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1 Introduction

There is an intriguing possibility that quantum gravity on the horizon of a black hole could be dual to

some 2D conformal filed theory (CFT) at finite temperatures. A key evidence is that, following [1], one

can find appropriate boundary conditions which allow for asymptotic conformal symmetries on the

horizon [2, 3, 4, 5]. In the case of extremal black holes, it is possible to study the relevant conformal

symmetries in a systematic fashion [6], based on the idea of the Kerr/CFT correspondence [5]. For non-

extremal black holes, it appears more difficult to study (or identify) the relevant conformal symmetries

directly. In [7] it has been proposed to use a probing scalar field to extract useful information about

the possible hidden conformal symmetries in the Kerr background. The method has been further

developed and applied to several other cases (see, e.g. [8] and references therein).

Such activity has also generated renewed interest in the earlier effort [3, 4, 9] that seeks to study

the conformal symmetries on the horizons directly. In particular, it has been shown in [10, 11] that

it is possible to use the “stretched horizon” method to re-derive some results known in the usual

literature of Kerr/CFT correspondence [5]. What’s more, Carlip [10] has shown that in the case when

the boundary conditions are the same for both the extremal and non-extremal black holes, there is a

Virasoro algebra which reproduces (via the Cardy formula) the full entropy for extremal black holes

but only half the entropy for non-extremal ones. And the same paper also shows that an alternative

way of stretching the horizon can enable one to obtain the entropy fully. In view of such ambiguities, it

will be helpful to study boundary symmetries on the horizon without using an intermediate stretched

horizon [10]. Our main purpose of this work is to present such a construction.

We find physically reasonable boundary conditions that uniquely determine a set of symmetry

generators, which form one copy of the Virasoro algebra (one for each of the azimuthal angles).

Cardy’s formula can then be used to calculate the black hole entropy. Our boundary conditions are

directly imposed on the (inverse) metric elements on the horizon, in much the same spirit as Brown

and Henneaux [1]. The construction is general and is valid for arbitrary stationary and axisymmetric
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black holes in arbitrary dimensions. For practical reasons, some of the calculation is only explicitly

done for Einstein gravity plus a (possibly zero) cosmological constant. But with enough effort, a

generalization to more complicated theories should still be possible.

The main result of the paper is the following:

In section 2, we briefly recall some general features of stationary and axisymmetric black holes,

setting the stage for our discussion. In section 3, we explain our boundary conditions, solve for

the boundary symmetry generators, showing that they constitute a copy of the Virasoro algebra.

In section 4, we calculate the central charge and the Frolov-Thorne temperature for non-extremal

black holes. We find that Cardy’s formula gives exactly half the Bekenstein-Hawking entropy. In

section 5, we do the same for extremal black holes. Here we find that Cardy’s formula reproduces the

Bekenstein-Hawking entropy fully. We end with a short summary in section 6.

Both the definition of black hole charges and the calculation of central charges are done by using

the covariant phase space method, for which we collect some basic formulae in the appendix A.

2 Stationary and axisymmetric black holes

Stationary and axisymmetric black holes constitute the most important class of exact solutions in

various gravitational theories. They are the objects that we want to focus on in this paper. For the

convenience of later discussions and also to fix our notations, we briefly recall some general features

of these black holes. Most result has already appeared in [13], but here we shall explain some of the

points in more detail.

In general, a stationary and axisymmetric black hole is characterized by the presence of a time-

like Killing vector ∂t and one (or several) space-like Killing vector(s) ∂φ, where φ is periodically

identified. Although a general proof is not known, existing examples suggest that all the stationary

and axisymmetric black holes share the following form of the metric,1

ds2 = f
[
− ∆

v2
dt2 +

dr2

∆

]
+ qijdθ

idθj + gab(dφ
a − wadt)(dφb − wbdt) , (1)

where the coordinates can be identified as t the asymptotic time, r the radial coordinate, θi the

longitudinal angles and φa the azimuthal angles. All the functions in (1) depend on r and θi, except

for ∆ which is only a function of r. The inverse of (1) is

(∂S)
2 =

∆

f
∂2
r + qij∂i∂j + gab∂a∂b −

v2

f∆
(∂t + wa∂a)(∂t + wb∂b) , (2)

1A careful check of the general metric against many existing examples can be found in [6]. (The metrics in [6]

look slightly different, but it is easy to put them into the form of (1).) As a convention for our sub/superscripts, the

beginning Latin letters (a, b, · · · ) are only used for the azimuthal angles (e.g., φa), the middle Latin letters (i, j, · · · )

are only used for the longitudinal angles (e.g., θi), and the Greek letters (µ, ν, · · · ) are used for all the coordinates,

µ, ν, · · · ∈ {r, t, a, i}. What’s more, it is often convenient to treat the time on the same footing as the azimuthal angles.

