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ABSTRACT

In the background of a stationary black hole, the “conserved current” of a particular

spinor field always approaches the null Killing vector on the horizon. What’s more, when the

black hole is asymptotically flat and when the coordinate system is asymptotically static,

then the same current also approaches the time Killing vector at the spatial infinity. We

test these results against various black hole solutions and no exception is found. The spinor

field only needs to satisfy a very general and simple constraint.
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1 Introduction and Summary of Key Results

In [1] it was noticed that, for the Kerr black hole and the five dimensional Myers-Perry

black hole, there exists a particular vector field which interpolates between the time Killing

vector at the spatial infinity and the null Killing vector on the horizon. The existence

of such a vector field can be very interesting in that it may contain important (possibly

non-geometrical) information about the spacetime itself.

In this paper, we want to suggest that the existence of such a vector is a general feature

of all stationary black holes. For all the examples tested, the vector field always approaches

the null Killing vector on the horizon; when the black hole is asymptotically flat and when

the coordinate system is asymptotically static, then the same vector field also approaches

the time Killing vector at the spatial infinity. In [1], such features are interpreted as de-

scribing a possible fluid flow underlying the spacetime. Here, we want to leave the physical

interpretation behind and merely demonstrate the existence of the vector field.

The vector field is constructed using an auxiliary spinor field,

ξµ = cψψ̄γ
µψ , γµ = e

µ
A γA , (1)

where cψ is a constant and γA is defined in the vielbein basis, eA = eAµdx
µ. If ψ was to

obey the Dirac equation, then (1) is nothing but the conserved current of the spinor field.

Here we do not require ψ to be a Dirac fermion, but we will still occasionally refer to (1)

as the “conserved current” for simplicity.

For a stationary and axisymmetric black hole, it is empirically known that one can

always put the metric into one of the following forms [2]

ds2 = −ft∆(dt+ fadφ
a)2 +

fr

∆
dr2 + hidθ

i2 + gab(dφ
a − wadt)(dφb − wbdt) , (2)

ds2 = −ft∆(fadφ
a)2 +

fr

∆
dr2 + hidθ

i2 + gab(dφ
a − wadt)(dφb − wbdt) , (3)

where ∆ = ∆(r), and the functions ft, fa, fr, hi, gab and w
a only depend on r and θi’s. The

black hole horizon r0 is located at the (largest) root of ∆(r0) = 0. For many solutions,

one can explicitly choose the coordinate system to be non-rotating at the spatial infinity

(r → +∞), and the spatial coordinates can be identified with those from a usual spherical

coordinate system — namely the radius r, latitudinal angles θi (i = 1, · · · , [d2 ] − 1) and

azimuthal angles φa (a = 1, · · · , [d+1
2 ] − 1), where d is the dimension of the spacetime. In

such cases, one has [2]

wa → Ωa as r → r0 , (4)
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where Ωa is the angular velocity of the black hole in the φa direction.

It is also empirically known that the functions ft, fr, hi and the matrix (gab) can always

be made positive definite near the black hole horizon [2]. For this reason, one can always

rewrite (2) and (3) in terms of vielbeins,

ds2d = ηABe
AeB , A,B = 0, · · · , d− 1 , (5)

where η = diag{− + · · ·+}, and

e0 =
√
ft∆(dt+ fadφ

a) or e0 =
√
ft∆(fadφ

a) , e1 =

√
fr

∆
dr ,

e1+i =
√
hidθ

i (no summation over i) : i = 1, · · · , [d
2
]− 1 ,

e[
d
2
]+a : a = 1, · · · , [d+ 1

2
]− 1 , (6)

where e[
d
2
]+a’s are obtained by diagonalizing the last terms in (2) and (3). In general, (5)

and (6) are only well defined near the black hole horizon, where all the vielbeins in (6) are

real. But for many solutions given by (2), the functions ft, fr, hi and the matrix (gab) are

in fact positive definite in the whole region outside the black hole horizon [2]. So for these

solutions, (5) and (6) are well defined in the whole region outside the black hole horizon.

Our main result of this paper is to demonstrate the following two results:

Result #1: Given (2) (or (3)) and that the spinor field ψ obeys1

(γ0 + γd)ψ = 0 or (γ0 − γd)ψ = 0 , (7)

then (1) always reduces to (Note one can always normalized ψ to let ξt = 1.)

ξµ∂µ = ∂t + wa∂φa , (8)

which means

ξ2 =

{
−(1 + faw

a)2ft∆ : for(2) ,

−(faw
a)2ft∆ : for(3) ,

(9)

vanishes on the horizon. Since wa’s become constants on the horizon [2], ξ becomes

nothing but the null Killing vector on the horizon.

