-
tized triad Ea

i , via

Ai
a = γ

(

ωi
0

)

a
, (3a)

Ea
i = (det e)eai = a2

√

det 0q 0eai , (3b)
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where γ is the Barbero–Immirzi parameter.
A shortcut to the standard canonical analysis is to sub-

stitute the FRW metric and the Ricci scalar stemming
from (1),

R = 6

(

ä

aN2
− ȧṄ

aN3
+

ȧ2

a2N2

)

, (4)

into the Einstein–Hilbert and matter action, which then
depend on φ, a, and N . The conjugate momenta are
pa = −3V0 aȧ/(4πGN) and pφ = V0 a

3φ̇/N , and the
conservation in time of the primary constraint pN ≈ 0
(the symbol ≈ denotes weak equality) leads to the Fried-
mann equation

K :=
2πG

3

p2a
a

−
p2φ
2a3

≈ 0 , (5)

which should be imposed as a constraint on quantum
states in quantum cosmology.3

B. Kinematics

Focusing on the gravitational sector for now, the cru-
cial difference from traditional minisuperspace (Wheeler–
DeWitt) approaches to quantum cosmology in LQC is
that one follows the kinematics of full loop quantum grav-
ity, where not the connection but only its holonomies are
defined as operators [2]. It is convenient to introduce new
conjugate variables c and p, where

c = εV1/3
0

γ ȧ

N
= −ε 4πGγ

3V2/3
0

pa
a
, p = ε a2V2/3

0 , (6)

so that Ai
a only depends on c, and powers of V0 have been

introduced to make c and p invariant under the residual
symmetry a → λa, 0qab → 0qab/λ

2 in Eq. (1). Instead

of ĉ and p̂ one now defines p̂ and ̂exp(iµc) as operators,
where µ can be a real parameter or a function of p chosen
by means of a suitable procedure.
The kinematical Hilbert space Hg

kin is taken to be the
space of square-integrable functions on the Bohr com-
pactification of the real line. One can work in a ba-
sis where p̂ is diagonal, with orthonormality relation
〈p|p′〉 = δp,p′ , so that one is dealing with a nonseparable
Hilbert space. In this representation, if µ is taken to be
a nontrivial function of p the action of the holonomy op-

erator ̂exp(iµc) takes a rather complicated form, and it
is convenient to choose a different representation. In the

3 Throughout the paper we use the symbol K for the Hamiltonian
constraint because it will eventually be regarded as a kinetic
operator. Although this differs from the more standard choice of
symbolH orH, it has the further advantage of avoiding confusion
with the Hubble parameter.

improved dynamics scheme [22], where µ(p) ∼ |p|−1/2,
this is a basis {|ν〉} of eigenstates of the volume operator

V̂ measuring the kinematical volume of the fiducial cell,
V = |p|3/2,

V̂|ν〉 = 2πγG |ν| |ν〉 , (7)

where ν = εa3V0/(2πγG) has dimensions of length. The
states {|ν〉} can be normalized to

〈ν|ν′〉 = δν,ν′ . (8)

The basic operators are now ν̂, which acts by multipli-

cation, and ̂exp(iλb), where b = ε (2πγGpa)/(3V0 a
2) is

conjugate to ν [and is proportional to the Hubble pa-
rameter H = ȧ/(Na)] and λ = const, which acts as a
shift in ν. These satisfy the standard Heisenberg algebra.
For the matter sector, one chooses the usual Schrödinger
quantization with a natural representation of the Hilbert

spaceHφ
kin, the space of square-integrable functions on R,

on which φ̂ acts by multiplication and p̂φ by derivation,
and with an orthonormal basis given by

〈φ|φ′〉 = δ(φ− φ′) . (9)

The Hilbert space of the coupled system is then just the

tensor product Hg
kin⊗Hφ

kin. As in traditional approaches
to quantum cosmology, the variable N is removed from
the configuration space because the primary constraint
pN ≈ 0 would mean that wavefunctions are independent
from N . We note that the full constraint would be a
multiple of N , so that in situations where the resulting
quantum constraint depends on the choice of lapse func-
tion (as below) the choice N = 1 seems more natural
when considering that N is also originally in the config-
uration space. In fact, in cosmology the lapse can be
regarded as a function of the scale factor, N = N(a),
which is an independent variable. A choice of the form
N = N(E) in the full theory is somewhat less justified
before solving the constraints.

C. Dynamics

The quantum analogue of the Friedmann equation (5)
is obtained by starting with the Hamiltonian constraint
of full general relativity in terms of the variables (3) and
expressing the curvature of Ai

a through the holonomy
around a loop, taking account of the area gap —the re-
sult in LQG that the area of such a loop cannot assume
arbitrarily small nonzero values. The Hamiltonian con-
straint is

K̂ψ(ν, φ) := −B(ν)
(

Θ+ ∂2φ
)

ψ(ν, φ) = 0 , (10)

where ψ is a wavefunction on configuration space and Θ
is a difference operator only acting on Hg

kin and of the
form

−B(ν)Θψ(ν, φ) := A(ν)ψ(ν + ν0, φ) + C(ν)ψ(ν, φ)

+D(ν)ψ(ν − ν0, φ) , (11)



4

where A,B,C, and D are functions which depend on
the details of the quantization scheme (inter alia, on the
choice of lapse function) and ν0 is an elementary length
unit, usually defined by the square root of the area gap
(the Planck length up to a numerical factor). The physi-
cal states are the solutions of Eq. (10). Due to the struc-
ture of Eq. (11), in LQC one has an interval’s worth of
superselection sectors in Hg

kin: Θ preserves all subspaces
spanned by {|νI + nν0〉 |n ∈ Z} for some νI . We may
restrict ourselves to one of these subspaces, i.e., assume
that wavefunctions only have support on a discrete lat-
tice which we take to be ν0Z [for a generic gauge choice,
there may be issues with the definition of (10) at the
most interesting point ν = 0]. This restriction picks out
a separable subspace to which we will limit our analysis.

III. DEFINING THE FIELD THEORY

We now define our field theory on (mini)superspace.
The Hamiltonian constraint (10) of the first-quantized
theory is the natural starting point for the free action of
the field theory. We define this action to be

Sf [Ψ] =
1

2

∑

ν

∫

dφ Ψ(ν, φ)K̂Ψ(ν, φ) , (12)

where in the simplest setting we take Ψ to be a real scalar
field. If K̂ is as in Eq. (11), we must assume that the
combination B(ν)Θ is symmetric in ν, i.e., that

D(ν) = A(ν − ν0) (13)

in Eq. (11), in order to reproduce the equation of motion
(10). Put differently, for any constraint (11) the action
(12) projects out its self-adjoint part with respect to the
measure given by the kinematical inner product of LQC.
Taking this measure as given, possible manipulations of
the constraint K̂ are restricted by this requirement. No-
tice, however, that Eq. (13) does hold in LQC for the
usual choices of gauge, so we do not need to impose it as
an additional requirement. To give an example, for the
preferred lapse choice N = 1 and in improved dynamics,
the functions A,B,C take the form [22]

