Review

Bilayer dimensions and hydration of glycolipids

Derek Marsh *

Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany

Article history:
Received 5 August 2011
Received in revised form
28 September 2011
Accepted 12 October 2011
Available online 18 October 2011

Keywords:
Glycosyl diacylglycerol
Glycosyl dialkylglycerol
X-ray diffraction
Chain tilt
Lipid area
Glycolipid hydration

Abstract

X-ray diffraction measurements are available on a wide range of glycolipid multilamellar assemblies in excess water, but not at the defined water contents that are needed to derive bilayer dimensions. For lamellar crystalline phases and gel phases with untitled chains, or where the tilt angle is known, the cross-sectional area per chain from wide-angle diffraction can be used to determine the area per lipid molecule at the bilayer surface. Using the lipid molecular volume from densimetry, it is then possible to obtain the bilayer thickness and hence, from the lamellar repeat spacing, the water layer thickness and degree of hydration of the lipid polar groups. This is done here by using the available data for bilayer-forming diacyl and dialkyl glycosyglycerols, and for certain glycosphingolipids. The lamellar crystalline phases of these glycolipids are largely anhydrous, and the degree of hydration of the lamellar gel phases is much lower than that of the corresponding phosphoglycolipid gel phases. A point of current uncertainty is whether the chains in the gel phases of diacyl glycosyglycerolipids are appreciably tilted, unlike their dialkyl counterparts.

© 2011 Elsevier Ireland Ltd. All rights reserved.

Contents

1. Introduction .. 23
2. Mathematical background ... 24
3. Chain-length dependence of lamellar repeat spacings 25
4. From lipid areas and repeat spacings to bilayer thickness and lipid hydration .. 26
5. 1,2-Diacyl-3α-β-gluco-syglycerol 26
6. 1,2-Diacyl-3β-galacto-syglycerol 27
7. Dialkyl-β-o-monoglycosyglycerol 27
8. 1,2-Diacyl-3β-D-diosyl, -triosyl and -oligoglycosyglycerol 28
9. 1,2-Diacyl-3β-o-glucuronosyl-syglycerol 29
10. Glycosphingolipids .. 29
11. Conclusion .. 30
Acknowledgement ... 30
Appendix A ... 30
References ... 30

1. Introduction

Glycolipids are important constituents of nerve cell membranes, Gram positive bacteria, and also the photosynthetic membranes of all green plants. Compared with membrane phospholipids, however, they are less intensively studied from the biophysical standpoint. Whereas there are several detailed studies by X-ray diffraction on homologous series of diacyl or dialkyl glycosyglycerols in excess water (Sen et al., 1990; Mannock et al., 2001; Hinz et al., 1991; Köberl et al., 1998; Mannock et al., 2007), only in few cases has a systematic water dependence been performed (Turner et al., 1992; Minamikawa and Hato, 1997) to determine the bilayer membrane thickness by the approaches used originally for phospholipids (Luzzati, 1968; Tardieu et al., 1973). Possibly one reason for this is that the degree of hydration of glycolipid bilayers appears to be considerably lower than that of phospholipid membranes (Turner et al., 1992; Kulkarni et al., 1999), which is reflected in their higher chain-melting transition temperatures (cf. Cevc and Marsh, 1985). Lipid hydration affects not only the membrane phase state, but is also one of the primary determinants of bilayer–bilayer interactions, with associated implications for membrane fusion and cell–cell interactions.

* Tel.: +49 551 2011285; fax: +49 551 2011501.
E-mail address: dmarsh@gwdg.de

0009-3084/S – see front matter © 2011 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.chemphyslip.2011.10.003
More recently, greater detail has been attained in defining the transverse structure of phospholipid bilayers by an in-depth analysis of the electron density profiles, and in some cases of the neutron scattering-length profiles (Nagle and Tristram-Nagle, 2000; Tristram-Nagle et al., 2002; Kucerka et al., 2008). Such measurements and analysis have yet to be developed to this degree of detail for glycolipids, which lack the electron-dense phosphate group that characterises the polar region of phospholipids. Although, a few determinations of electron density profiles have been performed for glycolipids or their mixtures with phospholipids (Ruocco and Shipley, 1986; Stinson and Boggs, 1989; Sen et al., 1990; McIntosh and Simon, 1994; Kulkarni et al., 1999).