1All the gamma matrices in (7) are defined in the vielbein basis. In even dimensions,

γ
d
even = (−1)

d−2

4 γ
1
· · · γ

d−1
γ
0
, (γd

even)
† = γ

d
even , (γd

even)
2 = 1d ,

and in odd dimensions,

γ
d
odd = (−1)

d−1

4 γ
1
· · · γ

d−1
γ
0
∝ 1d , (γd

odd)
† = −γ

d
odd , (γd

odd)
2 = −1d ,

where 1d is the unit matrix in d dimensions.
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Result #2 When the black hole is asymptotically flat and when the coordinate system is

asymptotically static, then

wa → 0 as r → +∞ . (10)

So in this case, ξ interpolates between the time Killing vector at the spatial infinity

and the null Killing vector on the horizon.

Note one can only test (10) for cases where one can explicitly find the vielbeins that are

well defined in the whole region outside the black hole horizon. As a side remark, also note

that given (2) (or (3)) and (8),

∇µξ
µ = 0 , =⇒ ∇ρ∇µξ

ρ = Rµρξ
ρ , (11)

which partially justifies calling ξ the “conserved current”.

In the next section, we will use black hole solutions in various spacetime dimensions to

prove result #1. Then we will prove result #2 in the section that follows. After that, we

will conclude with a short discussion.

2 Testing Result #1

In this section, we will show that (8) is true for the general metrics given in (2) and (3).

Since both equations in (7) lead to the same result in (8), we will only use the first equation

of (7) in all the following calculations.

It is difficult to do the calculations for all dimensions at once, so we will only test

the result from three to eight dimensions. This should give us enough confidence in the

generality of the result.

2.1 d = 3

The gamma matrices in the dreibein basis are chosen as2

γ0 = iσ3 , γ1 = σ1 , γ2 = σ2 , (12)

where σ1,2,3 are the usual Pauli matrices. The spinor field is

ψ =


φ1a + iφ1b

φ2a + iφ2b


 , (13)

2Note (1) is independent of the choice of the gamma matrices.
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where all the functions are real. From the first equation in (7), we find

φ2a = φ2b = 0 . (14)

In three dimensions, (2) becomes

ds2 = −ft(dt+ fdφ)2 + frdr
2 + gp(dφ− wdt)2 . (15)

The corresponding dreibeins are

e0 =
√
ft(dt+ fdφ) , e1 =

√
frdr , e2 =

√
gp(dφ −wdt) . (16)

Plug (14) into (1), we find

ξµ = ∂t + w∂φ , (17)

just as given in (8).

Similarly, (3) becomes

ds2 = −ft(fdφ)2 + frdr
2 + gp(dφ− wdt)2 . (18)

The corresponding dreibeins are

e0 =
√
ft(fdφ) , e1 =

√
frdr , e2 =

√
gp(dφ− wdt) . (19)

Plug (14) into (1), we also get

ξµ∂µ = ∂t + w∂φ , (20)

as given in (8).

2.2 d=4

The gamma matrices in the vierbein basis are chose as

γ0 = iσ3 ⊗ 12 , γj = −σ2 ⊗ σj , j = 1, 2, 3 . (21)

The spinor field is

ψ =




φ1a + iφ1b

φ2a + iφ2b

φ3a + iφ3b

φ4a + iφ4b



, (22)

where all the functions are real. From the first equation in (7), we find

φ1a = φ3b , φ1b = −φ3a , φ2a = φ4b , φ2b = −φ4a . (23)
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In four dimensions, (2) becomes

ds2 = −ft(dt+ fdφ)2 + frdr
2 + fydθ

2 + gp(dφ− wdt)2 . (24)

The corresponding vierbeins are

e0 =
√
ft(dt+ fdφ) , e1 =

√
frdr , e2 =

√
fydθ , e3 =

√
gp(dφ− wdt) . (25)

Plug (23) into (1), we find

ξµ = ∂t + w∂φ , (26)

just as given in (8).

Similarly, (2) becomes

ds2 = −ft(fdφ)2 + frdr
2 + fydθ

2 + gp(dφ− wdt)2 . (27)

The corresponding vierbeins are

e0 =
√
ft(fdφ) , e1 =

√
frdr , e2 =

√
fydθ , e3 =

√
gp(dφ− wdt) . (28)

Plug (23) into (1), we find

ξµ = ∂t + w∂φ , (29)

also as given in (8).