So we define wt = Ωt ≡ 1 and we use capital letter indices (A,B, · · · ) to go over both the azimuthal angles and the

time, i.e. A,B, · · · ∈ {t, a}. (In the brackets {r, t, a, i} and {t, a}, we use “a” to represent all indices for the azimuthal

angles and “i” to represent all indices for the longitudinal angles.)
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where ∂i ≡ ∂θi and ∂a ≡ ∂φa . Using g̃µν to denote elements of the full metric, we find

g̃rr =
f

∆
, g̃ij = qij , g̃ab = gab , g̃at = −wa , g̃tt = −N2 + w2 ,

g̃rr =
∆

f
, g̃ij = qij , g̃ab = gab − wawb

N2
, g̃at = −wa

N2
, g̃tt = − 1

N2
, (3)

where N2 = f∆/v2, wa = gabw
b and w2 = waw

a. The determinant of the full metric is g̃ = −qgf2/v2,

where q is the determinant of qij and g is the determinant of gab.

The (outer) black hole horizon r0 is located at the (largest) root of ∆(r0) = 0. Near the black

hole horizon, f, v2, (qij) and (gab) are all positive definite. The fact that black holes are intrinsically

regular on the horizon puts extra constraints on the functions,

v(r, θi) = v0(r) + v1(r, θ
i)∆ +O(∆2) ,

wa(r, θi) = wa
0 (r) + wa

1(r, θ
i)∆ +O(∆2) , (4)

which means that any dependence of v and wa on θi can only begin at the order ∆. With these

conditions, it is then possible to completely remove the divergence at ∆ → 0 from the metric,

− ∆

v2
dt2 +

dr2

∆
=
(∆
v20

− ∆

v2

)
dt2 − ∆

v20
du+du− ,

dφa − wadt = dφa
± − wadu± ± (wa − wa

0 )
v0
∆
dr , (5)

where

du± = dt± v0
∆
dr , dφa

± = dφa ± wa
0

v0
∆

dr . (6)

The constraints that wa
0 and v0 depend only on r comes from the required integrability of (6). In the

presence of matter fields, similar constraints should also apply. For example, if there is a U(1) gauge

field, then it must be of the form

A = Aa(r, θ
i)(dφa − wadt) +

[
At(r) +O(∆)

]
dt . (7)

Finally, one can choose the coordinate system to be non-rotating at spatial infinity, which means

wa(r, θi) −→ 0 as r → +∞ . (8)

In this case, Ωa = wa
0 (r0) is the angular velocity of the horizon along φa. Using the null Killing vector

on the horizon ∂t +Ωa∂a, one can find that the black hole temperature is

T =
κ

2π
=

∆′

4πv

∣∣∣
r=r0

=
∆′(r0)

4πv0(r0)
, (9)

where κ is the surface gravity on the horizon. For extremal black holes, ∆′(r0) = 0 and so the

temperature vanishes.

Charges of the black hole can be calculated by using (75) in the appendix,

δE =

∫

horizon

δQ(∂t) − i(∂t)Θδ , (10)

δJa = −
∫

horizon

δQ(∂a) − i(∂a)Θδ = −
∫

horizon

δQ(∂a) . (11)
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In these definitions, the charges will not be well defined unless the corresponding defining equations

are δ-integrable. For Ja, the δ-integrability of (11) is obvious and one has

Ja = −
∫

horizon

Q(∂a) . (12)

For E, one can use (1) to explicitly check [13] that in the context of Einstein gravity plus a (possibly

zero) cosmological constant,2

δ̄E = T δ̄S +Ωaδ̄Ja , S =
Area

4
, (13)

where S is the Bekenstein-Hawking entropy and Area ≡
∫
horizon

(dD−2x)tr2
√
qg is the area of the

horizon. It is obvious that the δ̄-integrability of (10) is intimately related to the presence of the first

law of thermodynamics (13) for the black holes. In fact, the authors of [16] have noticed integrating the

first law of thermodynamics as a practical method for calculating the mass of black holes, especially

for ones that do not have an easier alternative.

3 Boundary conditions and the Virasoro algebra

As is obvious from the last section, all thermodynamical quantities of a black hole can be calculated

purely by using data from the neighborhood of the horizon. From this perspective, two black holes are

intrinsically the same if they approach each other fast enough as one takes the limit to the horizon,

while the exterior of the black holes may be rather different due to matter fields living outside the

horizon. This is our most important reason for choosing to impose boundary conditions on the horizon.

A loosely related and interesting idea can be found in [8, 17, 18].

