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1. Introduction

N = 4 super-Yang—Mills theory (SYM) in four dimensions is the simplest gauged quan-
tum field theory [1] to which experts lovingly refer to as the “harmonic oscillator of the
21st century”. Many hopes rest on this gauge theory to become the first example of an
exactly solvable interacting four-dimensional field theory. It can be obtained by standard
dimensional reduction from its ten-dimensional version with N = 1 supersymmetry [2].

In recent years there has been enormous progress in developing techniques for com-
puting scattering amplitudes in both the planar [3,4,5] and the non-planar sector of N = 4
SYM (see e.g. [6,7] or [8] and references therein). Part of this progress in the planar sector
can be attributed to the conformal and dual-conformal symmetries [9] as well as their
closure to the infinite-dimensional Yangian [10]. On the other hand, the duality between
color and kinematics [11] universal to any gauge theory has been successfully used to relate
planar to non-planar diagrams, see [12,13] for examples at three- and four-loops.

For the ten-dimensional N =1 SYM theory there exists similar progress in achieving
unexpected simplifications through novel superspace variables. It has been known since the
work of Howe [14] that the use of a pure spinor simplifies the description of N =1 SYM.
With the advent of the pure spinor formalism by Berkovits [15], this rewarding description
was put into the context of the full superstring theory with a underlying BRST symmetry
and a new kind of superspace [16].

In recent years these key features of the pure spinor formalism allowed striking com-
pactness in the computations of scattering amplitudes both in string theory [17-27] and
directly in its field-theory limit [27-32]. Using the ideas of [11] for the field theory ampli-
tudes, it was suggested in [28] and proven in [27,31] that BRST invariance together with
the propagator structure of cubic diagrams are sufficient to determine tree-level amplitudes
of D = 10 SYM to any multiplicity. The recursive BRST cohomology method obtained
in [31] leads to compact and elegant supersymmetric answers and makes use of so-called
BRST building blocks which can be regarded as superspace representatives of cubic dia-
grams. The field-theory techniques of [31] were subsequentely exploited to also calculate
the general color-ordered open superstring tree amplitudes in [27,33]. The punchline is that
the n-point string amplitudes are written as a sum of (n — 3)! field theory subamplitudes
dressed by hypergeometric integrals [33].

The problem of computing one-loop amplitudes in open superstring theory has been

dealt with since the 1980’s, the first successful result at four-points being [34] in the
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NS sector and [35] in the R sector. In spite of the technical difficulties caused by the
spin structure sums required by the RNS model, [36] provides progress towards higher
multiplicity up to seven-points. In the context of heterotic theories, five- and six gluon
amplitudes as well as their implications for effective actions were analyzed in [37]. Pure
spinor techniques have been applied to one-loop scattering in [17,38,39,23], superspace
results up to five-points are available from these references. As for two-loop amplitudes,
after an amazing effort by D’Hoker and Phong the four-point amplitude was computed
within the RNS formalism in [40] (see also [41]). Two-loop calculations using the pure
spinor formalism can be found in [19,21,24].

Can this BRST line of reasoning within the pure spinor formalism be extended to
loop amplitudes? With this intention in mind, in this paper we apply the technique
of BRST-covariant building blocks to address one-loop amplitudes in superstring theory.
We determine their worldsheet integrand for any number of massless SYM states. The
complete kinematic factor turns out to be organized in terms of color-ordered tree-level
amplitudes at order a/? that are dressed with worldsheet functions in a minimal basis. A
beautiful harmony in the combinatorics of both ingredients arises. However, evaluating
the (worldsheet- and modular) integrals is left for future work, in particular the extraction
of field theory loop integrals as o’ — 0 along the lines of [42].

Superstring theory has proven to be a fruitful laboratory to learn about hidden struc-
tures in the S matrix of its low energy field theories. The open superstring did not only
inspire the color organization of gauge theory amplitudes but also provided an elegant
proof for Bern—Carrasco-Johansson (BCJ) relations among color-ordered tree amplitudes
[43,44], based on monodromy properties on the worldsheet. Another difficult field theory
problem which found a string-inspired answer is the explicit construction of local kinematic
numerators for gauge theory tree amplitudes which satisfy all the dual Jacobi identities,
see [45]. After these tree-level examples of cross-fertilization between superstring and field
theory amplitudes, we hope that this work helps to provide further guidelines to orga-
nize multileg one-loop amplitudes in maximally supersymmetric SYM in both ten and
four dimensions. Even though the low energy behaviour of the worldsheet integrals is not
addressed, our result for the kinematic factor heavily constrains the form of these field
theory amplitudes. In particular, the gauge invariant kinematic building blocks C; . to
be defined later on appear to be a promising starting point to construct kinematic nu-
merators for higher multiplicity. They could potentially generalize the crossing symmetric

factor s12523.4YM (1,2, 3, 4) omnipresent in multiloop four-point amplitudes of N = 4 SYM
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(where AYM(1,2,...,n) denotes the color-ordered n-point tree amplitude in maximally su-
persymmetric Yang Mills theory). All of our results take a helicity agnostic form, i.e. they
equally cover the MHV- and any N*MHYV sector of N =4 SYM.

This paper is organized as follows. In section two, we review the construction of
the n-point SYM tree amplitude from first principles. We start with the massless vertex
operators in terms of SYM superfields and sketch how their singularity structure give rise to
BRST building blocks representing cubic subdiagrams. As we will argue, BRST invariance
forces them to pair up such that color-ordered SYM amplitudes emerge. Section three sets
the formal foundation for the computation of one-loop amplitudes using the minimal pure
spinor formalism. It motivates the construction of a further family of BRST building blocks
which is carried out in section four. The fourth section follows a line of reasoning similar
to the tree-level review — the BRST variation of the one-loop specific building blocks allow
to a priori determine any BRST invariant to be expected in a one-loop computation. Then
in section five, these BRST invariants are derived from an explicit conformal field theory
(CFT) computation, in particular the associated worldsheet functions are determined.
Section six connects the BRST invariants with o’ corrections to tree-level amplitudes and
explains why their symmetry properties agree with those of finite one-loop amplitudes in
pure Yang-Mills theory. Finally, in the last section, we point out that also the color factors
present at the a/? order of tree amplitudes align into the same combinatorial patterns.
This leads to a duality between the worldsheet integrand of one-loop amplitudes and
color-dressed tree amplitudes at O(a’?).

To give a brief reference to the main results of this work — the final form for the
n-point kinematic factor can be found in equation (5.31) whose notation is explained in
subsection 5.4. Subsection 6.2 contains the general conversion rule (6.17) between the
BRST invariants C;, and color-stripped O(a/?) trees AF " as well as low multiplicity
examples thereof. According to subsection 7.3, the representation (7.21) of the color-

dressed O(a’?) tree manifests a duality to the one-loop kinematic factor (5.31).

2. Review of tree-level cohomology building blocks

In this section, we shall review the construction of tree-level amplitudes in ten-dimensional
SYM, based on BRST building blocks in pure spinor superspace [28,29,31]. Although the
problem at hand is of purely field theoretic nature, we shall use the vertex operators and the

BRST charge of the pure spinor superstring [15] as the starting point. These ingredients
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suggest a pure spinor superspace representation for color-ordered tree subdiagrams with

one off-shell leg. BRST invariance and the pole structure in the kinematic invariants
1 2
Siz.p = 5 (k1 + ko + -+ kp) (2.1)

turn out to be sufficient in order to determine the tree-level SYM amplitude AYM with
any number n of external legs [27,31]. The compactness of the final expression
n—2
AM1,2,0n) = (Mg j Mjp1 0 V) (2.2)
j=1
suggests to apply a similar program at loops, we will follow these lines in section 4 and
introduce similar superspace variables.

At the level of the full-fledged superstring theory, the main virtue of the BRST building
block representation for AYM is the possibility to identify these SYM constituents within
the CF'T computation of the superstring disk amplitude. The supersymmetric n-point tree
amplitude in superstring theory was shown in [27,33] to decompose into a sum of (n — 3)!
color-ordered field theory amplitudes, each one of them being weighted by a separate
function of /. The main result of the current work is a similar decomposition of one-loop

supersymmetric amplitudes, based on a new family of BRST building blocks.

2.1. From vertex operators to OPFE residues

One of the major tasks in computing the open string tree-level amplitude is the evaluation

of the CFT correlation function
(Vl(zl) V”_l(zn_l) V™ (zn) U2(zg) .. U”_Q(zn_g)) (2.3)

where V! and U? denote the vertex operators for the gluon multiplet with conformal-weight
zero and one, respectively. They are conformal fields on the worldsheet parametrized
by a complex coordinate z. The 8+8 physical degrees of freedom are described by the
superfields® A,, A™, W and F,,, of D =10 SYM [46]
. . . 1 .
Vi=)*Al U'=00“AL, +TI™ AL, + d W + =FL  N™, (2.4)

2 mn

3 Throughout this work, SO(1,9) vector indices are taken from the middle of Latin alphabet
m,n,p,... = 0,1,...,9 whereas Weyl spinor indices «,3,... = 1,2,...16 are taken from the

beginning of the Greek alphabet.



where A\* denotes the pure spinor ghost subject to (Ay"™A) = 0 [15]. The remaining
ingredients 00“, 11", d,, and N™" of (2.4) are conformal weight-one fields on the worldsheet.
The ten-dimensional superfields A, A™, W< and F,,,, depending on the bosonic and

fermionic superspace variables ™ and 6, obey the following equations of motion [46,47],

2D(oAp) = 'YZIBAm DoAm = (ymW)a + kmAa 25)
1 .
Daan = 2k[m(7n]W)a Donﬁ = Z(an)aﬁfmn-

As shown in [48], their 6 expansions can be computed in the gauge %A, = 0 and read [49]
1 1 1
Au(z,0) = §am(,ym9)a o §<£7m9)(7m9)a — a5 Fmn(1p0)a(07™"P0) + - - -

32
1 1
A (2,0) = am — (Eymb) — g(evmv”‘I@)qu + E(vav”qG)(apé*vq@) + - (2.6)
1 1 1
W(x,0) = £%~ Z(vmne)o‘ mn + Z(vmne)o‘(amé%@)Jr 4—8(7”“”9)“(9%7”"9)0me(1 + -

1 1

where a,,(z) = e,,e**, £¥(z) = x*e’** are the gluon and gluino polarizations and F,, =

20},ay) is the linearized field-strength.

The equations of motion (2.5) imply that the vertex operators in (2.4) obey QV* =0
and QU’ = OVJ. Since their ingredients V*? and J U’ are BRST closed, superstring
amplitudes (and in particular their field theory limit) should inherit this property.

The correlator (2.3) can be computed by integrating out the conformal worldsheet
fields of unit weight within the U7 vertex operator. This amounts to summing over all
worldsheet singularities in z; — z; which the fields in question can produce. In any CFT,

this information is carried by operator product expansions (OPEs), the first example being
L
Vi) U (z2) — =2 (2.7)
221
This defines a composite superfield Lo, associated with the degrees of freedom of the

states with labels 1 and 2, respectively. By iterating this OPE fusion, we define a family
of superfields of arbitrary rank [31]

L Lotst. 1im
Loy (21) U?(23) — j;fl’ Lois1..1(21) U™ (2m) — %‘fll (2.8)

4. After the fields with conformal weight one

which will be referred to as OPE residues
have been integrated out using their OPEs, the zero modes of the pure spinor \* and ¢

are integrated using the ((A36°)) = 1 prescription reviewed in [27].

4 It turns out that even if OPE contractions are firstly carried out among U'(z:)U?(z;) and
then merged with V!, the result is still a combination of L2131...,m1 permutations. In other words,
at tree-level the OPE U’(2;)U(z;) does not introduce any independent composite superfields.
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2.2. From OPF residues to BRST building blocks

A major shortcoming of the OPE residues Lo131. .1 is their lack of symmetry under ex-
change of labels 1,2, 3, ..., m. However, the obstructions to well-defined symmetry prop-
erties can be shown to conspire to BRST-exact terms. As a simple example, the symmetric

rank-two combination is

L21 + L12 = —Q(Al . AQ) (29)

where @@ = A*D,, denotes the BRST operator of the pure spinor formalism [15] and A"
is the vectorial superfield of D = 10 SYM. Using the BRST transformation properties of
La131..., these BRST-exact admixtures have been identified in [27,31] up to rank five, and

their removal leads to a redefinition of the OPE residues®

1 .
Tio = Lo — 5 (L21 + L12> = L[21]: T1923. . = Lo131...m1 — corrections . (2.10)

The outcome of (2.10) is an improved family of superfields T}23.. ., which we call BRST
building blocks. They are covariant under the action of the BRST charge, e.g.

QT =0
QT2 =s12T1 T3
QT123 = (5123 — 812) T12 T3 — 512 (To3 T + T31 1)
Q1234 = (81234 — 5123) T123 T + (8123 — 512) (T12 T34 + T124 T3)
+ 512 (T134 T + Ti3 Tog + T14Toz + T1 To34)

k
QT2 .k = Z Z (512...5 — s12..5-1)T12. j—1.{a} T} 8, \a} (2.11)
J=2 a€P(B;)

where Vi = T3. Theset 8; = {j+1,j+2,...,k} encompasses the k — j labels to the right
of j, and P(/3;) denotes its power set. In other words, @ acting on a BRST building block
of higher rank yields products of two lower rank analogues together with a Mandelstam
variable.

As discussed in [27], at each rank the BRST building blocks obey one new symmetry in
its labels while still respecting all the lower-rank symmetries. For example, since the rank-

two building block satisfies T(;2) = 0 all higher-order building blocks also obey T{12)34... =

5 We define (anti-)symmetrization of p indices to include i, e.g. Lpy = %(Lgl — Lq12).
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0. At rank-three there is one new symmetry 7Tj;23 = 0 which is respected by all higher-
order ranks, T{j23j4.., = 0 and so forth. The generalization to rank m > 3 is given by

[27],

m=2p+1: Tio priprol.2p—112p.2p+1]]..]] — 2L2p+1...p+2p+1[...[3121]]...]] = O (2.12)

m=2p: T plp+il..2p-202p-1.2p])..]] T T2p. ptafpl. 3(21))..] = 0,
and leaves (m — 1)! independent components at rank m. It turns out that the above
symmetries are shared by color factors of nonabelian gauge theories formed by contracting

structure constants f* of the gauge group. At lowest ranks, we have 7
0=fU23 Ty =0, 0= fl2legshie 100 =0, (2.13)
which states their total antisymmetry and Lie algebraic Jacobi identities, and similarly
0= fl2apalBlopbltle o p3da palllp gbi2le oy o0+ Ty = 0.

In general, the symmetries of a rank m building block are the same as those of a string of

structure constants with m + 1 labels,
f12a2 fa23a3 fa34a4 L fam_lmam o T1234...m , (214)

where the free color index a,,, reflects an off-shell leg m+1 in the associated cubic diagram.

Therefore the basis of rank m building blocks being (m — 1)!-dimensional is equivalent
to the well-known fact that the basis of contractions of structure constants with p free
adjoint indices has dimension (p — 2)! after Jacobi identities.

This similarity of building blocks with color factors as well as their BRST variations
suggest a diagrammatic interpretation for 7723 ,, in terms of tree subdiagrams with cubic
vertices [11] as seen on Fig. 1. Firstly, the color structure of this diagram is given by
(2.14) via Feynman rules and secondly each propagator can be cancelled by one of the
Mandelstam variables in the BRST variation Q7123 ym — S12, 5123, S1234, - - - » $1234...m- 1D

other words, the role of the BRST operator is to cancel propagators.
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2

5123 T123...m

/ 512 S12..m S12 5123 - -- S12..m

1

Fig. 1 The correspondence of tree graphs with cubic vertices and BRST building blocks.

2.3. From BRST building blocks to Berends—Giele currents

Given the dictionary between cubic tree subdiagrams and BRST building blocks, the next
challenge is to combine different diagrams in order to arrive at BRST-invariant SYM
amplitudes. The next hierarchy level of superspace building blocks consists of so-called
Berends—Giele currents Mis3. ., which can be thought of as color-ordered SYM tree am-
plitudes with one leg off-shell. They encompass all the cubic diagrams present in the

associated SYM tree and consist of kinematic numerators 71723, ,, dressed by their propa-

—1
gators (s128123-.-S12..m) , €.8.

T T T:
My, = =2, Mygg = —22 4 =321 (2.15)
512 5125123 5235123

corresponding to the three- and four-point amplitudes with one leg off-shell. At rank four,

Mig34 =

1 T T T T 2T
( 1234 | f3214 , a4z dsaan 12[34]) (2.16)

51234 5125123 $235123 5345234 5235234 512534

collects the five cubic diagrams of a color-ordered five-point amplitude. The two diagrams
present in Moz are shown in Fig. 2.

The necessity to combine BRST building blocks to full-fledged Berends—Giele currents
can be seen from their () variation: Their fine-tuned diagrammatic content makes sure that

also the Mia3.. ., are covariant under the BRST charge, i.e. (where for rank one, M; = V)

QM =0
Q Mz = My My
Q Migs = Mo M3 + My Mo
Q Mi234 = M1z My + My M3q + My Moz, . (2.17)

10



3 9 3 3 T’501
y\ 5235123
S s
Mz = 2 = o L
)¥/ Th23
1 1 $125123 2 1
(a)
m—1 j j+1
] om ] j+2
'/I m—1 'II ‘\\
Q |‘ M™ — Z : j‘/ai % e ‘@nj
\\ 7=1 % lr
3 1 P adl
2 1 m
(b)

Fig. 2 (a) The cubic graphs with one leg off shell which compose the rank three
Berends—Giele current Mias. (b) The factorization of the current Mis.. ., under the
action of the BRST charge. The right-hand side involves the sum over all partitions of
m legs which is compatible with the color ordering set by {1,2,...,m}.

In contrast to Q@T123...,m as given by (2.11), there are no explicit Mandelstam variables in
(2.17) because the rank m current already incorporates m — 1 simultaneous poles. The

generalization of (2.17) to higher rank,
m—1
Q Mz m = Z Mo, j Mji1.m (2.18)
j=1

involves all partitions of the m on-shell legs on two Berends—Giele currents which are

compatible with the color ordering. The situation is depicted in Fig. 2b.

2.4. The D =10 SYM amplitude as a pure spinor cohomology problem

Using the Berends—Giele currents reviewed in the previous subsection, a method to recur-
sively compute the ten-dimensional SYM tree-level scattering amplitudes was developed in
[31]. It was later shown in [27] that the expressions found in [31] also follow from the field
theory limit of tree-level superstring amplitudes computed with the pure spinor formalism.