A(ν) =
1

12γ
√

2
√
3

∣

∣

∣
ν +

ν0
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
ν +

ν0
4

∣

∣

∣
−
∣

∣

∣

∣

ν +
3ν0
4

∣

∣

∣

∣

∣

∣

∣

∣

,

B(ν) =
3
√
2

8
√√

3πγG
|ν|
∣

∣

∣

∣

∣

∣

∣
ν +

ν0
4

∣

∣

∣

1
3 −

∣

∣

∣
ν − ν0

4

∣

∣

∣

1
3

∣

∣

∣

∣

3

,

C(ν) = −A(ν)−A(ν − ν0) , (14)

where now ν0 = 4λ :=
√

32
√
3πγ G, whereas for the

solvable “sLQC” model in [23] [which uses N = a3 and
the symmetry (16)],

A(ν) =

√
3

8γ

(

ν +
ν0
2

)

, B(ν) =
1

ν
,

C(ν) = −A(ν)−A(ν − ν0) = −
√
3

4γ
ν . (15)

Equation (15) can be shown to agree with the previous
expressions (14) in the “semiclassical” limit ν ≫ ν0.
In LQC, one normally assumes symmetry of the wave-

function ψ under orientation reversal,

ψ(ν, φ) = ψ(−ν, φ) , (16)

since the kinematical Hilbert space can be split into sym-
metric and antisymmetric subspaces which are superse-
lected (in other words, the physics should not depend on
the frame orientation). From the field theory perspective,
such a requirement is less natural, in particular if inter-
actions are taken into account; we will allow for general
field configurations without assuming Eq. (16).
By definition of second quantization, and by construc-

tion in our case, the classical solutions of the free field
theory will correspond to the quantum solutions of the
first-quantized model.

We now complete the definition of the field theory on
minisuperspace with the addition of an interaction term
for our field. The first-quantized theory, that is (loop)
quantum cosmology, does not offer indications on how
this interaction should be defined, so one has to pro-
ceed in a rather exploratory way guided only by general
intuition (and by the results obtained following various
choices). One could take an arbitrary functional, but we
opt for an nth-order polynomial in Ψ not necessarily lo-
cal in the minisuperspace variables. We will specialize
to simpler, concrete choices in the following, in order to
study some consequences of the formalism.
We get the general form for the interacting theory

Si[Ψ] =
1

2

∑

ν

∫

dφ Ψ(ν, φ)K̂Ψ(ν, φ) +

n
∑

j=2

λj
j!

× (17)

∑

ν1...νj

∫

dφ1 . . . dφj fj(νi, φi)

j
∏

k=1

Ψ(νk, φk) ,

where fj(νi, φi) are unspecified functions depending on
{νi, φi}i=1,...j . This gives the equation of motion

K̂Ψ(ν, φ) +
n
∑

j=2

λj
j!

∑

ν1...νj−1

∫

dφ1 . . . dφj−1 (18)

×
j−1
∏

l=1

Ψ(νl, φl)

j
∑

k=1

f̂k(νi, φi; ν, φ) = 0,

where

f̂k(νi, φi; ν, φ) := f(µi, ϕi) , (19)

with {µi} = {ν1, . . . , νk−1, ν, νk, . . . , νj} and {ϕi} =
{φ1, . . . , φk−1, φ, φk, . . . , φj}. In writing down the field
theory action we have included possible nonlocal (in ν)
quadratic terms in the interaction part (specified by the
interaction kernel f2) rather than in the kinetic term, in

order to emphasize the fact that K̂ is usually chosen to be
a local operator in the geometry in quantum cosmology.
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These could however be also included in the definition of
K̂.

The above is rather general. Explicit analyses re-
quire choosing specific interaction terms, that is, func-
tions fj(νi, φi). Each of them could correspond to a
choice of a physical quantity to be conserved through
the “interaction” of the universes, and of a conjugate
physical quantity in terms of which the fields interact,
instead, “locally.” That means that the conjugate vari-
able is identified across “incoming” and “outgoing” uni-
verses. Different choices for the function f(νi, φi), and
hence for the quantities conserved in the interaction, can
thus be motivated by different physical considerations.
In particular, the choice will be influenced by the inter-
pretation of such an interaction as true topology change,
that is, splitting/merging of universes, or rather as a
merging/splitting of homogeneous and isotropic patches
within a single inhomogeneous and anisotropic universe.
The detailed definition of the second scenario in physical
terms is not easy, and we will confine our treatment to
a brief discussion of it at the end. However, it is impor-
tant to keep in mind that its consideration would sensibly
affect the very definition of the field theory to analyze.
Examples of interactions are:

• If, e.g., only λ3 is nonvanishing and we imple-
ment locality in (ν, φ) by choosing f(νi, φi) =
δν1,ν2δν1,ν3δ(φ1 − φ2)δ(φ1 − φ3), we have the field
equation

K̂Ψ(ν, φ) +
λ3
2
Ψ2(ν, φ) = 0 . (20)

Such a potential, which implements locality both
in the 3-volume (i.e., the scale factor) and in the
scalar field φ, implies the existence of conservation
laws for the conjugate quantities b and pφ. These
conservation laws are nothing but the (modified)
second Friedmann and Klein–Gordon equations, re-
spectively. Since interactions allow for topology
change, in this case for nonzero λ3 there is a pro-
cess where two “universes” merge into one, and the
metric in both ingoing patches as well as in the out-
going patch is required to be the same (analogous
to the interaction term proposed in [4]). Because
of the conservation law, there is a discontinuity in
the Hubble parameter b ∝ H .

• A different conservation law, namely conservation
of Hubble volume b−3 or locality in the conjugate
quantity b4ν, is suggested if one interprets the in-
teraction as the topology-changing process just de-
scribed with a discontinuity in the causal past of an
observer passing the “merging point” (this is typ-
ically considered “bad” topology change; see the
review [24]).

• Another possibility would be to take the con-
served quantities of the classical (Wheeler–DeWitt)

Hamiltonian pφ and νb as also conserved in interac-
tions, which would then be local in φ and ln(ν/ν0).
For the sLQC model detailed below, the second
quantity would be modified to (2ν/ν0) sin (bν0/2)
and we would require locality in the conjugate vari-
able ln{(ν/ν0)[1 + cos(bν0/2)]}.

In the Wheeler–DeWitt case, we can choose the type
of interaction analogously, since the only difference is in
the kinetic operator (choice of first-quantization scheme)
and not in the choice of minisuperspace variables.

Before starting our analysis of the model, we intro-
duce a reformulation of the same that is advantageous
for practical manipulations.
Since K̂ is not diagonal in ν, it may be convenient to

use a Fourier transform as in [23],

Ψ(b, φ) :=
∑

ν

eiνbΨ(ν, φ), (21)

Ψ(ν, φ) =
ν0
2π

2π/ν0
∫

0

db e−iνbΨ(b, φ) . (22)

As Ψ(ν, φ) is real, Ψ(b, φ) = Ψ(2π/ν0 − b, φ), and if
Eq. (16) holds, then Ψ(b, φ) = Ψ(2π/ν0 − b, φ). The
action (17) becomes

Si[Ψ] =
ν0
4π

∫

dφ

∫

dbΨ(b, φ) ˆ̃KΨ(b, φ) +

n
∑

j=2

λj
j!