The fluctuations over a given background g̃µν should satisfy the linearized equations of motion,

which we denote as

Ẽµν = 0 , =⇒ δẼµν = 0 . (14)

A particular class of solutions are generated by a Lie derivative,

δg̃µν = £ξ g̃µν , =⇒ δẼµν = £ξẼµν = 0 . (15)

This may not be much a surprise, because δg̃µν = £ξg̃µν (when paired with δxµ = −ξµ) is nothing

but the general diffeomorphism. However, the new metric g̃′µν = g̃µν + £ξg̃µν does represent a new

configuration if the coordinate system is held fixed. For the corresponding physical meaning of ξ,

note a real physical coordinate system is nothing but a lattice of observers (clocks and rulers). The

observed fluctuation in the metric can also be interpreted as that, the metric is held fixed, but it is the

lattice of observers oscillate involuntarily, driven by quantum fluctuations of the spacetime. In order

for the observers to see a metric fluctuation δg̃µν = £ξg̃µν , the involuntary motion of the observers

must be δxµ = −ξµ. As such, we immediately have the following constraints on ξ:

2The operator δ̄ is defined to perturb only the free parameters (such as mass and angular momenta) in a given

solution. This is what’s usually needed to test the first law of thermodynamics for a given black hole solution. For all

other types of perturbations, one can consult [14, 15].

5



• First of all, since ξµ corresponds to the involuntary motion of observers, it should be finite;

• Secondly, ξr(r0) 6= 0 means that the horizon either expands or shrinks, and this in general leads

to a different black hole. So we must require ξr(r0) = 0;

• Similarly, ξi(r0) 6= 0 in general changes the metric on the horizon, and which should also be

forbidden if we want to talk about the same black hole.

With these considerations, one can expand ξµ near the black hole horizon as

ξµ =

∞∑

k=0

ξµ(k)(r − r0)
k , ξr(0) = ξi(0) = 0 , (16)

where all the functions ξµ(k) depend only on θi, φa and t.

Given this expansion, there are some further constraints that need to be satisfied,

• Firstly, we need to determine under what conditions can a perturbed configuration be regarded

as the same to the original black hole. The most straightforward choice seems to be that the

induced metric on the horizon should remain fixed. But since the time t is in many sense on

the same footing as the azimuthal angles φa, we impose a stronger condition that the induced

metric on the r = r0 hypersurface should remain fixed, which means3

δg̃ij ≈ δg̃iA ≈ δg̃AB ≈ 0 , ∀ i, j, A,B . (17)

• Similarly, we also require that the volume density of the full spacetime remains the same on the

horizon,4

δ
√
−g̃ ≈ 0 . (18)

• Lastly, we require that there is no mixing between θi and any other directions,

δg̃ir ≈ δg̃ir ≈ δg̃ij ≈ δg̃iA ≈ 0 , ∀ i, A . (19)

This is motivated by the desire to preserve θi as longitudinal angles. (Otherwise one cannot say

for sure that r is the radial direction and r = r0 is the horizon.) But beyond that, there is not

a very good reason for why one must do this. So we will treat (19) as a hand-put-in condition.

To study the consequences of the boundary conditions (17), (18) and (19), let’s use (16) and write

down the corresponding perturbation over the background (1) explicitly. The results are

£ξg̃rr ≈ ∂r

( f

∆′
ξr(1)

)
+

ξi(1)∂if

∆′
+

f

∆
ξr(1) , (20)

£ξg̃rA ≈ f

∆′
∂Aξ

r
(1) + g̃ABξ

B
(1) , (21)

3Throughout the paper, we use “≈” to relate quantities that are equal in the limit r → r0.
4Steve Carlip told me that he had known the significance of this condition for sometime, but he had been reluctant

to use it for lack of a good justification. Here we choose to use this condition because (1) it is intuitively consistent

with the requirement that the black hole should remain the same on the horizon and (2) it is technically very helpful.
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£ξg̃ri ≈ f

∆′
∂iξ

r
(1) + qijξ

j

(1) , £ξ g̃
ri ≈ 0 , (22)

£ξg̃ij ≈ £ξg̃
ij ≈ 0 , (23)

£ξg̃ia ≈ gabDiξ
b
(0) , (24)

£ξ g̃it ≈ −waDiξ
a
(0) , (25)

£ξg̃
iA ≈ v2

f∆′
wAwB∂Bξ

i
(1) − qij∂jξ

A
(0) , (26)

£ξg̃ab ≈ gacDbξ
c
(0) + gbcDaξ

c
(0) , (27)

£ξg̃at ≈ gabDtξ
b
(0) − wbDaξ

b
(0) , (28)

£ξg̃tt ≈ −2waDtξ
a
(0) , (29)

£ξ

√
−g̃ ≈

√
−g̃
(
ξr(1) + ∂Aξ

A
(0)

)
. (30)

where Dµξ
a
(0) ≡ ∂µξ

a
(0) − wa∂µξ

t
(0). Comparing these results with (17), (18) and (19), we find that

Diξ
a
(0) ≈ Daξ

a
(0) ≈ Dtξ

a
(0) ≈ 0 , ξr(1) = −∂Aξ

A
(0) ,

ξi(1) = −qij
f

∆′
∂jξ

r
(1) , ∂iξ

A
(0) = qij

v2

f∆′
wAwB∂Bξ

j

(1) . (31)

To solve these equations, note Dµξ
a
(0) ≈ 0 are easily solved with

ξa(0) = Ωaξt(0) , =⇒ Dµξ
a
(0) = (Ωa − wa)∂µξ

t
(0) ≈ 0 , (32)

where Ωa is defined below (8). The other equations are then uniquely solved by

ξr(1) = −∂Aξ
A
(0) = −ΩA∂Aξ

t
(0) , ∂iξ

t
(0) = 0 , ξi(1) = 0 . (33)

With these results, the only non-vanishing variation of the metric elements are

£ξ g̃rr ≈ O(
1

∆
) , £ξg̃rA ≈ O(

1

∆′
) . (34)

Note the variation of g̃rr is of the same order as g̃rr itself. Something similar also exists in the usual

Kerr/CFT correspondence [5].

