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Abstract

We consider the rotating non-extremal black hole of N=2 D=4 STU supergravity

carrying three magnetic charges and one electric charge. We show that its subtracted

geometry is obtained by applying a specific SO(4,4) Harrison transformation on the

black hole. As previously noted, the resulting subtracted geometry is a solution of the

N=2 S=T=U supergravity.
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1 Introduction

Over the years there has been slow but steady progress in our understanding of relations

between black holes and two dimensional conformal field theories. Several universal proper-

ties of black holes have been found to be related to universal properties of 2d CFTs. String

theory has provided significant insights in this quest. Arguably, one of the most spectacular

successes of string theory is the Sen-Strominger-Vafa counting of the microscopic configura-

tions, and thereby providing a statistical mechanical explanation of the entropy of certain

extremal and near-extremal black holes [1, 2]. Since then, many different types of black

holes have been studied and the agreement between the Bekenstein-Hawking entropy and

the statistical mechanical entropy has been shown to hold in a variety of cases.

These achievements, very impressive as they are, need to be contrasted with the chal-

lenge of microscopically understanding general non-extremal black holes. The methods

advocated in [1, 2] cannot be directly applied to such general settings. More recently,

considerable progress has been made in addressing general extremal black holes. These

developments go under the name of the Kerr/CFT correspondence [3]; see [4] for a con-

cise review and see [5] for a more comprehensive review1. Once again, these developments

rely on certain specific structure of extremal black holes, and cannot be directly applied

to non-extremal settings. In the case of the Kerr/CFT, existence of the decoupled near-

horizon geometry is crucial. In settings far away from extremality one cannot decouple the

near-horizon region from the asymptotic region. As a result, it remains unclear how the

considerations of Kerr/CFT are useful for describing such general settings.

It comes as a surprise that even for black holes far away from extremality, certain tan-

talizing clues have been found for the presence of a conformal symmetry. It was observed

in [6] that in certain low-energy near-horizon regimes the dynamics of a probe scalar field

enjoys certain local hidden non-geometric SL(2,R)×SL(2,R) symmetry. The precise mean-

ing of this symmetry is a topic of future research, but the picture put forward in [6] shows

remarkable coherence. These hidden symmetries only appear in a region close enough to the

1In these reviews further references on these and related developments can also be found.
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horizon. It has been suggested [7, 8, 9] that one can consistently deform the geometry of an

asymptotically flat black hole so that these hidden symmetries appear manifestly in the de-

formed geometries. These geometries are dubbed “subtracted geometries.” The subtracted

geometries are not asymptotically flat. They are supported by additional matter fields. In

this work we explore these geometries and their relation to the original black holes.

The main aim of this paper is to establish that the subtracted geometries can be ob-

tained from the original black hole by applying solution generating transformations. For

concreteness we consider the case of four-charge rotating non-extremal four-dimensional

asymptotically flat black holes of N=2 STU supergravity. Moreover we restrict ourselves

to the black hole carrying three magnetic and one electric charge. This is just a choice; we

expect our considerations to straightforwardly apply to other combinations of in total four

electric and magnetic charges.

The motivation for looking at the 4d solution carrying three magnetic charges (and one

electric charge) is manifold. Not only we can perform a study of its subtracted geometry,

but also we can use it to perform various other studies; most notably in relation to a

string theory realization of the Kerr/CFT correspondence and black rings. It was shown in

[10] that the spinning magnetic one-brane of five-dimensional minimal supergravity admits

a near-horizon limit that smoothly interpolates between a self-dual supersymmetric null

orbifold of AdS3 × S2 and the near-horizon limit of the extremal Kerr black hole times a

circle. It is of interest to generalize this observation to a multicharge configuration. We

present such a generalization in appendix D.

As for the construction of the rotating four-charge black hole carrying three magnetic

and one electric charge, there are several ways in which one can approach this problem.

The first, and perhaps also the most direct, approach that comes to mind is to use boosts

and string dualities. One quickly realizes that to add three independent magnetic charges,

the number of boosts and dualities steps required is in fact quite large (approximately 20).

To perform all these steps coherently is a computational challenge2.

There are other somewhat less computationally intensive possibilities. For example,

a second possibility is to perform an electro-magnetic duality in four-dimensional N=2

STU supergravity and convert the two-electric two-magnetic rotating solution as presented

in [12] to three-magnetic and one-electric one. Finally, a third possibility is to use the

powerful machinery of three-dimensional hidden symmetries of the STU model to generate

2A construction along these lines of the spinning magnetic one-brane in five-dimensional U(1)3 super-

gravity with three independent M5 charges was attempted in [11]. However, the author did not completely

succeed in achieving this goal. The expressions presented in [11] do not solve the supergravity equations.
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this solution. It is the third path that was used to construct the solution carrying two

electric and two magnetic charges [12]. In our opinion the second and the third routes are

of almost equal computational complexity. Since the approach of three-dimensional hidden

symmetries also allows us to relate to its subtracted geometry rather directly, we follow the

third route in this paper.

For the ease of readability of the paper almost all technicalities related to the construc-

tion of the solution are presented in appendices. Appendix A presents the set-ups we work

with in considerable detail. Here we also present an implementation of the SO(4,4) nonlinear

sigma model. The group SO(4,4) is relevant because it is the group of hidden symmetries

of the N=2 STU supergravity when the theory is dimensionally reduced on a Killing vector.

The rest of the paper is organized as follows. We first construct the spinning M5-M5-M5 so-

lution in section 2. We present it as a configuration in five-dimensional U(1)3 supergravity.

Then we show how to add the fourth charge. In section 3 we obtain its subtracted geometry

by applying a series of solution generating transformations. Three-dimensional sigma model

fields for the M5-M5-M5 solution are presented in appendix B. Three dimensional fields for

the subtracted geometry are presented in appendix C. We conclude in section 4.