Here, I combine the available data on X-ray long spacings, i.e., lamellar repeat distances, with those of the short spacings, i.e., chain–chain separations, of glycolipids in excess water to obtain information on the membrane thickness and polar head-group hydration in the crystalline lamellar phases and lamellar gel phases. In the absence of more extensive measurements of the types indicated above for phospholipids, this represents the current status for glycolipid bilayers and points to some of the uncertainties and opportunities for future work.

2. Mathematical background

The transverse dimensions of lipid bilayer membranes can be determined from the composition (n_w water per lipid) and the one-dimensional bilayer repeat distance, d_{100}, measured with small-angle X-ray scattering of stacked multilayers (see Fig. 1). If A_l is the area per lipid molecule in the plane of the bilayer, the total volume (per lipid) of the bilayer stack is related to the multilayer repeat distance by:

\[n_l + n_w v_w = \frac{A_l d_{100}}{2} \]

(1)

where \(n_l = M_l / N_A \) and \(v_w = M_w v_{w} / N_A \) are the molecular volumes of lipid and water, respectively, and \(N_A \) is Avogadro’s number. Following Luzzati (Luzzati, 1968; Tardieu et al., 1973), an anhydrous bilayer thickness, \(d_l \), can be defined as:

\[d_l = \frac{2n_l}{A_l} \]

(2)

Then, by combining Eqs. (1) and (2), the X-ray repeat distance is related to the anhydrous lipid layer thickness by:

\[d_{100} = d_l \left[1 + \left(\frac{n_w}{v_l} \right) n_w \right] \]

(3)

Correspondingly, the thickness of the interlamellar water layer, \(d_w \) (assumed to contain all water), is given by:

\[d_w = d_{100} - d_l \]

(4)

This idealised division of water and lipid into separate layers does not take account of water penetration into the lipid bilayer. Nonetheless, it does correspond to a well-defined physical location, namely the Gibbs dividing surface of the lipid–water interface.

According to Eq. (3), the anhydrous bilayer thickness, \(d_l \), can be determined from the dependence of the repeat spacing on water content by using Eq. (3). The area per lipid, \(A_l \), is then obtained from Eq. (2). For crystalline or gel phases with ordered chains, the tilt of the chains (\(\theta_l \)), relative to the bilayer normal, is then obtained from \(A_l \) by using the geometric relation:

\[\cos \theta_l = \frac{2A_{ch}}{A_l} \]

(5)

where \(A_{ch} \) is the area/chain in the plane perpendicular to the chains (a two-chain lipid is assumed). The latter is obtained from the chain–chain spacings, in wide-angle X-ray scattering measurements.

Conventionally, the dimensions of fully hydrated lipid bilayers are determined by swelling experiments in which the limiting hydration, \(n_{w,max} \), is obtained from the dependence on water content (see Fig. 2). Unfortunately, such water dependences are reported for relatively few glycolipids. Nevertheless, for phases with ordered chains, it is possible to invert the standard procedure, if the chain tilt or area per lipid is known from other means. It has been pointed out that gravimetric determinations of the type illustrated in Fig. 2 can overestimate \(n_{w,max} \), if not all water is accommodated uniformly between the multilayers but partly is incorporated in defect regions that do not give rise to sharp lamellar diffractions (Koenig et al., 1997; Nagle and Tristram-Nagle, 2000). This problem does not arise, however, if the limiting hydration is determined by other means, from measurements solely on fully hydrated samples. The latter approach is that adopted in the procedure used here.

Gel phases with untitled chains can be identified from the single, sharp chain reflection in the wide-angle region, which is a diagnostic feature of the untitled \(L_B \) phase (see, e.g., McIntosh, 1980).
Because the chains in crystalline phases are in the all-trans configuration, information on chain tilt or area per lipid can be obtained from the dependence of the X-ray repeat spacing on lipid chain length. If the lipid hydration does not vary with chain length, the tilt angle, θ_h, is related to the increment, d_{CH_2}, in repeat spacing per methylene group by:

$$\cos \theta_h = \frac{d_{CH_2}}{d_{CH_2}} \tag{6}$$

where d_{CH_2} is the increment per methylene group along the chain direction, which has the value $d_{CH_2} = 0.127$ nm (Smith, 1953) for a rigorously all-trans chain. Eq. (6) only can be applied usefully to analysing chain-length dependences of the long spacing if d_{CH_2} is constant, which is a reasonable assumption for crystalline phases. This is not the case, however, for the gel phases of disaturated phosphatidylcholines, where the area per chain, A_{ch}, varies systematically with lipid chain length (Tristram-Nagle et al., 1993; Sun et al., 1996). For the glycolipid gel phases that are considered here, measurements of A_{ch} do not display a systematic dependence on chain length (Sen et al., 1990; Köberl et al., 1998; Mannock et al., 2007), but the scatter is sometimes comparable to the systematic trends found with phosphatidylcholines (see Fig. 3). This point is considered further in Appendix A.

Additionally, the crystalline L_c phases of glycolipids are often essentially anhydrous (Köberl et al., 1998), and it is then possible to estimate the chain tilt from the repeat spacing at a single chain length, because $d_{CH_2} \approx 0$ and $d_t \approx d_{100}$.

3. Chain-length dependence of lamellar repeat spacings

Fig. 4 gives the chain-length dependence of the bilayer repeat spacing, d_{100}, for different series of glycosyl diacylglycerols dispersed in excess water, in the ordered – either crystalline (L_c) or gel (L_g) – phases. The long spacing depends approximately linearly on chain length for each glycolipid series at fixed temperature in a given phase. Table 1 lists the increments in repeat spacing, d_{CH_2}, per methylene group that are obtained by linear regression with these, and also with dialkyl, lipid series. For the dialkyl glycosylglycerols, the increments are close to the value of d_{CH_2} expected for an all-trans chain, indicating that the chains are essentially untitled in the ordered phases. As pointed out in the original publications, however, the increments for the diacyl monoglycosyglycerols are considerably smaller than expected for an all-trans chain. If Eq. (6) is applicable, this would imply a pronounced tilt of the chains ($\theta_h \approx 30^\circ$) in both L_c and L_g phases of the glycolipid bilayers with ester-linked chains. The result is surprising for gel phases, because the same polar groups are involved as for the lipids with ether-linked chains, and the cross-sectional areas of these monohexoses are sufficiently small as not to exceed that of the two lipid chains. In addition, only a single sharp wide-angle reflection characteristic of the untitled L_g structure is reported for the diacyl glucosyglycerol gel phases (Sen et al., 1990). Possibly the low values of d_{CH_2} for the diacyl glycolipid

Table 1

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Phase</th>
<th>d_{CH_2} (nm)</th>
<th>θ_h (°)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O-n:0)_Glc_DG</td>
<td>L_c</td>
<td>0.122 ± 0.0007</td>
<td>15 ± 12</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-n:0)_Gal_DG</td>
<td>L_c</td>
<td>0.127 ± 0.011</td>
<td>18 ± 7</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(n:0)_Glc_DG</td>
<td>L_g</td>
<td>0.124 ± 0.007</td>
<td>14 ± 6</td>
<td>Mannock et al. (2007)</td>
</tr>
<tr>
<td>(n:0)_Glc_DG</td>
<td>L_g</td>
<td>0.103 ± 0.002</td>
<td>28 ± 3</td>
<td>Mannock et al. (2007)</td>
</tr>
<tr>
<td>(n:0)_Gal_DG</td>
<td>L_g</td>
<td>0.110 ± 0.001</td>
<td>33 ± 1</td>
<td>Mannock et al. (2007)</td>
</tr>
<tr>
<td>(n:0)_Gal_DG</td>
<td>L_g</td>
<td>0.116 ± 0.003</td>
<td>24 ± 4</td>
<td>Mannock et al. (2007)</td>
</tr>
</tbody>
</table>

* Effective chain tilt, calculated from Eq. (6) with a fixed value of $d_{CH_2} = 0.127$ nm. Uncertainty ranges are those obtained from the linear regressions (see Fig. 1).
gel phases are attributable to systematic changes in A_{ch} with chain length, as for phosphatidylcholines, even though no trend is evident to within the reported precision of the wide-angle spacings for $(n:0)_{2}$GlcGro l_p phases (see Fig. 3). Such reservations do not apply, however, to the crystalline L_c phases, where the chains are truly all-trans. Unlike the gel phases, both tilted and non-tilted crystalline polymorphs are known for lipids with small polar groups, such as phosphatidylethanolamines (Seddon et al., 1983).