(23)

×
( ν0
2π

)j
∫ j
∏

l=1

dφl dbl f̄(bi, φi)

j
∏

l=1

Ψ(bl, φl) ,

where f̄(bi, φi) :=
∑

ν1...νj
e−i

∑

k νkbkf(νi, φi) is the

(complex conjugate of the) Fourier transform of the func-

tion f(νi, φi) appearing in (17), and ˆ̃K is an appropriate
differential operator. In the above conventions,

ˆ̃K = eiν0bA (−i∂b) + C (−i∂b) +A (−i∂b) e−iν0b

+B (−i∂b) ∂2φ . (24)

The inverse of this operator will give the propagator.
In the sLQC case, Eq. (15), in order to avoid nonlocal

expressions such as 1/(−i∂b) in the action we could mul-
tiply the expression for Θ by ν. However, this would lead
to a “nonsymmetric” form such that Eq. (13) is not re-
spected [obviously, νD(ν) = νA(ν − ν0) 6= (ν − ν0)A(ν −
ν0)] and K̂ is not self-adjoint. A symmetrized version

of K̂, which has not been previously considered in the
literature, has

A(ν) =

√
3

8γ

(

ν +
ν0
2

)2

, B(ν) = 1, C(ν) = −
√
3

4γ
ν2.

(25)
When the nonsymmetric form resulting from multiplica-
tion by B−1(ν) is used in LQC, the kinematical inner
product is modified accordingly to keep the constraint
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self-adjoint (see, e.g., [25]). The action (12), which in-
volves both the constraint and the kinematical inner
product of LQC, is left unchanged by such a redefinition.

As mentioned above, the LQC setting is chosen be-
cause of the initial motivation to obtain a toy model for
a GFT construction, in turn a field theory formalism for
LQG states. This is, however, not essential for our gen-
eral purposes. One could define an analogous set of mod-
els for Wheeler–DeWitt quantum cosmology, which is ac-
tually simpler from a technical point of view. The usual
ordering for the quantum Friedmann equation is [26]

K̂ :=
4πG

3
(a ∂a)

2 − p2φ , (26)

and the scale factor a is now a continuous variable. It is
then convenient to define N :=

√

3/(4πG) ln a so that a
is restricted to be nonnegative and the constraint is sim-
ply the Klein–Gordon operator ∂2N − ∂2φ. One ends up
with a scalar field theory in 1+1 dimensions with stan-
dard kinetic operator and an unusual potential term.

A. Fock space construction

As any ordinary field theory, the above field theory
on minisuperspace can be quantized and a Fock space of
quantum states can be constructed. The construction of
the Fock space rests on a choice of a complete basis on
the space of fields.
As customary, we can choose a basis of solutions of

the free field theory, that is single-particle states in {|k〉}
whose elements correspond to classical (expanding or
contracting) solutions of the modified Friedmann dynam-
ics.4 These solutions are labeled by k, i.e., 3-geometries
(described by ν) embeddable into a four-dimensional
FRW universe by means of k and a choice of lapse N(t).
In solvable LQC, the deparametrized solutions are of the
form

b(φ) =
4

ν0
arctan exp

[

±
√
12πG(φ− φ0)

]

, (27)

and k is the value of the Dirac observable pφ. Equation
(27), specifying the classical trajectories, will later reap-
pear as the “light cone” x(b) = φ of the propagator of

4 We warn the reader about a fine point in terminology. In the
LQC and Wheeler–DeWitt literature, by “classical solutions” one
often means the solutions of the unmodified Friedmann equations
in classical general relativity. In contrast, by “classical trajecto-
ries” we presently mean solutions generated by a Hamiltonian
that already includes the two effects of replacing the connec-
tion by its holonomies and of setting a minimal area for closed
holonomies [such as Eq. (28)]. Both operations can be moti-
vated by the first-quantization framework of LQC, but they are
performed already at the classical level.

the theory, see Eq. (51). In the gauge N = a3, consider
the modified Hamiltonian

K =
pφ(t)

2

2
− 6πG

{

ν(t)
2

ν0
sin

[

b(t)ν0
2

]}2

. (28)

Hamilton’s equations give φ̇ = pφ and ν̇ = ∂K/∂b, solved
by

b(t) =
4

ν0
arctan exp

[

±
√
12πGk(t− t0)

]

, (29)

ν(t) = ±kν0 cosh[±
√
12πGk(t− t0)]√
48πG

, (30)

so that the bounce is apparent already in each classical
history (we have treated ν as a continuous parameter
for the purpose of simplicity here). In fact, Eq. (30) is
consistent both with (27) (φ = ±kt are solutions of the
constraint pφ = const) and with the expectation value of
the volume operator (36).
The construction of the Fock space proceeds as usual.

One defines creation operators a†k and annihilation oper-
ators ak from the mode decomposition of generic fields
into the above basis, and builds generic elements of the
Hilbert space of states from their combined action on the
Fock vacuum state |0〉.
This state, as in the complete GFT formalism [13, 14],

would correspond to a very degenerate “no-space” state,
in which no geometric and no topological structure at
all is present. Topological and geometric structures are
created out of it by the action of the creation operators.
A crucial ingredient in the definition of the Fock space

is the choice of quantum statistics. In the following, we

fix the statistics to be bosonic, [ak, a
†
k′ ] ∝ δk,k′ . This

seems physically natural if quantum states are associated
with classical geometries and whole universes.
In group field theory, where the Fock space would be

constructed out of microscopic “building blocks” of space
[14], the choice of statistics is less obvious and it is the
focus of current research (see for example the discussion
in [27]). We may also expect the situation to be subtler
if the objects created and annihilated in our field theory
are to be interpreted as local homogeneous and isotropic
patches of a single universe. However, as anticipated, we
do not discuss in detail this possibility in this work, and
thus stick to the simplest choice of statistics.

IV. THE FREE FIELD THEORY

We now begin the analysis of the field theory we de-
fined. We limit most of our considerations to solv-
able sLQC, where explicit calculations can be performed.
However, we try to maintain a certain level of generality
in the presentation, to leave room for the study of other
cases. We start with the analysis of the free field theory.
We have seen that, already at this level, the field-theory
setting implies certain restrictions on and modifications
of the LQC Hamiltonian constraint operators, and thus
of the single-universe dynamics. We focus on these first.
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A. Equations of motion and Hamiltonian constraint

For sLQC, the free equation (10) can be solved analyt-
ically. We reserve the symbol ψ for field solutions of the
free theory and the symbol Ψ for the classical field so-
lutions of the interacting model. Inserting Eq. (15) into
(24), one obtains

i∂b
ˆ̃Kψ =

{

∂2φ − 12πG

[

∂b
2

ν0
sin

(

b ν0
2

)]2
}

ψ . (31)

Setting ψ = ∂bχ and choosing an (irrelevant) integration
constant to be zero yields

ˆ̃Kχ = −i
{

∂2φ − 12πG

[

2

ν0
sin

(

b ν0
2

)

∂b

]2
}

χ = 0 ,

(32)
with general solution χ = χ+[φ − x(b)] + χ−[φ + x(b)],
where

x(b) =
1√

12πG
ln(tan(ν0b/4)) ,

so that x′(b) = [(2
√
12πG/ν0) sin(ν0b/2)]

−1. Note that
b parametrizes the circle S1 from which the point b = 0
(or b = 2π/ν0) must be removed to make the coordinate
transformation (33) well defined. As b → 0, we see that
dx/db → ∞. We will encounter this singular behavior
when giving the expression of the propagator of the the-
ory in terms of b, see Eq. (51) below.
We may expand the general solution in Fourier modes,

χ(b, φ) =

+∞
∫

−∞

dk
{

ÃL(k) e
ik[φ−x(b)] + ÃR(k) e

ik[φ+x(b)]
}

,

(33)
and hence

ψ(ν, φ) =
ν0
2π

2π/ν0
∫

0

db e−iνb

+∞
∫

−∞

dk x′(b)