Now at the leading order ξµ depends only on ξt(0), which is a free function of φa and t. One can

expand ξt(0) using the Fourier modes e−im(φā
−Ω̃āt), where φā is one of the azimuthal angles, m is an

integer, and Ω̃ā is a constant to be determined. When appropriately normalized, we find (ρ ≡ r− r0)

ām ≡ ξµ∂µ = −e−im(φā
−Ω̃āt)

{[
im ρ+O(ρ2)

]
∂r +O(ρ2)∂i +

[ ΩA

Ωā − Ω̃ā
+O(ρ)

]
∂A

}
. (35)

As a comparison, the generators found in [10, 11] are

ām = −e−im(φā
−Ωāt)

[
im ρ ∂r + ∂ā + subleading terms

]
. (36)

At the leading order, the generators (35) satisfy the (centerless) Virasoro algebra,

i[ām , ān] = (m− n)ām+n . (37)
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Like in (10) and (11), one can define the charge corresponding to ām by using (75),

δLā
m = −

∫

horizon

(
δQ(ām) − i(ām)Θδ

)
. (38)

For m 6= 0, we find because of the factor e−imφā

,

δ̄Lā
m = 0 , m = ±1,±2, · · · . (39)

So Lā
m , ∀ m 6= 0 are independent on the background metric (1). For m = 0,

ā0 = − ξ̆

Ωā − Ω̃ā
+O(ρ) , ξ̆ ≡ ΩA∂A = ∂t +Ωa∂a . (40)

In the case when δ̄(Ωā − Ω̃ā) = 0, we find using (10) and (11)

δ̄Lā
0 = −

∫

horizon

δ̄Q(ā0) − i(ā0)Θδ = δ̄
(E − ΩaJa

Ωā − Ω̃ā

)
,

=⇒ Lā
0 =

E − ΩaJa

Ωā − Ω̃ā
+ (background independent constant) . (41)

4 The non-extremal case

Given the charges (38), there is a central extension to (37), just as described in (66) and (78) in the

appendix. The central charge can be found through (81) and (82). To find the result explicitly, let’s

firstly look at the quantity defined in (77) and (89). The relevant component is (note £m ≡ £ām
)

Ktr(£n,£m) =
1

16π

{
− h̃

2
ātrm + h̃tρ∇̃ρā

r
m − h̃rρ∇̃ρā

t
m − (∇̃th̃rρ − ∇̃rh̃tρ)āmρ

+ātm(∇̃ρh̃
rρ − ∇̃rh̃)− ārm(∇̃ρh̃

tρ − ∇̃th̃)
}
. (42)

where h̃µν ≡ £ng̃µν . For later convenience, we shall calculate the result for the more general Virasoro

generators,

ām = −e−im(φā
−Ω̂āt)

{[
im ρ+O(ρ2)

]
∂r +O(ρ2)∂i +

[
χA +O(ρ)

]
∂A

}
, (43)

where Ω̂ā and χA are arbitrary constants, except for

χā = 1 + Ω̂āχt . (44)

Note in (35), we have

Ω̂ā = Ω̃ā , χā =
Ωā

Ωā − Ω̃ā
, χt =

1

Ωā − Ω̃ā
, (45)

which obviously satisfy (44).

Using (44) and assuming T ∝ ∆′(r0) 6= 0, we find

Ktr(£−m,£m) ≈ −4im3

16π

[
χt(Ωā − Ω̂ā)− 1

2

]v2(Ωā − Ω̂ā)

f∆′
+ · · · , (46)

where we have only kept terms that are third order polynomials in m. The omitted terms are all finite

and are linear in m. Note again that “≈” means equal on the horizon. The subleading terms (those

8



of O(ρ2) for ∂r and ∂i, and those of O(ρ) for ∂A) are not constrained in (35). So it is reassuring to

note that the corresponding subleading terms in (43) have no contribution to (46) either.