4. From lipid areas and repeat spacings to bilayer thickness and lipid hydration

In principle, the chain tilt angles in Table 1 can be combined with the area per chain, A_{ch}, obtained from the wide-angle X-ray spacings (see, e.g., Marsh, 2011, 2012 and Fig. 3), to give the area per lipid, A_l, at the bilayer surface by using Eq. (5). Combining this with the volume per lipid molecule, n, obtained from densitometry (see, e.g., Marsh, 2010), then yields the bilayer thickness, d_l, by using Eq. (2). The water-layer thickness, d_w, is then obtained directly from d_l and the measured lamellar repeat distance, d_{100}, by using Eq. (4). Finally, the degree of lipid hydration ($n_{w,max}$, waters per lipid) is obtained from Eq. (3), by using once more the lipid molecular volume, n. Note that the molecular volume of water is $v_w = 0.030$ nm3. The value obtained for $n_{w,max}$ in this way is independent of any assumptions about the relative distribution of water and lipid, because Eq. (3) simply represents additivity of the total volumes of the water and lipid components, as embodied in Eq. (1).

Application of this method to glycolipid L_c phases indicates that the crystalline states are essentially anhydrous. In this case, the method can be reversed by using the condition $n_{w,max} = 0$ (i.e., $d_l \approx d_{100}$) to calculate the tilt angle, θ_l, for individual chain lengths, instead of assuming an average tilt for all chain lengths as is done from the linear regression results in Table 1.

As already mentioned, a further alternative exists for untitled chains because these may be identified for a single lipid species from the single, sharp chain reflection in the wide-angle region, which is a diagnostic feature of the untitled l_p phase (see, e.g., McIntosh, 1980). In this case, it can be assumed that $\theta_l = 0$ without recourse to the chain-length dependence of the long spacing.

5. 1,2-Diacyl-3-α-D-glucosyl-sn-glycerol

Small-angle and wide-angle X-ray data for the 1,2-$(n:0)_{2}$GlcGro homologous series of glucosyl diacylglycerols in excess water were obtained by Sen et al. (1990). A single sharp reflection that is characteristic of nontilted, hexagonally packed chains is found in the wide-angle region from bilayers in the l_p gel phase (cf. Tardieu et al., 1973; McIntosh, 1980). Thus, in spite of the results from the chain-length dependence of the long spacing (discussed above in Section 3), a value of $\theta_l = 0$ is used to calculate the bilayer thickness and lipid hydration for the l_p phase in Table 2. (For comparison, corresponding values that are obtained by assuming a tilt of $\theta_l = 28^\circ$ from Table 1 are given in parentheses.) Partial support for assuming that the chains are almost untitled in the gel phase is given in Appendix A.

The number of waters per lipid does not show any systematic trend with chain length, n, for the l_p phase of the $(n:0)_{2}$GlcGro series. At full hydration, the mean number of waters per lipid that is calculated by assuming that the chains are not tilted is $n_{w,max} = 2.1 \pm 0.4$ mol/mol. (For a tilt of 28° the number calculated is correspondingly larger: $n_{w,max} = 7.6 \pm 0.6$ mol/mol.)

From the chain-length dependence of the long spacing, the mean tilt angle of the chains in the crystalline L_c phase is 35° (see Table 1). A calculation of the number of waters per lipid on this basis reveals that $n_{w,max} \approx 0$ for the crystalline L_c phase, and therefore the condition $n_{w,max} = 0$ is assumed to calculate tilt angles for the individual chain lengths in Table 2. The individual tilt angles are all