×
{

AL(k) e
ik[φ−x(b)] +AR(k) e

ik[φ+x(b)]
}

=
ν0
2π

+∞
∫

−∞

dx e−iνb(x)

+∞
∫

−∞

dk (34)

×
[

AL(k) e
ik(φ−x) +AR(k) e

ik(φ+x)
]

,

where b(x) = (4/ν0) arctan exp(
√
12πGx) and AL :=

−ikÃL and AR := ikÃR are chosen so that ψ is real.
In LQC (first-quantized theory), the existence of a

bounce can be proven analytically with the state χ. Not-
ing that the volume operator in x representation acts as
ν̂ ∝ ∂b ∝ cosh(

√
12πGx)∂x, one can compute its expec-

tation value on the state (33), with the scalar product

〈χ|ν̂|χ〉 = −i
∫

dx(χ∗∂φ|ν̂|χ− |ν̂|χ∂φχ∗) . (35)

Since χ obeys a Klein–Gordon equation in φ and x and its
left and right sectors depend on the combinations φ± x,
it is easy to see that the cosh in the volume operator
factorizes as a cosh in the scalar field, so that

〈χ|ν̂|χ〉 = ν∗ cosh(
√
12πGφ) , (36)

where the proportionality coefficient ν∗ is the minimum
volume at the bounce. Later on we shall derive this result
again from the “light-cone” condition of the field-theory
propagator.
For the operator choice (25), the free equation is

∂2φψ − 6πG

{

[

∂b
2

ν0
sin

(

b ν0
2

)]2

+

[

2

ν0
sin

(

b ν0
2

)

∂b

]2
}

ψ = 0 . (37)

One can make the substitution

z = sin

(

bν0
2

)

(38)

to bring this to the form

∂2φψ − 6πG
[

(1− 2z2) + (4z − 6z3)∂z

+2z2(1− z2)∂2z
]

ψ = 0 . (39)

By separation of variables and an Ansatz ψ(z, φ) =
eikφzµ g(z2), one obtains (y := z2)
{

1

8y

[

1 +
k2

6πG
+ 2(µ+ µ2)

]

− 1

4
(1 + µ)2

}

g(y) (40)

+

[(

µ+
3

2

)

− y(µ+ 2)

]

g′(y) + y(1− y)g′′(y) = 0 ,

which the reader will recognize as a special case of Euler’s
hypergeometric differential equation [28, Eq. 9.151]

y(1− y)g′′ + [c− (a+ b+ 1)y]g′ − ab g = 0 , (41)

provided that the coefficient of g(y)/y is made to vanish:

µ± = −1

2
± i

2

√

1 +
k2

3πG
. (42)

Then, Eq. (40) is (41) with a = b = (µ + 1)/2 and c =
µ + 3/2; two independent solutions around y = 0 are
given in terms of Gaussian hypergeometric functions

ψµ± = eikφz(b)µ±
2F1

[

µ± + 1

2
,
µ± + 1

2
;µ± +

3

2
; z(b)2

]

,

(43)
where z(b) is given by Eq. (38) and µ± are the two roots
(42). In terms of the variables ν and φ, the general solu-
tion can then be written as

ψ(ν, φ) =
ν0
2π

2π/ν0
∫

0

db e−iνb

+∞
∫

−∞

dk (44)

×
[

A+(k)ψµ+(k)(b, φ) +A−(k)ψµ−(k)(b, φ)
]
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for some functions A+(k) and A−(k) (the interpretation
of which as left- and right-moving modes is less obvi-

ous). Taking A+ = e−λk2

and A− = 0 we obtain a
wave packet, plotted in Fig. 1 (using Mathematica) as
a function of b and φ. The wave packet is peaked on
both “expanding” and “contracting” classical solutions
φ = ±(12πG)−1/2 ln tan(ν0b/4). This can be compared
with a wave packet composed out of right-moving modes
x′(b)eik[φ+x(b)] in solvable LQC, sharply peaked on the
“contracting” branch (see Fig. 2).

FIG. 1. Wave packet |ψ(b, φ)| formed out of the solutions
(43), with λ = 0.01 and ν0 = 3πG = 1, so that b ∈ [0, 2π).

FIG. 2. Wave packet |ψ(b, φ)| in solvable LQC, with AL(k) =

0, AR(k) = e−0.01k2

in (34), where again ν0 = 3πG = 1.

The bounce picture is not as clear, analytically, as that
in sLQC. Equation (39) is not a Klein–Gordon equation,
derivatives in φ do not map directly into derivatives in
z, and the volume operator ν̂ ∝

√
1− z2∂z acts on a

function whose z and φ dependence are completely un-
correlated. Figure 1 suggests that also here the wave
packet follows the classical trajectories [Eq. (30)] which
contain a bounce, but we must leave a detailed numerical
investigation of the existence of a bounce to future work.

For Wheeler–DeWitt quantum cosmology, the free field
equation is just the (1 + 1)-dimensional wave equation

with general solution ψ(a, φ) = ψ+[φ−
√

3/(4πG) ln a]+

ψ−[φ +
√

3/(4πG) ln a], decomposed into Fourier modes
as

ψ(a, φ) =

+∞
∫

−∞

dk
{

fL(k) e
ik[φ−N (a)] + fR(k) e

ik[φ+N (a)]
}

.

(45)

B. Propagator

Having fixed a self-adjoint operator K̂ in the action
(12), one needs to invert it to obtain the propagator of
the theory. In the generic case (10), we can give a “spin
foam” series expansion by using the results given in [21]
(extending those of [19, 20]), where we determined the
Feynman propagator corresponding to a constraint of the
form −(Θ + ∂2φ) [that is, for B(ν) = 1] to be

iGF =
∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

Θν νM−1
. . .Θν2 ν1Θν1 ν′ (46)

×
p
∏

k=1

1

(nk − 1)!

(

∂

∂Θwkwk

)nk−1





p
∑

m=1

e−i
√

Θwmwm (φ−φ′)

2
√

Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)



 .

We refer to [21] for notation and details of the calculation.
From this it follows that a Green’s function (right inverse)

for K̂ with general B(ν) is

GR(ν, φ; ν
′, φ′) :=

GF(ν, φ; ν
′, φ′)

B(ν′)
, (47)

since

K̂ν,φGR(ν, φ; ν
′, φ′) =

B(ν)

B(ν′)
(−Θν − ∂2φ)GF(ν, φ; ν

′, φ′)

= δν,ν′δ(φ − φ′) , (48)

where the subscript of K̂ indicates that differential and
difference operators act on the first argument only. Since
K̂ is self-adjoint, a left inverse is obtained by tak-
ing the adjoint of the right inverse, GL(ν, φ; ν

′, φ′) =

GR(ν′, φ′; ν, φ).
For the sLQC model, we can give a more explicit ex-

pression for the propagator, exploiting the relation to
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the Klein–Gordon equation; a Green’s function for (31)
is given by

Gs

R(b, φ; b
′, φ′) =

dx

db

∣

∣

∣

∣

b=b′
i∂b {GKG[x(b), φ;x(b

′), φ′]}

= i∂b

{

ν0
GKG[x(b), φ;x(b

′), φ′]

4
√
3πG sin(ν0b

′
2 )

}

, (49)

where GKG is the Feynman propagator for the Klein–
Gordon equation. Explicitly [29],

GKG = − 1

4π
ln
{

µ2[(φ − φ′)2 − (x − x′)2 − iǫ]
}

, (50)

where the usual iǫ prescription cancels the singularities
on the “light cone,” so that

Gs

R =
(96π2G)−1 iν20 [x(b) − x(b′)]

sin ν0b
2 sin ν0b′

2 {(φ − φ′)2 − [x(b) − x(b′)]2 − iǫ}
.