2.3 d=5

The gamma matrices in the fuenfbein basis is taken to be

γ0 = iσ1 ⊗ 12 , γ4 = σ3 ⊗ 12 , γj = −σ2 ⊗ σj , j = 1, 2, 3 . (30)

The spinor field is

ψ =




φ1a + iφ1b

φ2a + iφ2b

φ3a + iφ3b

φ4a + iφ4b



, (31)

where all the functions are real. From the first equation in (7), we find

φ1a = φ3a , φ1b = φ3b , φ2a = φ4a , φ2b = φ4b . (32)
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In five dimensions, (2) becomes

ds2 = −ft(dt+ f1dφ1 + f2dφ2)
2 + frdr

2 + fydθ
2 + g22(dφ2 − w2dt)

2

+g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt)

]2
. (33)

The corresponding fuenfbeins are

e0 =
√
ft(dt+ f1dφ1 + f2dφ2) , e1 =

√
frdr , e2 =

√
fydθ ,

e3 =
√
g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt)

]
, e4 =

√
g22(dφ2 − w2dt) . (34)

Plug (32) into (1), we find

ξµ = ∂t +w1∂φ1 + w2∂φ2 , (35)

just as given in (8).

Similarly, (3) becomes

ds2 = −ft(f1dφ1 + f2dφ2)
2 + frdr

2 + fydθ
2 + g22(dφ2 −w2dt)

2

+g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt)

]2
. (36)

The corresponding fuenfbeins are

e0 =
√
ft(f1dφ1 + f2dφ2) , e1 =

√
frdr , e2 =

√
fydθ ,

e3 =
√
g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt)

]
, e4 =

√
g22(dφ2 − w2dt) . (37)

Plug (32) into (1), we find

ξµ = ∂t +w1∂φ1 + w2∂φ2 , (38)

also as given in (8).

2.4 d=6

The gamma matrices in the sechsbein basis are taken to be

γ0 = iσ1 ⊗ 14 , γ5 = σ3 ⊗ 14 , γj = −σ2 ⊗ γ
j
4 , j = 1, 2, 3, 4 , (39)

where γ1,2,3,44 are gamma matrices in the vierbein basis from four-dimensions, and we have

replaced γ04 by γ44 = −iγ04 . The spinor field is

ψ =




φ1a + iφ1b
...

φ8a + iφ8b


 , (40)
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where all the functions are real. From the first equation in (7), we find

φ1a = −φ3a , φ1b = −φ3b , φ2a = −φ4a , φ2b = −φ4b ,

φ5a = φ7a , φ5b = φ7b , φ6a = φ8a , φ6b = φ8b . (41)

In six dimensions, (2) becomes

ds2 = −ft(dt+ f1dφ1 + f2dφ2)
2 + frdr

2 + f11dθ
2
1 + f22dθ

2
2

+g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt)

]2
+ g22(dφ2 −w2dt)

2 . (42)

The corresponding sechsbeins are

e0 =
√
ft(dt+ f1dφ1 + f2dφ2) , e1 =

√
frdr , e2 =

√
f11dθ1 , e3 =

√
f22dθ2 ,

e4 =
√
g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt)

]
, e5 =

√
g22(dφ2 − w2dt) . (43)

Plug (41) into (1), we find

ξµ = ∂t +w1∂φ1 + w2∂φ2 , (44)

just as given in (8).

Similarly, (3) becomes

ds2 = −ft(f1dφ1 + f2dφ2)
2 + frdr

2 + f11dθ
2
1 + f22dθ

2
2

+g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt)

]2
+ g22(dφ2 − w2dt)

2 . (45)

The corresponding sechsbeins are

e0 =
√
ft(f1dφ1 + f2dφ2) , e1 =

√
frdr , e2 =

√
f11dθ1 , e3 =

√
f22dθ2 ,

e4 =
√
g11

[
dφ1 −w1dt+ g12(dφ2 − w2dt)

]
, e5 =

√
g22(dφ2 − w2dt) . (46)

Plug (41) into (1), we find

ξµ = ∂t +w1∂φ1 + w2∂φ2 , (47)

also as given in (8).

2.5 d=7

The gamma matrices in the siebbein basis are taken to be

γ0 = iσ1 ⊗ 15 , γ6 = σ3 ⊗ 15 , γj = −σ2 ⊗ γ
j
5 , j = 1, 2, 3, 4, 5 , (48)
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where γ1,2,3,4,55 are gamma matrices in the fuenfbein basis from five-dimensions, and we have

replaced γ05 by γ55 = −iγ05 . The spinor field is

ψ =




φ1a + iφ1b
...