The method relies on finding an expression in the cohomology of the pure spinor BRST

charge, i.e. which is BRST-closed but non-exact,
QA™(1,2,...,n) =0, AM(1,2,...,0) £ (QA,).
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- -

Fig. 3 Diagrammatic interpretation of the expression E M12 Mt o1V for
the n-point SYM tree amplitudes. The j sum runs over all partltlons of the first n — 1
legs among two Berends—Giele currents.

If we additionally require this cohomology element to reproduce the kinematic poles of a

color-ordered SYM subamplitude, the result is uniquely determined to be

AYM(1 2, Z (Myg. j Mjy1. na V™). (2.19)

In order to show that the right-hand side is in the BRST cohomology first note that

QV,, = 0, whereas
n—2

Q> Mo jMj. n1 =0 (2.20)

follows from (2.18). And secondly, in the momentum phase space of n massless particles
where the Mandelstam variable si5.,_1 vanishes, Z;:ll Mio. jMjtq1..n—1 can not be
written as QMa. ,—1 since Mo, ,—1 contains an overall factor of 1/s12. ,—1. This rules
out BRST-exactness of (2.19).
The number of cubic diagrams in the color-ordered m-point tree amplitude is given
by the Catalan number C,_3, see [50], which satisfies the recurrence relation Cpy1 =
f:o C;Cp—; with Cy = 1. By its diagrammatic construction, Mz ; gathers C;_; pole
channels, so the number of poles in the expression (2.19) for the n-point subamplitude
is given by Z;:OS C;C,_3_;, which is precisely the recursive definition of C),_5. The
expression (2.19) therefore contains the same number of cubic diagrams as the color-ordered
n-point amplitude, and the fact that Berends—Giele currents have a notion of color ordering
guarantees that the pole channels in (2.19) are precisely those of AYM(1,2,...,n). The
factorization properties of the expression (2.19) are depicted in Fig. 3, and the reader is

referred to [27] for more details.

12



3. One-loop amplitudes with the minimal pure spinor formalism

This section sketches the prescription towards one-loop amplitudes within the minimal
pure spinor formalism. The main goal is to make the one-loop zero mode saturation rule
(3.8) for the correlator (V1 H?:z U7) plausible instead of giving an exhaustive review. The
reader is referred to [17] for the details omitted in the following discussion.

The prescription to compute n-point one-loop amplitudes for open superstrings is [17]

10 11 n
AP = 37 G / dt (11, 0) [ ZsoZs [] Yo, Viz) ] / dz; U7 (z5)), (3.1)
top P=2 I=1 j=2

where p is the Beltrami differential, ¢ is the Teichmiiller parameter and b is the b-ghost
whose contribution will be discussed below. The sum runs over all one-loop open string
worldsheet topologies, i.e. over planar and non-planar cylinder diagrams as well as the
Moebius strip, see [51]. The associated color factors Ciop, are single- or double traces over
Chan-Paton generators associated with the external states. Both the Chan—Paton traces
and the integration region for the z; must reflect the cyclic ordering of the vertex operators
on the boundaries of the genus one worldsheet.

In order to introduce the remaining elements appearing in (3.1), note that the com-
putation of the CFT correlator at one-loop starts by separating off the zero mode of the
conformal weight one variables. The role of the picture-changing operators Zg, Z; and Yo
is to ensure that the zero modes of bosonic and fermionic variables are absorbed correctly,
see [17]. The angle brackets (...) in (3.1) initially denote the path integral over all the
worldsheet variables in the pure spinor formalism. The non-zero modes are integrated out
using their OPEs as described below and we will follow a procedure where the zero modes
of do,, N™™ and the ghost current J are integrated out first, leaving those of A* and 8¢ for a
last step in the computation, e.g. after the superfield expansions of (2.6) are substituted in
the expressions of various building blocks. And since general group theory arguments will
be used to determine the integrals over zero modes of d,, N™" and J the precise details
of the zero-mode measures of [17] will not be needed.

So unless otherwise stated, every appearance of the pure spinor angle brackets (.. .)
in this paper denotes the zero-mode integration of A* and 6% only and will be taken
as the definition of pure spinor superspace [16]. This integration can be performed using
symmetry arguments alone and follows from the tree-level prescription ((A30%)) = 1 of [15].

Since this tedious process has been mostly automated in [52] we will restrict ourselves to

13



presenting our one-loop results in compact pure spinor superspace form as in the tree-level
approach of [27]. Furthermore, the correlation function of the matter variables ™ (z, %)
and I1"(z) is performed as in [53,54] and will receive no special treatment in the following.

The non-zero-modes are integrated out using their OPEs [53]

do(2:)07 (25) = 1:;0%

'l

Hm(Zi)QJn(Zj,Zj) — —nwéﬁl (32)

Singularities in colliding worldsheet positions enter through the function 7;; which is de-
fined on a given Riemann surface as the derivative of the bosonic Green’s function

0

Mij += 821 <l’(zi,zi>l’(2’j,zj>> :

It behaves as zigl as the positions approach each other but respects the periodicity prop-
erties required by a higher-genus Riemann surface. The representation in terms of Jacobi
theta functions will not be needed in the following discussions, only its antisymmetry
ni; = —n;; will play a fundamental role.

In the amplitude prescription (3.1), the b-ghost is a composite operator whose form

is given schematically by [17,55],
b= (Ild + NOO + J30) dS5(N) + (wOX + JON + NOJ + NON)S(N)
+ (NTL + JI + 011 + d*)(II§(N) + d?6'(N))
+ (Nd + Jd)(005(N) + dI1§' (N) + d*8"(N))
+ (N2 4+ JN + J*)(d0648'(N) + 1128’ (N) + IId*6" (N) + d*¢""(N)) (3.3)

(
(

where ¢'(z) = %(5 (x) is defined through integration by parts and the precise index con-
tractions are being omitted. It will be argued in the appendix A that the zero-mode
contribution from the b-ghost is unique and given by an expression of the form d*¢’(N).
Furthermore, the result of the zero-mode integrations in this case is fixed by group theory
up to an overall constant, and this is the contribution which will concern us in this paper.

We do not have a constructive proof that the b-ghost does not contribute via OPE
contractions (i.e. via nonzero modes), but an indirect argument based on total symmetry
of the kinematic factor will follow in subsection 7.4.

In general, the evaluation of the one-loop amplitude (3.1) involves two separate chal-

lenges summarized by the formula®

6 Since the Koba Nielsen factor KN= <H?:1 eik”(zi’zi)> due to the plane wave correlator is a
universal prefactor, we define the kinematic factor K, not to contain KN. Nevertheless, its presence

is relevant for integration by parts relating different worldsheet functions, see subsection 5.3.
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A111—100p _ Zc‘cop/dtﬁ/ de <ﬁezk1m(zz,31)> x K, .
j=2 i=1

top
Firstly, the computation of the kinematic factor K,, in pure spinor superspace whose generic
form is given by
Kn=n""f(\*,0%1,2,...,n)) (34)

(where 1,2,...,n denote the physical degrees of freedom of the n external states), and
secondly, the evaluation of the integrals over vertex operator positions on the boundary of
the Riemann surface as well as the modular parameter t. The form of the kinematic part
is unique to the pure spinor formalism and will be dealt with in the following sections. It
will be shown to decompose into manifestly BRST invariant quantities which in turn are
related to the a/? terms in the expansion of the corresponding tree-level amplitudes. The
expressions for the integrals over the Riemann surface are exactly like in RNS or Green-
Schwarz [56] formalisms and will not play a role in this article. Extracting information on

the integrals — in particular their field theory limits — will be left for future work.

3.1. The one-loop prescription for d,, N™™ zero mode saturation

When the number of external states is four, the saturation of d, zero modes in

10 11 4
Azll_loop — Z Ctop / dt((lu, b) H ZBPZJ H YC'I Vl(Zl) H /deUj(Zj»a (35)
P=2 I=1 Jj=2

top

is unique and determines the amplitude up to an overall coefficient [17,38]. The picture
changing operators, the b-ghost and the external vertices provide ten, four and two d,
zero-modes, respectively, thereby saturating all the sixteen zero modes of d,. Further-
more, as mentioned after (3.3), the terms with four d, zero modes from the b-ghost also
contain factors which absorb extra zero modes of N, either 1,2 or 3. For the four-point
amplitude the only possibility is the absorption of one zero mode of N™" through an
overall factor of ¢'(N). Summing it all up, the contribution from the external vertices is

proportional to .
5vl(dWQ)(dW3)Jffmz\f”’m + cyclic(234) (3.6)

and the remaining zero mode integration is given schematically by
Ky = / [DA[DN]d"0 d*°d (M) (a)"* ()" M1 (X) 6'°(N) 6(J) &' (N) (3.7)
1 2 3 4 mn
X §V1(dW Y AW)F W N+ cye(234).

15



As one can check in the expressions given in [17], the measure factor [DN] has ghost-
number -8. Therefore the integration of [[DN]d'%d(\)!(d)'6'°(N)§(J)d'(N) in (3.7)
with ten powers of A has the net effect of replacing d,dgN™" from the external vertices
by a A bilinear. The tensor structure is uniquely determined by group theory since the
decomposition of d, ®dg® N™" contains only one component in the SO(10) representation

(00002) of a chiral pure spinor bilinear:
dadgN™ — (A1™) 0 (Ay™) 5 (3.8)

Consequently, (3.6) leads to the following kinematic factor for the four-point one-loop
amplitude
1
K, = §<V1(/\'ymW2)()\'an3)Ff”) + cyclic(234) (3.9)

whose BRST invariance one can easily check using the pure spinor constraint (Ay™\) =0
and elementary corollaries (A, )a(AY™)s = 0 and (Ay"ypqA) = 0.

According to the arguments in appendix A, the replacement rule (3.8) still applies
to one-loop amplitudes with n > 5 legs. It passes the superspace kinematic factor built
from one unintegrated and n — 1 integrated vertex operators to the tree-level zero mode

prescription (\36°) = 1:

Ky, = (V(20)U? (22)U%(23) . .. Un(Zn)>dadﬁNm"—)()\'y[m)a()w"])B

Studying the interplay of (3.8) with the non-zero modes of the conformal fields in U’ is
the subject of the next section. Integrating out all but three weight one fields d,dgN™"
obviously requires n —4 OPEs, and we will see that they give rise to new families of BRST
building blocks.

4. BRST building blocks for loop amplitudes

As reviewed in section 2, tree-level BRST building blocks Ti5 ., are defined by a two step
procedure. Its starting point have been the residues of the single poles in iterated OPEs
of integrated vertex operators U(z;) with the unintegrated one V(z1). As a second step,
the BRST trivial components of these residues had to be subtracted to obtain symmetry
properties suitable for a diagrammatic interpretation. On the genus zero worldsheet gov-

erning tree-level amplitudes, conformal fields of weight +1 have no zero modes, so all of d,,
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and N are completely integrated out in generating the residues entering BRST building
blocks. However, this is no longer the case at one-loop.

As seen in the previous section, the kinematic factor at one-loop comes from the terms
in the external vertices which contain two zero modes of d, and one of N™". Hence, we
have to integrate out weight one fields from the n — 1 integrated vertex operators until we
are left with the combination (d)?N which requires a total of n — 4 OPE contractions. In
doing so, one is naturally led to define the composite superfields J{g", K 5 and higher rank
generalizations j{g" k> K 75 1 as the remaining single-pole terms ~ d, or ~ Ny, in nested
OPEs of multiple integrated vertex operators:

I Ny, N do K3, N
i«‘21 221 .
TN, oKDy

Zk,k—1---232221 Zk,k—1---232221

U1(21>U2(22) —

Ul(Zl)UQ(ZQ)Uk(Zk) — 4+ (41)

The ellipsis - - - indicates terms with II"" and 90“ as well as double poles in individual z;;,
they do not contribute to the end result for one-loop amplitudes. Given the prescription

dodgN™ = (M) (My™) 5, the quantity of interest built from the K superfield is
K3 o= (0")aK, - (4.2)

As a rank k = 2 example, let us consider the OPE of two integrated vertices. It contains

single and double poles

1 1
U1<21)U2(22) —_— — [(kg . Al)U2 + §(W1’7mW2)Hm + (k?l . H)(A1W2) + 89“DQAEW25

221
+1(d mnW Fl ]{71 %% W Nmn—lfl FQmen_ 1 2
4 y 2) mn+ m( 17n 2) 9 mpY n ( A )
1+ (k- k
"‘—(Zzl 2) (A1W2>+(A2W1)—(A1'A2)] (4.3)
21

with U? = 90 A2 + TI™ A2, + d W§' 4+ 1 N, F3'™, and one can read off

- 1
K% = Z()\vmquWg)}";q + (kg - A (MY Wo) — (143 2) (4.4)
~ 1 m 103 m n

=3 (k2 - Ay) Fomm 4+ FY FIP 4kl (Wi ws)] — (14 2) (4.5)

from the superfields contracted with d, and N,,,, respectively.
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The definitions in (4.1) lead to the following rank < 3 expressions

K" = (M™W)) (4.6)
Ry = im L) FL, + (b - A) ™ Wa) — (1+2) (47)
K3y = __(k12 - Az) K73 — (MWW k) (WaP W) + 1()\’YmW?,) kS (WP Wa)

%(kl Ag) | (WY APIWY) Fy — (AP W) Fpy — A(ks - Ay) (/\’YmW3)]

%()\7 VPIWs) k) (WiygWs) — 1()\7 VPIWs) Fp " Fo,

F o 0P B R — (1602) (4.8

fpn L e "
T = gl (- A Fg 4 Fl FY 4 K (WayTW)] - (140 2) (4.10)

1 ~ m n m n]r
Jan = —5[(7€12'A3)Jf3n— (k1 - Ag)(ks - Ay) F3™] FFT Fa g FE 4 (ky - Ag) FIT FS

p

+ kL FE Wiyt W) — K FRP (W, W) o+ (ky - Ay) kb (Wary™ W)
1

5 (W) FP 52 — k5 F (Wi Wa) + kS (Wi W) 75 (4.11)
1
+ LR Wiy P B2+ (WorP W) By + K (W, We) F] = (165 2)

where k77 := k" + k7. Expressions for the rank four building blocks K%, and J732, are
available from the authors upon request.

Similar to their tree-level counterparts Tho. x [27], the new composite superfields have
two essential virtues: On the one hand, they have symmetry properties which reduce the
independent rank k& components to (k— 1)! and thereby suggest an interpretation in terms
of tree-level subdiagrams with one off-shell leg. On the other hand, they possess covariant
BRST variations,

QK" =0, (4.12)
QK = 51 <T1K§n — T2K{n> ;
QKT3s = s13 L1 K§' — s33L1o K§* + s12[La1 KJ' — Lap K{"]

— (s13+ 523) T3 K2 + 519 [legg - TQK{%}.

However, the appearance of the OPE residue L7 in the right-hand side of QK 155 instead
of the BRST building block T}, signals the need for a redefinition of K73, analogous to
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the redefinitions of Lgi31.. to Tlgg___ at tree-level, see subsection 2.2. In order to justify
this, let us recall the following general lesson from the tree-level analysis: Quantities whose
@ variation contains BRST exact constituents such as Lz1) = —% (Ay - A2) combine to
BRST trivial parts of the amplitude. It is economic to remove these terms in an early step
of the computation, i.e. to study the BRST building block

~ 1
K53 = K33 + -

B [(813 —823) D12 Kgn + S12 (D13 K;n — D23 Kin” (413)

from now on whose BRST transformation gives rise to T}5 rather than Loj:
QKSS = (813 + 823>(T12 K?T)n - ‘/3 Kln%) + S12 [Tlg K%n - ‘/2 K{g —T23 K{n + ‘/1 Kg;)} (414)

Also the higher rank cases K5 , = f{{gk +...and J5", = ~{gnk +...atk > 4
require modification to ensure BRST building blocks 775 rather than the OPE residues
L. k1 (with BRST exact components) in their () transformation. However, in contrast to
the tree-level redefinitions Tio. p = L21.. k1 + ..., the symmetry properties of loop-specific
building blocks are already present in OPE residues K™ and J™". For instance, we already
have an antisymmetric residue K %= K [7?2] at rank two whereas the OPE residue Lo has
to be projected on its antisymmetric part Th2 = La1 — L21)-

Rank three is the first instance where modifications Qf( 153 = 313L21I~(§” + ... are
necessary to avoid BRST trivial admixtures L(z1) = —% (Ay - A) in the @ variation and
to instead arrive at QK55 = 813T12I~(§” + ... with Loy — T}5. Hence, the loop-specific
OPE residues K 15 & are more closely related to their BRST building blocks K75 . than
the tree-level cousins Loy k1 < Ti2 k.

The BRST variations of OPE residues j{g”k associated with N™" lead to similar
conclusions. Redefinitions j{g”k — J{5" . are needed in order to trade Lj; . and j{;m
present in @) T;nk for T;;.. and J7" in QJ3" ;. However, when computing their BRST
variations one must take into account that the building blocks Ji2", (or JIZ",) always
appear contracted with (Ay™)a(Ay™)s because of the rule (3.8). So even though one
might naively conclude Qj{”" = kgm()\'y”] W1) # 0, the effective contribution of its BRST
variation to an amplitude is (A )a(Ayn)sQJ™™ = 0. For any QJ™" or QJ™" displayed
in the following, terms that vanish under contraction with K" K" ~ (Ay™),(A\y"™)s are

omitted.
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In summary, the ) variations of the BRST building blocks which will appear in loop
amplitudes are given by (2.11) and

QK{rZL = 312(T1K£n - TQK{”’) (415>
QK153 = (5123 — 812)(T12K§n — TgK{Z’)
+ S12 (T1K§§ + T3 K3 — Tos K" — TgK{%) (4.16)

QK334 = (1234 — s123) (Th2s K§* — T4 K135)
+ (s123 — s12) (T12 K35 + Thoa K — Tsa K75 — T5K13,)
+ 8192 (T134K;n + T13K£CLL + T14Kg;) + T1K§§4 — TQK{%LL

— Tou K75 — Tos K{} — Tosa KT") (4.17)
QI = s12(Th 3™ — J{"T>) (4.18)
QJ155 = (s123 — 812)(T12J§m — J{Z”Tg)

+ s12(T1J35™ + Tiz 3" — JM g — J15T5) (4.19)

QJ155s = (51234 — s123) (Ths Jy"" — J{35Ty)
+ (s123 — s12) (T12 54" + Tioa 5™ — J75" Tsa — J{35T3)
+ s12(Th34J5"" + Ti3J3y" + TiaJ3s" + T1J35)
— Jian T — J{5" Tos — J{" Tog — J{””T234). (4.20)

The BRST variations QK75 , and QJ5" . of the new families can be obtained from
QTi2..1 by replacing either the first or the second Tj; . on the right hand side by the
corresponding K+ or J7'™. This doubles the number of terms in QK75 , and QJi5"
compared to Q712 , and the two ways of replacing a 7' in the BRST variation by K™
or J™" enter with a relative minus sign (where the tree-level building block T is always
understood to be placed on the left of K™ and J™™).