(51)
Gs

R blows up as b → 0 or b′ → 0 because the coordinate
transformation from b, b′ to x, x′ becomes singular there,
as we noted below (33). Hence, these are not physical
singularities. To obtain a Green’s function which can
be extended to those values, one would have to solve
Eq. (48) with appropriate boundary conditions. In the
above example, the b representation elects ν as the mo-
menta; swapping representation, the physical interpreta-
tion of the light-cone poles as classical trajectories would
be unchanged.
Notice that the choice of the Feynman propagator for

the particular Green function to use can be justified for-
mally by the analogy with the free particle case, and thus
by a definition of “time-ordering” and thus causality con-
ditions with respect to the values of the scalar field used
as internal time for the system. Another justification,
possibly more satisfactory, for the same choice of ana-
lytic continuation in the complex plane is the fact that
this choice makes not only the propagator itself but also
the formal field-theory path integral well defined, at least
as far as the free theory is concerned.

In comparison, we note that for the Hamilto-
nian constraint (26) of standard Wheeler–DeWitt
quantum cosmology one just considers the Klein–
Gordon equation, and the propagator of the theory is
GKG[

√

3/(4πG) ln a, φ;
√

3/(4πG) ln a′, φ′].

V. TAKING INTERACTIONS INTO ACCOUNT:

MEAN-FIELD APPROXIMATION

We now want to extend our analysis to the field in-
teractions, i.e., to the effects of topology change on the
dynamics of a single universe (or, in the alternative inter-
pretation we suggested, of the interaction of the various
homogeneous patches of the universe on the dynamics
of each of them). As in any nontrivial field theory, the
exact solution of the dynamics is beyond question, and

one has to resort to approximation methods and various
truncations. One is of course the perturbative expansion
of the field theory around the Fock vacuum and the study
of the corresponding Feynman diagrams and amplitudes.
This is, for example, the level at which the current un-
derstanding of full GFT’s (and of the corresponding spin
foam models) stands. Another type of technique, aim-
ing at an approximate understanding of nonperturbative
features of the theory and at the extraction of effective
dynamics from the “fundamental” one, is mean field the-
ory. The application of such technique in the full GFT
framework has just started [30], and a similar study of
the toy model we defined here is what we focus on in the
following.

As said, a first approximation to the dynamics of an
interacting system is obtained if one assumes that, in
an appropriate quantum state |ξ〉, the system fluctuates
around a configuration with nonvanishing expectation
value of the field operator Ψ̂ and replaces Ψ̂ = 〈Ψ̂〉+ δΨ̂
in the quantum (operator) version of the field equation
(18). A similar expansion can already be done at the
classical level by writing the field Ψ appearing in the ac-
tion (17) as Ψ = Ψ0+δΨ, that is, when studying the field
theory dynamics around a different (nontrivial) vacuum
Ψ0. The resulting effective action from such an expansion
[starting from Eq. (17)] is the following:

Seff = S[Ψ = Ψ0 + δΨ]− S[Ψ = Ψ0]

=
∑

ν

∫

dφ

[

Ψ0(ν, φ) +
1

2
δΨ(ν, φ)

]

K̂δΨ(ν, φ)

+

n
∑

j=2

λj
j!

∑

ν1...νj

∫

dφ1 . . . dφj fj(νi, φi)

×
j
∑

m=1

(

j

m

) j−m
∏

k=1

Ψ0(νk, φk)

j
∏

l>j−m

δΨ(νl, φl) ,

(52)

where we have assumed that the functions
fj(ν1, . . . , νj, φi, . . . , φj) are symmetric under any
permutations of their j pairs of variables. This assump-
tion, needed only to have a more compact expression for
the result, can be lifted straightforwardly.5

We can then isolate the terms that are linear, quadratic
and higher-than-quadratic in the dynamical field δΨ to
obtain (using the standard convention that a sum run-
ning from n to n− 1 is empty)

5 When the assumption is not satisfied, the expression replacing
the third and fourth lines in (52), for given j, is obtained by: (i)
choosing m ordered elements out of the ordered set of j variables
of the functions fj ; (ii) convoluting m fields δΨ and (j − m)
fields Ψ0 with the same functions fj , with respect to the chosen
variables; (iii) summing over m from 1 to j.
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Seff =

[

∑

ν

∫

dφ Ψ0(ν, φ)K̂δΨ(ν, φ)+

+

n
∑

j=2

λj
(j − 1)!

∑

ν1...νj

∫

dφ1 . . . dφj

× fj(νi, φi)

(

j−1
∏

k=1

Ψ0(νk, φk)

)

δΨ(νj , φj)

]

+
1

2

[

∑

ν

∫

dφ δΨ(ν, φ)K̂δΨ(ν, φ)

+

n
∑

j=2

λj
(j − 2)!

∑

ν1...νj

∫

dφ1 . . . dφj fj(νi, φi)

×
(

j
∏

k=3

Ψ0(νk, φk)

)

δΨ(ν1, φ1)δΨ(ν2, φ2)

]

+





n
∑

j=2

λj
j!

∑

ν1...νj

∫

dφ1 . . . dφj fj(νi, φi)

×
j
∑

m=3

(

j

m

) j−m
∏

k=1

Ψ0(νk, φk)

j
∏

l>j−m

δΨ(νl, φl)



 .

(53)

The term that is linear in δΨ vanishes if the mean-field
configuration Ψ0 is chosen to satisfy the classical equa-
tion of motion of the original field theory. In practice, it
is extremely hard to find a classical solution of the inter-
acting theory, so, as is the case in some condensed matter
systems, we resort to a further approximation valid in the
limit of small coupling constants. That is, we will choose
solutions of the free field theory as our mean-field vacua
Ψ0, either exact (when possible) or approximate, and
then assume that the coupling constants λj are very small
(that is, that topology change is strongly suppressed in
this cosmological second-quantized toy model) and that,
because of this, the same vacua represent approximate
solutions of the full equation of motion. Under these as-
sumptions, we can neglect the linear terms in the above
effective action.

The quadratic term in δΨ defines an effective
Hamiltonian constraint for the cosmological second-
quantized model, taking into account the small pro-
cesses of merging/splitting of homogeneous isotropic uni-
verses/patches. This effective Hamiltonian constraint op-
erator is given by:

K̂Ψ0,fj ,λj

eff = δ(φ1 − φ2)δν1,ν2K̂ +

n
∑

j=2

λj
(j − 2)!

K̂Ψ0,fj ,λj

j

(54)

with

K̂Ψ0,fj ,λj

j =
∑

ν3...νj

∫

dφ3 . . . dφj

j
∏

k=3

Ψ0(νk, φk)

×fj(ν1, ν2, . . . , νj, φ1, φ2, . . . , φj) . (55)

It depends on the original coupling constants λj , on
the original interaction kernels fj , and, crucially, on the
mean-field configuration Ψ0 chosen as new vacuum.

The new effective interactions Veff for δΨ0 depend on
the same data, and are given by the last term in Eq. (53):

Veff =

n
∑

j=3

λj
j!

∑

ν1...νj

∫

dφ1 . . . dφj fj(νi, φi) (56)

×
j
∑

m=1

(

j

m

) j−m
∏

k=1

Ψ0(νk, φk)

j
∏

l>j−m

δΨ(νl, φl) ,

from which one can read out the new interaction kernels.