φ8a + iφ8b


 , (49)

where all the functions are real. From the first equation in (7), we find

φ1a = φ5a , φ1b = φ5b , φ2a = φ6a , φ2b = φ6b ,

φ3a = φ7a , φ3b = φ7b , φ4a = φ8a , φ4b = φ8b . (50)

In seven dimensions, (2) becomes

ds2 = −ft(dt+ f1dφ1 + f2dφ2 + f3dφ3)
2 + frdr

2 + f11dθ
2
1 + f22dθ

2
2

+g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt) + g13(dφ3 − w3dt)

]2

+g22

[
dφ2 − w2dt+ g23(dφ3 − w3dt)

]2
+ g33(dφ3 −w3dt)

2 . (51)

The corresponding siebbeins are

e0 =
√
ft(dt+ f1dφ1 + f2dφ2 + f3dφ3) , e1 =

√
frdr , e2 =

√
f11dθ1 ,

e3 =
√
f22dθ2 , e4 =

√
g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt) + g13(dφ3 − w3dt)

]
,

e5 =
√
g22

[
dφ2 − w2dt+ g23(dφ3 − w3dt)

]
, e6 =

√
g33(dφ3 −w3dt) . (52)

Plug (50) into (1), we find

ξµ = ∂t + w1∂φ1 + w2∂φ2 + w3∂φ3 , (53)

just as given in (8).

Similarly, (3) becomes

ds2 = −ft(f1dφ1 + f2dφ2 + f3dφ3)
2 + frdr

2 + f11dθ
2
1 + f22dθ

2
2

+g11

[
dφ1 −w1dt+ g12(dφ2 − w2dt) + g13(dφ3 − w3dt)

]2

+g22

[
dφ2 − w2dt+ g23(dφ3 − w3dt)

]2
+ g33(dφ3 − w3dt)

2 . (54)

The corresponding siebbeins are

e0 =
√
ft(f1dφ1 + f2dφ2 + f3dφ3) , e1 =

√
frdr , e2 =

√
f11dθ1 ,

e3 =
√
f22dθ2 , e4 =

√
g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt) + g13(dφ3 − w3dt)

]
,
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e5 =
√
g22

[
dφ2 − w2dt+ g23(dφ3 − w3dt)

]
, e6 =

√
g33(dφ3 −w3dt) . (55)

Plug (50) into (1), we find

ξµ = ∂t + w1∂φ1 + w2∂φ2 + w3∂φ3 , (56)

also as given in (8).

2.6 d=8

The gamma matrices in the vielbein basis are taken to be

γ0 = iσ1 ⊗ 16 , γ7 = σ3 ⊗ 16 , γj = −σ2 ⊗ γ
j
6 , j = 1, 2, 3, 4, 5, 6 , (57)

where γ1,2,3,4,5,66 are gamma matrices in the sechsbein basis from six-dimensions, and we

have replaced γ06 by γ66 = −iγ06 . The spinor field is

ψ =




φ1a + iφ1b
...

φ16a + iφ16b


 , (58)

where all the functions are real. From the first equation in (7), we find

φ1a = φ7b , φ1b = −φ7a , φ2a = φ8b , φ2b = −φ8a ,

φ3a = φ5b , φ3b = −φ5a , φ4a = φ6b , φ4b = −φ6a ,

φ9a = −φ15b , φ9b = φ15a , φ10a = −φ16b , φ10b = φ16a ,

φ11a = −φ13b , φ11b = φ13a , φ12a = −φ14b , φ12b = φ14a . (59)

In eight dimensions, (2) becomes

ds2 = −ft(dt+ f1dφ1 + f2dφ2 + f3dφ3)
2 + frdr

2 + f11dθ
2
1 + f22dθ

2
2 + f33dθ

2
3

+g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt) + g13(dφ3 − w3dt)

]2

+g22

[
dφ2 −w2dt+ g23(dφ3 − w3dt)

]2
+ g33(dφ3 − w3dt)

2 . (60)

The corresponding vielbeins are

e0 =
√
ft(dt+ f1dφ1 + f2dφ2 + f3dφ3) , e1 =

√
frdr ,

e2 =
√
f11dθ1 , e3 =

√
f22dθ2 , e4 =

√
f33dθ3 ,

e5 =
√
g11

[
dφ1 −w1dt+ g12(dφ2 − w2dt) + g13(dφ3 − w3dt)

]
,

10



e6 =
√
g22

[
dφ2 − w2dt+ g23(dφ3 − w3dt)

]
, e7 =

√
g33(dφ3 − w3dt) . (61)

Plug (50) into (1), we find

ξµ = ∂t + w1∂φ1 + w2∂φ2 + w3∂φ3 , (62)

just as given in (8).