The above variations generalizes as follows to rank k:

QTo. 1 = Z Z (s12..5 = s12..5-1)T12. j—1,{a} T}, (8, \a} (4.21)
J=2 a€P(B;)

QKT 1= Y (s12.5 = s12.5-1) (Tiz 14t K g 0a) = Dinto\er KT, j1.a))
j:2a6P<ﬂj>

Jis k:_z Z S12...5 — S12..5— 1)(T12 g 1{a}J ABi\a} ij{ﬁj\a}']{g?.j—l,{a})
J=2 a€P(By)

where V; = T;. Theset 8; ={j+1,7+2,...,k} encompasses the k — j labels to the right
of j, and P(B;) denotes its power set.
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4.1. Unified notation for one-loop BRST building blocks

For each contraction pattern among integrated vertex OPEs, there are three kinematic
factors associated with the same z; — z; singularity structure. This corresponds to the
three ways of extracting the worldsheet fields d,dgN™" from three nested U7 OPEs a la
(4.1). In other words, we have to sum three different possibilities (d,d, N), (d, N,d) and
(N, d,d) to convert the U7 vertices after n—4 OPE fusions into building blocks K™ K™ J,,,

via dadgN™" — (AY™)a (M) 5.
7 k — m n mn m
Ta1 Tbjl T Cr — Kal...ap Kb1 ']cl + Kal.

+Ja 0y Kb, Ko

Jmn KTL

..ap Yby1...bg Cc1...Cp

(4.22)

C1...Cp

Note that (4.22) is completely symmetric in 4, j, k and under moving the 7% 77 and T*
(which represent either K™ or J™™) across each other, i.e. Tél...apTgl...b Tbj1 TZ ay
As can be seen from the K K" ~ (Ay™),(M™)s in the definition (4.22), the combmatlon
T*TVT* has ghost-number two. In combination with the unintegrated vertex V! (or OPE
contractions thereof with U7), we arrive at the total ghost number three, as required by
the (A305) = 1 prescription.

In the notation (4.22), the BRST variations QK73 , and QJJ3" , can be written in a

unified way as

QTliQ...k = Z Z (312---j _312---3'—1) (T12---j—1,{0<} T?,{,Bj\a} - Tj,{ﬁj\a} TliZ...j—l,{a}) .
J=2 a€P(B;)

of loop bulldmg blocks are well defined. Recall that the set 8; =j + 1,5 + 2,...,n encom-
passes n — j labels to the right of j, and P(f3;) denotes its power set.

4.2. Diagrammatic interpretation of the loop building blocks

According to our discussion above, the T" share the symmetry properties and the structure
of their @) variation (in particular the Mandelstam variables therein) with the tree-level
building blocks 7. So we also think of T}, , together with the s, S1a5, -+, S1a &
propagators as representing a cubic tree subdiagram.

Since the conformal weight-one fields from U; can also be contracted with the V;
vertex, the correlator of (3.1) additionally involves tree-level building blocks Ty, . 4.. Hence,
every superspace Constituent for the open string loop amplitude encompasses four tree-level
this is the kmematlc factor of a stringy one-loop diagram, we represent this quartic vertex

as a box, see Fig. 4.
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ap-1 ag

b1 Gp ap
' 2 b “
i J k _ A _
<Td1...d5 Ta.]_‘..ﬂ,p Tbl..,bq TC]_..;C.,~> - o q 1 1 dsdsfl d3
C1 d?
C2 Cr dy
C3 Cr—1

Fig. 4 Interpretation of (Ty, . 4, T(ilmap Tgl...bq Tflmcr) as the kinematic factor of a box
diagram. The four tree subdiagrams at the corners are identified with building blocks
T and T".

We should comment on the shortcoming of the diagrammatic representation Fig. 4
of (Tay..a, TE 4
level BRST building block Ty, . 4
symmetry. Moving the one-loop building blocks (i.e. the i, j, k superscripts) to different

Tbj p. TX ) that it does not take the asymmetric role of the tree-
D 1.--0g 1---Cr

. into account, i.e. the lack of (aj...ap) <> (d1...ds)
positions amounts to reshuffling contact terms due to the quartic gluon vertex in the
SYM action between cubic graphs. For instance, the difference ((TyoT4 — T5T0,)TiTE) is
proportional to s12 when evaluated in components and therefore cancels the propagator

present in the common diagram. In order to see this, consider the two terms on the right
hand side of

0= (QM{yTYTE) = i((TmTé — T5T},) T TS) + é((TsziS — TosT))TITY).
Cancellations between the first term ~ sy, and the second one ~ sy require that the
numerators vanish on the residues of the poles, i.e. ((T1o2T4 — T5Tiy)TiTF) ~ s15. This
argument can be easily extended to higher multiplicity by virtue of 0 = (QMiy, T2 TE)
and related expressions.

A particular motivation for the suggestive box notation comes from the low energy
limit of superstring amplitudes. After dimensional reduction to four dimensions, they are
supposed to reproduce amplitudes of N = 4 SYM — see e.g. [42] for a derivation of the
four-point box integral in field theory from a D-dimensional superstring computation in
the o’ — 0 limit. The fact that only quadruple T and no triple 7' enter the superspace
kinematics in the string computation reminds of the “no triangle” property of the under-
lying field theory [57]. In view of these matching structures in loop diagrams of SYM and

kinematic constituents of string amplitudes, we found it natural to represent the central



a one-to-one correspondence between a particular superspace kinematic factor and a box
coefficient in field theory. The systematic reproduction of N = 4 SYM amplitudes via
o/ — 0 limits of the present results is not addressed in this paper and left for future work

instead.

4.3. Berends—Guiele currents for loop amplitudes

As the next hierarchy level of building blocks we define loop-level Berends—Giele currents,
Mlizmp encompassing several tree subdiagrams described by TP Loap They are closely
related with the field-theory Berends—Giele currents of [58], as thoroughly explained (with
examples) in [27]. The collections of subdiagrams Mis, , = > Talmap(s_l)p_1 which were
present in the superspace representations of tree-level amplitudes can be literally carried
over to the CFT ingredients of loop amplitudes. In other words, the tree-level formulae

(2.15) and (2.16) directly translate into loop-level analogues

. T
Mi, = s;i (4.23)
. T T
Mi.. — 123 + 321 4.94
123 512 5123 523 5123 ( )

: 1 Ti T T T 2T}

i _ 1234 3214 3421 3241 12[34]

Miys, = + - + . (4.25)
51234 5125123 $235123 5345234 5235234 $12534

It is a necessary condition for BRST invariance that the kinematic factor in loop amplitudes
combines the T¢ to full-fledged Berends-Giele currents M® . This can be seen from their

covariance under () with no additional Mandelstam factors
p—1
. " ; k
Q Mz?u Mg1 M er Z (Mal M;ZJrlwap - Ma€+1"'ap Mél ) Mgl M
=1

—1

+ (My,..0, M)

«Cr

Q

_sz+1 .bg Mg )Ml apMCk

bg+1...bq 1---Cp
/=1
r—1
k k % J
+ (Mcl---ce MC[+1...CT - MCE+1mCr Mcl...bg ) Mal...ap Mbl...bq

~
Il

1 (4.26)

in close analogy to (2.18) at tree-level.
One could also have defined Berends—Giele currents M3 . and M{3", for the individ-

ual building blocks K73 . and J3" . to later define M}, , by combining them following
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the pattern seen in (4.22):

I i k _ m n mn m mn n
Mal...ap Mbl,,,bq Mcl...cr - Mal...ap Mbl...bq Mcl...cr + Mal...ap Mbl...bq Mcl...c,n

+ My, MY b, M, (4.27)

.a Ccr”

The combinatorics of zero mode saturation implies that the end result for amplitudes
always involves a sum of all the three terms on the right hand side. That is why we will

always use the notation on the left hand side of (4.27) in the rest of this work.

4.4. BRST invariant kinematics for loop amplitudes

Amplitudes computed with the pure spinor formalism give rise to superspace kinematic fac-
tors in the cohomology of the BRST operator. We have motivated K and .J building blocks
from their appearance in the iterated OPEs of integrated vertex operators (along with the
do and N,,, worldsheet fields) and argued that their combinations M} rayM gl««« b, M ﬁlmcr
have covariant BRST variations (4.26) connecting different pole channels. Given the strong
constraints which BRST invariance imposes on tree-level SYM amplitudes — see subsection
2.4 — it is natural to explore the () cohomology using the one-loop building blocks. In this
subsection we will write down BRST invariants constructed from the above elements dic-
tated by the minimal formalism. This amounts to anticipating the admissible kinematic
structure in the result of the CFT computation of one-loop scattering amplitudes.

As mentioned in subsection 4.2, the one-loop prescription (3.1) containing one unin-
tegrated vertex operator V; implies that one tree-level building block 77 . (combined to a
Berends—Giele current M ;) has to appear in these BRST invariants, in addition to three

one-loop constituents M*? M7 M* . Hence, ) invariant loop kinematics must be built from

My, .. .a. Mél...angl...bq Mckl. with 1 € {dy,...,ds}. The diagrammatic interpretation of

..Cr

such a term follows from the fact that Berends—Giele currents represent color-ordered tree
amplitudes with one off-shell leg, see Fig. 5.

metry in Mg, .. 4. Mél...ap > Mal---apMél...ds into account. The difference between the two
(M., M") assignments corresponds to a reshuffling of contact terms in the cubic subdia-

grams at the corners of the box.
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<Z\/jd1.‘.ds A/Iél,.,ap A/fbl,,,bq ]\/Icl.,.cr > -
Cr dy
Cr—1 r f\/fflmcr My, . 4. ; da
Y 1
AY 4
~ ’
\~~ . "
- Ccy dS
C2 dsfl
. . i j k .
Fig. 5 Interpretation of ( Mg, .. .q, Mg, .., Mbl...bq M. . ., ) as four Berends-Giele cur-

rents (i.e. collections of tree subdiagrams guided by color-ordered tree-level amplitudes),
glued together by a central quartic “box”-vertex.

In the following, we shall give a list of BRST invariants built from M. M? M7 M* up
to seven-points. They are denoted by C14,...a,,b;...b4,c1...c, according to their first term

1ari J k
V Ma1~~~apr1...qu61..

s

where the unintegrated vertex is unaffected by OPEs:

Cl0.3.4 = My M M ME (4.28)
Cho3a5 = My Mis M MEF + Mo MEM] ME + Mgy M M ME (4.29)
Clasase = My Migy MI MY + Mg MiMZ ME + Mo MM ME

+ Msgy MEMI ME + My Mi, MI ME + My My M ME (4.30)

Ch.03.45.6 = My Mg Ml ME + Mo ME M ME — Mg M M, ME
+ Myg Mg MI ME — Mys Mg M ME + My M3 M. ME

+ Mo MEM] ME — Myyo Mi M ME — Mgys M3 M) ME (4.31)
C1,2345,6,7 = M M§345M£ M; + M512M§4M£ M; + [M12M§45 + M123Mi5
—+ M1234M§ + M5123Mi — (2,3<—>5,4):|Mg M;C (432)

01,234,56,7:M1M§34Mg6M$ + M214M?Z;Mg6M$ + (Mys M§ — M16M§)Mg34M$
+ [M12M§4 + M123Mi + (2(—)4)}Mg6M$ + {[M612M§4Mg
+ Meiog Mi M + Msioa MEM + (2 4)] — (54 6) } MF (4.33)
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Choo3,45,67 = My Mg My ME, + [ (Mo M3 — Mz M3) Mis ME + cyc(23,45,67) ]
+ { [Morr MiM} — (23) — (6 7)] MY + cyc(23,45,67) }
+ [(Mr135 + Mryiss) Mo M{ ME — (243) — (4 5) — (6 7)].(4.34)

Eight-point amplitudes contain four topologies Cj 23456,7.8, C1,2345,67.8, C1,234,56,78 and

C1,234,567,8 of BRST invariants. They are expanded in appendix C.

4.5. Symmetry properties of the BRST invariants

In this subsection, we examine the symmetry properties of the BRST invariants of the
previous subsection and determine the number of independent ones (at least under linear
relations with constant coefficients). In particular, we will argue that the Cy . with label
“1” in the first entry form a suitable basis. This ties in with the one-loop prescription (3.1)
for string amplitudes: The special role of the unintegrated vertex V; implies that only Cf .
can appear in the CFT computation, and these ingredients must be able to capture any
permutation Cjx; ... via linear combination.

In order to see that the reduction to C, . is possible, first note that the invariants
Clai...apbi....bg,cr...c, inherit the symmetry properties of the Berends-Giele currents for

each of individual three sets of labels (a1,...,ap), (b1,...,by) and (c1,...,¢,), ie.
M, , = (=1)P"' M, a1, Migyi{ay = (1) Z 1o} (4.35)
o€ OP({a},{B"})

directly carry over to

—1
Cl,alag...ap,bl...bq,cl...cr — (_1>p Cl,ap...azal,bl...bq,cl...cr (436>

Cl,{,b’}i{oz},bl...bq,cl...cr = (_]_)ng Z Cl,i{a},bl...bq,cl...cr .
o€ OP({a},{BT})

The notation for the sets «, 5,0 is the usual one appearing in the Kleiss—Kuijf relation

[59]. The latter implies the subcyclic property (or photon decoupling identity)

E Cl,a(alag...ap),bl...bq,cl...cr =0.

o€Ecyclic

However, the above symmetries do not relate C; . to Cjx;, .. (with different labels 7, j in
the first slot). Equations of that type follow from the BRST cohomology of pure spinor

superspace, i.e. from the vanishing of BRST exact terms at ghost number three,

<Q Mél...ap Mgl...bq Mckl > = O (4'37)

...Cpr
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The left hand side is always organized into linear combinations of C’s, let us illustrate this

by examples: The four-point BRST invariant turns out to be totally symmetric,

0= (QMi,M] M) = Cio34=Co134, (4.38)

149y

and five-point invariants can be reduced to C1 ;j k1 = Cl1,45),k,1 by means of

0=(QMiyy M] MF) = Cia345=—Cs2145 (4.39)
0=1(QM:i, M, M) = Co3415—Cia125+Ciiazs— Cs1245=0.

At six-points, there are three different topologies of BRST exact quantities

' i Ak
0= (Q Miy34 M Mg) = Ci23456 = Ca321,5,6 (4.40)
_ i J k _
0 =(Q Miy3 Mys Mg) = Ci23456+ Cs21456+ Ca,123,56 — C5,123,46 =0
i agd Ak
0= (Q Miy M3, Mzg) = Ci3a562— Cosa56,1+ Cs12,56,4 — Ca12,56,3
+ Cs.12,346 — Cp,12,31,5 = 0,
and the resulting equations are sufficient to decompose any given C; ji im.n O C; jkim.n

into a basis of C'y, . A similar recursive argument applies at seven-points due to four types

of equations:

= (Q M{ysys M MF) = Cha31567 = — Cs.4321,6.7 (4.41)

0= (

0= (Q Mgy Mig MF) = Cs 123167 — Co.1230.5.7 + Cr.234.56.7 — Ca321.56.7 = 0
0=(Q Mfzs MZZsa Mf) = (1,456,237 + C3.456,21,7 + Ca,123,56,7 + Cs,123,54,7 = 0
0=

_ i J k
Q Miys Miz Mgr) = Ch 23,4567 + C3,21,45,67 + Ca,123,67,5 — Cs,123,67,4

+ Ce,123,457 — C7.123.456 = 0

In order to count the number of independent C1 q4,...a,.b;....b,,¢1...c., On€ should keep in
mind that there are (p — 1)! independent components in (a; ...a,) due to Berends-Giele
symmetries, the same number of cyclically inequivalent configurations. Hence, the number
of independent C1 4, . .a,,b;....b,.c1...c, i n-point amplitudes (where p+q+r = n—1) is given
by the number of ways to distribute n — 1 elements to three cycles (aj...ap), (b1...,by)
and (c; ...c.). This is the defining property of the unsigned Stirling numbers of first kind
Sp—t,

#(Cl,al...ap,bl...,bq,cl...c,«) - Sgl_l (442)

p+qg+r=n—1
= 1,6,35,225, 1624, 13132, 118124, 1172700, 12753576, 150917976, ...  n > 4,
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and the following table gathers examples of how individual topologies (i.e. different triplets

of p, q,r with constant sum) contribute to the Stirling numbers:

n C-topology # components

4 Ci,2,3,4 1 =1
5 Ci,2345 (;) =6
6 C1,234,5,6 (2) -2 = 20
6 C'1,23,45,6 5-3 = 15
7 C1,2345,6,7 (g) -6 = 90
7 C1,234,56,7 ) -3-2 = 120
7 C1,23,45,67 5! = 15
8 C1,23456,7,8 (7) - 24 = 504
8 C1,2345,67,8 (5)-3-6 = 630
8 C1,234,56,78 (5)-3-2 = 210
8 C1,234.567.8 L7922 = 280

Table 1. The number of independent components of C topologies up to n = 8

5. One-loop amplitudes in pure spinor superspace

The pure spinor BRST cohomology of building blocks will now be used to deduce the
form of the n-point one-loop open superstring amplitudes. Apart from the four- and five-
point amplitudes which were previously computed without explicit use of building blocks
[17,38,39], the results for higher-points are strongly guided by their cohomology properties.

From the discussion of section 3, the n-point kinematic factor for one-loop amplitudes

is given, up to OPE terms with the b-ghost, by the following correlator

Kn = <‘/1U2(22)U3(23)...Un(Zn)>ddN (51)

where the subscript ddN is a reminder that the substitution rule (3.8) must be applied.
It is easy to see that n — 4 OPE contractions among the vertex operators will have to be
performed before the zero-mode combination d,dgN™" can be extracted. Throughout this
section, we will immediately trade all the OPE residues Lo131..¢1 and Kﬁ_l__p, jﬁq”‘p for

the corresponding BRST building blocks Tio ¢ and K77}y, Jii . Experience with the
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tree-level computation [27,28,29] shows that their difference can only contribute to BRST
trivial kinematics and drops out through total worldsheet derivatives.