2 Four-Charge Black Hole

Although four charge black holes of ungauged four dimensional supergravity theories are

well studied in the literature [13, 12, 14, 8], to the best of our knowledge expressions for

all fields when the black hole carries three independent magnetic charges have not been

explicitly presented anywhere. We fill this gap in this section. For many purposes, e.g.,

in relation to black rings, or in relation to (0,4) MSW/D1-D5-KKM CFT [15], such a

presentation is useful.

2.1 M5-M5-M5

We consider the M-theory frame and describe the configuration as a solution of five-

dimensional U(1)3 supergravity. Upon reducing over the string direction we obtain a ro-

tating 4d black hole carrying three independent magnetic charges. For various reasons we

prefer to present the 5d lift of the 4d solution.
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The Theory

We follow the conventions in which the U(1)3 supergravity Lagrangian takes the a manifestly

triality-invariant form

L5 = R5 ⋆5 1− 1

2
GIJ ⋆5 dh

I ∧ dhJ − 1

2
GIJ ⋆5 F

I
[2] ∧ F J

[2] +
1

6
CIJKF I

[2] ∧ F J
[2] ∧AK

[1]. (2.1)

The symbol CIJK is pairwise symmetric in its indices with C123 = 1 and is zero otherwise.

The metric GIJ on the scalar moduli space is diagonal with entries GII = (hI)−2, where

these scalars satisfy the constraint h1h2h3 = 1. This constraint must be solved before

computing variations of the action to obtain EOMs for various fields.

We construct the M5-M5-M5 solution using the familiar coset model solution generating

techniques. We reduce the theory (2.1) on commuting Killing vectors to three dimensions.

We do this reduction first over a spacelike Killing vector and then over a timelike Killing

vector. The theory reduces to 3d gravity coupled to SO(4,4)/(SO(2,2)×SO(2,2)) non-linear

sigma model. Acting with an appropriate group elements of SO(4,4) on the Kerr string

we get the non-extremal spinning magnetic one-brane of U(1)3 supergravity. Details on

the set-up and the explicit form of the group element can be found in appendix A. For

five-dimensional minimal supergravity such constructions have been extensively discussed

in our previous work [16, 17, 18, 19, 20, 10].

The Solution

Let sI = sinhαI and cI = coshαI with I = 1, 2, 3, then the spinning magnetic one-brane

with three-independent M5-charges is given as

ds25 = f2(dz +A4
0)2 + f−1(−e2U (dt+ ω3)

2 + e−2Uds23(B)), (2.2)

where

ds23(B) =
∆2

∆
dr2 +∆2dθ

2 +∆sin2 θdφ2, (2.3)

is the three-dimensional base metric obtained by reducing the Kerr string on ∂z first and

then over ∂t, and

∆ = r2 − 2mr + a2, ∆2 = ∆− a2 sin2 θ (2.4)

f2 = 4ξ(Ω1Ω2Ω3)
−2/3, e4U =

∆2
2

ξ
(2.5)

ω3 = c1c2c3
2amr sin2 θ

∆2
dφ, (2.6)
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are the metric functions appearing in the line element. The rest of the metric functions

take the form

ξ = (r2 + a2 cos2 θ)2 + 2mr(r2 + a2 cos2 θ)

(

3
∑

I=1

s2I

)

+4m2r2
(

s21s
2
2 + s22s

2
3 + s21s

2
3

)

+ 4m2(2mr − a2 cos2 θ)

(

3
∏

I=1

s2I

)

, (2.7)

Ω1 = 2(a2 cos2 θ + (r + 2ms22)(r + 2ms23)), (2.8)

and cyclic permutations. Furthermore we have

A4
0 = ζ0(dt+ ω3) + 2s1s2s3

am(r − 2m)

∆2
sin2 θdφ, (2.9)

with

ζ0 = 4c1c2c3s1s2s3
a2m2 cos2 θ

ξ
. (2.10)

The Maxwell potentials AI ’s of the five-dimensional theory take the form

AI = χI(dz +A0
4) + ζI(dt+ ω3) + 2msIcI

∆

∆2
cos θdφ (2.11)

with

χ1 = 4c1s2s3
am cos θ

Ω1
, (2.12)

ζ1 = −2s1c2c3(r
2 + a2 cos2 θ + 2rms21))

am cos θ

ξ
, (2.13)

and obvious cyclic permutations. Finally, the three scalars in the U(1)3 theory take the

form

hI = (Ω1Ω2Ω3)
1/3Ω−1

I . (2.14)

The solution is sufficiently complicated, and it is non-trivial to check that all supergravity

equations are solved. We have checked that they are solved.

Setting any two of the three charges to zero, while keeping the angular momentum

non-zero, the resulting solution can be compared to reference [21]. In this special case the

solution also admits a lift to vacuum gravity in six dimensions. By setting the three charges

equal the solution can be compared with [16]. Certain physical properties of the solution

and its near horizon geometry in the extremal limit are studied in appendix D.

2.2 Adding the Fourth Charge

By boosting the string configuration (2.2) in (t, z), and then dimensional reducing over the

z direction we obtain a four-charge four-dimensional black hole. The 4d black hole carries
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three-magnetic charges and one-electric charge. From the hidden symmetries point of view

this procedure is equivalent to performing

M3−charge → M4−charge = g♯4 · M3−charge · g4, (2.15)

with

g4 = exp [−α0(Eq0 + Fq0)] . (2.16)

Here M3−charge denotes the SO(4,4) coset matrix for the above three-charge configuration3.

The explicit expressions for the resulting fields are fairly complicated. For the case of

two-electric and two-magnetic charges these expression are presented in full detail in [12].

Fortunately, we will not need the explicit expressions in what follows.