Similarly, (3) becomes

ds2 = −ft(f1dφ1 + f2dφ2 + f3dφ3)
2 + frdr

2 + f11dθ
2
1 + f22dθ

2
2 + f33dθ

2
3

+g11

[
dφ1 − w1dt+ g12(dφ2 − w2dt) + g13(dφ3 −w3dt)

]2

+g22

[
dφ2 − w2dt+ g23(dφ3 − w3dt)

]2
+ g33(dφ3 − w3dt)

2 . (63)

The corresponding vielbeins are

e0 =
√
ft(f1dφ1 + f2dφ2 + f3dφ3) , e1 =

√
frdr ,

e2 =
√
f11dθ1 , e3 =

√
f22dθ2 , e4 =

√
f33dθ3 ,

e5 =
√
g11

[
dφ1 −w1dt+ g12(dφ2 − w2dt) + g13(dφ3 − w3dt)

]
,

e6 =
√
g22

[
dφ2 − w2dt+ g23(dφ3 − w3dt)

]
, e7 =

√
g33(dφ3 − w3dt) . (64)

Plug (50) into (1), we find

ξµ = ∂t + w1∂φ1 + w2∂φ2 + w3∂φ3 , (65)

also as given in (8).

2.7 Summary of the section

To summarize this section, we have explicitly shown that (8) is true for any metric of the

form (2) or (3), given that (7) is satisfied. The calculation is only done in three through

eight dimensions. But we do not see any particular reason that such a pattern will break

down in higher dimensions. Given the fact that (2) and (3) are quite general structures

for all known stationary and axisymmetric black holes [2], one can conclude that result #1

holds for all such black holes.

3 Testing Result #2

In this section, we will use examples in different dimensions to demonstrate result #2. In

this case, we need to make sure that the coordinate system is non-rotating at the spatial

infinity and that the vielbeins (6) are well defined in the whole region outside the black hole

horizon. So more detail of each specific solution will be needed.
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3.1 d = 3

In three spacetime dimensions, an interesting example is the BTZ black hole [3],

ds2 = −fdt̂2 + dr2

f
+ r2

(
dφ̂− J

2r2
dt̂
)2
, f = −m+ g2r2 +

J2

4r2
, (66)

which solves the Einstein equation with a cosmological constant,

Rµν =
2Λ

d− 2
gµν , Λ = −(d− 1)(d − 2)

2
g2 . (67)

The coordinates in (66) are related to the static ones by

dt̂ =
1√

2(m− m̃)

( Jg√
m̃
dt+

√
m̃

g
dφ

)
,

dφ̂ =
1√

2(m− m̃)

( Jg√
m̃
dφ+ g

√
m̃dt

)
, (68)

where m̃ = m−
√
m2 − J2g2. Now the metric becomes

ds2 = − ∆r20
r20 − r2c

(
dt+

rc

gr0
dφ

)
+
dr2

∆
+
r20(r

2 − r2c )
2

r2(r20 − r2c )

[
dφ+

grc(r
2 − r20)

r0(r2 − r2c )
dt
]2
. (69)

where

∆ =
g2(r2 − r20)(r

2 − r2c )

r2
, rc =

J

2gr0
< r0 . (70)

For this metric, the horizon angular velocity is zero, Ω = 0.

The dreibeins can be read off (69) in a straightforward manor. From (1) and (14), we

find

ξµ∂µ = ∂t −
grc(r

2 − r20)

r0(r2 − r2c )
∂φ , (71)

just as given in (8). As r → +∞,

ξ → ∂t −
grc

r0
∂φ . (72)

For the BTZ black hole, one can never set g = 0, so ξ will not become the time Killing

vector at the spatial infinity. On the other hand, one sees that ξ = ∂t on the horizon when

r = r0. This is a peculiar feature of the BTZ black hole.

3.2 d=4

In four dimensions, we consider the rotating solution in U(1)4 gauged supergravity with

four charges pairwise equal [8]. The metric is given by (5) with the vierbeins,

e0 =

√
R

H(r2 + y2)

[
dt̂− a2 − y2

a(1− g2a2)
dφ̂

]
,
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e1 =

√
H(r2 + y2)

R
dr , e2 =

√
H(r2 + y2)

Y
dy ,

e3 =

√
Y

H(r2 + y2)

r1r2 + a2

a(1− g2a2)

[
dφ̂− a(1− g2a2)

r1r2 + a2
dt̂

]
, (73)

where r1 = r + 2ms21, r2 = r + 2ms22 and

R = r2 + a2 − 2mr + g2r1r2[r1r2 + a2] ,

Y = (1− g2y2)(a2 − y2) , H =
r1r2 + y2

r2 + y2
. (74)

The coordinates are related to the static ones by

dt̂ = dt , dφ̂ = dφ− g2adt . (75)

The horizon is located at R(r0) = 0, and the angular velocity is

Ω =
a(1 + g2r10r20)

r10r20 + a2
, (76)

where r10 = r1(r0) and r20 = r2(r0).