The above is totally general. The simplest case is when
the original field theory contains only interactions of the
lowest (nonquadratic) order, that is, when n = 3. Then,
one obtains the effective action (now assuming the linear
term vanishes)

Seff [δΨ] =
1

2

∑

ν1,ν2

∫

dφ1 dφ2 δΨ(ν1, φ1) K̂eff δΨ(ν2, φ2)

+
λ3
3!

∑

ν1,ν2,ν3

∫

dφ1 dφ2 dφ3 f3(νi, φi)

×
3
∏

k=1

δΨ(νk, φk) , (57)

with the effective Hamiltonian constraint operator

K̂eff = δ(φ1 − φ2)δν1,ν2K̂ + λ2 f2(ν1, φ1; ν2, φ2)

+λ3
∑

ν3

∫

dφ3 f3(νi, φi)Ψ0(ν3, φ3) . (58)

In this simple case, one can also easily give the general-
ization to nonsymmetric interaction kernels:

K̂eff = K̂(ν1, φ1; ν2, φ2) +
1

2

{

λ2 f2(ν1, ν2, φ1, φ2)

+
λ3
3

∑

ν3

∫

dφ3 [f3(ν1, ν2, ν3, φ1, φ2, φ3)

+f3(ν1, ν3, ν2, φ1, φ3, φ2)

+ f3(ν3, ν2, ν1, φ3, φ2φ1)] Ψ0(ν3, φ3)

+ (ν1 ↔ ν2)

}

. (59)

It is clear that the main issue in this approach, for the
extraction of effective single-universe dynamics from the
initial field-quantized model, is the choice of mean field
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Ψ0. We have already anticipated the general requirement
of choosing (approximate) solutions of the original field
theory equations, and the difficulty involved in doing so.
We will now work out a choice of mean-field vacuum.
Having done so, we will turn to the role of the original
interaction kernels fj and the consequences, at the level
of the effective Hamiltonian constraint, of some interest-
ing choices of the same. We keep this final discussion
on the possible resulting dynamics rather brief, leaving a
more thorough analysis to the future.6

One can follow two conceptually different but mathe-
matically similar approaches to the choice of mean-field
vacuum, yielding, eventually, the same result. The first
would be to take a known physical state from the first-
quantized theory and write

Ψ0(ν, φ) = ψ(ν, φ) . (60)

In the second, one takes a second-quantized coherent
state in a Fock space picture [31],

|ξ〉 = exp

[
∫

d̺(k) ξ(k) a†k

]

|0〉 , (61)

where k labels classical solutions to the constraint,
d̺(k) is some measure determined by the normaliza-

tion of single-particle states |k〉 = a†k|0〉 [by imposing
∫

d̺(k)〈k|k′〉 = 1], and |0〉 is the Fock vacuum. These
states are eigenstates of the annihilation operators ak
with eigenvalue ξ(k), so that the field operator Ψ̂(ν, φ)
has expectation value

〈ξ|Ψ̂(ν, φ)|ξ〉 =
[
∫

d̺(k) ξ(k)χk(ν, φ) + c.c.

]

‖ξ‖2 ,
(62)

6 A remark is in order. The logic of a mean-field approximation
is the following. One starts from a given dynamical model of
the universe in second quantization through some functions fj
(in addition to a given free theory dynamics). One aims at ob-
taining an effective free theory, taking into account some effects
of the presence of interactions, around a new vacuum. One has
then to identify what this relevant new vacuum is, and extract
the effective dynamics around it (which will of course depend on
the original choice of interactions fj). In our presentation we will
be forced to follow a different logic. We will first discuss choices
of mean field, then consider interesting possibilities for effective
Hamiltonian dynamics one may want to obtain as a result of the
mean-field approximation of the second-quantized dynamics, and
finally we will discuss which initial model (functions fj) would
lead to the effective Hamiltonian considered, given a mean-field
configuration. The reason for this line of argument is twofold.
First, given the progress in the context of LQC and the nov-
elty of our second-quantized reformulation, we have some con-
trol over the possible forms of mean-field configurations but very
little constraints on the “correct” choice of interactions. Second,
in the present paper, whose main goal is to introduce the new
second-quantized framework, we are more interested in explor-
ing the available possibilities, the outcomes of various choices of
models, and the ways to deal with them, rather than analyzing
the properties of one specific model.

where χk(ν, φ) is the solution to Eq. (10) labeled by k.
Clearly, this expectation value can then be equivalently
viewed as a first-quantized (real) wavefunction ψ(ν, φ),
Eq. (60). In both viewpoints there is a normalization
condition: For |ξ〉 to be in the Fock space, one must
have

∫

d̺(k)|ξ(k)|2 < ∞, while ψ(ν, φ) defines a first-
quantized state if it has finite norm in the appropriate
physical inner product, e.g.,

‖ψ‖2 =
∑

ν

B(ν)|ψ(ν, φ0)|2 , (63)

at some fixed φ0 [22].
For the solvable sLQC model, where the general so-

lution is Eq. (34), we have to choose appropriate func-
tions AL(k) and AR(k) in the mean-field approximation.
If we consider only a single right-moving mode k0 > 0
[AL(k) = 0, AR(k) = δ(k − k0)],

ψk0
(ν, φ) =

ν0
2π

+∞
∫

−∞

dx e−iνb(x)eik0(φ+x) + c.c.

∼ cos

[

k0√
12πG

ln

(

2
√
12πGν

k0ν0

)

− π

4

]

× 2ν0
(3π3Gk20)

1/4
cos(k0φ) . (64)

Here we have used a stationary-phase approximation

∫

dx eig(x) ∼
∑

g′(x0)=0

eig(x0)

√

2π

ig′′(x0)

in the limit ν ≫ ν0, in which we find that ψ does not
decay and, in general, does not satisfy a normalization
condition. Alternatively, we might consider a Gaussian,
giving a wave packet centered around a classical trajec-
tory φ = −x = −(12πG)−1/2 ln tan(ν0b/4), similar to
the wave packets studied by Kiefer for Wheeler–DeWitt
quantum cosmology [32]. The stationary-phase method
then gives

ψ(ν, φ) =
ν0
2π

+∞
∫

−∞

dx dk e−iνb(x)−λ(k−k0)
2+ik(φ+x) + c.c.

=
ν0

2
√
πλ

+∞
∫

−∞

dx eik0(φ+x)− 1
4λ

(φ+x)2−iνb(x) + c.c.

∼
(

2ν
√
12πG

k0ν0

)− 1
48πGλ

ln
(

2ν
√

12πG
k0ν0

)

ψk0
(ν, φ) ,

(65)

where we pick up an extra factor from the Gaussian. For
large ν, the field now falls off faster than any power of
ν. The scalar field φ not only acquires an effective pe-
riodic potential [V ∼ f(a) cos(k0φ) for n = 3], but it
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also becomes nonminimally coupled with gravity via a
nontrivial function f(a).

We can redo the analysis for Wheeler–DeWitt cosmol-
ogy using a wave packet of the usual form,

ψ(a, φ) =

+∞
∫

−∞

dk e−λ(k−k0)
2

eik[φ−N (a)]

=

√

π

λ
eik0[φ−N (a)] e−

1
4λ

[φ−N (a)]2 , (66)

so that for large a (and at fixed φ) we find again a fall-off
behavior

ψ(a, φ) ∼ a
√

3
4πG

φ
2λ

− 3
16πGλ

lna (67)

faster than any power of a.