Table 2

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Phase</th>
<th>T (°C)</th>
<th>$n_{w,max}$ (mol/mol)</th>
<th>d_l (nm)</th>
<th>d_w (nm)</th>
<th>A_l (nm2)</th>
<th>θ_l (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10:0)$_2$GlcDG</td>
<td>L_c</td>
<td>0</td>
<td>0</td>
<td>3.38</td>
<td>0</td>
<td>0.493</td>
<td>40</td>
</tr>
<tr>
<td>(11:0)$_2$GlcDG</td>
<td>L_c</td>
<td>0</td>
<td>0</td>
<td>3.58</td>
<td>0</td>
<td>0.491</td>
<td>40</td>
</tr>
<tr>
<td>(12:0)$_2$GlcDG</td>
<td>L_c</td>
<td>0</td>
<td>0</td>
<td>3.78</td>
<td>0</td>
<td>0.488</td>
<td>37</td>
</tr>
<tr>
<td>(13:0)$_2$GlcDG</td>
<td>L_c</td>
<td>0</td>
<td>0</td>
<td>4.01</td>
<td>0</td>
<td>0.479</td>
<td>37</td>
</tr>
<tr>
<td>(14:0)$_2$GlcDG</td>
<td>L_c</td>
<td>20</td>
<td>1.8</td>
<td>4.90</td>
<td>0.27</td>
<td>0.407</td>
<td>0</td>
</tr>
<tr>
<td>(15:0)$_2$GlcDG</td>
<td>L_c</td>
<td>20</td>
<td>0</td>
<td>4.31</td>
<td>0.86</td>
<td>0.463</td>
<td>28</td>
</tr>
<tr>
<td>(16:0)$_2$GlcDG</td>
<td>L_c</td>
<td>20</td>
<td>0</td>
<td>4.15</td>
<td>0</td>
<td>0.481</td>
<td>33</td>
</tr>
<tr>
<td>(17:0)$_2$GlcDG</td>
<td>L_c</td>
<td>20</td>
<td>0</td>
<td>5.09</td>
<td>0.26</td>
<td>0.407</td>
<td>0</td>
</tr>
<tr>
<td>(18:0)$_2$GlcDG</td>
<td>L_c</td>
<td>20</td>
<td>0</td>
<td>5.33</td>
<td>0.45</td>
<td>0.407</td>
<td>0</td>
</tr>
<tr>
<td>(19:0)$_2$GlcDG</td>
<td>L_c</td>
<td>20</td>
<td>0</td>
<td>4.69</td>
<td>0.10</td>
<td>0.463</td>
<td>28</td>
</tr>
<tr>
<td>(20:0)$_2$GlcDG</td>
<td>L_c</td>
<td>20</td>
<td>0</td>
<td>4.55</td>
<td>0</td>
<td>0.481</td>
<td>39</td>
</tr>
</tbody>
</table>

* Diffraction data from Sen et al. (1990). Values for l_p phases are calculated assuming zero chain tilt (see main text and Appendix A). Values in parentheses are calculated assuming the effective chain tilts for l_p phases obtained from the chain length dependence of the long spacing (Table 1).
reasonably close to the mean tilt angle of $\theta_1 = 35^\circ \pm 1^\circ$ that is given for the L_c phase of this series in Table 1.

Because partial specific volumes, $\bar{\nu}$, are not available for this series of lipids, these are assumed to be equal to those for the corresponding (O-18:0)$_2$GlcBGs (Hinz et al., 1991) in calculating the molecular volumes ($\nu = M/\bar{\nu}$). Note that, to within the reported precision of the short spacings, the area per chain, A_{ch}, of the (n:0)$_2$GlcDGs does not vary with chain length, n (see Fig. 3).

6. 1,2-Diacyl-3-β-D-galactosyl-sn-glycerols

Only low-angle diffraction data are available for the 1,2-(n:0)$_2$GalβGro homologous series (Mannock et al., 2001). Because the increments in long spacing, d_{ch}, are similar to those for the 1,2-(n:0)$_2$GlcGro series (see Table 1), it can be assumed that the chain cross-sectional areas are also similar. Therefore, a value of $A_{ch} = 0.204 \text{ nm}^2$ is taken for the chain cross-sectional area in the L_p phase, and a value of $A_{ch} = 0.188 \text{ nm}^2$ in the L_c phase. Table 3 gives the hydration levels of the L_p phases that are calculated in the same way as for those of the (n:0)$_2$GlcDG series in Table 2. Again, the partial specific volumes of the (O-18:0)$_2$GlcBGd series (Hinz et al., 1991) are used in calculating the molecular volumes.