From (1) and (23), we find

ξµ∂µ = ∂t +
a(1 + g2r1r2)

r1r2 + a2
∂φ , (77)

just as given in (8). We see that ξ → ∂t+g
2a∂φ as r → +∞. The solution is asymptotically

flat when g = 0. In this case, ξ → ∂t as r → +∞.

It will also be interesting to consider the single-charge and two-charge rotating black

hole in the gauged supergravity [5, 6], and the four-charge black hole in the ungauged

supergravity [7, 8]. But for these solutions, we have not been able to put the metrics into

desired the form. So the corresponding calculation is not done.

3.3 d=5

In five dimensions, we consider the rotating solution in U(1)3 gauged supergravity with two

of the charges equal [10]. The metric is given by (5) with the fuenfbeins,

e0 =
h
1/6
3 r

√
X

h
2/3
1

√
r3
σt , e1 =

h
1/3
1 h

1/6
3√
X

dr , e2 =
h
1/3
1 h

1/6
3√

1− g2y2
dθ ,

e3 =
(a2 − b2)h

1/6
3

√
1− g2y2 cos θ sin θ

h
2/3
1 y

σa , e4 =
(abh3 + 2mc3s3y

2)σt + h1r3σb

h
2/3
1 h

1/3
3 y

√
r3

, (78)

where

σt =
1− g2y2

ZaZb
dt− a sin2 θ

Za
dφ1 −

b cos2 θ

Zb
dφ2 ,
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σa =
1 + g2r1

ZaZb
dt− a(a2 + r1)

Za(a2 − b2)
dφ1 +

b(b2 + r1)

Zb(a2 − b2)
dφ2 ,

σb =
g2ab(1− g2y2)

ZaZb
dt− b sin2 θ

Za
dφ1 −

a cos2 θ

Zb
dφ2 ,

y2 = a2 cos2 θ + b2 sin2 θ , Za = 1− g2a2 , Zb = 1− g2b2 ,

r1 = r2 + 2ms21 , r3 = r2 + 2ms23 , r2 = r2 − 2

3
m(2s21 + s23) ,

h1 = r1 + y2 , h3 = r3 + y2 , c1 =
√

1 + s21 , c3 =
√

1 + s23 ,

X = r−2
[
(r2 + a2)(r2 + b2) + g2(r1 + a2)(r1 + b2)r3

−2m(r2 − 2abc3s3 − a2s23 − b2s23)
]
. (79)

The gauge fields are

A1 = A2 =
2mc1s1
h1

σt , A3 =
2m[c3s3σt − (s21 − s23)σb]

h3
. (80)

The horizon is located at X(r0) = 0, and the angular velocities are

Ωa =
b(ab+ 2ms3c3) + a[1 + g2(r10 + b2)]r30
ab(ab+ 2ms3c3) + (r10 + a2 + b2)r30

,

Ωb =
a(ab+ 2ms3c3) + b[1 + g2(r10 + a2)]r30
ab(ab+ 2ms3c3) + (r10 + a2 + b2)r30

, (81)

where r10 = r1(r = r0) and r30 = r3(r = r0).

From (1) and (32), we find

ξµ∂µ = ∂t + w1∂φ1 +w2∂φ2 , (82)

with

w1 =
b(ab+ 2ms3c3) + a[1 + g2(r1 + b2)]r3
ab(ab+ 2ms3c3) + (r1 + a2 + b2)r3

,

w2 =
a(ab+ 2ms3c3) + b[1 + g2(r1 + a2)]r3
ab(ab+ 2ms3c3) + (r1 + a2 + b2)r3

. (83)

It is obvious that the result agrees with (8). In the limit r → +∞, we find

w1 = g2a+O(
1

r
) , w2 = g2b+O(

1

r
) . (84)

In the case g = 0, the solution is asymptotically flat, and we have ξ = ∂t as r → +∞.