In general, any statement about the explicit form of
the contribution to K̂ will strongly depend not only on
the chosen field configuration Ψ0, but also on the form of
the interactions in our model, which are not strongly con-
strained. Let us discuss possible results for this effective
Hamiltonian dynamics, and how to obtain them.
A possibility which has been suggested by studies in

LQC [19, 20] is that, for a “monomial” interaction, the
GFT coupling constant λ is related to the cosmological
constant Λ. This possibility had been also considered
previously [13, 14], but, in analogy with matrix mod-
els and tensor models and with the “third-quantization”
model of [4], the coupling λ would be expected to be
related to the exponential of the cosmological constant

rather than Λ itself. For example, the formal arguments
of [4] suggest that a second-quantized field-theory Feyn-
man amplitude should correspond to eiS evaluated on the
classical spacetime represented by the Feynman diagram.
Our simplified scheme suggests another way to obtain

a relation between a fundamental field-quantized cou-
pling and an effective cosmological constant. Under the
assumption that our toy cosmological model comes out
from some more fundamental GFT dynamics, and thus
that the coupling constant of the toy model can be re-
lated to the fundamental GFT interactions, the mean
field approximation can relate very directly the coupling
constant of the cosmological model to an effective cos-
mological constant in the single-universe dynamics (free
theory), that is, in an effective Hamiltonian constraint.
Let us see how this can happen.
The effective contribution to K̂ should be of the form

KΛ = ΛB(ν) ν2. This term grows with large ν and, for
a trivial polynomial interaction (that is, trivial interac-
tion kernels fj), presumably it could not come from a
normalizable Ψ. However, a general choice of interaction
functional, such as that in Eq. (17), can accommodate
an effective cosmological constant. Actually, it can even
reproduce a nonconstant scalar-field potential term,

KV = V (φ)B(ν) ν2 , (68)

for example of the type that would be needed for inflation
in the early universe.

Take, again, n = 3 and Eq. (58). The contribution in
f2 is nontrivial only if the effective Hamiltonian is nonlo-
cal, otherwise it would just be an extra piece defining the
initial Hamiltonian constraint. Since we are interested in
a local constraint, we can ignore it, set λ2 = 0, and ab-
sorb λ3 in the potential V (φ). Then, a function f3 that
happens to match the behavior of the mean-field vacuum
and contains the appropriate dependence on ν and φ on
top of it would be

f3(νi, φi) = δ(φ1 − φ2)δ(φ2 − φ3)δν1,ν2δν2,ν3

×V (φ3)B(ν3)ν
2
3 [Ψ0(ν3, φ3)]

−1 . (69)

Notice that, by construction, f3 is symmetric with re-
spect to all its arguments.

Clearly, this is rather ad hoc and one should have an
independent justification (and possibly a full derivation
from a fundamental GFT) for a given choice of interac-
tions f3, such that the wished-for effective Hamiltonian
constraint comes out, for a reasonable choice of nonper-
turbative vacuum which should also be independently jus-
tified.

However, the above derivation proves an intriguing
possibility, to be explored further: an underlying, more
fundamental dynamics of creation/annihilation of uni-
verses, i.e., topology change, or of merging/splitting of
homogeneous and isotropic patches within a single uni-
verse could result, at an effective level, in a nontrivial po-
tential term for the (homogeneous and isotropic) scalar
field, and a cosmological constant term.

Notice also that, in the first-quantized LQC and
Wheeler–DeWitt frameworks, the presence of a potential
spoils the separation of positive-frequency and negative-
frequency sectors, as recalled, e.g., in [21]. This is not an
issue in our second-quantized model (being a field the-
ory), and we are able to generate a scalar potential (non-
trivial in the inflationary early universe) without formally
changing the structure of the free theory.

With the same procedure, we can obtain also other
types of effective contributions, for instance a nonvanish-
ing curvature k = ±1 (closed and open universe, respec-
tively). It is sufficient to replace

νV (φ) → νV (φ) − ν1/3
3k

8πG
(70)

in Eq. (69) to obtain an effective spatial curvature term of
the form one finds in the classical Friedmann equation. It
is also straightforward to obtain an effective Hamiltonian
constraint corresponding to, e.g., the k = 1 model in
LQC [33]. In fact also in that case the term corresponding
to spatial curvature only acts by multiplication with a
function of ν.
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VI. DISCUSSION AND OUTLOOK

In this paper we outlined the construction of a field the-
ory of universes drawing inspiration from the perspective
advanced in quantum gravity by group field theory, and
by the general idea of “third quantization of gravity,”
that had been advanced in the early days of the subject
[4, 9, 10]. We have also studied various aspects of the
formalism, in particular the consequences it has for the
single-universe dynamics, that is, for the standard (loop)
quantum cosmology setting. These come already from
the embedding of the canonical dynamics within a field
theory, as encoded in the free field theory. More interest-
ing consequences, of course, come from the existence of
interactions, which, we showed, can be taken into account
via mean field approximation. Given the subject, and the
current level of understanding of the fundamental theory
(in either the LQG or in the GFT formulation), our goal
was then in many respects necessarily of an exploratory
nature. In particular, the least developed point of the
discussion concerns the choice of interaction. As in all
simplified models for cosmology, however, the main task
will be to better justify the assumptions and the dynam-
ics chosen from the fundamental theory, and to possibly
show how such a simplified model can emerge naturally
in some sectors of the full theory. Understanding this
issue will also clarify the role and physical significance of
conserved currents within the model.

Before concluding, we should mention an alternative
view of the physics of this “group field cosmology,” that
we anticipated in passing in the course of our presenta-
tion. While loop quantum or Wheeler–DeWitt cosmol-
ogy describe a single evolving quantum universe, in the
field cosmological model one has many-particle interact-
ing states. Instead of interpreting them as n distinct uni-
verses merging and splitting in topology-changing “scat-
tering” processes, one could think of them as n FRW
patches which, collected together, approximate a sin-
gle inhomogeneous universe. This is reminiscent of the
separate universe approach [34–36], where inflationary
large-wavelength perturbations are represented as spa-
tial gradients among homogeneous patches of Hubble
size.7 In each patch centered at some spatial point x,
one has a “local” scale factor a(t,x), Hubble parame-
ter H(t,x), and so on. In particular, the local scale
factor a(t,x) = a(t) exp[−ΦNL(t,x)] encodes both the
minisuperspace variable a and the nonlinear scalar per-
turbation ΦNL. Linear perturbations can then be iden-
tified with gradients. At the linear level, a(t,x) ≈
a(t)[1 − ΦNL(t,x)]; call δa = −a(t)ΦNL(t,x). One has
[a(t,x1)− a(t,x2)]/(x

i
1 −xi2) ∼ ∂ia(t,x), so that, up to a

numerical factor, for a perturbation of wavelength λ we
get δa ∼ λ∂ia(t,x).