The calculation of the kinematic factor will be divided into three steps:

1. Express the correlator (5.1) in terms of BRST building blocks
2. Group these building blocks into Berends—Giele currents

3. Use integration by parts to combine different currents to BRST invariants C; _

Starting from six-points, we will use BRST invariance as an extra input in steps 1 and 2
to fix certain parts of the correlator: This concerns the failure of 7;;7;; products to obey
the partial fraction identity (z;;zjx) " + cyc(ijk) = 0 from tree-level. This relation plays
an important role for the basis reduction of worldsheet integrals at tree-level, see [33].
After these steps are performed the correlator (5.1) becomes a linear combination of the
BRST invariants C ... constructed in subsection 4.4, which we can regard as the one-loop
analogue of the tree-level subamplitudes AYM. Hence, up to the aforementioned partial
fraction subtlety, the one-loop strategy follows the same logical step as the calculation of
the n-point tree amplitude in [27].

Imposing BRST invariance from the beginning makes us blind to the hexagon anomaly
in D = 10 dimensions arising from the boundary of the ¢ integration [60], so in our method
we are not able to reproduce the superspace anomaly computed in [61]. Strictly speaking,
we compute the non-anomalous part of the amplitude which coincides with the full answer
in all consistent cases.

Although our final result for K, won’t include leg one on the same footing as all
the others, we will prove its hidden total symmetry in subsection 7.4. The basis choice
C4,... for the kinematic constituents reflects the special role played by leg one entering
the computation through the unintegrated V! vertex. New cross-connections to color
structures at tree-level will be pointed out in section 7 which trivialize the outstanding

symmetry proof.

5.1. Step 1: CFT correlator in terms of building blocks

Using the definitions of the building blocks, the CFT correlator (5.1) will encompass all
possible combinations of building blocks allowed by its total permutation symmetry in

(234...n). As mentioned before, n — 4 OPE contractions must be performed before the
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As a trivial starting example, the four-point kinematic factor does not require any

OPE and can be written down immediately using the definitions (4.6), (4.9) and (4.22)
Ky = (ViU UsUy) gan = (ViT3TITF) . (5.2)

The ten possible OPEs in the five-point kinematic factor give rise to two classes of terms,

depending on whether the contraction involves the unintegrated vertex or not:

K5 = (ViUaUsU4Us) aan
= (ViU Us Uy Us ) + 5permutations (23 <> 24,25, 34, 35,45)
——
+ (Vi1 Us Us Uy Us) + 3permutations (2 <+ 3,4,5) (5.3)
——

The resulting BRST building blocks are

(Vi Uy Us Uy Us) = o (T1o T TE) (5.4)
<V1U2 Us Uy U5> = 123 <V1 T2i3TiT§>, (5~5)

and the validity of the replacement Lo; +— T1o follows from BRST-closedness of Tngj Té“.
Applying this kind of analysis to the six-point correlator leads to an ambiguity:

K¢ = (ViUsUsUUsUs) dan
= (ViU Us Uy UsUg ) + (V1 Ug Us Uy Us Uss )
—— —— N —
+ (Vi UaUsUy UsUg ) + (V7 U Us Uy Us U )
—— —— N —

+ permutations + 7;;x(...). (5.6)

We firstly find those contractions which closely resemble the tree-level procedure (up to

(ViUyUs Uy Us Ug ) = 1973 (Thos TiTI T (5.7q)
(@@ Us Us ) = mansa (Tho Ta,TITE) (5.7b)
(Vi U2 Us Uy Us Us ) = magnaa (Vi Tagy TUTE) (5.7¢)
("1 %% Us ) = nosnas (Vi Tas T TE). (5.7d)
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But in addition to that, the correlator could contain terms with worldsheet functions
Mijk = Mij Nik + Nji Njk + ki Mkj» (5.8)
which are invisible in the z; — z; limit since (2;;2;) " + cyc(ijk) = 0. These parts of the
CF'T correlator cannot be fixed on the basis of the leading OPE singularity and symmetry
arguments in (23...n). Instead, we will keep them undetermined for the moment and use
BRST invariance in the following subsections to argue their absence in the end result. The
precise way to combine permutations will be discussed in the next subsection.
Similarly, the seven-point kinematic factor receives contributions from
K7 = (ViUUsUsUsUsUr) dan
= (ViU U3 Uy Us UgUz ) + (V1 U2 U3 Uy Us Ug Uz ) + (ViU Uz Uy Us Ug Uy )
—_— —_—— —— —— ——

+ (ViUy Us Uy Us Ug Uy ) + (Vi UsUs Uy Us Ug U7 ) + (V1 U2Us Uy Us Ug Uz )
—~— N N — —_— — N — N —

+ (Vi UUs Uy Us Ug Uz ) + permutations + 7;,x(. . .), (5.9)
- N——
where the seven different types of OPEs yield
(ViU Us Uy Us UgUz ) = U12U23U34<T1234T§Tng> (5.10a)
—_———
ViU Us Uy Us Ug Uy ) = Ty e T T 5.10b
( 1 U2 U3z Uy Us Ug 7) 771277237745< 1234 451g 7) ( )
ViUs Us Uy Us Ug Uz ) = Ty, T, T)TE 5.10¢
(ViUs Us Uy Us Us Uz ) = mi2mzanas{T12T 34515 T7') ( )
ViUs Us Uy Us Ug Uz ) = Ty Te, T2 T 5.10d
( 1U2 Ug Uyg Us Ug 7) 77127]347756< 12434156 7> ( )
(Vi UpUs Uy Us Ug Uz ) = masnzanas (Vi Tagas TATH) (5.10e)
Vi UsUs Uy Us Ug Uz ) = Vi Te,, T2 T 5.10
(ViUxUs Uy Us Ug Uz ) = m23nzanse(ViTas4Ti6T7 ) (5.10f)
Vi UsUs Uy Us Ug Uz ) = ViTE T TE . 5.10
(ViUpUs Uy Us Us Uz ) = masnasner{(ViTosTysTe7) (5.109)

These six- and seven-point cases give an idea of the general pattern for the n-point cor-
relator: The kinematic factor K,, encompasses all tree-level building blocks involving the
unintegrated vertex 712723 ...M0—1,¢T12..¢, multiplied with all the possible topologies of
(np_z_ngiJrlmp)(Uq_p_ngH”,q)(U”_q_leﬂmn) of the remaining n — ¢ legs where zero
modes of d,dgN™" are extracted:

<V1(21)U2(22)U3(23) . Un(zn)>ddN

= (Z(Uu oo Ne-1,0Th2. 0) Z (et 1,042 - Tp—1,p Tei+1...p)
=1 (4+1<p<q<n

X (Mp+1,pt2---Ng—1,q T{Z+1...q) (Mg+1,g4+2 -+ Mn-1,n T(ﬁ—l...n)
+ permutations + 7k (...)). (5.11)
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The next tasks to be addressed in the following subsections are to trade the BRST building

blocks for Berends-Giele currents and to resolve the ambiguity about the 7;;; terms.

5.2. Step 2: Berends—Giele currents

In the n-point tree amplitude computations of [27] the worldsheet integrands combine
the BRST building blocks with z;; poles via Tia. , <> (212223 - .- 2p—1) '. The essential

step for further simplification lies in trading T for Berends—Giele currents M. using the

identity
T p k-1
12...p
+ sym(23.. =M II E —+sm (23. 5.12
212 223 - - - Zp—1,p ym( 12 o T Amk Y -P) ( )

It has already been proven at tree-level [31] that the Berends—Giele currents are the natural
objects to describe the SYM amplitudes. The identity (5.12) was the key step in identifying
the n-point superstring amplitude as sum of (n — 3)! SYM amplitudes [27] dressed by
hypergeometric worldsheet integrals [33]. To what extent can the tree-level identity (5.12)
and its corollaries be generalized to one-loop?

In order to answer this question note that the tree-level proof of (5.12) required two
assumptions: the symmetries of the building blocks and the partial fraction identities
(zijzjk) "' + cyc(ijk) = 0. As the loop building blocks T%9* obey the same symmetry
identities as their tree-level counterparts, the only obstacle against a direct one-loop gen-
eralization of (5.12) comes from the fact that the functions 7;;7,; do not obey a similar
partial fraction identity in general. That is why we have defined the totally symmetric
function 7;;, = 7i;Mik +15iMj% +NkiNk; Measuring the failure of the tree-level partial fraction
identity to hold at higher genus. With this definition at hand, the one-loop generalization
of (5.12) is

p k-1
Mm2n23 - Mp—ipli2.p + sym(23...p) = M2 , H Z Smk NMmk
k=2m=1
+sym(23...p) + nijr(...) . (5.13)

Of course, the same identity holds for the loop cousins (T'., M. )~ (T , M* ) since the T*
enjoy the same symmetry properties as the tree-level building blocks T, and the definition
of M? in terms of T incorporates the same functional dependence as M expressed in

terms of T .

32



We will argue in the following subsection that discarding 7;;; corrections in both
(5.13) and (5.11) yields BRST invariant kinematic factors. More precisely, presence of
i1 factors is incompatible with BRST closure of the end result, even after integration
by parts”. We therefore conclude that the ;) corrections in the correlator (5.11) must
be cancelled by the n;;, from the T ,T" + M, M’ trading prescription (5.13). Since
this cancellation is enforced by BRST invariance, there is no need to display the explicit
form of these corrections here — for the computation of the CFT correlator (5.11) they are
invisible anyway to the standard technique of summing OPE singularities.

Let us see some examples. For the four-point correlator (5.2) the trading identity is

trivial in view of V; = T7 = M, and Tzi = M%,
Ky = (WTSTITE) = (M MjMiM]). (5.14)

In order to prevent overcrowding in the formulae below the following shorthand notation

will be used

Xij = Sighij- (5.15)

The five-point correlator (5.3) is also rather trivially converted to Berends—Giele currents
My = Ti2/s12 and Mi; = Tiy/s23. The permutations generated by (5.4) and (5.5)

combine to ten terms

K5 = (X19 Myy M3 M MF + X135 Mys M M MEF + X4 My, M M ME
+ X5 M5 M M MF + Xog My Mg M ME + Xo4 My M3, MI ME
+ Xo5 My Mig M MF + Xsy My Mi, M ME + X5 My Mg M ME
+ Xas My Mz M M), (5.16)

7 Let us give two arguments adapted to the six-point amplitude to further justify this state-
ment: Firstly, by partial integration, any 7, is ripped apart and does not yield a pure n;ip
combination. Instead of the ten n;x, permutations with j,k,p # 1 one might naively expect,
there is a collection of 30 functions 7;;n;r and five functions 7;;1, whose coeflicients due to 7n;;«
terms have to be individually BRST closed. Secondly, only rank three BRST building blocks
Togr, Tzqu would make sense to multiply the npqr part of the CFT correlator. However, the ex-
pressions (4.30) and (4.31) for the BRST closed C1,234,5,6 and C1 23456 clearly show that one
cannot form a BRST invariant without any rank two constituents Ty, T}, or quTﬂs. That is why

NONZEro 7pqr cOrrections can never conspire to become BRST closed.
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The six-point amplitude is the first instance where the identity (5.13) finds non-trivial
application. Dropping the terms proportional to 7;;; in lines with the BRST reasoning,

the six-point topologies (5.7a) — (5.7d) give rise to

K =(10 terms [ Mio3 X12(X13 + Xo3) + (2 <> 3) | Mj M ME
+ 30 terms X9 Mg X34 Miy M7 ME
+ 15 terms M Xo3 My Xy45 M, ME
+ 10 terms My [ My Xo3(Xoa + X34) + (3 <> 4) ] M2 M} ). (5.17)

At this point, we shall be more explicit about the permutations within the correlator.
As mentioned before, the correlator must be symmetric in all the legs (23...n) of inte-
grated vertices, but the last term in Kg only contains 2 x 10 out of the 60 possible terms
M;;qTqu(Xpr + X ) with p,q,r € {2,3,4,5,6}. It turns out that by the symmetry prop-
erties of Berends—Giele currents (e.g. Mig, = Mjiqs and Mg, + cyc(234) = 0 in the rank

three case at hand), the expression

p k—1
M, (H > ka> + sym(34...p) (5.18)
k=3 m=2
is secretly totally symmetric® in (23...p) even though only the smaller symmetry in
(34...p) is manifest. That is why each of the ten choices to single out three legs from
{2,3,4,5,6} realizes two out of six possible terms only, without spoiling the overall (23456)
symimetry.
It is crucial to note the symmetry properties of the two sides of the T <+ M trading
identity (5.12). The left-hand side is totally symmetric at tree-level, even in trading leg

one for one of the others. But this makes use of partial fraction relations that cause

8 The same hidden symmetry occurs in the representation [62]

M:L('M -~ Z f10(2)a fao(S)b fba(4)c o fyo(n—Z)z fzo(n—l)n AYM (1’ 0_(2’ 3,...,n— 1)’ TL)

oc€Sy_2

of the color-dressed SYM amplitude: The structure constant contractions (f“*)"~2 share the
k—1
m=2
taking the role of a (p + 1)-point SYM amplitude with one off-shell leg guarantees that the color-

symmetry properties of the integrand HZ:3 > Xmi and the rank p Berends—Giele current

ordered AXM have the same symmetry properties as the M* . Hence, the total symmetry of MY ™M

implies that of (5.18) by virtue of the dictionary explained above.

34



extra terms ~ 7,3 at loops. The z; dependence on the right hand side, however, is built
from combinations s;;/z;; where it is obvious from the Mandelstam factors that there are
no partial fractions at work to see the symmetries. Only the right hand side of (5.12)
stays totally symmetric in (12...p) under the loop-conversion s;;/2;; — si;n:;; = Xij of

worldsheet functions.

For these reasons, the following expression for the seven-point kinematic factor,

K7 =(15 terms My [ Mjgy5 Xo3 (X24 + Xaa)(Xos + Xa5 + Xu5) + sym(345) | M M

60 terms My [ Miqy Xos (Xoa + X34) + (3 > 4) | X6 M My

15 terms M Xo3 Mis Xys5 Mir, Xe7 M6k7

20 terms [ Misgs X12 (X13 + Xo3)(X14 + Xoa + Xa4) + sym(234) | M M My
90 terms [Mlgg X12 (X913 + Xo3) + (2 3)] Xys Mi5 Mg M;C

60 terms X9 Mo [M§45 X34 (X35 4+ Xu5) + (4 < 5)] Mg My

+ 90 terms X9 Mg X34 My X5 M MF) (5.19)

+ + + + +

is totally symmetric even though only those six M§(23 15) permutations o € Sy with fixed
point o(2) = 2 occur.

The n-point generalization of the above patterns is given by

oS (I ), 5 o (5 <)

(=1 k=2 m=1 1+1<p<q<n k=042 m=¢+1

q n

k—1 k—1
X M}Z—‘,—l...q H Z ka M(?—l—l...n H Z ka

k=p+2 m=p+1 k=q+2 m=q+1
+ permutations). (5.20)

5.3. Step 3: Integration by parts

In this step the number of one-loop worldsheet integrals will be reduced using partial
integration identities. After this reduction is performed the kinematic factor for the one-
loop amplitude becomes a sum over manifestly BRST invariant objects multiplied by n—4
powers of X;;; schematically, this means K, =) Xn=4H(Cy, ).

In order to see how these partial integrations can be performed note that the world-
sheet integrands at any loop order contain a universal factor proportional to the correlation

function of the plane wave exponential factors, the so-called Koba—Nielsen factor

KN = < f[l ethi@(zi,%:) > X exp ( i Sij (@2, Z;) x(zj,Ej))> . (5.21)

1<J
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The precise form of the bosonic Green’s function (z(z;,Z;)x(2;,%;)) in terms of Ja-
cobi theta functions is irrelevant for the analysis in the following. What matters is its

appearance in the Koba-Nielsen factor and the antisymmetry of its derivative 7;; =

0
0z;

1/z;; single pole at tree-level. The form (5.21) of the Koba-Nielsen factor implies that the

(x(2i,Zi)x(25,Z;)) = —nj; which can be viewed as the one-loop generalization of the

combinations X;; = s;;7;; can be integrated by parts
0
0= / 5 KN = /Zsij ni; KN. (5.22)
’ J#i

This identity still holds in presence of further 7,, factors in the integrand as long as none

of the p, q labels coincides with the differentiation leg 7, for instance

/KN X12(X13+X23):/KN (X34 + X35+ + Xan) (Xog + Xoa + -+ Xap)

p k-1 p n
/KN 11> X :/KN I > xum (5.23)
k=2 m=1 k=2 m=k+1

The ubiquitous [[}_, an;ll Xk products in equation (5.20) for K, turn out to be max-
imally partial-integration-friendly. This has already been exploited in tree-level computa-
tions [27].

Once we have removed any appearance of z; from X;; via integration by parts (5.23),
the remaining terms in the correlator will build up various BRST invariants C; . This is

a trivial statement in the four-point correlator (4.28),

Ky = (MyMiMMF) = (Ci2.3.4) (5.24)
whereas the five-point kinematic factor requires X192 = Xo3 + Xo4 + Xo5 and (2345) per-
mutations thereof (which is valid under integration against KN only). After eliminating
the X1; at j =2,3,4,5in (5.16), we find the manifestly BRST-invariant expression

K5 = Xoa (M Mi, M MEF + Mo MIMI ME + My MiM] ME)
+ Xog (My ML, M ME + Mo MM ME + My MM ME)
+ X5 (M M M ME + Mo MEMIMF + My MiMME)
+ X (M M, M ME + M3 MiMME + Mgy MM ME)
+ X5 (M Mis M MF + Mys MM MF + Mgy MiMIME)
+ X5 (My Mg M MF + My MM ME + Mgy MEMI MF)
= X23(C1 23,45) + X24(C1 24.35) + X25(C1,25,3,4)
+ X34(C1 34.2,5) + X35(C1,35,2,4) + Xa5(C1 45,2,3) (5.25)
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which agrees with the expression from [39] when its component expansion is evaluated [52].
The total worldsheet derivatives are suppressed in (5.25) and in all subsequent kinematic
factors.