It will also be interesting to consider the equal rotation solution in U(1)3 gauged su-

pergravity with arbitrary charges [9] and the Cvetič-Youm solution [11] in ungauged super-

gravity. But for these solutions, we have not been able to put the metrics into the desired

form. So the corresponding calculation is not done.
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3.4 d=6

In six dimensions, we consider the single-charge two-rotation solution in SU(2) gauged

supergravity found in [12]. The metric is given in (5) with the sechsbeins,

e0 =

√
R

H3/2U
A , e1 =

√
H1/2U

R
dr ,

e2 =

√
H1/2(r2 + y2)(y2 − z2)

Y
dy , e3 =

√
H1/2(r2 + z2)(z2 − y2)

Z
dz ,

e4 =

√
H1/2Y

(r2 + y2)(y2 − z2)
AY , e5 =

√
H1/2Z

(r2 + z2)(z2 − y2)
AZ , (85)

where (Note φ̂1 = φ1 − g2at and φ̂2 = φ2 − g2bt)

AY = dt− (r2 + a2)(a2 − z2)
dφ̂1

ǫ1
− (r2 + b2)(b2 − z2)

dφ̂2

ǫ2
− qrÃ
HU

,

AZ = dt− (r2 + a2)(a2 − y2)
dφ̂1

ǫ1
− (r2 + b2)(b2 − y2)

dφ̂2

ǫ2
− qrÃ
HU

,

A = dt− (a2 − y2)(a2 − z2)
dφ̂1

ǫ1
− (b2 − y2)(b2 − z2)

dφ̂2

ǫ2
,

R = (r2 + a2)(r2 + b2) + g2[r(r2 + a2) + q][r(r2 + b2) + q]− 2mr . (86)

More detail of the solution can be found in [12, 13].

From (1) and (41), we find that

ξµ∂µ = ∂t + w1∂φ1 +w2∂φ2 , (87)

with

w1 =
a[g2qr + (b2 + r2)(1 + g2r2)]

qr + (a2 + r2)(b2 + r2)
,

w2 =
b[g2qr + (a2 + r2)(1 + g2r2)]

qr + (a2 + r2)(b2 + r2)
. (88)

Note Ωa = w1(r0) and Ωb = w2(r0) are just the two angular velocities of the black hole. It

is obvious that the result agrees with (8). In the limit r → +∞, we find

w1 = g2a+O(
1

r
) , w2 = g2b+O(

1

r
) . (89)

In the case g = 0, the solution is asymptotically flat, and we have ξ = ∂t as r → +∞.

3.5 d=7

In seven dimensions, we consider the single-charge three-rotation solution in SO(5) gauged

supergravity found in [14]. The metric is given in (5) with the siebbeins,

e0 =

√
R

H8/5U
A , e1 =

√
H2/5U

R
dr ,

15



e2 =

√
H2/5(r2 + y2)(y2 − z2)

Y
dy , e3 =

√
H2/5(r2 + z2)(z2 − y2)

Z
dz ,

e4 =

√
H2/5Y

(r2 + y2)(y2 − z2)
AY , e5 =

√
H2/5Z

(r2 + z2)(z2 − y2)
AZ , e6 =

a1a2a3

ryz
A7 , (90)

where (Note φ̂i = φi − g2ait, i = 1, 2, 3.)

AY = dt−
3∑

i=1

(r̂2 + a2i )γi
a2i − y2

dφ̂i

ǫi
− q

HU
A , AZ = dt−

3∑

i=1

(r̂2 + a2i )γi
a2i − z2

dφ̂i

ǫi
− q

HU
A ,

A7 = dt−
3∑

i=1

(r̂2 + a2i )γi
a2i

dφ̂i

ǫi
− q

HU

(
1 +

gy2z2

a1a2a3

)
A , A = dt̂−

3∑

i=1

γi
dφ̂i

ǫi
,

R =
1 + g2r2

r2

3∏

i=1

(r2 + a2i ) + qg2(2r2 + a21 + a22 + a23)−
2qga1a2a3

r2
+
q2g2

r2
− 2m. (91)

More detail of the solution can be found in [13, 14].