In our field-theory picture, the present-day universe
would resemble some configuration of many particles (re-
gions of linear size b−1) that looks homogeneous to high
precision at large scales. This could be a condensate
phase of the theory where discrete translation invariance
in the ν variable is spontaneously broken, as is known
for systems in condensed matter physics. Then, the chal-
lenge would be to define a model whose collective behav-
ior agrees with the standard cosmological perturbation
theory.
However, the resulting action would be nonlocal in

order to accommodate the infinite multiplicity of spa-
tial points into a finite-dimensional, minisuperspace-like
phase space. For instance, following the above-mentioned
gradient expansion, a linear perturbation would be de-
fined via the “interaction” of two patches in a nonlocal
quadratic term:

∫

da dφ

∫

da′ dφ′ f(a, a′, φ, φ′)Ψ(a, φ)Ψ(a′, φ′) ,

where f is a function which should encode the correct
dynamics to match with the perturbed Hamiltonian con-
straint. Just as we did for the effective Hamiltonian
constraint in the previous section, one could explicitly
calculate f from this perturbed Hamiltonian constraint.
The main difficulty to overcome, in developing properly
the separate universe perspective of our second-quantized
cosmology, is to develop first a proper quantum cosmol-
ogy version of the separate universe approach to cosmo-
logical perturbations. Admittedly, it is unclear at the
present stage whether applying our framework to the
problem of cosmological perturbations has practical ad-
vantages over conventional strategies, unless some con-
servation law be implemented. It is yet another possi-
bility worth exploring, however. On the other hand, the
implementation of the separate universe idea within a
field-theoretic formalism like the one we propose could
have a better chance of being derived from fundamen-
tal formulations of quantum gravity such as GFT. This
would give a more solid ground to this way of dealing with
cosmological perturbations and also offer a way to test
fundamental models via their cosmological predictions.
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7 For other work in the quantum cosmology context which is sim- ilar to the spirit of the separate universe approach, see, e.g., [37]
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[25] W. Kamiński and J. Lewandowski, Class. Quant. Grav.

25, 035001 (2008) [arXiv:0709.3120].
[26] S.W. Hawking and D.N. Page, Nucl. Phys. B 264, 185

(1986).
[27] A. Baratin, F. Girelli, and D. Oriti, Phys. Rev. D

83, 104051 (2011) [arXiv:1101.0590].
[28] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals,

Series, and Products (Academic Press, London, U.K.,
2007).

[29] N.D. Birrell and P.C.W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, Cambridge,
U.K., 1982).

[30] D. Oriti and L. Sindoni, New J. Phys. 13, 025006 (2011)
[arXiv:1010.5149]; E.R. Livine, D. Oriti, and
J.P. Ryan, Class. Quant. Grav. 28, 245010 (2011)
[arXiv:1104.5509]; W. Fairbairn and E.R. Livine,
Class. Quant. Grav. 24, 5277 (2007) [gr-qc/0702125];
F. Girelli, E.R. Livine, and D. Oriti, Phys. Rev. D
81, 024015 (2010) [arXiv:0903.3475].

[31] A. Altland and B. Simons, Condensed Matter Field
Theory (Cambridge University Press, Cambridge, U.K.,
2006).

[32] C. Kiefer, Phys. Rev. D 38, 1761 (1988).
[33] A. Ashtekar, T. Pawlowski, P. Singh, and K. Vandersloot,

Phys. Rev. D 75, 024035 (2007) [gr-qc/0612104].
[34] D. Wands, K.A. Malik, D.H. Lyth, and A.R. Liddle,

Phys. Rev. D 62, 043527 (2000) [astro-ph/0003278].
[35] G.I. Rigopoulos and E.P.S. Shellard, Phys. Rev. D

68, 123518 (2003) [astro-ph/0306620].
[36] D.H. Lyth and A.R. Liddle, The Primordial Density

Perturbation (Cambridge University Press, Cambridge,
U.K., 2009).

[37] E. Wilson-Ewing, arXiv:1108.6265.

http://arxiv.org/abs/gr-qc/0110034
http://dx.doi.org/10.1016/0550-3213(89)90353-2
http://dx.doi.org/10.1016/0550-3213(89)90353-2
http://arxiv.org/abs/1102.2226
http://dx.doi.org/10.1103/PhysRevD.38.3031
http://dx.doi.org/10.1016/0550-3213(88)90097-1
http://dx.doi.org/10.1016/0550-3213(88)90455-5
http://dx.doi.org/10.1016/0550-3213(88)90455-5
http://dx.doi.org/10.1016/j.physrep.2011.01.003
http://arxiv.org/abs/0807.4722
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.004
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.004
http://arxiv.org/abs/0904.3744
http://dx.doi.org/10.1007/JHEP02(2010)093
http://arxiv.org/abs/0910.2160
http://arxiv.org/abs/gr-qc/9210011
http://dx.doi.org/10.1088/0034-4885/64/12/203
http://arxiv.org/abs/gr-qc/0106091
http://arxiv.org/abs/gr-qc/0106091
http://dx.doi.org/10.1088/0264-9381/20/6/202
http://arxiv.org/abs/gr-qc/0301113
http://arxiv.org/abs/gr-qc/0301113
http://arxiv.org/abs/gr-qc/0607032
http://arxiv.org/abs/gr-qc/0512103
http://arxiv.org/abs/1110.5606
http://arxiv.org/abs/1109.4812
http://arxiv.org/abs/1112.5104
http://arxiv.org/abs/1108.0893
http://arxiv.org/abs/1109.6801
http://dx.doi.org/10.1016/j.physletb.2009.10.042
http://dx.doi.org/10.1016/j.physletb.2009.10.042
http://arxiv.org/abs/0909.4221
http://dx.doi.org/10.1088/0264-9381/27/13/135020
http://dx.doi.org/10.1088/0264-9381/27/13/135020
http://arxiv.org/abs/1001.5147
http://dx.doi.org/10.1088/0264-9381/28/12/125014
http://dx.doi.org/10.1088/0264-9381/28/12/125014
http://arxiv.org/abs/1011.4290
http://dx.doi.org/10.1103/PhysRevD.74.084003
http://dx.doi.org/10.1103/PhysRevD.74.084003
http://arxiv.org/abs/gr-qc/0607039
http://dx.doi.org/10.1103/PhysRevD.77.024046
http://dx.doi.org/10.1103/PhysRevD.77.024046
http://arxiv.org/abs/0710.3565
http://arxiv.org/abs/gr-qc/0206020
http://dx.doi.org/10.1088/0264-9381/25/3/035001
http://dx.doi.org/10.1088/0264-9381/25/3/035001
http://arxiv.org/abs/0709.3120
http://dx.doi.org/10.1016/0550-3213(86)90478-5
http://dx.doi.org/10.1016/0550-3213(86)90478-5
http://dx.doi.org/10.1103/PhysRevD.83.104051
http://dx.doi.org/10.1103/PhysRevD.83.104051
http://arxiv.org/abs/1101.0590
http://dx.doi.org/10.1088/1367-2630/13/2/025006
http://arxiv.org/abs/1010.5149
http://dx.doi.org/10.1088/0264-9381/28/24/245010
http://arxiv.org/abs/1104.5509
http://dx.doi.org/10.1088/0264-9381/24/20/021
http://arxiv.org/abs/gr-qc/0702125
http://dx.doi.org/10.1103/PhysRevD.81.024015
http://dx.doi.org/10.1103/PhysRevD.81.024015
http://arxiv.org/abs/0903.3475
http://dx.doi.org/10.1103/PhysRevD.38.1761
http://dx.doi.org/10.1103/PhysRevD.75.024035
http://arxiv.org/abs/gr-qc/0612104
http://dx.doi.org/10.1103/PhysRevD.62.043527
http://arxiv.org/abs/astro-ph/0003278
http://dx.doi.org/10.1103/PhysRevD.68.123518
http://dx.doi.org/10.1103/PhysRevD.68.123518
http://arxiv.org/abs/astro-ph/0306620
http://arxiv.org/abs/1108.6265