Now using (82), the central charge is

cā =
3

π

∫

horizon

(dD−2x)tr2
√
−g̃
[
χt(Ωā − Ω̂ā)− 1

2

]v2(Ωā − Ω̂ā)

f∆′

=
3

π

∫

horizon

(dD−2x)tr2
√
qg
[
χt(Ωā − Ω̂ā)− 1

2

]v0(r0)(Ωā − Ω̂ā)

∆′(r0)

=
3

π2

[
χt(Ωā − Ω̂ā)− 1

2

]
· Ω

ā − Ω̂ā

T
· S , (47)

where T is the temperature (9) and S is the entropy (13). For the generators (35), we can use (45) to

further reduce the result to

cā =
3

2π2
· Ω

ā − Ω̃ā

T
· S . (48)

Note in order for cā to be non-negative, we need Ωā ≥ Ω̃ā. On the other hand, the Frolov-Thorne

temperature for the modes e−im(φā
−Ω̃āt) is [5, 10]

T ā =
T

Ω̃ā − Ωā
, (49)

which is negative for Ωā > Ω̃ā. If we want both cā and T ā to be non-negative, then the only choice is

Ω̃ā = Ωā.5 In this case, cā vanishes and T ā diverges. The generators (35) also diverge. As suggested

in [10], the origin of such singular behaviors could be physical. Using the canonical version of Cardy’s

formula, we find

Sā =
π2

3
cāT ā =

S

2
. (50)

This result resembles that in section 2 of [10] in a remarkable way. Note Cardy’s formula only gives

half the Bekenstein-Hawking entropy. We will discuss more about this issue when we conclude.

Note the above result does not depend on which azimuthal angle is used. This is similar to what

happens in the case of extremal Kerr/CFT correspondence [20]. Although we have the same number

of Virasoro algebras as that of the azimuthal angles, they are not independent in terms of counting

the degrees of freedom for the black hole.

5 The extremal case

As mentioned in the previous section, the subleading terms in (43) have no contribution to the central

term (46). Unfortunately, this is not true for extremal black holes. In order to talk sensibly about the

central charges for extremal black holes, one must further require that (43) obey the Virasoro algebra

5The different signs between cā and T ā at Ω̃ā 6= Ωā can be understood from the fact that the horizon of (1) is a

frozen surface. That is, for an observer comoving with the horizon, there should not be any propagating signals in the

θi or φa directions on the horizon (because such signals are always space-like, i.e., superluminal). So on the horizon,

all perturbations can only be a function of φa − Ωat. As a consequence, the modes e−im(φā−Ωāt) should in fact be

understood as e−im(φā−Ωāt) = e−im(φā−Ωāt)
∏

a 6=ā e−i0(φa−Ωat).
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up to the sub-leading order. We then find

ām = −e−im(φā
−Ω̂āt)

({
im ρ+

[
mur +

im2

2
(uā − Ωāut)

]
ρ2 +O(ρ3)

}
∂r

+
[
muiρ2 +O(ρ3)

]
∂i +

[
χA +muAρ+O(ρ2)

]
∂A

)
, (51)

where ur, ui and uA are free functions of θi. With (51), we find that the contribution of the subleading

terms to the central charge vanishes again. The following result is valid for both extremal and non-

extremal black holes,

Ktr(£−m,£m) ≈ −m3
(∆′

∆2
Z1 +

Z2

∆

)
+ · · · , (52)

where “ · · · ” denotes terms linear in m and

Z1 = −2iv20(r0)(Ω
ā − Ω̂ā)

f(r0, θi)
ρ2 +

[
− 2iv20(r0)w

′ā(r0)

f(r0, θi)
+ (Ωā − Ω̂ā)G1(r0, θ

i)
]
ρ3 +O(ρ4) ,

Z2 =
4iv20(r0)(Ω

ā − Ω̂ā)2χt

f(r0, θi)
ρ+

[2iv20(r0)w′ā(r0)

f(r0, θi)
+ (Ωā − Ω̂ā)G2(r0, θ

i)
]
ρ2 +O(ρ3) . (53)

The detail of the two functions G1 and G2 will not be important for us. We only need to know that

they are both of order O(1). Note we have preserved the dependence of (52) and (53) on r only

through ∆, ∆′ and ρ(= r − r0).

One can check that (52) reduces to (46) in the non-extremal case, ∆′(r0) 6= 0. In the extremal

case ∆′(r0) = 0,

Ktr(£−m,£m) ≈ 4im3v20(r0)w
′ā
0 (r0)

16π∆′′(r0)f(r0, θi)
(1 +G) + · · · ,

G =
Ωā − Ω̂ā

w′ā
0 (r0)

{2
ρ

[
1− χt(Ωā − Ω̂ā)

]
+

2∆′′′(r0)

3∆′′(r0)

[
χt(Ωā − Ω̂ā)− 1

2

]

− f(r0, θ
i)

2iv20(r0)
(2G1 +G2)

}
, (54)

The first term in G diverges as ρ → 0. But this divergence will go away once we use (45). In fact, as

was discussed in the previous section, Ω̃ā = Ωā. So G = 0 upon using (45). From (82), the central

charge for the extremal case is

cā = − 3

π

∫

horizon

(dD−2x)tr2
√
−g̃

v20(r0)w
′ā
0 (r0)

∆′′(r0)f(r0, θi)
=

3

π2

S

T̃ ā
, (55)

where T̃ ā is the Frolov-Thorne temperature related to φā from the usual Kerr/CFT calculation [6],