The general lesson to learn from the five-point computation concerns the choice of
integral basis and the role of the Mjs _, terms in (5.20) with leg one attached and p > 2.
Once we eliminate z; from every X,., in the integrand, the remaining X" ~* polynomials are
guaranteed to be minimal under (5.22) and the superfield prefactors must be BRST closed
C1,.... The superfields associated with the integrands X;; outside the desired basis have
in common that leg one is attached to a rank p > 2 Berends-Giele current Mya.  ,. After
integration by parts, the worldsheet dependence will be transformed into z; independent
X, s combinations (r, s # 1), so the associated V1MQZ'S___pMZJ,‘quM(;’“H__n permutations will
receive corrections containing M., at p > 2. Hence, the job of all the M5, is to provide
the BRST invariant completion of V1M2i3mng+1qu§+1mn to form C1 23, p p+1...q,q+1..m-

Let us consider the six-point amplitude to see these mechanisms in action. The first
two lines in (5.17) require integration by parts in the form X;9X34 = X34(Xo3 + Xo4 +
Xos + Xog) and X12(Xq3 + Xo3) = (Xog + Xog + Xos + Xo6) (X34 + X35 + X36) in order
to eliminate all the X;;. The remaining two lines already involve integrands in the 2z

independent basis, and the associated kinematics receive corrections

Xos Xus My Mz MIME X23X45<M1 My M ME + My M M ME
— Mg M3 M, ME + My My M ME — Mg My M] ME
+ Mgz M3 M. ME + Mgyo MM ME
— M412M§Mg M} — M513M§MZ MGk)
= X23X45C1,2345,6 (5.26)

due to the X53X45 on the right hand side of integration by parts formulae. By carefully
gathering all Xo3X,45 corrections, the superfield expressions can be seen to build up the
full-fledged C' 23456. So the net effect of integrating z;-dependent X,, by parts is the
replacement ]\41M2"3]\4;Z5M6’~C — C1.23.45.6 and M1M§34MgMgf — C1.234,5.6:

K¢ = Xo3(Xoa + X34)(C1 23456) + Xoa(Xoz + Xu3)(Ci 243,56)
+ Xog(Xos + X35)(C1,2354.6) + Xos5(Xas + X53)(C1 253,4.6)
+ Xos(Xoe + X36)(C1,236,45) + Xos(Xas + Xe63)(C1 263,4,6)
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Xo4(Xas + Xu5)(C1,245,36) + Xo5(Xoa + X54)(C1,254,3.6)
Xo4(Xa6 + Xu6)(C1,246,35) + Xo6(Xoa + Xo6a)(C1,264,3,5)
Xo5(Xa6 + X56)(C1,256,3,4) + Xo6(Xas + Xe5)(C1,265,3,4)
X34(X35 4+ Xu5)(C1345,26) + X35(X34 + X54)(C1 354,2.6)
X34(X36 + Xu6)(C1,346,2,5) + X36(X34 + X64)(C1,364,2,5)
X35(X36 + X56)(C1,356,2,4) + X36(X35 + Xo5)(C1,365,2,4)

HCr456,2,3) + Xae(Xas + X65)(C1.465,2,3)

Ch,23,456) + Xo3 X4 (C1,23,46,5) + Xo3 Xs6(C1,23,56,4

+ Xo4 C1,24.36,5) + Xoa Xs56(C1,24,56,3

) ( ) ( )
C1,24,35,6) Xie ( ) ( )
6) + Xo5 X36 (Cr25364) + Xos Xae (C1,25.46,3)
) ( ) ( )
) ( ) ( )

Xo6 X34 (C1,26,34,5) + Xog X35(C1,26,35,4) + Xog Xas (C1,26,45,3

+ + + + + + + + + + + o+
;7
3
_|_
I
D

<
N
(o)
<
w
~
P e e i i
92
l\')
01
CO
=
Gl

X34 X56 + Xa5 Xu6 (C135,46,2) + X36Xas5 (C1,36,45,2) (5.27)

C1,34,56,2

The above patterns lead to a seven-point kinematic factor given by

K7 =15 terms [ Xa3 (Xo4 + X34) (X5 + X35 + Xus) (C1,2345,6,7) + sym(345) |
+ 60 terms [ Xog (X4 + X34) (Cr23456,7) + (34> 4) ] Xse
+ 15 terms [ng X455 Xe7 <Ol,23,45,67> } (528)

In order to make the permutations in (5.28) more precise and to compactly write down its
n-point generalization, we shall introduce some notation that facilitates the bookkeeping

of the Sg_l terms in K,,.

5.4. The closed form n-point kinematic factor

We have argued in subsection 4.5 that the symmetries (4.36) of the BRST invariants yield
a basis with Sg_l elements under relations with constant coefficients. It became evident
from the examples (5.25), (5.27) and (5.28) that each independent C; . occurs in K,

where (5.18) determines the associated worldsheet function to be

p k-1 q k—1 n k—1
Coasmpitaars ) (H zxmk> IS 5l S xm

k=3 m=2 k=p+2 m=p+1 k=q+2 m=q+1
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Writing down the kinematic factor K, in a closed form for general multiplicity n is a
matter of notation. That is why we shall now introduce a set S§ with S% elements which
takes care of the (' . bookkeeping. It compasses all the partitions of k elements 12...k
into three indistinguishable cycles, say (a1 ...ap), (b1...bq), (c1...¢), where p+q+r =k
and none of the cycles remains empty, i.e. p,q,r # 0. For given sets {a1...a,}, {b1...b4}
and {c;...c,}, only cyclically inequivalent configurations are considered as distinct S¥
elements. Fixing the first entry aq, b1, c; of each cycle is one convenient way to implement

this, we are then left with permutations

(aro(az...ap)), (bim(ba...by)), (c1p(ca...cr)), o€ Sp_1, wESe—1, pESr_1

for a partition characterized by p,q,r. Of course, we have to avoid overcounting due to
the indistinguishable cycles, i.e. (2,3), (4,5), (...) is identified with (4,5), (2,3), (...) in
S¥. A formal way to summarize these properties of S} is

Ep,q,r(5k>

k
— .2
3 Zy X Zg X Zp X Syp.qm) (5.29)

p=q=>r>1
pt+a+r==k

Epqr(12..k)=(12...p) x (p+1...p+q) x (p+q+1...k)
V(p7Q7T>:1+6p,q+6q,r .

The map E, ,, cuts a given S, permutation of (12...k) into three tuples (12...p), (p +
1...p+¢q) and (p+ q+ 1...k) of cardinality, p, ¢ and r, respectively. Each of them
is modded out by the corresponding cyclic group Z,, Z,, Z,, and in case of coinciding
cardinalities (p = g or ¢ = r or both), we divide by permutations S,, . of these tuples
of equal size. Indeed, we can check that the number of elements in the individual (p, q,r)

contributions to (5.29),

Sk
Zp X Lg X Zyp xS

k!
~ pgr-v(p,q,r)!

v(p,q,m)

reproduce the entries of table 1.

The structure of the n-point kinematic factor is described by

P k-1 q k—1 n k—1
Kn = Z{<Cl,23...p,p+1...q,q+1...n> <H Z ka) H Z ka H Z ka

P,q k=3 m=2 k=p+2 m=p+1 k=q+2 m=q+1

+ sym(34...p) + sym(p+2,...q) + sym(qg+2,...n) + permutations} . (5.30)
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The definition (5.29) of S¥ allows to make the permutations involved very precise:

K, = Z <Cl,a(23...p),ﬂ(p—l-l...q),p(q—l—l...n)>

a><7r><p€$§“1

p k—1 q k—1 n o k-1
o (H > ka> |l I D Xew| 2| I Y. Xew|. (53D
k=3 m=2 k=p+2 m=p+1 k=q+2 m=q+1
The variables p, q are related to the cardinality of the permutations o, w, p via p = |o| + 1

and ¢ —p = |7| and should not be confused with the summation variables in (5.29).

We shall conclude this section with a comment on the rigid s;;7;; = X;; combinations
in the worldsheet integrand (5.31). The z; — z; singularities from n;; = zigl + O(z5)
in connection with the Koba Nielsen factor (5.21) give rise to kinematic poles in the
corresponding Mandelstam variable, at least for some choices of the integration region. The
connection between worldsheet poles and massless propagators was thoroughly explored
at tree-level [33], and since the z; — z; singularities are local effects on the worldsheet
regardless of its global properties, we expect the pole analysis to carry over to higher
genus.

The fact that short distance singularities on the worldsheet always occur in the com-
bination X;; = s;;n;;, any potential kinematic pole is immediately smoothed out by the
Mandelstam numerator s;;. That is why the z; integrals do not introduce any poles in kine-
matic invariants®, i.e. that all massless open string propagators enter through the BRST
invariants C, ... However, this does not rule out branch cut singularities in s;; as they are
expected from the polylogarithms in field theory loop amplitudes. Systematic study of the
non-analytic momentum dependence is a rewarding challenge which we leave for future

work.

6. One-loop kinematic factors built from tree-level data

In this section, we will show that the BRST invariant constituents Cy, . . of the one-loop
kinematic factor K, can be expanded in terms of SYM tree amplitudes. More precisely,
these kinematic building blocks for one-loop amplitudes are local linear combinations of

the o2 correction A" to color-ordered superstring tree amplitudes, defined by

ATee(1,2, . njal) = AYM(L,2, .. n) 4+ C(2)a2AF (1,2,...,n) + O3) . (6.1)

9 This does not exclude massless poles from the modular ¢ integration due to closed string

exchange in non-planar cylinder diagrams [60].
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Comparing with the central result of [27,33]

Atree(1’2,”.’n;a/>: Z AYM(1,0(2,...,n—2),n—l,n)FU(a’)
0ESn_3

for the disk amplitude, one can identify the O(a’?) power of the functions F? as the

expansion coefficients of AF" in terms of (n — 3)! field theory subamplitudes:

C2)a?AF (1,2, )= Y Fo(d)

oESH_3

PAML (2, ,n=2),n—1,n) (6.2)

The first examples up to multiplicity n = 6 read

AFN(1,2,3,4) = s12523.4YM(1,2,3,4)
AF4(1, 2,3,4,5) = (512534 — S34545 — S12551)AM(1,2,3,4,5) + s13504.4A7M(1, 3,2, 4, 5)
AFY(1,2,3,4,5,6) = —(545556 + 512561 — 455123 — S125345 + S1235345)AYM(1, 2, 3,4, 5, 6)
— 513(523 — S61 + 5345)AY™M(1,3,2,4,5,6) — 5145054 M(1,4,3,2,5,6)
+ 514835 A M(1,4,2,3,5,6) — s35(s34 — s56 + 5123) A M(1,2,4,3,5,6)
+ 5135054 M(1,3,4,2,5,6), (6.3)

and a O(a’®) momentum expansion for the n = 7 functions F° — i.e. the defining data for
AF4(1, 2,3,4,5,6,7) — can be found in the appendix of [33].

As we will show, our BRST invariants governing the one-loop kinematics
(C1.) =3 AT (1,p(2,3,...,0) = > palsi) AML7(2,3,...,n))  (6.4)
P ™

are linear combinations of SYM trees, accompanied by fine-tuned quadratic polynomials
Px(sij) in Mandelstam variables. The summation ranges for the S,,_; permutations p, 7
will be made precise soon.

Since the three-point tree does not receive any o’ corrections, higher-point disk am-
plitudes do not factorize on exclusively cubic vertices. Hence, the role of the Mandel-
stam bilinears p,(s;;) lies in avoiding n — 3 simultaneous poles in any A" ‘. One can

2 corrections to a quartic contact interaction ~ Tr{F*} (formed by the

attribute these o/
non-linearized gluon field strength F’) in the low energy effective action [63] (which explains

the terminology Af 4). The diagrams of AF ! having one quartic vertex and cubic SYM
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vertices otherwise require n — 4 propagators (instead of the n — 3 propagators in cubic
AYM diagrams).

In fact, the appearance of the tree-level kinematics A% * due to the (supersymmet-
ric completion of the) operator ~ Tr{F%} in one-loop amplitudes can be explained by
supersymmetry: Naive power counting shows that BRST invariants C; . are generated
by a term of mass dimension eight in the effective action. The vertex ~ Tr{F*} is the
unique mass dimension eight operator compatible with 16 supercharges, i.e. N = 1 su-
persymmetry in ten spacetime dimensions or N = 4 supersymmetry in four dimensions.
Cubic operators of type ~ Tr{D?*F3} can be ruled out since none of them is supersym-
metrizable. That is why one-loop kinematics in maximally supersymmetric theories have
no other choice than reproducing the A% * which have firstly been observed at tree-level.

The organization of this section proceeds as follows: We will first develop a pure
spinor superspace representation for A% " in terms of quadruple Berends—Giele currents
My, .. .a. Mél...ap Mgl...bq Mflmcr using their diagrammatic interpretation from figure Fig. 5.
The central box in these diagrams is then identified with the aforementioned quartic contact
interaction vertex ~ Tr{F*}. We exploit the Berends—Giele representation to identify the
AF" as linear combinations of the one-loop BRST invariants C; . Finally, the S;f_l basis

for Cy,... can be used to explain amplitude relations between A permutations and (closely

related) finite one-loop amplitudes in pure (non-supersymmetric) Yang-Mills theory.

6.1. Diagrammatic expansion of tree-level o'? corrections

Following the ideas of [11], a method which associates pure spinor building blocks to cubic
tree diagrams of SYM amplitudes in D = 10 was reviewed in section 2 on the basis of

[28,29,31]. The pure spinor superfield method of [31] rests on two basic assumptions:

1. the kinematic numerator of a cubic graph can only contain BRST building blocks
whose () variation cancels one of the kinematic poles
2. the sum of the expressions associated to all cubic graphs must be in the pure spinor

BRST cohomology.

Now we are interested in an analogous diagrammatic method for constructing the tree-level

2

o’? corrections and relating them to one-loop kinematic structures.
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2 4

= (MyMIMIMF)
1 ! ’ :
5 2 ! ’
MM = (M, MM ME)
4 3 ° !

Fig. 6 The building block prescription for the four- and five-point A ! diagrams. The
rule is that the Berends—Giele current with leg one is always to the left, carries no i, j, k
labels and the combination of superfields must contain the same kinematic poles of the
graph.

At n-points, AF 4(1, 2,...,n) has n — 4 simultaneous poles corresponding to diagrams
with n — 4 cubic vertices and one quartic vertex. Since we are using the same superspace
ingredients Mg, . .q, Mél___angl___quflmcr present in one-loop BRST invariants, the box
notation introduced in subsections 4.2 and 4.4 will be kept and can be identified with
the tree-level quartic vertex ~ Tr{F*}. The unified diagrammatic language for both a2
corrected trees and loop-level kinematic factors emphasizes that they can be represented
by the same class of subamplitudes A% *. As mentioned before, this can be traced back to
the uniqueness of N = 1 supersymmetric dimension eight operators in D = 10.

The four- and five-point diagrams associated with the tree-level o/ correction are

depicted in Fig. 6, together with their pure spinor superfield mapping. The expression
AT(1,2,3,4) = (My MGMZ M) (6.5)

correctly reflects the absence of poles in A 4(1, 2,3,4) and is BRST closed.

The five-point A¥ 4(1, 2,3,4,5) has two kinds of Berends—Giele-constituents. They
are characterized by the position of the leg with label one — it can either enter through
the cubic vertex (— Mj;) or as a standalone corner (— M) of the box. The superfield
mapping is slightly different for each possibility, and the rule is that leg number one is
never associated with loop-specific Berends—Giele currents M%J*. The dictionary of Fig. 6

lead to the following @) closed expression

AFN(1,2,3,4,5) = (Mo MAMIMPE) + (M, Mig MI MF) (6.6)
+ (My My M3, ME) + (My My M3 M) + (M5 MyM3 M) .

43



In the four-point case, it was shown in [22] on superfield level that (M;MiMIME) agrees
with the SYM tree representation AF4(1, 2,3,4) = s12503AYM(1, 2, 3,4). This requires the

pure spinor superspace expression (2.19) for the latter,
<M1M§M§Mf> = 523(T12V3 Vi) + 519(ViToz Vi) = 512893 AY (1, 2,3, 4).

However, we could not find a superspace proof for (6.6) to agree with the AYM combination
(512534 — 534545 — S12551)AYM(1,2,3,4,5) + 513500 AYM(1, 3, 2,4, 5) required by (6.3). In-
stead, we have checked that this combination of five gluon trees matches the bosonic terms
of the component expansion of (6.6). The agreement of the gluonic components extends
to the full supermultiplet because the (A\30°) = 1 prescription respects supersymmetry.
For six-points the story is the same, and the mappings between diagrams and su-
perfields depend on the position of leg number one. Since the rank three Berends—Giele
currents encompass two subdiagrams — M;js3 has poles in both s155123 and sg3s123 for
example — one term in pure spinor superspace can describe a sum of graphs. Following
the mapping rules depicted in Fig. 7 the 21 graphs which compose the six-point A* " are

represented by the following 15 terms in pure spinor superspace,

4 . . . . X .
AF(1,2,...,6) = (Myos MEME M) + (Mgyo MiM] ME) 4 ( Mgy MM MY)
My Mgy MY ME) + (My M3 M5 Mg ) + (My M3 M M)
Myp M, ML ME) + (Mey Mg M ME) + (Mo M3 M] M)

+
+
+ My My M, M) + (My My M M)
+

+ + 4+ 4

{
{
(M) M3 M3 Mys) +
(Mo MM{s ME) + (Mg M3M3, ME) + (My M3z M{ ML), (6.7)
which one can check to be BRST-closed using the formula given in the previous section.
The first six terms in (6.7) altogether describe twelve graphs whereas each of the last nine
terms describe a single graph.