The hydration levels calculated for the L_p phase of the galactosyl dialcglycerols are comparable to those of the corresponding glucosyl dialcglycerols. The mean number of waters per lipid at full hydration is found to be: $n_{w,\text{max}} = 3.1 \pm 0.3 \text{ mol/mol}$, assuming that the chains are not tilted. ($n_{w,\text{max}} = 6.9 \pm 0.6 \text{ mol/mol}$, if a tilt of 24° is assumed from Table 1.) A small, but non-zero, level of hydration is calculated for the L_c phases of the galactosyl dialcglycerols if the mean tilt angle of $\theta = 33^\circ \pm 1^\circ$ is taken from Table 1. If alternatively it is assumed that the L_c phase is not hydrated, as is done for the glucosyl dialcglycerols in Table 2, then the individual chain tilt angles that are calculated for the galactosyl dialcglycerols lie in the range 25° to 29°, which is somewhat less than the mean value that is deduced from the chain-length dependence of the long spacing in Table 1.

7. Dialkyl-β-D-monoglycosyl-glycerols

Table 4 summarises collected data for the L_c and L_p phases of 1,2-dialkyl-3-β-D-glucosyl-sn-glycerols, 1,2-dialkyl-3-β-D-galactosyl-sn-glycerols, 1,2-dialkyl-3-β-D-mannosyl-sn-glycerols, 2,3-dialkyl-1-β-D-galactosyl-sn-glycerol, dialkyl-β-D-galactosyl-rac-glycerols and dialkyl-β-D-galactosyl-rac-glycerols. Where a value of the cross-sectional area per chain, A_{ch}, is not available for the L_c phases, it is assumed to be the same as that for n-alkanes: $A_{ch} = 0.182 \text{ nm}^2$ (see Köberl et al., 1998).

For the L_c phases of (O-10:0)$_2$-, (O-12:0)$_2$- and (O-16:0)$_2$GlcBGd, and of (O-16:0)$_2$- and (O-18:0)$_2$GlcBGd, it is assumed that the crystalline phase is not hydrated ($n_{w,\text{max}} = 0$). The resulting chain tilt angles are nonzero, but small and similar, which is consistent with the chain-length dependence of d_{100} (see Table 1). Conversely, it is assumed from Table 1 that the chain tilt angle is zero ($\theta_1 = 0$) for the L_p phases, and also for the L_c phases, of (O-10:0)$_2$- and (O-14:0)$_2$GlcBGd, and of (O-14:0)$_2$- and (O-18:0)$_2$GlcBGd. The resulting degrees of hydration, represented by d_{op} and n_{w}, are relatively small for the L_p phases and essentially zero for the L_c phases. Gravimetric determinations of the degree of hydration ($n_{w,\text{max}} = 6.3$ and 7 mol/mol) for the L_p gel phases of (O-12:0)$_2$- and (O-14:0)$_2$GlcBGd (Turner et al., 1992; Seddon et al., 2003) lead to tilt angles of $\theta_1 = 19^\circ$ and 23°, which are somewhat greater than the mean of the (O-10:0)$_2$GlcBGd series in Table 1, but lie within the uncertainty range. As already noted, gravimetric methods tend to overestimate $n_{w,\text{max}}$ if part of the water is incorporated in defect regions outside the regular multilamellae (Koenig et al., 1997; Nagle and Tristram-Nagle, 2000).

Taken collectively, the data for the 1,2-dialkyl glucosylglycerols are consistent with close to no chain tilt for the L_c and L_p phases, essentially dehydrated L_c phases, and low degrees of hydration for the L_p phases (mean value $n_{w,\text{max}} = 4.3 \pm 1.5 \text{ mol/mol}$, in both glucosyl and galactosyl glycerolipid series. This applies also for the 2,3-dialkyl galactosyl species in Table 4. In general, the degree of hydration of the L_p phases of the dialkyl glycosyl glycerols appears...
Table 4

Dimensional parameters of fully hydrated multilayers of 1,2-dialkyl-3-β-D-mono-oligosaccharide-sn-glycerols (1,2-((O-α-D-Glc)β-O-0.6)2GlycβGro, where Glyc = Glc, Gal, Man) and racemic mixtures (rac-((O-α-D-Glc)β-O-0.6)2GalβDG), deduced from X-ray long spacings and short spacings.