3 Subtracted Geometry From Harrison Transformations

To obtain the subtracted geometry of the above described four-charge black hole we act

on it with a series of solution generating transformations. These transformations perform

the required Harrison boosts that give the subtracted geometry. The precise sequence of

transformations is somewhat involved. We perform them in a certain specific order explained

below to maintain the complexity of intermediate expressions under control.

This investigation was systematically initiated in [9]. There it was suggested that the

subtracted geometry of the four-charge black hole can be obtained by certain Harrison

boosts. The subtracted geometry of the Schwarzschild and Kerr solutions were obtained

in Einstein-Maxwell-Dilaton theories by applying certain infinite Harrison boosts. The key

technical observation we take from that work is their equation (33), i.e., that the Harrison

boosts used are of the lower triangular form. From the point of view of the SO(4,4) Lie

algebra this suggests that the specific Harrison transformation that leads to the subtracted

geometry of the four-charge black hole belongs to certain ‘lowering’ generators. This is

indeed the case, as we explain next.

3.1 Charging, Harrison Boosts, and Scaling

The most important transformation on the four-charge black hole to obtain its subtracted

geometry is of the form

M4−charge → M′ = g♯H ·M4−charge · gH , (3.1)

3The notation g♯ denotes a generalized transposition. The transposition is defined on the generators of

the so(4,4) Lie algebra by ♯(x) = −τ (x)∀x ∈ so(4,4), where τ is the involution of the Lie algebra that defines

the coset. More details can be found in appendix A.
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with the Harrison transformation gH

gH = exp[(Fp1 + Fp2 + Fp3)]. (3.2)

Note that despite the fact that the four-charge black hole carries three independent M5

charges, the Harrison boosts in (3.2) are by the same ‘amount’ in p1, p2 and p3 ‘directions.’

In all these three directions the boosts are infinite, in the sense that the lowering generators

Fp1 , Fp2 and Fp3 are exponentiated with unit coefficients, in line with [9]. Furthermore,

note that we do not apply a Harrison boost in the q0 ‘direction.’ This is reminiscent of the

near-extreme multi-charge black holes in the so-called dilute gas approximation [22, 23].

However, it so happens that performing the transformation (3.2) on the four-charge

black hole resulting from (2.16) is quite intricate to implement. To bypass this purely

technical complexity we make the following crucial observation: the generator that adds

the fourth charge, namely, (Eq0 + Fq0) commutes with all three generators of the Harisson

boosts we want to perform Fp1 , Fp2 and Fp3 . As a result the transformation

M′ = g♯H · M4−charge · gH (3.3)

= g♯H · g♯4 ·M3−charge · g4 · gH (3.4)

is the same as doing

M′ = g♯4 · g
♯
H · M3−charge · gH · g4, (3.5)

where we have commuted g4 past gH . Physically there is absolutely no difference between

(3.4) and (3.5), but computationally performing (3.5) is significantly simpler (at least in

the way we have organized our computer implementation of the SO(4,4) coset model).

This is not the end of the story. One also needs to perform a further scaling trans-

formation to get the subtracted geometry in precisely the form given in [9]. This last

transformation is as follows

Msubtracted = g♯S · M′ · gS , gS = exp[−cH0], (3.6)

where c is given below. Having done all these solution generating transformations we need

to change variables as suggested in [9] and choose the parameter c in (3.6) in a specific way.

The choice

α1 = α2 = α3 = −1

2
ln
(

Π2
c −Π2

s

)

, (3.7)

α0 = sinh−1

(

Πs
√

Π2
c −Π2

s

)

(3.8)

c = − ln
(

Π2
c −Π2

s

)

, (3.9)
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leads to the subtracted geometry of the four-charge black hole4 as presented in [9]. Perhaps

a more general subtracted geometry is possible with α1 6= α2 6= α3. This issue needs further

investigation.

We summarize. To obtain subtracted geometry of the four-charge black hole as pre-

sented in [9] we perform the following transformation on the 3-charge black hole

Msubtracted = g♯S · g♯4 · g
♯
H ·M3−charge · gH · g4 · gS . (3.10)

For convenience and completeness all the resulting three-dimensional fields are listed in

appendix C. In the the next section we present the final geometry in the four-dimensional

language and compare it with the analysis of Cvetic and Gibbons.

3.2 Resulting Geometry

The resulting geometry in the four-dimensional language is most conveniently expressed as

ds24 = −e2U (dt+ ω3)
2 + e−2Uds23(B), (3.11)

where

ds23(B) =
∆2

∆
dr2 +∆2dθ

2 +∆sin2 θdφ2, (3.12)

is the three-dimensional base metric obtained by reducing the Kerr black hole over ∂t, and

∆ = r2 − 2mr + a2, ∆2 = ∆− a2 sin2 θ. (3.13)

Rewriting the four-dimensional metric in the form as in [8, 9] we get

ds24 = −
(

1

e−2U∆2

)

∆2(dt+ ω3)
2 + e−2U∆2

(

dr2

∆
+ dθ2 +

∆

∆2
sin2 θdφ2

)

. (3.14)

The square of the factor e−2U∆2 is called the subtracted conformal factor in [8, 9]. From

appendix C we read the value of e−2U∆2 to be

e−2U∆2 = 2m

√

∆̃s, (3.15)

with

∆̃s = 2mr(Π2
c −Π2

s) + 4m2Π2
s − a2x2(Πc −Πs)

2. (3.16)

Our 4m2∆̃s precisely corresponds to the subtracted conformal factor used in [8, 9]. For the

four-dimensional axions and dilaton fields we find

χ1 = χ2 = χ3 =
ax(Πc −Πs)

m
, (3.17)

4The explicit product expressions [8, 9] Πc =
∏

4

I=0
coshαI ,Πs =

∏
4

I=0
sinhαI , are not needed in our

computations, because the final geometry is parameterized solely in terms of Πc and Πs. See also footnote

3 of [9].