Let us state the general rule for proceeding beyond six-points: Our superspace pro-
posal for AF ! encompasses all distinct planar diagrams (with unit relative weight) made of
one totally symmetric quartic and otherwise antisymmetric cubic vertices from SYM. The

sum of their M. M? MJ M* superspace representatives can be checked to enjoy BRST
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1
6 3 6 2
3 o
+ = (Mya3MiMZME)
5 4 5 4
3 2
2
1 4 1 3
4 o
+ = (MM, M ME)
6 5 6 5
6 1 2
5 2 1 3
= (Mo MM ME) = (M, M, M3 ME)
4 3 6 4
5

Fig. 7 Pure spinor diagrammatic rules for the six-point o’ correction A" ', The leg

number one is never associated with a loop-specific Berends-Giele current M*7* and
the labels in the superfields are arranged according the order in which they appear in
the diagrams.

invariance. Up to multiplicity nine, we have

AFN1,2,.0.,7) = (Mygsa MEMEME) + (My g3 Mg MEME) 4 (Mo Mi M2, ME)
+ (Maas MM My) + (Mo M5, Mg M) + cyc(1234567)
= 35 terms and 84 diagrams
AFN(1,2, ..., 8) = (Myosas MEMEME) + (Mg Moo M3 ME)
+ ]\41234(]\45i6~Mg~MéC + MEME M + MéMgM$8)>
+
+
+ (Mo My Mg M) + (Msy My M M)
= 70 terms and 330 diagrams
AT(1,2,..,9) = (Myasase MM M) + (Mo Mis M M)
+ (Magaas Mgy M Mg + M{MIgMg + Mg M2 Mg, ))

45

(6.8)

(
(Mg (Mijs M, ME + Mis M ME, + MiMIME)) + cyc(12345678)
(



(M3 (Mig MMy + MigMI My + MM, ME))

(Mosa (Mg M ME + MM ME + MM Mbg,))

(M3 (Mise Mg Mg + Mis Mg Mg + Mise M ME))

+ eye(123456789)

= 126 terms and 1287 diagrams (6.10)

_|_
_|_
+

Summing over cyclic permutations in the specified labels slightly abuses notation in view
of the rule that leg number one is always attached to the tree-level current M _ rather
than to M*JF. For example, the cyclic orbit of M3 M. ng M} shall be understood as

Mg MM ME + cyc(123456) = Moz MM ME + My My, M2 ME + My MM, ME
+ My MEMI ME o + Megyo MEM] ME + My MEMI MY
Using this refined cyclic summation, one can verify BRST closure of the above expressions
as well as the correct diagrammatic content to represent the o’ corrections A " to tree
amplitudes. Moreover, as a sufficient condition, we have explicitly checked their agreement

up to n = 6 by computing the bosonic component expansions [52] and comparing with

(6.3). It is highly plausible that the (well-tested) experimental rule
BRST closed objects with the same kinematic pole structure are proportional

persists for n > 7 legs.

The above expressions for AF 4(1, 2,...,n) are not manifestly cyclic invariant in
(1,2,...,n) because the leg number one is treated differently. This is an artifact of the
one-loop prescription from section 3 which associates only leg number one with the unin-
tegrated vertex operator V!. But it can be shown that the difference to another choice of
Vi#1l is BRST-exact and therefore zero,

4

AP 1,2, n) — AT (2,3, 0, 1) = (Q X,) =0, (6.11)
for example'?,
Xy = M}, MM}
X5 = Moy M{ME + My, M MF + Miy(M M5 + M3, M) (6.15)
X = Moz, MIME + Mg M ME + Mg o MM + Mo (M Mg + Mis M)
+ Mo (M3 M + M3, ME) + My (MM fss + M3, ME; + M3, ME). (6.16)

10" The general formula for X, can be conveniently written using the definition

p—1

E;‘]Qp = ZMliz...kM;gH.,.p (6.12)

k=1

46



6.2. Tree-level o'? corrections versus one-loop kinematics

This subsection builds a bridge between tree-level o/ corrections AF * and the one-
loop kinematics C... Both of them have a superspace representation in terms of
My, . a. Mél...angl...quckl. ~ see the previous subsection for AF" and (4.28) — (4.34)
for Cy,... Using the symmetry properties (4.35) of Berends-Giele currents, we find

..Cp

.AF4<1, 2, ceey 71) = Z <Ol,23...p,p+1...q,q+1...n>7 (617)

2<p<q<n-1

where legs 23...n are distributed in all possible ways among the three slots of the BRST

invariants Cy . which preserve their order. This leads to (n—2)(n—3)/2 terms in the Cy, .

expansion of the color-ordered A¥ 4(1, 2,...,n), let us display examples up to multiplicity
n=a§:
AP 1,2,...,4) = (Chos.4) (6.18)
AP (1,2,...,5) = (Crosas) + (Crass) + (Crasos) (6.19)
AF4(1, 2,...,6) = (C123456) + (C1,345.2,6) + (C1,456,2,3) + (C1,23,45,6)
+ (C1 23,56,4) + (C1,34,56,2) (6.20)

AF4(1, 2,...,7) =(C12345,6,7) + (C1,3456,2,7) + (C1.4567,2,3) + (C1,234,56,7)
+ (C1 234,67.5) + (C1,23,456,7) + (C1 23,567.4) + (C1,345,67,2)
+ (C1,34,567,2) + (C1,23,45,67) (6.21)
AF4(1, 2,...,8) = (C1 23456,7,8) + (C1,34567,2,8) + (C1,45678,2,3) + (C1,2345,67,8)
+ (C1,2345,78,6) + (C1,234,567,8) + ( )+
)+ (C1 3456,78,2) + (C1,345,678,2) + (C1,34,5678,2)
+ (C1,23,45,678) + (C1,23,456,78) + ( ) (6.22)

C1.234,678,5) + (C1,23,4567,8)
+ (C 23,5678.4

C1,234,56,78

We will argue in the next subsection that the representation (6.17) of A " in terms of

C,... is invertible, i.e. that one can express any individual BRST invariant C . in terms

as

n—2 n—1
[ ik ij k
X, = Z Miy B 4 teye(12...n) — Z ER M aq (6.13)
p=2 p=3

and tcyc(12...n) means the truncated cyclic permutations of the enclosed indices. It is defined
such that the permutations which lead to the leg number one not being in the “first” M® are
dropped. For example, M{io3 MJ MEF + tcyc(12345) = Mias M) ME + Mo M MY + Mjs, M M.
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of AF" permutations with rational coefficients. As promised in (6.4), this implies that all
kinematic ingredients C, . of one-loop amplitudes can be written in terms of tree-level
kinematics A% 4, and the latter can in principle be expressed through A¥M permutations
(with bilinear Mandelstam coefficients). The reduction of five-point C ;5 to SYM trees

proceeds as follows,

(Crosss) = A (1,3,2,4,5) — A" (1,4,3,2,5) — AT (1,3,4,5,2). (6.24)
= AYM(q, 2,3,4,5)s34[512 — 845 — 8182823]
14

s
+ AYM(1,3,2,4,5) [(s23 + 534) (512 — 545) + 3_23(812824 — s51(534 + 545))]
14

and we shall finally give a six-point example:

3(Chsas.006) = A7 (1,2,3,6,4,5) + AF (1,2,5,4,3,6) + A" (1,2,5,4,6,3)
+ AF(1,2,6,3,4,5)+ AT (1,3,2,4,5,6) + AT (1,3,2,4,6,5)

— AF'(1,3,2,5,4,6)+ AT (1,3,4,2,5,6) + AT (1,3,4,2,6,5)
F1(1,3,4,6,2,5) + AF(1,6,2,3, 4, 5)+AF (1,6,4,3,2,5) (6.25)
3(Cha3.45.6) = —AF (1, 2,3,4,5,6)+AF (1,2,3,5,4,6) + A7 (1,2,3,6,4,5)
F4(1,2,3,6,5,4) + AF" (1,2,5,3,4,6) — AF4(1 2,5,6,4,3)
+AF (1,2,6,3,4,5) — AF4(1 2,6,3,5,4)+ A" (1,2,6,4,3,5)
+ AF(1,2,6,4,5,3) — AT (1,2,6,5,3,4) — A (1,3,2,5,4,6)
+ AF(1,3,2,5,6,4) — 247 (1,3,2,6,4,5) + 247 (1,3,2,6,5,4)
+AT(1,3,4,5,2,6)+ AT (1,6,5,2,3,4) . (6.26)

It is not difficult to verify the above relations using the explicit expressions (6.19) and

(6.20) together with the symmetries obeyed by the invariants Cy . ..

6.3. KK-like identities for AF* and finite QCD amplitudes

We have argued in subsection 4.5 that the symmetries (4.36) of the C . align them into a
Sz~ !-dimensional basis under relations with rational coefficients. This subsection focuses
on amplitude relations between AF ! following from their expansion (6.17) in terms of C . .
Cyclic symmetry and (—1)" parity leave (n—1)!/2 potentially independent AF4(1, 2,...,n)
permutations, but since they are all linear combinations of ng_l independent (', there

must be lots of identities with rational coefficients among them. Following the terminology
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of [64], we will refer to these relations as “Kleiss Kuijf-like” (KK-like). The first example
is AF4(1, 2,3,4) = AF4(1, 3,2,4) being totally symmetric. Examples at five-points are

0=A"(1,2,3,4,5)— AT (1,4,2,3,5) — A" (1,2,4,5,3)
+ AF(1,2,4,3,5) — AF(1,3,2,4,5) — AF(1,2,3,5,4), (6.27)
0=A""(1,2,3,4,5) + sym(2, 4, 5), (6.28)

they can be easily checked using AF4(1, 2,3,4,5) = (C1 23,45+ Ci2,315+ C1,23.45).

The basis dimension Sg_l for C,... furnishes an upper bound on the number
of independent A¥ * under KK-like relations (e.g. one has at most six independent
AT (1,0(2,3,4,5)) under (6.27) and (6.28)). If this bound is saturated, then the equation

system

4
A" (1,0(2,...,n)) = Z <Ol,a(23mp),a(p+1...q),U(q+1---n)>7 (6.29)

2<0(p)<o(g)<n—1

is invertible and we can solve it for C; . in terms of AP permutations. We will now give
an indirect argument that this is indeed the case.

Relations of type (6.27) and (6.28) have already been observed in [64] for finite one-
loop amplitudes in four-dimensional pure Yang Mills theory involving gluons of positive

helicity only. Using the all multiplicity formula from [65]!!

i 2icier<ilia) IRIRD L]

1) 1+ o+ +) — _
Ana (1520 = = e =1 23) . (nl)

(6.30)

(with (ij) and [ij] denoting products of the momentum spinors of gluons i and j) the
authors of [64] derive amplitude relations between different A;”l permutations and also
find the basis dimension Sg_l under KK-like relations. Moreover, they develop a dia-
grammatic method to handle the symmetries using graphs with one quartic vertex and
otherwise cubic vertices. This strongly resembles our diagrammatic interpretation of one-
loop building blocks (Ty, . 4. Tél...aprjl___quck;:L...c,«>‘ Reference [67] puts the idea to derive

relations between box coefficients from quartic expressions in Berends—Giele currents into

a more general context.

11 The expression (6.30) for pure Yang Mills amplitudes Afll)l was observed in [66] to agree with
dimension-shifted one-loop amplitudes of N =4 SYM in D +— D + 4 dimensions.
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2 corrections to superstring tree amplitudes and four-

The coincidence between «
dimensional pure Yang Mills amplitudes was firstly noticed in [68,69]. The authors point
out that the four-dimensional reduction of gluonic A ! amplitudes'? in MHV helicity

configurations are proportional to (6.30),
AP (1727, 30 4 ) ~ (1200 AL (1,27, ) (6.31)

up to the permutation-insensitive “MHV-dressing” (12)%. This explains why four-
dimensional MHV representatives of AF" fall into the same Sz~ !-dimensional basis found
in [64] under KK-like relations. In other words, the MHV components of the A% ' satu-
rate the upper bound of Sg_l basis amplitudes found through our reasoning above based
on C, . expansions. Generalizations of four-dimensional MHV A" to other helicities,
to other supermultiplet members and to higher dimensions can only require a larger ba-
sis than the MHV specialization, but exceeding the Sg_l is incompatible with the upper

13 This completes our argument why

bound found for ten-dimensional superamplitudes
(6.29) admits to express any BRST invariant C; . as a linear combination of A !

To conclude this section, let us display higher order examples for KK-like identities
between AF". At six-points, for instance, one can check

4

F(1,5,4,3,6,2) — AT (1,5,4,2,6,3) — A" (1,5,4,6,2,3) + A" (1,5,4,6,3,2)
F(1,5,6,4,2,3) — A7 (1,5,6,4,3,2) + A" (1,6,2,3,4,5) — AT (1,6,3,2,4,5)
—AF (1,6,4,2,3,5) — A" (1,6,4,2,5 3)+AF (1,6,4,3,2,5)+ A" (1,6,4,3,5,2)
( ) ( 2) ( ) ( )

—AF(1,6,4,5,2,3)+ AP (1,6,4,5,3,2) + AP (1,6,5,4,2,3) — AP (1,6,5,4,3,2).

using (6.20), and a neat form for all-multiplicity relations is given in [64]:
0=24"(1,2,....n)— (-1 > AT (3,{0},5) +sym(45...n).
oceOP({4}u{B})

Similar to KK relations, the notation OP({4} U {5}) includes all ways to shuffle leg four
into the set {#} = {2,1,n,n—1,...,6} while preserving the order of the latter.

12 The AYM representation (6.2) of A" is dimension agnostic — the functional dependence of
SYM trees on gluon polarization vectors is the same in any number of dimensions, and one can use
spinor helicity variables and the Parke Taylor formula [70] in the four-dimensional MHV situation.

13 This is not a strict proof that the non-MHV AP obey the same (n — 1)!/2 — S7~ " KK-like
relations as their MHV cousins and the pure Yang Mills amplitudes (6.30), but we take strong
confidence from the fact that our A”" in their helicity agnostic C,... representation obey all the

Agll)l amplitude relations explicitly written in [64].
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6.4. BCJ-like identities for AF"

We always pointed out that the basis dimensions ng—l for both C; ... and A only take
relations with constant, rational coefficients into account which we call KK-like. So far,
we completely neglected the fact that AF ! decompose into AYM permutations (weighted
by bilinears in s;;) which are well-known to have a (n — 3)! basis under KK- and BCJ
relations [11]. Starting from (n = 5)-points, the AYM basis contains strictly less elements
than the “KK-like” basis of AF" since (n —3)! < Sg~! for n > 5. Hence, there must
be extra relations with Mandelstam coefficients between AF" that are independent under
KK-like relations.

At five-points, extra identities with bilinear coefficients in Mandelstam variables re-
duce the A" or pure Yang-Mills amplitudes Aﬁf)l to two independent ones (in agreement
with the (n — 3)! basis of AYM). Examples on the Aﬁj)l side are shown in equation (5.2)
of [64], we have checked that they are also satisfied by A% ! However, the most compact
relations we could find between five-point BRST invariants involve the 'y rather than
AP Let P, = Z?zl x;;5; denote linear polynomials in Mandelstam variables s; = s; ;41

with constants x;;, then the ansatz

593 P1C1 23,45 + 524 P2C 24,35 + 525 P3C1 25 3 4

+534P1C 34,25 + 535 P5C1 35,24 + 545 P6C1 4523 =0 (6.32)

is sufficient to find a two-dimensional basis of BRST invariants. The ansatz (6.32) is
motivated by the fact that the é pole in C 2345 does not appear in any other Cy
so it must be cancelled by a so3 prefactor for C 23 4. 5. Plugging in the polynomials P; =
Z?zl x;;5; and solving the system of equations which follow from a component evaluation
of (6.32) using [52] lead to four independent quadratic relations between C; . As a result,

we can express {C1,24,3,5, C1,25,3,4, C1,34,2,5, C1,35,2,4} in terms of a {C1 23 4,5, C1 ,45,2,3} basis

(s1i801 — $y0817) LS S ooy Clszs
¢ T (823 —845)845 Sij J e (845 _323)523

(6.33)

S1k
Crijreg ==

j
where the signs are given by {(+—), (++), (——), (—+)}, respectively.
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7. Harmony between color, kinematics and worldsheet integrands

In this section, we will explore the common combinatorial structures that govern on the
one hand the kinematic building blocks C; . of one-loop amplitudes and the corresponding
worldsheet integrands X;; = s;;7;;, on the other hand also the color factors from the o 2
corrections to tree amplitudes. In all the three cases, the basis dimensions are given by
the unsigned Stirling number ng_l. It can be viewed as the one-loop analogue of the
magic number (n — 3)! omnipresent in tree-level bases of worldsheet integrals as well as
color-ordered string- and SYM amplitudes. This coincidence has led us to a harmonious
duality between color-dressed tree amplitudes at order o2 and the integrand of one-loop
amplitudes in open superstring theory.

In the open string sector, the color-dressed tree amplitude is given by

<
M)y =Y Tr [T%0 T%@ .. T 0= T ] A™(5(1,2,...,n~1),n;d/) (7.1)
0ESn_1/Z>
where the summation includes all cyclically inequivalent permutations of the labels modded
out by the (—1)" parity of color-stripped n-point amplitudes. The 7% denote the Chan—
Paton factors' in the fundamental representation of the gauge group, and parity weighting

is represented as

e

Tr [T9T%...T%] = Te[T™T% ... T% + (~1)" T T%...T%].  (7.2)

A convenient basis for these parity weighted traces involves structure constants f2°¢ and

symmetrized traces d*1?2%3--%2n of even rank only, the latter being defined as [71],

aila a 1 a a a
J0102--a2n . T Z Tr[ T ... T -1 T2 | (7.3)

0€San_1

We will use shorthands f123 = #1283 and d'2-F = d*192-% for the (adjoint) color degrees
of freedom.

As mentioned in [71], the explicit computation of symmetrized traces is tedious to
perform by hand but it is also well-suited for a computer implementation. The first non-
trivial relations are relatively compact [72,73]

. .
Tr (T' T2 73) = % £123 (7.4)

14" Our normalization conventions are fixed by Tr[T°T*] = §°°/2 and [T, T"] = i f**°T*.
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g 1
Ty (Tl T2 T3 T4) — 2d1234 + 6 (f23n f14n _ f12n f34n), (75>

g {

T T1T2T3T4T5 _ 12a ra4b b35_3 12a ra3b £b45 13a ra2b £b45
' ) = o[ 12 et S5 g piie po s . gida gzt g
+ flSafa4bfb25 + f14afa2bfb35 _ f14afa3bfb25}

+ i[f23adal45 + f24ada135 + f25ada134

+ fHagHI2s | f35agal2e | pddagal2s] (7.6)

but the lenghty relations for n = 6 and 7 were computed using the color package of FORM
[74] and the n = 6 case can be found in the Appendix B. Note that (7.5) and (7.6) have

been cast into a minimal form in the sense that all the generalized Jacobi relations

palid gklab _ (7.7)
da(ijkfl)ab =0 (78)

are taken into account. For the color structures involving a symmetrized trace, this
amounts to placing leg number one to the d'-.

Once the color-dressed disk amplitude (7.1) is rewritten in this color basis, the sub-
amplitude relations at various orders in o’ impose selection rules on what kinds of tensor
contribute to M(a/) at the order in question. Keeping the first two terms in (6.1)
~ a0 a?, the KK identities [59] between AYM select those color tensors with n — 2
powers of structure constants and project out any symmetrized trace (7.3). The subampli-
tudes AF" associated with the first string corrections, on the other hand, satisfy another
set of relations which we called KK-like in the discussion of subsection 6.3. They select
those color tensors made of n — 4 structure constants f**¢ and one symmetrized four-trace
dt?3t = %20633 Tr [T"(l)T"(Q)T”(3)T4]. This ties in with the symbolic vertices D®¢d
and F%¢ used in [64] to gain intuition for the amplitude relation between finite one-loop
pure Yang Mills amplitudes Aﬁj)l The color tensors d®1@2a3d4( fbedyn=4 gelected by A *
are another manifestation of their intimate connection to the Aﬁj)l

As a first example, let us consider the four-point color-dressed amplitude up to O(a'?),

Mbree(q)) = — % (f12a FI34 AYM(1,2,3 4) 4+ fl3a pb24 gYM( 3,2,4))
+O6C(2)ad' P AT (1,2,3,4) + O, (7.9)

see [72] for the color structure at higher order in /. The notation for higher multiplicity

versions of (7.1) shall be lightened using
Miee(o) = MM + ((2) a2 M + 0(a?), (7.10)
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and the a/? correction MZE " will be the object of main interest in this section where we
show its tight connection to the one-loop integrand (5.31).