T̃ ā = − ∆′′(r0)

4πv0(r0)w′ā(r0)
. (56)

In the present context, (49) is valid for both the extremal and non-extremal cases. But T ā is now

indefinite because T = Ωā − Ω̃ā = 0. As suggested in [10], one can identify T ā with T̃ ā. In this case,

Cardy’s formula gives

Sā =
π2

3
cāT ā = S , (57)

which is exactly the Bekenstein-Hawking entropy.
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As a side remark, note the contribution to the central charge (52) comes from different terms for

extremal and non-extremal cases. So in terms of the central charge, one cannot expect a smooth tran-

sition from the non-extremal case to the extremal case. This is another indication of the discontinuity

that arises in taking the extremal limit for non-extremal black holes (see, e.g. [19]).

6 Summary

To summarize, we have studied conformal symmetries one the horizon of a general stationary and

axisymmetric black hole. We find that consistent and physically reasonable boundary conditions exist,

which uniquely determine a set of symmetry generators that form a copy of the Virasoro algebra. The

construction is designed for black holes in arbitrary spacetime dimensions and in arbitrary theories.

But for practical reasons, explicit calculation is only done for Einstein gravity plus a (possibly zero)

cosmological constant. We find that one can deduce the full Bekenstein-Hawking entropy by using

Cardy’s formula for extremal black holes. For non-extremal black holes, Cardy’s formula only gives

half the Bekenstein-Hawking entropy.

As a possible explanation to the failure in the non-extremal case, we note that our boundary

conditions (17), (18) and (19) are very stringent, and it uniquely allows for only one copy of the

Virasoro algebra. In contrast, such as indicated in [7], the dual CFT for a non-extremal black hole

could be non-chiral and there might be two copies of Virasoro algebras. This means that there might

be a second Virasoro algebra but which is filtered out by (17), (18) and (19). However, so far we have

not been able to find the more general boundary conditions that allow for two copies of the Virasoro

algebras.

On the other hand, it is also possible that the problem is due to something else. One indication is

that, as mentioned before, the horizon is a frozen surface, and all “fluctuations” on the horizon can only

be a function of φa −Ωat. From this perspective, it seems very unlikely that there could be a second

independent copy of the Virasoro algebra, because we do not have a second independent coordinate

to work with.6 So it is possible that (35) is all we have on a black hole horizon. For extremal black

holes, it is already with some luck that Cardy’s formula does reproduce the full Bekenstein-Hawking

entropy. And in fact no one knows why this must work. For non-extremal black holes, it is then

conceivable that one may have to go beyond simply applying Cardy’s formula to deduce the full black

hole entropy.

Another issue with non-extremal black holes is that the central charge and the Frolov-Thorne

temperature are singular. However, here one is not sure if the singular behavior is intrinsic to the

problem, or if one can find a better alternative construction that does not have such singular behaviors.

We wish to understand this issue better in the future.

Despite such problems with the non-extremal case, we note Cardy’s formula does give qualitatively

correct result for the entropy. More importantly, it is remarkable that although our boundary condi-

6This is to be contrasted with the asymptotic symmetries at spatial infinity of a BTZ black holes, where it is natural

to define two independent coordinates like φ± t/ℓ (ℓ is the AdS radius), and which are both periodic in φ.
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tions (17), (18) and (19) are as stringent as one can imagine, they still allow for non-trivial physical

results. What’s more, our boundary conditions are imposed on the metric elements on the horizon

directly, and we do not need to introduce an intermediate stretched horizon. So if the boundary con-

ditions (17), (18) and (19) are truly physically relevant, then quantum fluctuations near the horizon

must be generated by (35), making it more convincing that quantum gravity on a black hole horizon

is dual to some 2D conformal field theory.
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A The covariant phase space method

In this section we compile all the necessary tools that are needed in the bulk discussion of the paper.

Although we do re-drive some of the formulae that are particularly important for us, there is nothing

essentially new here. For original works on the covariant phase space method, one can consult [21, 14,

15, 22, 23, 24, 25]. For earlier works on using the method to calculate central charges for black holes,

one can see [4, 26, 27]. Part of our description follow [14, 15, 28] closely.

As a motivating example, we start with the case of one-dimensional motion in classical mechanics.