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Phase</th>
<th>T (°C)</th>
<th>(n_{w,\text{max}}) (mol/mol)</th>
<th>(d_i) (nm)</th>
<th>(d_m) (nm)</th>
<th>(A_i) (nm(^2))</th>
<th>(\theta_i) (°)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O-10:0)(_2)GlcβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.01</td>
<td>5.42</td>
<td>0.74</td>
<td>0.373</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-10:0)(_2)GalβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.2</td>
<td>5.84</td>
<td>0.21</td>
<td>0.396</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-10:0)(_2)LacβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.38</td>
<td>0.20</td>
<td>0.371</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>rac-((O-12:0)(_2)GlcβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.79</td>
<td>0.19</td>
<td>0.379</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-14:0)(_2)GlcβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.6</td>
<td>5.28</td>
<td>0.12</td>
<td>0.366</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>rac-((O-14:0)(_2)GlcβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.6</td>
<td>5.49</td>
<td>0.19</td>
<td>0.372</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>rac-((O-15:0)(_2)GlcβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.86</td>
<td>0.74</td>
<td>0.400</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-16:0)(_2)GlcβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.63</td>
<td>0.19</td>
<td>0.372</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-16:0)(_2)GalβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.65</td>
<td>0.12</td>
<td>0.379</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-16:0)(_2)LacβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.76</td>
<td>0.12</td>
<td>0.379</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-16:0)(_2)ManβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.79</td>
<td>0.19</td>
<td>0.390</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-18:0)(_2)GlcβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.28</td>
<td>0.12</td>
<td>0.366</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-18:0)(_2)GalβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.76</td>
<td>0.12</td>
<td>0.379</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-18:0)(_2)LacβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.86</td>
<td>0.74</td>
<td>0.400</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>rac-((O-18:0)(_2)GlcβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>5.63</td>
<td>0.19</td>
<td>0.372</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
</tbody>
</table>

\(a\) Calculated assuming \(A_{\text{m}} = 0.212 \text{nm}^2\) (Köberl et al., 1998); \(n_{w,\text{max}}\) is determined from the hydration dependence in Fig. 2.

\(b\) Determined from the hydration dependence (Seddon et al., 2003).

\(c\) sn-1 stereoisomer. Unless specifically stated otherwise, the sn-3 stereoisomer is normally assumed.

to be comparable to that of the \(L_\beta\) phases of the diacyl glycosylglycerols, assuming that the latter are also unilamellar (compare Table 4 with Tables 2 and 3).

Data for the lipid series with racemic glycerol backbone, rac-((O-α-D-Glc)β-O-0.6)2GalβDG, are also given in Table 4. Here, the crystalline \(L_c\) phases are assumed to be completely dehydrated (\(n_{w,\text{max}} = 0\)), and the \(L_\beta\) gel phases are taken to have a small tilt of \(\theta_i = 14^\circ\) from Table 1. Partial specific volumes for the racemic mixtures are taken to be approximately the same as for the corresponding 1,2-(O-α-D-Glc)β-O-0.6)2GalβDG or 1,2-(O-α-D-Glc)β-O-0.6)2GalβDG lipids (Hinz et al., 1991). The resulting tilt angles for the \(L_c\) phases are all small, and close to the mean value for the different chain lengths that is given in Table 1. The degrees of hydration that are deduced for the \(L_\beta\) phases of the rac-dialkyl galactosylglycerols (mean value \(n_{w,\text{max}} = 5.0 \pm 0.6\) mol/mol) are mostly similar to those for the corresponding 1,2-enantiomer.

8. 1,2-Dialkyl-3-β-D-diosyl-triisoyl and -oligolactosyl-sn-glycerols

Table 5 presents data for the \(L_c\) and \(L_\beta\) phases of dialkyl glycosylglycerols with polar groups that have higher degrees of glycosylation, from two to six hexose units (viz., Lac3). For the oligolactose dialkylglycerol, (O-16:0)2Lac3βDG, the molecular volumes are based on (O-16:0)2MalβDG (Köberl et al., 1998), with 0.192 nm\(^3\) (Marsh, 2010) for each further hexose unit.

It is assumed that the \(L_c\) phases are essentially dehydrated (\(n_{w,\text{max}} \approx 0\)), and the resulting chain tilts for (O-16:0)2LacβDG and

Table 5

Dimensional parameters of fully hydrated multilayers of 1,2-dialkyl-3-β-D-diosyl-sn-glycerols (1,2-((O-α-D-Glc)β-O-0.6)2GlycβGro, where Glyc = Mal, Lac3, -triisoyl-sn-glycerols (1,2-(O-α-D-Glc)β-O-0.6)2MalβDG, and -oligolactosyl-sn-glycerols (1,2-(O-α-D-Glc)β-O-0.6)2LacβDG,) deduced from X-ray long spacings and short spacings.