Subtracted Geometry From Harrison Transformations 10

and

y1 = y2 = y3 =

√

∆̃s

2m
, (3.18)

which again precisely matches with the expressions reported in [9], once we make a trans-

lation of conventions. Finally, the four dimensional vector fields take the form

Ǎ0
[1] =

4am2 sin2 θ(Πc −Πs)

∆̃s

dφ+
a2 cos2 θ(Πc −Πs)

2 + 4m2ΠcΠs

(Π2
c −Π2

s)∆̃s

, (3.19)

and

Ǎ1
[1] = Ǎ2

[1] = Ǎ3
[1], (3.20)

Ǎ1
[1] = 2m cos θ

2m(2mΠ2
s + r(Π2

c −Π2
s))− a2(Πc −Πs)

2

∆̃s

dφ

−a cos θ(2mΠs + r(Πc −Πs)

∆̃s

dt. (3.21)

As far as the expressions for the vector fields can be compared with the corresponding

expressions in [9], they perfectly match. Since our vector field Ǎ1
[1] is magnetically sourced,

whereas in [9] the corresponding vector is electrically sourced a direct comparison is not

possible. We have explicitly checked that our subtracted solution solves all supergravity

equations. Furthermore, since the dilatons are all obtained to be equal and so are the axions

and the three vectors Ǎ1
[1] = Ǎ2

[1] = Ǎ3
[1], the resulting solution is in fact a solution of the

N=2 S=T=U supergravity. This fact has been previously noted as well [8, 9].

4 Conclusions

The key result of this paper is to show that the multicharge subtracted geometry can be

obtained via a series of solution generating transformations on the original black hole field

configuration. There are number of ways in which our study can be extended. In this work

we have concentrated on a four-charge four-dimensional black hole carrying three magnetic

charges and one electric charge. It is fairly clear from our work how to implement the same

procedure for the black hole carrying two electric and two magnetic charges. It can be a

useful exercise to fill in all details. In this regard understanding the precise meaning of

equations (3.7)–(3.9), and how they can be relaxed is an important future direction. In the

same line of thought, it is interesting to explore a similar series of transformations for the

non-extremal rotating three-charge five-dimensional asymptotically flat black hole.

As explained in the previous work of Cvetic and Larsen [7, 8] and Cvetic and Gibbons

[9], the entropy and thermodynamic properties of the black hole are preserved by the trans-

formations leading to the subtracted geometries. It is hoped that the dual CFT description
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of the black hole is also somehow preserved. With these motivations it is of interest to

further study these geometries and in particular to explore the existence of asymptotic

Virasoro algebras in the subtracted geometries. It will then be of interest to know how

the asymptotic Virasoro symmetries get transformed under the inverse solution generating

transformations. Such a line of investigation can teach us some general and important

lessons about non-extremal rotating black holes in string theory and their relation to two-

dimensional conformal field theories. We hope to report on some of these issues in our

future work.
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A The Set-Up

In this section we present the set-ups we work with. We also present certain details on the

implementation of the SO(4,4) coset model.

A.1 A Chain of Dimensional Reductions

Various relations through dimensional reduction, truncations, and oxidations are presented.

All results of this section are already well known in the literature. For this reason we shall

be brief. The main purpose of this section to set the notation and conventions for the main

text of the paper.

Truncation of IIB Theory on T4

A well known consistent truncation of the IIB theory on a four-torus is as follows

ds210, string = ds26 + e
Φ√
2ds24, Φ10 =

Φ√
2
, CRR

[2] = C[2], (A.1)

where ds24 denotes the metric on the four-torus and CRR
[2] is the Ramond-Ramond two-

form of the IIB theory. The rest of the IIB fields are set to zero. The two-form C[2] is
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the descendant from the IIB Ramond-Ramond CRR
[2] to six-dimensions. The resulting six-

dimensional theory contains a graviton, an antisymmetric tensor and a dilaton. The bosonic

part of the Lagrangian is [24]

L6B = R6 ⋆6 1−
1

2
⋆6 dΦ ∧ dΦ − 1

2
e
√
2Φ ⋆6 F[3] ∧ F[3], (A.2)

with the three-form field strength F[3] = dC[2]. Upon further dimensional reduction on a two-

torus the six-dimensional theory (A.2) reduces to the N=2 STU model in four-dimensions.

We present certain details of this construction in the following.

Five-dimensional U(1)3 supergravity

M-theory on a six-torus admits a truncation to five-dimensional U(1)3 supergravity. For

relevant details see e.g. [25]. It can also be obtained by circle reduction of the Lagrangian

(A.2). We follow this route here. Using the standard Kaluza-Klein ansatz for the six-

dimensional fields [26]

ds26 = e
−
√

3

2
Ψ
(dz6 +A1

[1])
2 + e

1√
6
Ψ
ds25 (A.3)

F[3] = F
(5d)
[3] + dA2

[1] ∧ (dz +A1
[1]) (A.4)

with

F
(5d)
[3] = dC

(5d)
[2] − dA2

[1] ∧A1
[1], (A.5)

we obtain the following five-dimensional Lagrangian

L5 = R5 ⋆5 1−
1

2
⋆5 dΦ ∧ dΦ− 1

2
⋆5 dΨ ∧ dΨ − 1

2
e
−2

√

2

3
Ψ
⋆5 F

1
[2] ∧ F 1

[2]

−1

2
e
−
√

2

3
Ψ+

√
2Φ

⋆5 F
(5d)
[3] ∧ F

(5d)
[3] − 1

2
e

√

2

3
Ψ+

√
2Φ

⋆5 F
2
[2] ∧ F 2

[2], (A.6)

where F I
[2] = dAI

[1] and I = 1, 2. Now, in five-dimensions the two-form C
(5d)
[2]

is dual to a

one-form, which we denote as A3
[1]. After this dualization we end up with three one-forms

in five-dimensions. We use the notation AI
[1], where now the index I runs as I = 1, 2, 3. We

see the triality structure of the U(1)3 supergravity emerging. The Chern-Simons term of

the U(1)3 supergravity is also obtained through this dualization.