The lagrangian is L = L(q, q̇), with q = q(t). Under a general operation δ̂ on q,7

δ̂L =
(∂L
∂q

− d

dt

∂L

∂q̇

)
δ̂q +

d

dt

(∂L
∂q̇

δ̂q
)
= Eδ̂q +

d

dt
Θ

δ̂
,

E =
∂L

∂q
− ṗ , p =

∂L

∂q̇
, Θ

δ̂
= pδ̂q . (58)

In the canonical phase space, p and q are treated as independent “coordinates”, and one may denote

them as z1 = q and z2 = p. The Poisson bracket of any two functions f = f(q, p) and g = g(q, p) can

be written as

{
f , g

}

P.B.
=

∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
= Ωmn ∂f

∂zm
∂g

∂zn
, m, n = 1, 2 ,

(Ωmn) =


 1

−1


 , =⇒ (Ωmn) =


 −1

1


 . (59)

For two arbitrary operations (say, δ̂1 and δ̂2), one can also define the presymplectic potential as

Ω(δ̂1, δ̂2) ≡ δ̂1Θδ̂2
− δ̂2Θδ̂1

= δ̂1pδ̂2q − δ̂2pδ̂1q = Ωmnδ̂1z
mδ̂2z

n . (60)

7Note δ̂ can either be a usual variation of q, or of some other types such as a time derivative on q.
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An interesting way to define the Hamiltonian is to take δ̂1 to be a particular variation δ, which takes

one solution to a nearby one, and to take δ̂2 = d
dt
,

δH = Ω
(
δ,

d

dt

)
= δΘ( d

dt
) −

d

dt
Θδ = δpq̇ − ṗδq . (61)

The Hamilton-Jacobi equations then follow in a straightforward manor,

q̇ =
δH

δp
, ṗ = −δH

δq
. (62)

In parallel, one can do the same for a general system. Denoting the generalized coordinates of the

canonical phase space as zm, m = 1, 2, · · · , one defines the presymplectic potential as

Ω(δ̂1, δ̂2) = Ωmnδ̂1z
mδ̂2z

n . (63)

For any symmetric transformations δ̂ξ, the variation of the corresponding charge Hξ is

δHξ = Ω(δ, δ̂ξ) = Ωmnδz
mδ̂ξz

n , (64)

where δ is again the particular variation that takes one solution to a nearby one. The Poisson bracket

(or more generally the Dirac bracket) of any two such charges is

{
Hξ , Hζ

}
= Ωmn δHξ

δzm
δHζ

δzn
= −Ω(δ̂ξ, δ̂ζ) = Ω(δ̂ζ , δ̂ξ) . (65)

Using the Jacobi identity and an arbitrary charge Q, one can further derive that

{Q,H[ξ,ζ]} = δ̂[ξ,ζ]Q = (δ̂ξ δ̂ζ − δ̂ζ δ̂ξ)Q = δ̂ξ{Q,Hζ} − δ̂ζ{Q,Hξ}

= {{Q,Hζ}, Hξ} − {{Q,Hξ}, Hζ} = {{Hξ, Hζ}, Q} ,

=⇒ {Hξ, Hζ} = −H[ξ,ζ] +K[ξ,ζ] , where {K[ξ,ζ] , Q} = 0 , ∀ Q . (66)

Hence, simply because of the Jacobi identity, the algebra of the Poisson (Dirac) bracket is isomorphic

(up to a possible central extension K[ξ,ζ]) to the Lie algebra δ̂ξ δ̂ζ − δ̂ζ δ̂ξ = δ̂[ξ,ζ].

Now consider the general action,

S =

∫

M

L , L = L(Φ, ∂µΦ, ∂µ∂νΦ, · · · ) ∗ 1 , (67)

where Φ denotes all possible fields collectively. From now on, a bold faced letter such as L always

stands for a differential form. Under an arbitrary operation δ̂ on the fields,

δ̂L = (δ̂Φ)EΦ ∗ 1+ dΘ
δ̂
, (68)

where all terms involving a derivative on δ̂Φ have been moved into dΘ
δ̂
. The Euler-Lagrange equations

are just EΦ = 0. In the special case when δ̂ is identified with a Lie derivative £ξ = d · iξ + iξ · d,

£ξL = d(iξL) = (£ξΦ)EΦ ∗ 1+ dΘξ , Jξ = Θξ − iξL ,

=⇒ dJξ = −(£ξΦ)EΦ ∗ 1 ∼= 0 , =⇒ Jξ
∼= dQξ , (69)
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where “ ∼= ” means equal after using the equations of motion EΦ = 0. For a Killing vector ξ, one may

call Jξ the corresponding Noether current. Now consider the variation δ̂ = δ that takes a classical

solution to a nearby one,

δJξ = δΘξ − δ(iξL) = δΘξ − iξ · dΘδ = w(δ,£ξ) + d(iξΘδ) , (70)

where w(δ,£ξ) ≡ δΘξ −£ξΘδ. Since δ takes one solution to a nearby one, Jξ stays exact as in (69).

As a result,

δJξ = dδQξ , =⇒ w(δ,£ξ) = dk(δ,£ξ) , k(δ,£ξ) ≡ δQξ − iξΘδ . (71)

In the case when ξ is a Killing vector,

£ξ = 0 =⇒ w(δ,£ξ) = 0 , =⇒ 0 =

∫

V

w(δ,£ξ) =

∮

∂V

k(δ,£ξ) , (72)

where V is a Cauchy surface. We are particularly interested in the spacetime of a stationary black

hole, where one can take V to be the space outside the horizon. As a result, ∂V has two disconnect

pieces: one at spatial infinity and one at the horizon,
∮

∂V

=

∫

+∞

−
∫

Horizon

. (73)

Usually one defines the charge corresponding to £ξ through an integral at spatial infinity,

δHξ =

∫

+∞

k(δ,£ξ) =

∫

+∞

δQξ − iξΘδ . (74)

But because of (72) and (73), this is equivalent to defining

δHξ =

∫

horizon

k(δ,£ξ) =

∫

horizon

δQξ − iξΘδ . (75)

It is the second definition that we want to us in this paper. It is also straightforward to generalize

such a definition to charges of boundary symmetries.