Before looking at the color tensor structure at order o’? and their interplay with A¥ !
symmetries, let us review the color organization at the SYM level o/%. At five-points, the

KK relations for the field theory subamplitudes yield
MM = =2 AYM(1,2,3,4,5) 112095 240 4 sym(234)

in agreement with the color-decomposition proposed by [62]. More generally, this reference

suggests the following (n — 2)! element Kleiss—Kuijf bases

{f1“(2)“ fae®b . pro(n=lin 5 o Sn_g}, {AYM(1,0(2, 3,...,n— 1),n), o€ Sn_z}
(7.11)
for the color factors (£°¢¢)"~2 and the SYM subamplitudes (using Jacobi identities for the
former and KK relations for the latter). In this setting, one can reproduce the (n — 2)!

color-decomposition proven in [62]

Z'n—2

MM Z fro@a pac@b . pzoln=ln AYM(1 5(2.3,...,n—1),n), (7.12)

CESH_2

d*2--2" contributions at order o/° becomes

starting from (7.1), and the cancellation of
manifest due to KK relations. In the remainder of this section, we will find remnants of
(7.12) in ME*

" in particular the basis choice (7.11) for (f*¢¢)"=2 color factors is path-

breaking for the organization of the color tensors @234 ( fbcd)n=4 yelevant at o/? order.

7.1. The color-dressed (n < 7)-point disk amplitude at order o'?

Keeping the dual bases (7.11) for MM in mind, we shall next give n = 5, 6, 7-point results
for MI". According to (7.6), the five-point color tensors d*i* flab are brought into a (six
element) basis of d*¥1 fla (with leg one attached to the d tensor) via generalized Jacobi

identity d*(k fDab — (0. This leads to a compact result for M§4:

A4
ME = 3" T [Toeo Ter@ T o 7% ] AT (0(1,2,3,4),5)
0€S4/Z>

. 23a jal45 24a j3a135 25a ja134
= 61(C1,23,4,5 f2d" ™ + Ci 24,35 f577d"°° + C1 25,34 f°°%

+ 017347275 f34ada125 + 017357274 f35ada124 + 01’45’2’3 f45ada123> (71?))

54



First of all, the symmetries of AF? imply that color factors of type flo(2)a fac(3)b fbo(4)5
drop out, see the first two lines of (7.6). Secondly, the expansion AF4(1,2,3,4,5) =
(C12345 + Ci2,345 + C1.2,345) makes all contributions to a fixed (basis) color tensor
fiedelkl collapse to one single term Cl,ij’hll‘r’. The precise correspondence Cf ;; k1
fiede1kl hetween kinematic and color basis elements is a non-trivial reorganization when
looked from the perspective of the composing A* ! terms, especially at higher orders.
Even more striking cancellations occur when the symmetrized trace decompositions
of the Appendix B are used to evaluate the six- and seven-point color-dressed amplitudes

at order o/?: The 35 = S5 term sum in the six-point case

B % Mg4 _ <Cl72374576f23ada16bfb45 i 0172374675f23ada15bfb46 4 01,23’56’4f23ada14bfb56

0172473576f24ada16bfb35 i 0172473675f24ada15bfb36 i 0172475673f24ada13bfb56

0172573476f25ada16bfb34 i 0172573674f25ada14bfb36 i 0172574673f25ada13bfb46

01’26’34’5f26ada15bfb34 n 01’26’35’4f26ada14bfb35 n 01’26’45’3f26ada13bfb45

01’34’56’2f34ada12bfb56 n 01’35’46’2f35ada12bfb46 n 01’36’45’2f36ada12bfb45

01’234’5’6f23afa4b 01’24375’6f24afa3b } (156

0172357476f23afa56 01’253,4,6f25afa3b } (146

0172457376f24afa56 01’254,3,6f25afa4b } (136

0172367475f23afa6b 01’263’4’5f26afa3b } (145

01’246’3’5f24afa6b 01’26473’5f26afa4b } (135

01’256’3’4f25afa6b 01’26573’4f26afa5b } o134

01’345’2’6f34afa5b 01’35472’6f35afa4b } (126

0173467275f34afa6b 01’364’2’5f36afa4b } 125

0173567274f35afa6b 01’365’2’4f36afa5b } 124
]

C1.456.23 5 + O 46523407 f250]a"23) (7.14)

+ + + + + + + + + + + +

—/ o o/ — — — 1

+ o+ o+ o+ o+ o+ o+ 4+

15 Going through the calculation reveals that the terms proportional to f232d***° are

ATN(1,2,3,4,5) + AF(1,2,3,5,4) + AT (1,2,4,3,5) + A" (1,2,4,5,3)
F AT (1,2,5,3,4) + A7 (1,2,5,4,3) — AT (1,3,2,4,5) — AT (1,3,2,5,4)
~ATN(1,3,4,2,5) — AT (1,3,5,2,4) + A7 (1,4,2,3,5) — AT (1,4,3,2,5)

and yet they collapse to a single term 6C1 23,45 once the relation (6.19) and the symmetries of

the one-loop BRST invariants are used.
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exhibits color-kinematic-correspondence
23a ja16b £b45 23a radb jb156
Ci,23,45,6 <> f24d* 7 7%, Chasase < [0 f40d 0.
Likewise, the 225 = S$ terms in

% ME" = (15 terms [(C1,2345,6,7f 2 f4 £ + sym(345) 4167
60 terms [ Chosa567f 2 F* + (3 45 4)] 200t

+
+ 15 terms C o3.45,67f 220 450 f67cqlabe) (7.15)

allow to read off the dictionary

01,23,45,67 o f23af45bf67cd1abc
01,234,56,7 o f23afa4bf56cdbcl7 (716)

01,2345,6,7 o f23afa4bfb5cd6167.

In the next subsection, we shall put these observations into a more general con-
text. Note that d'234°6 and d!'234%¢ 967 tensors (or more generally d® % (fb¢d)"=6 and
dor--azk (fedyn=2k ot | > 3) from the rank > 6 traces do not contribute at O(a'?) because

of the KK-like amplitude relations between A% L

7.2. Dual bases in color and kinematic space

We conclude from the calculations above that the BRST invariants Cy .. are natural objects
to appear not only in the one-loop integrand but also in color-dressed tree-level amplitudes.
According to (6.17), they are related to subamplitudes A” " at order /2 by a change of
(S5~ element) basis with coefficients +1 and automatically solve their KK-like relations.
Moreover, the C1 4;...ap,b;...,b4,c1...c, inherit all symmetry properties of the Berends—Giele

current triplet Mél...angl... b, Mck1 see subsection 4.5. This makes their S5~ basis

ey
under relations with constant coefficients manifest and leads to the observed harmony
with the symmetries of color tensors d®1@2@3a4( fbedyn—4,

In fact, arriving at the simple results (7.13), (7.14) and (7.15) for the o'? correction
to the color-dressed amplitude crucially relies on the fact that the dimension of the basis
for color factors and the kinematics matches. This fact has been exploited to choose
“compatible” bases of color structures and corresponding kinematics, generalizing the tree-

level correspondence (7.11) between color factors (f°4)"=2 and AYM in their (n — 2)! KK
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bases. In the SYM case, the reduction to (n — 2)! bases makes use of Jacobi identities on
the color side and the KK relations for the subamplitudes.
We shall now explain why also the d®1@29s94( fbed)n=4 color factors align into a basis

of ng—l elements. The reduction algorithm consists of two steps:

1. Move label number one to the symmetrized four-trace, i.e. di/*-(fbed)r=4
S dtra-(fhed)n=4 by repeated use of generalized Jacobi identities (7.8). At five-

points, one applications is enough,
d234af1ab — _d123af4ab . d412af3ab o d341af2ab. (717)

For six-points there are two possibilities for the color factors which do not contain
the label number one inside the symmetrized trace d*/¥. The number of color space
propagators 6% between leg number one and d*/*! is either one (as in f34a f1abqb246)
or two (as in f12¢ fa3bqb456)  For the one-propagator-link one uses the generalized

Jacobi identity (7.17), whereas in the two-propagator-case the identity
leafa?)bdb456 — _leada45bfb63 . fl2ada64bfb53 . leada56bfb43 (718)

reduces it to terms of one-propagator form where (7.17) can be applied. The
analysis for higher-points is analogous, with more successive applications of (7.8)
needed. The possibility to reduce d*!(fbed)n== - S~ glrar--( fbedyn—4 i the color
dual of the finding in subsection 4.5 that any C; . with ¢ # 1 can be expressed as
a sum of C . in the BRST cohomology.

2. Mod out the d'P47(fbed)n=4 by Jacobi identities (7.7) among the f"~* factors:

Consider a generic color structure d'~ passing the first selection rule,

dlmpyqzr falazmz fm2a3m3 fmp,gap,lmp,l fmpflapmp
> fb1b2y2 fyzbaya fyq—zbq—lyq—l fyq—lbqu
> f016222 f226323 . er—ZCT—IZT—l er—lchr. (719)

Each of the remaining three slots of d'®»%s** can adjoin a tree subdiagram with
p,q and r external legs, respectively, such that p + ¢ +r = n — 1. Within
the color tensors of each subdiagram like f@1%2%2 fr2a3®3  fTp-20p-1Tp—1 fTp-1apTp
we can eliminate the Jacobi redundancy in analogy to the tree-level KK basis

(7.11). This amounts to the convention that a; is kept fixed at the “outmost”
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structure constant f@17(42)%2 whereas the remaining free indices {as, as, .. S Gp)
can appear in any of the (p — 1)! possible permutations. Then, the collection
of faro(a2)zs fr20(az)es  frp—20(ap-1)rp—1 frp-10(ap)Tp with g € Sp—1 exhaust all
Jacobi-independent half-ladder diagrams with fixed endpoints a; and x,. The kine-

matical dual is the reduction of C} 4(4,...q,),... to the smaller set of C 4, 5(ay...a,),...-

After this two-step reduction, the basis dimension for the color factors d/k!(fbed)n=4 ig
manifestly equal to the unsigned Stirling number S;f_l, the same number which governs
the number of independent BRST invariants C; ...

A more intuitive understanding of the interplay between kinematic- and color basis can
be found by inspecting the unique term Vleil...angl,,,bqMckl...c,n in C1a;...ap,b1...by,c1..cr
with the standalone unintegrated vertex operator V7, see the explicit expression in subsec-
tion 4.4. The ellipsis in C1 a;..ap,b1...b5,c1...c0, = mMél...angl...quckl. + ... obeys the

same symmetry properties, so the first term is a valid representative for the symmetry

..Cp

analysis. Recall that the Berends-Giele currents M , are color-ordered (p + 1)-point

.a
amplitudes with leg number p + 1 off-shell (correspondi::g to the color index z, which is
contracted into the box d'®»¥%:*), see Fig. 8. Within each of these three off-shell subam-
plitudes M
subscript of M;l and a>2 can appear in any permutation.

Each of the KK basis elements M!

aro(az.

which is adapted to the permutation o € S,_; according to the tree-level rule (7.12):

o, we pick a Kleiss—Kuijf basis where, again, a; is kept fixed as the first
ap

) is accompanied by a fP~! color factor

i o fala(ag)xg fxga(ag)xg . fxp_la(ap)xp )

aio(az...ap)

The three chains of f corresponding to the M? , M7 and M’ are then contracted with
the x,, Yy, 2 indices of d'*»¥s* j.e. glued to the three corners of the box where leg one
is not attached to. This amounts to the following rule how the dual Sy ' element bases
for color- and kinematic factors enter /\/154: Permutations of C1 4, ...a,,b1...b4,c1...c, for fixed

sets {a1,az,...,ap}, {b1,ba,...,bs} and {c1, ¢, ..., ¢} always appear in the combination

Z Z Z Ol,alo'(az...ap),blp(bg...bq),clﬂ'(cz...c,«) X fala(ag)xg fng(ag)x3 to fxp_la(ap)xp

0E€ESp_1 pESq—1 TESr_1
% fblp(b2)y2 fy2p(b3)y3 . fyq_lp(bq)yq > fC17r(02)Z2 f227r(C3)Z3 .. er—lﬂ(C'r‘)Zr dlxpyqzw,

in agreement with our results (7.13), (7.14) and (7.15) for Mﬁ; This can be recognized

as sum over the ng_l partitions of legs 23 ...n into three cycles, see subsection 5.4 for the
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- by ap -
I’ \\
4 A}
4 \
. . 1
J )
bq—l Jwblu.bq ‘Zum ..ap a2
by a1
C1
Vi
C2 ﬂ/fflu.c.r
1
A Y
A Y
~
“
- e,
Cr—1

Fig. 8 The diagram associated with the leading term of
Cl,a1...ap,by..bg,er.cr = V1 Mél.,.ap Mg’l,_,b Mckl,.,cr + BRST invariant completion.
The Kleiss—Kuijf relations for the tree subdiagrams represented by Mél apy M, gl--- b and

q

Mck1 ...c,. yield all identities between the permutations o, p, T in C1 o (a;...ap),p(by...bg) 7 (c1...cr)-

associated set Sg_l. Using the latter notation defined in (5.29), we can compactly write

the n-point color-dressed amplitude as

4 n x Zn x xr34x Tp—1PTp
ME =6i" > (Clo@3.p) (. q)plget.m) A7V o (2378 fratee . proopie)

oxTXpeSY
T (fp+1,p+2,yp+z fyp+27p+37yp+3 - fyqfl,q,yq) p (fq+17q+27zq+2 fzq+z,q4—3,zq+s e fznfl,n,zn) )
(7.21)
As in (5.31), the numbers p and ¢ are defined through the cardinality of the permutations

tobep=|o|+1and ¢g—p=|n|

7.8. Duality between one-loop integrands and /\/154

This subsection is devoted to the close relationship between M * and the one-loop kine-
matic factor K,. Our final expressions (5.25), (5.27), (5.28) and (5.31) for K5, K¢, K7
and K, can be obtained from the corresponding MZ ! using a well-defined one-to-one map
between d'P47 ( fc@)"=4 colors factors and the (X,.,)"~* polynomials in the worldsheet inte-
grand. The color basis choice of having leg one attached to d'* corresponds to integrating

by parts on the worldsheet such that only X,.; with r, s # 1 enter the minimal form of K.
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Let us start with lower order examples for the d'?4"(f*4)"=4 5 (X,,)"~* dictionary.
First of all, K4 = AF4(1, 2,3,4) is related to ./\/lff4 via

6d'** +— 1. (7.22)
Comparing the representation (5.25) for K5 with (7.13) yields the five-points dictionary,
6if23dH M s Xog. (7.23)

The two six-point topologies Ci 2345.6,C1,23,456 in K¢ and /\/lg4 (given by (5.27) and
(7.14), respectively) are accompanied by

-6 f23afa4bdb156 PR X23 (X24 T X34)
-6 f23af45bdab16 PR X23 X45 , (724>

and the C 2345.6,7, C1,234,56,7 and C 23 45 67 at seven-points are dressed by

— 67 f23e fotb pHoegeloT o« Xog (Xoa + Xaa) (Xos + Xas + Xus)
—6i f23afa4bf56cdbcl7 PR X23 (X24 + X34> X56
—6i f23af45bf67cdabcl PR X23 X45 X677 (725)

see (5.28) for K7 and (7.15) for /\/154, respectively.

Both sides of the mappings (7.22) to (7.25) have the same symmetries in the labels
23 ...n —the left hand side because of Jacobi identities, the right hand side due to algebraic
identities such as Xo3(Xo4 4+ X34) + cyc(234) =0 & f23lafaldlb — g or

0 = Xo3 (Xog + X34) (Xo5 + X35 + Xy5) — (44 5)
+ Xus (Xa2 + X52) (Xuz + X3 + Xo3) — (24 3)
corresponding to f23@ fal4lb fblsle 1 f45a fal2|b fb3le — (0 (which in turn reflects the “third”
BRST symmetry Th3p45] + Tys[23) = 0 under the map (2.14)).
More generally, the three independent cubic subdiagrams contracted with the x,, y,, 2

indices of d'*»¥a*r each correspond to a separate nested product of worldsheet functions
. k—1

f23m3 fm34m4 c. fmp*lpmp <—— X23 (X24 + X34) .. (Xgp + Xgp 4+ ...+ Xp—l,p) .
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Combining the three subdiagrams with the central quartic vertex, we arrive at the following

dictionary between d'P4"(fo¢d)n=4 color tensors and (X,.s)"~* worldsheet integrands:

67;71 dlxpyqzn f231’3 fx341’4 fxp_g,p—l,xp_l fxp_lpxp
% fp+17p+27yp+2 fyp+27p+37yp+3 fyquvq—lqufl fYa-1:9:Ya

X fQ+17Q+27Zq+2 f2q+2,(I+37Zq+3 . on,Q,’I’L—l,anl fzn717nazn

p k-1 q k—1 n k—1
— (HZka> I Y X I > X . (726

k=3 m=2 k=p+2 m=p+1 k=q+2m=q+1

Given the most general definition (7.26) of the double-arrow notation, the final forms (5.31)
and (7.21) for K,, and MZ !, respectively, are related by

MEY s K, (7.27)

This map allows to construct the one-loop kinematic factor by knowledge of the corre-

sponding color-dressed tree amplitude at order o'2.

7.4. Proving total symmetry of K,

In this subsection, we use the MZ Yo K, duality (7.26) to carry out the outstanding
proof that K, as given by (5.31) is completely symmetric in all labels (12...n).

Representing K,, and MF " in their minimal S;f_l basis hides the total permutation
symmetry in 12...n. Leg number one is singled out in (5.31) and (7.21) on the level of both
BRST invariants Cy . and color factors d*P47( f°¢4)"=4 and worldsheet functions (X,4)" ™4
since r,s # 1. Since the remaining legs 23...n enter on equal footing, it is sufficient to
prove 1 <> 2 symmetry of K,, and MZ ‘. The explicit check would require several changes
of basis — firstly in kinematic space from C;  to C5 . using the identities in subsection
4.5, secondly in color space d'P4” s d?P4" and thirdly in the worldsheet integrand (X,.,)" 4
from r,s # 1 to r,s # 2. We will instead apply an indirect argument.