To see this, recall that in the process of dualisation, Bianchi identities exchange role

with the equations of motion. The Bianchi identity for F
(5d)
[3] is

dF
(5d)
[3] + F 2

[2] ∧ F 1
[2] = 0. (A.7)

The easiest way to do the dualization is to introduce A3
[1] as a Lagrange multiplier for the

Bianchi identity (A.7). Adding the appropriate Lagrange multiplier term to (A.6) we get

L′
5 = L5 +A3

[1] ∧ (dF
(5d)
[3] + F 2

[2] ∧ F 1
[2]). (A.8)
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As the next step, we treat the field strength F
(5d)
[3]

as a fundamental fields. Varying L′
5 with

respect to F
(5d)
[3] we find

F 3
[2] − e

−
√

2

3
Ψ+

√
2Φ

⋆5 F
(5d)
[3] = 0. (A.9)

Substituting this back into the Lagrangian (A.8), we get

L′
5 = R5 ⋆5 1−

1

2
⋆5 dΦ ∧ dΦ− 1

2
⋆5 dΨ ∧ dΨ

−1

2
e
−2

√

2

3
Ψ
⋆5 F

1
[2] ∧ F 1

[2] −
1

2
e

√

2

3
Ψ+

√
2Φ

⋆5 F
2
[2] ∧ F 2

[2]

−1

2
e

√

2

3
Ψ−

√
2Φ

⋆5 F
3
[2] ∧ F 3

[2] +A3
[1] ∧ F 2

[2] ∧ F 1
[2]. (A.10)

Lagrangian (A.10) is equivalent to five-dimensional U(1)3 supergravity with the param-

eterization of the real special manifold as

h1 = e

√

2

3
Ψ
, h2 = e

−
√

1

6
Ψ−

√

1

2
Φ
, h3 = e

−
√

1

6
Ψ+

√

1

2
Φ
. (A.11)

Clearly h1h2h3 = 1. A manifestly triality-invariant form now be written as (we drop the

prime on L′
5 from now on)

L5 = R5 ⋆5 1− 1

2
GIJ ⋆5 dh

I ∧ dhJ − 1

2
GIJ ⋆5 F

I
[2] ∧ F J

[2] +
1

6
CIJKF I

[2] ∧ F J
[2] ∧AK

[1]. (A.12)

The symbol CIJK is pairwise symmetric in its indices with C123 = 1 and is zero otherwise.

The metric GIJ on the scalar moduli space is diagonal with entries GII = (hI)−2.

For completeness, let us also write the six-dimensional field strength F[3] in terms of

the five-dimensional fields introduced above. We obtain

F[3] = −(h3)−2 ⋆5 dA
3
[1] + dA2

[1] ∧ (dz6 +A1
[1]). (A.13)

Together with (A.3), equation (A.13) allows us to uplift any solution of five-dimensional

U(1)3 supergravity to the IIB theory. Examining the RR 3-form (A.13) reveals that the

electric charge that couples to the two-form F 3
[2] arises from D5-branes wrapped on T 5:

(z6, z7, z8, z9, z10). Similarly, the electric charge that couples to the two-form F 2
[2] arises

from D1-branes wrapped along the z6-circle. The appearance of A1
[1] in the metric reveals

that electric charge that couples to F 1
[2] arises from momentum (P) around the z6-circle.

The interpretation of magnetic couplings is readily obtained. The M-theory interpretation

of these couplings is reviewed at several places. See e.g. [25].

Four-dimensional STU Model

Further dimensional reduction of the five-dimensional U(1)3 supergravity to four dimensions

gives the so-called STU model. The STU model is a particular N=2 supergravity in four

dimensions coupled to three vector multiplets.
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To fix our notation we quickly review here the N=2 supergravity action. Four-dimensional

N=2 supergravity coupled to nv vector-multiplets is governed by a prepotential function

F depending on (nv + 1) complex scalars XΛ (Λ = 0, 1, . . . , nv). The bosonic degrees of

freedom are the metric gµν , the complex scalars XΛ and a set of (nv + 1) one-forms ǍΛ
[1].

The bosonic part of the action is given as [27]

L4 = R ⋆4 1− 2gIJ̄ ⋆4 dX
I ∧ dX̄ J̄ +

1

2
F̌Λ
[2] ∧ ǦΛ[2], (A.14)

where F̌Λ
[2] = dǍΛ

[1]. The ranges of the indices are I, J = 1, . . . , nv, and gIJ̄ = ∂I∂J̄K is the

Kähler metric with the Kähler potential K = − log
[

−i(X̄ΛFΛ − F̄ΛX
Λ)
]

. The two-forms

ǦΛ[2] are defined as

ǦΛ[2] = (ReN)ΛΣF̌
Σ
[2] + (ImN)ΛΣ ⋆4 F̌

Σ
[2] , (A.15)

where the complex symmetric matrix NΛΣ is constructed from the prepotential F (X) as

NΛΣ = F̄ΛΣ + 2i
(ImF ·X)Λ(ImF ·X)Σ

X · ImF ·X , (A.16)

with FΛ = ∂ΛF and FΛΣ = ∂Λ∂ΣF. For the system we are interested in nv = 3 and the

prepotential is

F (X) = −X1X2X3

X0
. (A.17)

Let us now make contact of this Lagrangian with the circle reduction of the five-

dimensional U(1)3 supergravity. We parametrize our five-dimensional space-time as

ds25 = f2(dz + Ǎ0
[1])

2 + f−1ds24, (A.18)

and the vectors as

AI
[1] = χI(dz + Ǎ0

[1]) + ǍI
[1]. (A.19)

Together the graviphoton Ǎ0
[1] and the vectors ǍI

[1] form a symplectic vector ǍΛ
[1] with

Λ = 0, 1, 2, 3 in four dimensions.