Comparing (75) with (64), we see that in the present discussion, δ̂ξ = £ξ and

Ω(δ,£ξ) =

∫

horizon

k(δ,£ξ) . (76)

But this result is not enough for us to recover the full presymplectic potential Ω(£ξ1 ,£ξ2), which is

needed to define the Poisson/Dirac bracket (65) for the corresponding charges. One the other had,

one can still define the following quantity,

K[£ζ ,£ξ] ≡ Ω(δ,£ξ)|δ→£ζ
=

∫

horizon

k(δ,£ξ)|δ→£ζ
. (77)

And one can write

{
Hξ , Hζ

}
= Ω(£ζ ,£ξ) = −H [£ζ,£ξ] +K[£ζ,£ξ] , (78)

H [£ζ ,£ξ] = K[£ζ ,£ξ]− Ω(£ζ ,£ξ) . (79)

Although (78) looks like (66) very much, it is not guaranteed that

H[ξ,ζ] = H [£ζ ,£ξ] , K[ξ,ζ] = K[£ζ ,£ξ] . (80)
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But rigorous treatment (see, e.g. [24, 25]) does show that K[£ζ ,£ξ] contains all the information

about K[ξ,ζ]. This is good enough for our purpose here. Now if the Virasoro algebra
[
Lm , Ln

]
= (m− n)Lm+n +

c

12
m(m2 − 1)δm+n , (81)

is realized from (78) through the canonical quantization i{·, ·} → [·, ·], then one can read off the central

charge from the coefficient of m3 in the term K[£−m,£m],

c = 12i
(
the coefficient of m3 in K[£−m,£m]

)
. (82)

In the following, let’s calculate k(δ,£ξ) for Einstein gravity plus a (possibly zero) cosmological

constant. To simplify notations, we will drop the “tilde” from the full metric in (3) from now on. For

differential forms, we use the notation

(dD−px)µ1···µp
≡ 1

p!(D − p)!
εµ1···µpν1···νD−p

dxν1 ∧ · · · ∧ dxνD−p , |ε···| = 1 , (83)

with which the Hodge-∗ dual of a p-form wp = 1
p!wµ1···µp

dxµ1 ∧ · · · ∧ dxµp can be written as

∗wp =
√
|g| (dD−px)µ1···µp

wµ1···µp , =⇒ ∗1 =
√
|g| dDx . (84)

For the exterior and interior products, one then has

d ∗wp =
√
|g| (dD−p+1x)µ1···µp−1

∇µp
wµ1···µp ,

iξ(d
D−px)µ1···µp

= (dD−p−1x)µ1···µpµ(p+ 1)ξµ . (85)

Now the action is

L =
(R − 2Λ

16π

)
∗ 1 . (86)

Under an arbitrary operation δ̂ on the fields,

δ̂L =
1

16π

{ ĥ
2
(R− 2Λ) + (−Rµν +∇µ∇ν −∇2gµν)ĥµν

}
∗ 1 ,

=⇒ Eµν =
1

16π

[1
2
gµν(R− 2Λ)−Rµν

]
= 0 ,

Θ
δ̂
=

√−g (dD−1x)µ

(∇ν ĥ
µν −∇µĥ

16π

)
, (87)

where ĥµν ≡ δ̂gµν . In the case when δ̂ = £ξ,

Jξ = Θξ − iξL =
√−g (dD−1x)µ

{−∇νξ
µν + 2Rµνξν
16π

−
(R− 2Λ

16π

)
ξµ
}

=
√−g (dD−1x)µ

(−∇νξ
µν

16π

)
= dQξ ,

=⇒ Qξ =
√−g (dD−2x)µν

(−ξµν

16π

)
, ξµν = ∇µξν −∇νξµ . (88)

One can further derive that for k(δ,£ξ) = δQξ − iξΘδ =
√−g (dn−2x)µνK

µν(δ,£ξ),

Kµν(δ,£ξ) =
1

16π

{
− δ(

√−g ξµν)√−g
+ ξµ(∇ρh

νρ −∇νh)− ξν(∇ρh
µρ −∇µh)

}
,

=
1

16π

{
− h

2
ξµν + hµρ∇ρξ

ν − hνρ∇ρξ
µ − (∇µhνρ −∇νhµρ)ξρ

+ξµ(∇ρh
νρ −∇νh)− ξν(∇ρh

µρ −∇µh)
}
. (89)
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