The mapping (7.26) between color factors and (X,s)"~* integrands respects not only
the standard Jacobi identities (7.7) but also those relations which are required for the afore-
mentioned change of basis: The generalized Jacobi relations (7.8) are dual to integration

by parts. The simplest non-trivial example can be found at five-points,

f12ada345 + flSada245 + f14ada235 + flSada234 =0 X12 +X13 +X14 + X15 =0
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where the validity of the X ; relation rests on integration against the Koba Nielsen factor,
see subsection 5.3. At higher multiplicity, the form [[}_, Zﬁ@_:lz Xmk of the worldsheet
functions is sufficiently integration—by—parts—friendly such that they still obey four term
identities of type (7.8), e.g.

f12afa3bdb456 — f12a(da45bfb36+cyc<456)) PR X12(X13+X23) — X12(X34+X35+X36)
as well as
23a ralb ;6456 _ _
e fed +Sym(1456) =0 <+— X23(X21+X24+X25+X26+2<—)3> =0

at six-points. Generalizations to higher multiplicity are straightforward.

Since the mapping (7.26) preserves the generalized Jacobi relations (7.8), the hidden
total symmetry of MZ ! implies that of K,. Our computation of MZ * started with the
manifestly 1 <> 2 symmetric expression (7.1) summing over all cyclically inequivalent
permutations, so we can be sure that the representation (7.21) is totally symmetric. Our
derivation of the final result (5.31) for K,,, on the other hand, started with the V! < U?
asymmetric prescription (3.1) and involved incomplete arguments about the absence of
additional b-ghost contributions. It is quite assuring to see that (5.31) must be totally
symmetric as well — if the b-ghost contributed to K, via OPE contractions, then this
would probably modify its symmetry properties due to the asymmetric response of V! and

U722 suggesting their absence.

7.5. Correspondence between color and kinematics in ./\/154

It was argued in [11] that the symmetric role of kinematic numerators and color factors in
SYM amplitudes suggests to impose dual Jacobi identities in the kinematic sector. They
have been successfully applied to simplify the calculation of multiloop amplitudes in both
SYM and gravity [12,13]. The BRST building blocks technique can be used to obtain
local BCJ numerators at tree-level for any number of external legs [45] through the low
energy limit of string amplitudes. Therefore, it seems worthwhile to search for possible
BCJ generalizations at the next order in the momentum expansion of the superstring.

So in this final subsection we show that the final form (7.21) for the color-dressed
O(a/?) amplitude ME " s symmetric under exchange of color and kinematics. This obser-
vation has no direct relevance for one-loop amplitudes but it is an interesting generalization
of the color-kinematic-symmetric representation [11]

(2n—>5)! .
MM = — 7.28
D )
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for color-dressed SYM tree amplitudes. The sum over ¢ encompasses all cubic diagrams

with n — 3 propagators [], s>t

«,» and ¢;,n; denote the associated color- and kinematic

structures. One rewarding property of (7.28) is the fact that gravity tree amplitudes can
be immediately obtained by replacing color factors ¢; — n; by another copy n; of the
kinematic numerators n;, provided that the latter satisfy Jacobi identities dual to the
color factors c;.

This encouraged us to build the /\/lff4 analogue (7.32) of (7.28), we regard it as the
first step towards a double copy construction that could ultimately yield a gravity analogue
of AT amplitudes. Instead of the cubic diagrams in (7.28), the diagrams in MZ " are built
from one totally symmetry quartic vertex and n — 4 cubic vertices.

The expansion of ./\/15 " in terms of BRST invariants C,... takes a very compact form,
but since each C . encompasses several kinematic poles (i.e. diagrams of the form Fig. 4),
it is not immediately obvious from (7.21) how the kinematic numerators associated to
these poles combine with color factors. In section 4, we have constructed these numerators
in pure spinor superspace, they are quartic expressions <Td1mdsTél...apTgl...bq Tcklch> in
tree subdiagrams T and T%%* attached to a totally symmetric quartic vertex. As an

artifact of inserting leg one via unintegrated vertex operator V!, each numerator obeys
1e {dl,dg...ds}.

multiplicity 4 5 6 7 8 n
diagrams per color-stripped AYM | 2 5 14 42 132 C(n—2)
diagrams per color-dressed MYM | 3 15 105 945 10395  (2n — 5)!!
diagrams per color-stripped AF 115 21 84 330 ”T_?’ C(n—2)
diagrams per color-dressed ME" | 1 10 105 1260 17325 223 (2n — H)I!

Table 2. Number of diagrams which compose the different types of amplitudes ac-

cording to their kinematic pole structure. Here, C(k) denotes the k™ Catalan number
2k)!
C(k) = k!((k—&-)l)!‘

The number of diagrams per color-dressed ME Y s displayed in the last line of table 216,

In order to resolve all of them, we start from the <Md1---dsMél...angl...bq ME ) con-

16 Tn order to arrive at the diagrams per topology, note that there are (2p — 3)! subdiagrams
within all the T}, ,...;, permutations (at fixed set {i1i2...i5}), corresponding to the (2n —5)!! cubic
diagrams in an n-point color-dressed SYM tree amplitude. For instance, there are three different

diagrams
Th23 T>31 T312

’ )
5125123 5235123 5135123

corresponding to the s-, t- and u channel in M{™ and 15 different Tpqrs/s” subdiagrams.
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stituents of (1. and expand the Berends—Giele currents in terms of BRST building blocks
(Tg,.a.T! . Tbj1 Tk .c,)- Bach individual kinematic diagram is associated with a sep-
arate color factor d” RL(fbedyn=4 which precisely matches its propagator structure. Of
course, the color algebra makes use of the generalized Jacobi identities (7.7) and (7.8), e.g.

the five-point result (7.13) yields

1 4 1 % j a ja 1 7 j a ja
6_M§ = —<V1T23T47T§>f23 d*' + —<V1T24T33T5k>f24 d*13
2 523 524

1 . 1 o
+ — (AT TYTE) f20d™ + — (AT, T 1)
So5 534
1 — 1 L
(AT TYTE) [ (W TjTT) fo0dess
S35 S45
1 L 1 .
+ S—(T12T§TiT§>f12ada345 + S_<T13T22TiTgc>f13ada245

1 1
+ S—M(TMTQTJTE, ) f1Aeqe2ss 4 —<T15T2TJT4 ) froaqezsd, (7.29)

Similarly at six- and seven-points, (7.14) and (7.15) become

1

812 834

1 o
(Thas T4 T3 T§)] (7.30)
S12 8123

1
g M7 — 105 terms [f12a f34b f56c dabc?
1 512 534 S56

1
4+ 630 terms [f12a fa3b f450 dch?
S§12 8123 S45

1

8§12 8123 51234

1 o
2(Thg3a) T3 T T7)] - (7.31)
S$12 834 51234

1
— g Mé " = 45 terms [ f12¢ 340 40— (Ty, Ty, TE TE)]

4+ 60 terms [f12a fa3b db456
(Tha Ty, T2 TF)]
(Ty23 Ty TGj T7k>]

+ 420 terms [lea fa3b fb4c dC567 <T1234 T52 T6,] T’;€>j|

+ 105 terms [f12a f34b fabc dc567

For each topology, we sum over all permutations that are inequivalent under the
symmetries of (Ty, .4, T} a, 1} gl...bq Tcklmcr>, up to the aforementioned rule that 1 €
{dy,ds...ds} holds in each term. For instance, one of the suppressed terms in (7.30)
reads f23@ f4504ab61 (%T§3T£5Té“)/(523845).

For higher multiplicity, this generalizes to

1(n—3)(2n—>5)I
3 ( )( ) N,

ME = L (7.32)
; Ha[ ! SO‘I
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where the sum over I encompasses all box diagrams with four tree subdiagrams at the
corners, Ha, s;} denotes the associated n — 4 propagators, and the numerator contains a
Unfortunately, our superspace representation of these numerators N; does not yet

lead to kinematic Jacobi identities dual to the color relation d(% fhab =0, e.g.
(T TT{TE) + (TisTATITE) + (T TETITE) + (TisT3TITY) # 0.

One could suspect that this is an artifact of the asymmetric role of label one in (T}oTiT] TE)
and (T1T§3TZ TF). Tt would be desirable to find an improved representation of the N such
that a strict duality holds

Cr+C;+Cg+Cr,=0 <« N;+N;+Ng+ N =0. (7.33)

This is for instance achieved by the five-point box-numerators v;; in [7]. Finding such a
duality-satisfying representation for n-point kinematics and studying the significance of

the gravity amplitude obtained by replacing C; — N in (7.32) is left for future work.

8. Conclusions

In this article, we have computed the worldsheet integrand K, for one-loop open su-
perstring amplitudes involving any number n of massless gauge multiplets. Our main
result (5.31) is expressed in terms of BRST invariant kinematic building blocks Ci, .
which are implicitly given in terms of O(a'?) tree subamplitudes via (6.17). Both the
C1,... and the associated worldsheet functions fall into a basis of dimension S;f_l, an
unsigned Stirling number of first kind. The same kind of symmetries also govern the color-

2 so we point out a duality between its final form

dressed tree amplitude M7 " at order o
(7.21) and the one-loop integrand K,, given by (5.31). The link is a one-to-one dictionary
(7.26) between color factors d*/* ( f*cd)n=* (encompassing one symmetrized four-trace and
structure constants otherwise) and worldsheet functions Xi”j_4 = (si;mi;)""* (built from
nij = 0i(x (2, Z;)x(25,%;))) present in K.

A detailed analysis of the ng—l worldsheet integrals is left for future work. The only
comment we want to make at this point is that the integrand structure closely parallels the
tree-level result from [27,33]: Each z; — z; singularity in both the tree-level and the one-

loop integrand is always accompanied by a corresponding Mandelstam numerator s;;, i.e.
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we have s;;1;; = s;5/2i; + O(z;;). This guarantees that the integration does not introduce
any poles in kinematic invariants, i.e. that the full propagator structure due to open
string exchange is captured by the (1, . On the other hand, loop amplitudes additionally
involve non-analytic momentum dependencies, so the main challenge in further studying
the worldsheet integrals is to identify the polylogarithms that arise in both leading and

subleading orders in «’.
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Appendix A. On the uniqueness of the b-ghost zero mode contribution

The computation of higher-point amplitudes at one-loop might involve different d, zero-
mode distributions among the picture changing operators, the b-ghost and the external
vertices. In addition, the b-ghost might have OPE singularities with the other operators,
resulting in yet other types of contributions.

However, the following argument supports that the zero-mode b-ghost contribu-
tion at ome-loop is unique and given by d*§'(N). In order to see this note that
the zero-mode contribution of the picture changing operators is fixed and given by
()1 (N)10519(N)S(J)(0) 161 (N), which is responsible among other things for absorb-
ing all 11 bosonic zero-modes of w, [17]. Now assume that the b-ghost zero-mode
contribution contains (d)”0™(N) and note that performing the zero-mode integral
JIDN]d*6d(d)*0+™(X)*06 (X)6™(N) [vertices] has the net effect of replacing (d)%~"(N)™

zero-modes from the external vertices by a function quadratic in A,
(d)°(N)™ — (V)? (A1)
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since [DN] has ghost number —8. From the expression (3.3) for the b-ghost it follows that
the possible values are n = 0,1,2,4 and m = 1,2,3. However (d)*(IN)™ and (d)®(N)™
have no (00002) component for any value of m [75] and the zero-mode integral vanishes
for n = 1,2. Therefore group theory alone does not exclude the possibility of the b-ghost
contributing either 0 or 4 zero modes of d, with varying number of derivatives of delta
functions. So let us analyze these possibilities in separate.

The possible zero-mode contribution from the b-ghost containing no d, zero modes
are given by

NII*§(N), N?TI?8'(N), (A.2)

but they both vanish due to oversaturated N™" zero modes using that N§(N) = 0. For
the same reason, any contribution ~ J and ~ J? from the b-ghost (e.g. (d)*JN§"(N)
or (d)*(J)%6"(N) at four d, zero modes) is suppressed by the §(.J) = 0 from the picture

changing operator Z;. That leaves the three contributions
(@)'§'(N), ()*N§"(N), (d)*(N)*§"(N) (A.3)

of uniform type under integration by parts. Therefore the zero-mode contribution from
the b-ghost is unique and given by (d)*d’(N). In this paper we studied the cohomology
properties of precisely this class of terms in order to anticipate its appearance in the final
expression for the superspace kinematic factors.

When the b-ghost is allowed to contribute non-zero modes the number of possibilities
increases, but only those which also contain either 0 or 4 zero modes of d, can have
a nonzero impact on the amplitude. As argued in [39], terms involving only one OPE
contraction of the b-ghost vanish because they are proportional to a derivative with respect
to the position zg of the b-ghost insertion. Since zy appears nowhere else in the correlation
function, those terms are total derivatives which integrate to zero due to the doubling trick.
Having excluded single OPEs with the b ghost, it follows that the five-point amplitude gets
no contribution at all from b ghost OPEs [39], but from six-points onwards these terms
are not excluded. For example, the b-ghost term (d)*JNd"”(N) can in principle have
simultaneous OPEs involving J and N with different external vertices leading to factors
which are not manifestly total derivatives. This term requires two d’s and three N’s from

the integrated vertices which can be provided in case of six and more external states.
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Appendix B. Symmetrized traces for six- and seven-point amplitudes

The six- and seven-point symmetrized traces can be computed using the color package
of FORM. After rewriting the generated terms in the Kleiss-Kuijf basis of f*~2 and in the

“Stirling” basis of d*/*(fb¢4)n=4 one gets for six-points
Te(T'T*T°T*T°T®) + Te(T°T°T*T°TT") = 2d'*%*°

1 1 1 1
n 5f12afa3bfb40f056 _ 2_0f12afa3bfb56fc46 _ %f12afa4bfb30f056 _ 2_0f12afa4bfb50fc36
_ 21_0f12afa5bfb30fc46 I 3_1Of12afa5bfb40fc36 _ %flSafabeb4Cf056 n 3_1Of13afa2bfb50fc46
_ 21_0f13afa4bfb20f056 _ 2_1Of13afa4bfb50fc26 _ %flSafaSbbeCfc46 n 3_1Of13afa5bfb40fc26
_ 21_0f14afa2bfb30f056 I 3_1Of14afa2bfb50fc36 I %fl4afa3bfb20f056 I 3_1Of14afa3bfb50fc26

1 a fa cpc 1 a fa c pc 1 a fa c pc 1 a fa c pc
_%flél f 5bfb2 f36+%f14 f 5bfb3 fQG_%fIS f 2bfb3 f46+%f15 f 2bfb4f36

1 15a pa3b pb2c pc46 1 15a pa3b pbdc £c26 1 15a pa4b £b2c pc36 1 15a padb pb3c £c26

o 150 o piRe e 1B adh phie fe20 4 o i podd e pes _ plsa pad pise
1 a ja 1 a ja 1 a ja 1 a ja 1 a ja

. §f23 d 14bfb56 . §f23 d 15bfb46 . §f23 d 16bfb45 . §f24 d 13bfb56 . §f24 d 15bfb36
1 a ja 1 a ja 1 a ja 1 a ja 1 a ja

. §f24 d 16bfb35 . §f25 d 13bfb46 . §f25 d 14bfb36 . §f25 d 16bfb34 . §f26 d 13bfb45

_ 1f26adal4bfb35 _ 1f26ada15bfb34 _ 1f34ada12bfb56 _ 1f35ada12bfb46 _ 1f36ada12bfb45
2 2 2 2 2

. %f23afa5bdbl46 . %f23afa6bdbl45 . %f24afa3bdb156 . %f24afa5bdb136

. 1f24afa6bdb135 . 1f26afa5bdb134 + gf34afa2bdb156 . 1f34afa5bdb126
3 3 3 3

1 a ra 1 a ra 1 a fa 1 a fa
. _f34 f deb125 + _f35 f 2bdb146 + _f36 f 2bdb145 . _f36 f deb124

3 3 3 3
+ %f45afa2bdb136 + %f45afa3bdb126 + %f46afa2bdb135 + %f46afa3bdb125

1 a ra 2 a fa 2 a fa 2 a ra
o §f46 f 5bdb123 + §f56 f deb134 + §f56 f 3bdb124 + §f56 f 4bdb123.

The seven-point expression is too big to be illuminating and was therefore omitted!”.

Appendix C. The higher-order BRST invariants

In this appendix we list the explicit form of the BRST invariants which appear in the
eight-point amplitude.

C1,23456,7,8 = (Ml Miasse + Mera Miys + Msgio3 M + [Mi2345 M+ Mygzq Mig

17 Tt is commented out in the TEX source file.
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+ Mizs Misg + Myz Misss + Moras Mis + Merzaa My + (2,3 ¢ 6,5) ] ) MM
C1,2345,67,8 = <M1 M3gys Mz + Moys My M, + [ My Migys Mg — (6> 7) ]

+ [ My MSys + Miss Mg + Miosa Mi + Mysio M3 — (2,3 ¢ 5,4) | M,

+ { [ My1a Miys M + Mrias Mg M} + Mria3a Mi M} — Mqias Miy M

+ Marsiog MM + Mymiag M{M{ — (2,34:5,4)] — (6 7)}) M}
[ My My Mgy + Mg M, Ml + Migs M Mg,
Moyq M3 Mg, + (2,3,4455,6,7)] + [ Mo Miy Mg
Me712 M§4M§ + Mesi2 M§4M? + Msy04 M3 Mé}
Mer1os M ML — Megs124 M5 M} — Mso157 M M
24 + 5o7)])M

+
C1,234,567,8 = <M1 M3y Mig; +
+ Mgz M3 Mig, +
+ Mo My Mig +
+ Moys7 M, MY +
+ Magisy My M +

C1,234,56,78 = (Ml Mgy 4+ Moig M5 + [Mig M3, + Mg My + (2<—>4)]>Mg6M$s
+ <[M15M§34Mg — Mg Mg ML | Mfy + [Mare My, M3 + Meiog Mj M}
4 My MEMI + (264) — (5 6)] ME, + (5,6<—>7,8)>
+ [ Merr Mgy MEME — (5 6) — (T 8)] + [(Mriz6 + Mrie2) Miy M3 ME
+ (M75123+M57123)M5Mé MY — (Mzsi94 + Ms7124) M Mé Mg
+ (244) = (546) — (7T 8)]
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