Upon circle reduction of the above 5d theory we obtain (with F̌Λ
[2] = dǍΛ

[1])

L4 = R ⋆4 1− 1

2
GIJ ⋆4 dh

I ∧ dhJ − 3

2f2
⋆4 df ∧ df − f3

2
⋆4 F̌

0
[2] ∧ F̌ 0

[2]

− 1

2f2
GIJ ⋆4 dχ

I ∧ dχJ − f

2
GIJ ⋆4 (F̌

I
[2] + χI F̌ 0

[2]) ∧ (F̌ J
[2] + χJ F̌ 0

[2]) (A.20)

+
1

2
CIJKχI F̌ J

[2] ∧ F̌K
[2] +

1

2
CIJKχIχJ F̌ 0

[2] ∧ F̌K
[2] +

1

6
CIJKχIχJχK F̌ 0

[2] ∧ F̌ 0
[2] .

The scalars χI and hI combine to form the complex scalars zI = XI/X0 in the STU theory

according to zI = −χI+ifhI . Using the gauge fixing condition X0 = 1 and the replacement

XI → zI the action (A.14) for the prepotential (A.17) can be shown to be exactly equivalent

to the action (A.20). In order to perform the above computation we found appendix A of

reference [28] useful.
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A.2 SO(4,4)/(SO(2,2) × SO(2,2)) Coset Model in 3d

In this section we discuss how to obtain the SO(4,4)/(SO(2,2) × SO(2,2)) coset model in

three-dimensions by performing further dimensional reduction over time direction of the

STU action (A.20). We parametrize our four-dimensional space-time as

ds24 = −e2U (dt+ ω3)
2 + e−2Uds23, (A.21)

and the four-dimensional vectors as

ǍΛ
[1] = ζΛ(dt+ ω3) +AΛ

3 , (A.22)

where ω3 and AΛ
3 are one-forms in three-dimensions.

Following [29, 30] we dualize the three dimensional vectors as

− dζ̃Λ = e2U (ImN)ΛΣ ⋆3 (dA3
Σ + ζΣdω3) + (ReN)ΛΣdζ

Σ (A.23)

where ζ̃Λ are pseudo-scalars. Similarly we define the pseudo-scalar σ dual to ω3 as

− dσ = 2e4U ⋆3 dω3 − ζΛdζ̃Λ + ζ̃ΛdζΛ. (A.24)

The full set of three-dimensional scalar fields are now ϕa = {U, zI , z̄I , ζΛ, ζ̃Λ, σ}. The

resulting three-dimensional Lagrangian takes the form

L3 = R ⋆3 1− 1

2
Gab∂ϕ

a∂ϕb, (A.25)

where the target space Lorentzian manifold parametrized by scalars ϕa is of signature (8, 8).

It is an analytic continuation of the c-map of Ferrara and Sabharwal [31]. The metric in

our conventions is5

Gabdϕ
adϕb = 4dU2 + 4gIJ̄dz

IdzJ̄ +
1

4
e−4U

(

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ

)2
(A.26)

+e−2U
[

(ImN)ΛΣdζ
ΛdζΣ + ((ImN)−1)ΛΣ

(

dζ̃Λ + (ReN)ΛΞdζ
Ξ
)(

dζ̃Σ + (ReN)ΣΞdζ
Ξ
)]

.

This symmetric space can be parametrized in the Iwasawa gauge by the coset element [30]

V = e−U H0 ·





∏

I=1,2,3

e−
1

2
(log yI )HI · e−xIEI



 · e−ζΛEqΛ
−ζ̃ΛEpΛ · e− 1

2
σE0 , (A.27)

where we use the notation zI = xI + iyI (so, yI = fhI , xI = −χI). The Iwasawa parame-

terization only covers an open subset of the full manifold. This is because the target space

5Our conventions are identical to that of [30]. There is a minor typo of a factor of 1/2 in equation (4.4)

of [30].
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is not precisely the c-map but an analytic continuation of it. The metric (A.26) is obtained

from the Maurer-Cartan one-form θ = dV · V−1,

Gabdϕ
adϕb = Tr(P∗ P∗) , P∗ =

1

2
(θ + η′ θTη′

−1
) , η′ = diag(−1,−1, 1, 1,−1,−1, 1, 1),

(A.28)

where η′ is the quadratic form preserved by SO(2,2)×SO(2,2). The matrix M is defined as

M = (V♯)V, with θ♯ = η′θTη′−1 for all θ ∈ so(4, 4). For convenience we explicitly list the

matrix representation of SO(4,4) in appendix A.3.