From (1) and (50), we find

ξµ∂µ = ∂t + w1∂φ1 + w2∂φ2 + w3∂φ3 , (92)

with

w1 =
a1(r

2 + a22)(r
2 + a23)(1 + g2r2)− gq(a2a3 − a1gr

2)

(r2 + a21)(r
2 + a22)(r

2 + a23)− q(a1a2a3g − r2)
,

w2 =
a2(r

2 + a21)(r
2 + a23)(1 + g2r2)− gq(a1a3 − a2gr

2)

(r2 + a21)(r
2 + a22)(r

2 + a23)− q(a1a2a3g − r2)
,

w3 =
a3(r

2 + a21)(r
2 + a22)(1 + g2r2)− gq(a1a2 − a3gr

2)

(r2 + a21)(r
2 + a22)(r

2 + a23)− q(a1a2a3g − r2)
. (93)

Note Ω1 = w1(r0), Ω2 = w2(r0) and Ω3 = w3(r0) are the three angular velocities of the

black hole. It is obvious that the result agrees with (8). In the limit r → +∞, we find

w1 = g2a1 +O(
1

r
) , w2 = g2a2 +O(

1

r
) , w3 = g2a3 +O(

1

r
) . (94)

In the case g = 0, the solution is asymptotically flat, and we have ξ = ∂t as r → +∞.

3.6 d=8

In arbitrary dimensions, there is the Kerr-NUT-AdS solution found in [15]. Still we are not

able to discuss the general case of arbitrary dimensions. Here we will only consider the case

of eight dimensions (lower dimension ones are already covered in the previous examples).

Since the metrics obtained in [15] are already of the form (2), we do not need to repeat the
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calculation done in the last section. By comparing equation (13) in [15] with our metric

(60), we find that

wα =
aα(1 + g2r2)

r2 + a2α
, α = 1, 2, 3 . (95)

In the limit r → +∞, we find

wα = g2aα +O(
1

r
) , α = 1, 2, 3 . (96)

In the case g = 0, the solution is asymptotically flat, and we have ξ = ∂t as r → +∞.

It is straightforward to generalize the calculation to higher dimensions, and we expect

that the basic properties of the result stay the same.

3.7 Summary of the section

To summarize this section, we have shown that, when the black hole solutions are asymp-

totically flat and when the coordinate system is asymptotically static, then the vector field

(8) approaches the time Killing vector at the spatial infinity. Because of technical reasons,

we have not been able to do the calculation for several interesting examples. But it is quite

likely that result #2 will hold for all stationary black holes that have a well defined vielbein

expression outside the black hole horizon.

4 Summary

In this paper, we have constructed a vector field by using the “conserved current” of a

particular spinor field. We have shown that, in the background of a stationary black hole,

the vector field always approaches the null Killing vector on horizon. When the black hole is

asymptotically flat and when the coordinate system is asymptotically static, the same vector

field also becomes the time Killing vector at the spatial infinity. The required constraint on

the spinor field is simple and universal (valid for any spacetime dimensions).

It is still not clear as to the physical nature of the vector field or the corresponding spinor

field. Our original motivation for studying the vector field was to construct a possible fluid

flow underlying the spacetime [1]. For asymptotically flat black hole solutions, the behavior

of the vector field fits very well with our intuitive picture about the speculated fluid that

may underly our spacetime. One can imagine that the fluid is dragged by the black hole

horizon (Hence the same velocity on the horizon3). Then the angular velocity steadily

3Here we simply let U = ξ, where Uµ is the velocity of the fluid. We no longer assume U2 = −1 as was

done in [1].
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decreases until it vanishes at the spatial infinity. However, such a picture is still highly

hypothetical, and one should be open minded towards other possible explanations.

Another interesting possibility is to treat (8) as sort of generalized angular velocity

function. This may be offer some insight towards peculiar objects such as the BTZ black

hole [3, 16]. In particular, one may say that the black hole now has a finite angular velocity

at the spatial infinity, even though the horizon angular velocity is zero. Again, much more

work is needed before one can take such a possibility seriously.

Regardless of what the physical interpretation may be, it is unexpected and also quite

amazing that something like (7) and (8) can exist. Given the remarkable features summa-

rized in Result #1 and Result #2, it will be very interesting to see possible applications

of the vector field (8), or the corresponding spinor field (7), or both.
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[9] M. Cvetič, H. Lü and C. N. Pope, Charged rotating black holes in five dimensional U(1)3

gauged N = 2 supergravity, Phys. Rev. D70, 081502 (2004), [arXiv:hep-th/0407058].

[10] J. Mei and C. N. Pope, New Rotating Non-Extremal Black Holes in D=5 Maximal

Gauged Supergravity, Phys. Lett. B 658, 64 (2007) [arXiv:0709.0559 [hep-th]].

[11] M. Cvetic and D. Youm, General Rotating Five Dimensional Black Holes of Toroidally

Compactified Heterotic String, Nucl. Phys. B 476, 118 (1996) [arXiv:hep-th/9603100].

[12] D. D. K. Chow, Charged rotating black holes in six-dimensional gauged supergravity,

Class. Quant. Grav. 27, 065004 (2010) [arXiv:0808.2728 [hep-th]].
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