A.3 Matrix representation of so(4,4) Lie algebra

An explicit realization of the generators of so(4, 4) is as follows. Calling Eij the 8 × 8

matrix with 1 in the i-th row and j-th column and 0 elsewhere, the so(4, 4) generators in

the fundamental representation is given by

H0 = E33 + E44 − E77 −E88 H1 = E33 −E44 −E77 + E88

H2 = E11 + E22 − E55 −E66 H3 = E11 −E22 −E55 + E66 (A.29)

E0 = E47 − E38 E1 = E87 − E34

E2 = E25 − E16 E3 = E65 − E12 (A.30)

F0 = E74 − E83 F1 = E78 − E43

F2 = E52 − E61 F3 = E56 − E21 (A.31)

Eq0 = E41 − E58 Eq1 = E57 − E31

Eq2 = E46 − E28 Eq3 = E42 − E68 (A.32)

Fq0 = E14 − E85 Fq1 = E75 − E13

Fq2 = E64 − E82 Fq3 = E24 − E86 (A.33)

Ep0 = E17 − E35 Ep1 = E18 − E45

Ep2 = E67 − E32 Ep3 = E27 − E36 (A.34)

Fp0 = E71 − E53 Fp1 = E81 − E54

Fp2 = E76 − E23 Fp3 = E72 − E63. (A.35)

This basis of representation is identical to the one given in [30]. For more details we refer

the reader to this reference. Other implementations of the SO(4,4) coset model can be

found in [12, 32, 33].
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A.4 Group element for the M5-M5-M5 black hole

On the Kerr matrix MKerr we act with the group element

g = exp
[

α1(Ep1 + Fp1)
]

· exp
[

α2(Ep2 + Fp2)
]

· exp
[

α3(Ep3 + Fp3)
]

, (A.36)

as

MKerr → M3−charge = g♯ · MKerr · g. (A.37)

Reading off the new scalars from the new matrix M3−charge and performing the inverse

dualization through (A.23)–(A.24) we obtain the spinning magentic one-brane of five-

dimensional U(1)3 supergravity as presented in section 2.

B Three Dimensional Fields: 4d Asymptotically Flat

For convenience and completeness we list all the resulting three-dimensional fields obtained

after the action of the group element (A.36) on the coset matrix MKerr:

x1 = −4c1s2s3
am cos θ

Ω1
, (B.1)

x2 = −4c2s3s1
am cos θ

Ω2
, (B.2)

x3 = −4c3s1s2
am cos θ

Ω3
, (B.3)

y1 =
2

Ω1

√

ξ, y2 =
2

Ω2

√

ξ, y3 =
2

Ω3

√

ξ, (B.4)

ζ0 = 4c1c2c3s1s2s3
a2m2 cos2 θ

ξ
, (B.5)

ζ1 = −2s1c2c3(r
2 + a2 cos2 θ + 2mrs21)

am cos θ

ξ
, (B.6)

ζ2 = −2s2c3c1(r
2 + a2 cos2 θ + 2mrs22)

am cos θ

ξ
, (B.7)

ζ3 = −2s3c1c2(r
2 + a2 cos2 θ + 2mrs23)

am cos θ

ξ
, (B.8)

ζ̃0 = 2ma cos θs1s2s3
∆2

ξ
, (B.9)

ζ̃1 =
mc1s1

ξ

(

4ma2 cos2 θs22s
2
3 − rΩ1

)

, (B.10)

ζ̃2 =
mc2s2

ξ

(

4ma2 cos2 θs21s
2
3 − rΩ2

)

, (B.11)

ζ̃3 =
mc3s3

ξ

(

4ma2 cos2 θs21s
2
2 − rΩ3

)

, (B.12)
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and finally

e2U =
∆2√
ξ
, (B.13)

σ = −4ma cos θc1c2c3
r2 + a2 cos2 θ +mr(s21 + s22 + s23)

ξ
, (B.14)

where Ω1,Ω2, and Ω3 are defined in (2.8) and ∆2 and ξ are defined respectively in (3.13)

and (2.8). Finally, c1 = coshα1, c2 = coshα2, c3 = coshα3 and s1 = sinhα1, c2 = sinhα2,

c3 = sinhα3.

C Three Dimensional Fields: 4d Subtracted Geometry

Here for completeness we list all the resulting three-dimensional fields obtained after the

action of the group element (3.10) with the choices (3.7)–(3.9) on the coset matrix M3−charge

(where x = cos θ):

x1 = x2 = x3 = −ax(Πc −Πs)

m
. (C.1)

Defining

∆̃s = 2mr(Π2
c −Π2

s) + 4m2Π2
s − a2x2(Πc −Πs)

2, (C.2)

we have

y1 = y2 = y3 =

√

∆̃s

2m
, (C.3)

ζ0 =
4m2ΠcΠs + a2x2(Πc −Πs)

2

∆̃s(Π2
c −Π2

s)
, (C.4)

ζ1 = ζ2 = ζ3 = −ax(2mΠs + r(Πc −Πs))

∆̃s

, (C.5)

ζ̃0 =
ax

2m∆̃s

(

(Πc −Πs)
2(Πc +Πs)(r

2 + a2x2)− 2mr(Π3
c − 2ΠcΠ

2
s +Π3

s)− 4m2ΠcΠ
2
s

)

,

(C.6)

ζ̃1 = ζ̃2 = ζ̃3, (C.7)

ζ̃1 =
1

2∆̃s(Π2
c −Π2

s)

[

− 2mr(Π2
c −Π2

s)(1 + Π2
c − 3Π2

s) + 4m2Π2
s(Π

2
s −Π2

c − 1)

+(Πc −Πs)
2(2r2(Πc +Πs)

2 + a2x2(1 + (Πc +Πs)
2))
]

, (C.8)

and finally

σ =
ax

2m(Π2
c −Π2

s)∆̃s

[

(r2 + a2x2)(Πc −Πs)
2(Πc +Πs)−mr(Πc −Πs)(3 + 3Π2

c −Π2
s)

−2m2Πs(3 + Π2
c +Π2

s)
]

, (C.9)

e2U =
r2 + a2x2 − 2mr

2m
√

∆̃s

. (C.10)
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D Magnetic One Brane of U(1)3 Theory

We provide an analysis of physical properties and near horizon limit of the rotating magnetic

string (2.2).

D.1 Physical Properties

From the grr component of the metric it is seen that the solution has a regular outer horizon

at r = r+ := m+
√
m2 − a2 and an inner horizon at r = r− := m−

√
m2 − a2. The extremal

limit is when the two horizons coincide, i.e., m = a. The ADM stress tensor takes the form

Ttt =
m

2G

(

2 + s21 + s22 + s23
)

, Tzz = − m

2G

(

1 + s21 + s22 + s23
)

, Ttz = 0, (D.1)

where Ttt and Ttz are respectively the energy and linear momentum density along the

string. Tzz is the pressure density; the ADM tension is T = −Tzz. Physical properties of

the solution such as mass, inner and outer horizon areas, angular momentum, and angular

velocities can be straightforwardly calculated. For the asymptotic quantities one finds

M = 2πRTtt =
πmR

G

(

2 + s21 + s22 + s23
)

, (D.2)

Pz = 2πRTtz = 0, Jφ =
2πRma

G
c1c2c3, (D.3)

and for the quantities at the outer (r = r+) and inner (r = r−) horizon one finds

Ω±
φ =

a

2c1c2c3mr±
, v±z = −a2s1s2s3

r2±c1c2c3
, A±

H = 8π2R (r2± + a2)c1c2c3. (D.4)

Temperatures of the inner and the outer horizons can be calculated from surface gravities,

T±
H =

r± − r∓
4π(r2± + a2)c1c2c3

. (D.5)

Magentic charges are defined asQI
M = 1

4πG

∫

S2
∞
F I = −2mG−1sIcI . The magnetic potentials

dual to these charges can be guessed, say using the Smarr relation6

M =
3

2

(

1

4G
T+
HA+

H +Ω+
φ Jφ

)

+
1

2
T (2πR) +

1

2

3
∑

I=1

ΦIQI
M . (D.6)

This guess is then confirmed by explicitly verifying the first law

dM =
1

4G
T+
HdA+

H +Ω+
φ Jφ +

3
∑

I=1

ΦIdQI
M + 2πT dR. (D.7)

6A first principle calculation of the magnetic potentials requires appropriately generalizing the formalism

of [34] (see also [16]) to the U(1)3 theory. Such a generalization is beyond the aspirations of the present

study.
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We find ΦI = −πRsI
2cI

. Moreover, the product A+
HA−

H = 4(8π2R)2m2a2c21c
2
2c

2
3 = (8πGJφ)

2

takes the expected form [35].

Of particular interest is the fact that for the un-boosted solution the linear velocities

v±z (D.4) are non-zero, while the ADM momentum Pz is zero. Since v±z vanish if either

a = 0 or any of the αI = 0, this is a cumulative effect of rotation and all three magnetic

charges.

D.2 Near Horizon Limit

The near-horizon limit of the solution in section 2.1 is obtained as follows. First, we write

the extremal rotating solution (m = a) in comoving coordinates and second we zoom in

close to the horizon. More precisely, we perform

r → a+ µr, t → t

µ
, φ → φ+Ωφ

t

µ
, z → z + vz

t

µ
(D.8)

with

Ωφ =
1

2ac1c2c3
, vz = −s1s2s3

c1c2c3
(D.9)

and send µ → 0. In this limit asymptotically flat region is dispensed with. The resulting

configuration is a solution of the U(1)3 supergravity. The geometry has enhanced isometry

SL(2,R)×U(1)×U(1), as is familiar from general near-horizon limits [36, 37]. The solution

reads as

ds2nh = Γ(x)

[

−(kφ)
2r2dt2 +

dr2

r2
+

dx2

1− x2

]

+ γφφ(x)e
2
φ + 2γφz(x)eφ ez + γzz(θ)e

2
z

AI = f I
φ(x)eφ + f I

z (x)ez , hI = hI(x) (D.10)

where eφ = dφ+ kφrdt, ez = dz + kzrdt. All functions are expressed most easily expressed

as (x = cos θ)

kφ =
1

2a2c1c2c3
, kz = −2s1s2s3

ac1c2c3
, Γ(x) =

1

2
(Ω1Ω2Ω3)

1/3

γzz =
4ξ

(Ω1Ω2Ω3)2/3
, γzφ = 8as1s2s3

ξ − 4a4x2c21c
2
2c

2
3

(Ω1Ω2Ω3)2/3

γφφ =
16a2s21s

2
2s

2
3(ξ − 4a4x2c21c

2
2c

2
3)

2 + 2a4c21c
2
2c

2
3(1− x2)Ω1Ω2Ω3

ξ(Ω1Ω2Ω3)2/3

f1
φ = 4xs1c1a

3 1 + (1 + 2s22)(1 + 2s23)

Ω1
, f1

z = 4xa2
c1s2s3
Ω1

,

hI = (Ω1Ω2Ω3)
1/3Ω−1

I (D.11)

The rest of the functions f2
φ, f3

φ and f2
z , f3

z are obtained by obvious cyclic permutations.

In all expressions in (D.11) the functions ΩI and ξ are computed at r = a. An alternative
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presentation of these function can also be given as in [10]. Now let us look at various

interesting limiting cases:

1. Upon setting all three M5 charges equal one recovers exactly the expressions previously

obtained in (11) of [10].

2. When M5 charges are set to zero the solution reduces to the NHEK geometry [38]

times a circle, as expected.

3. The non-trivial observation of [10] is that in the limit of no rotation, while keep the

number of M5 branes nI fixed, the solution reduces to a null orbifold of AdS3×S2,

ds2 = l2
(

dr2

4r2
− 2rdtdz

)

+ l2S2
dΩ2,

AI = −nI

2
xdφ, z ∼ z + 2π, ΦI =

nI

l
(D.12)

where the two sphere has radius lS2
= 1

2ℓp(n1n2n3)
1/3, the AdS3 radius is l =

ℓp(n1n2n3)
1/3, with ℓp = (4G/π)1/3 . This solution has zero entropy and zero angular

momentum.
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