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Phase</th>
<th>T (°C)</th>
<th>(n_{w,\text{max}}) (mol/mol)</th>
<th>(d_i) (nm)</th>
<th>(d_m) (nm)</th>
<th>(A_i) (nm(^2))</th>
<th>(\theta_i) (°)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O-14:0)(_2)MalβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>6.24</td>
<td>0.32</td>
<td>0.388</td>
<td>0</td>
<td>Hinz et al. (1991)</td>
</tr>
<tr>
<td>(O-16:0)(_2)MalβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.9</td>
<td>6.74</td>
<td>0.46</td>
<td>0.382</td>
<td>0</td>
<td>Hinz et al. (1991)</td>
</tr>
<tr>
<td>(O-16:0)(_2)LacβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>6.71</td>
<td>0.19</td>
<td>0.384</td>
<td>0</td>
<td>Köberl et al. (1998)</td>
</tr>
<tr>
<td>(O-16:0)(_2)LacβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.6</td>
<td>6.80</td>
<td>0.21</td>
<td>0.379</td>
<td>0</td>
<td>Schneider et al. (2003)</td>
</tr>
<tr>
<td>(O-16:0)(_2)LacβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.6</td>
<td>6.31</td>
<td>0.21</td>
<td>0.390</td>
<td>0</td>
<td>Schneider et al. (2003)</td>
</tr>
<tr>
<td>(O-18:0)(_2)MalβDG</td>
<td>(L_\beta)</td>
<td>20</td>
<td>2.0</td>
<td>7.32</td>
<td>0.75</td>
<td>0.398</td>
<td>0</td>
<td>Hinz et al. (1991)</td>
</tr>
</tbody>
</table>

\(a\) β-α-D-maltosyl + α-D-glucosyl-1 → 4 β-α-D-gluco-syl; β-α-D-lactosyl + β-D-glucosyl-1 → 4 β-α-D-gluco-syl; β-α-D-maltotriosyl + α-D-glucosyl-1 → 4 α-β-D-glucosyl-1 → 4 β-α-D-gluco-syl; Lacβ3 = 3 β-α-D-lactosyl-1 → 3 β-α-D-lactosyl-1 → 3 β-α-D-lactosyl.
9. 1,2-Dialkyl-3-β-D-glucuronosyl-sn-glycerol

Table 6 gives data for the gel phase of the carboxyl-bearing glycolycerolipid (O-18:0)2GLcUAβGro at pH 1.6 where it is uncharged and at pH 10 where it is negatively charged. By analogy with the other dialkyl glycolycerolipids (see Table 1), it is assumed that the lipid chains in the Lc phase are untitled: \(\theta = 0 \). At 20°C, the degree of hydration deduced for the uncharged lipid \(n_{w, max} \approx 5 \) mol/mol is similar to that for other uncharged dialkyl glycolycerolipids (cf. Table 4), whereas the charged lipid is more strongly hydrated \(n_{w, max} = 7 \) mol/mol.

(i.e., \(n_{w, max} = 0 \)). The tilt angles resulting from these calculations are mostly relatively small for the monoglycosyleramides, particularly for galactosyl ceramides with saturated N-acyl chains. From the results presented in Table 7, it seems reasonable to assume that the chains of the stable LC2 polymorph are not tilted. Indeed, for the LC2 phases of GalCer(d18:1/18:1), GalCer(d18:1/18:2) and LacCer(d18:1/16:0), it is necessary to postulate a limited degree of hydration because the repeat spacing is somewhat greater than that predicted for the lipid completely without tilt (i.e., \(\theta = 0 \)).

A water dependence has been performed for a negatively charged glycolycerolipid, namely sulphatide (1′SO3GalCer). It is found that the long spacing of the LC phase is not changed by addition of water (Saxena et al. 2000a), and is therefore anhydrous. Data for this LC phase are included in Table 7. The tilt of the sulphatide chains is also relatively small.

11. Conclusion

When combined with data from wide-angle diffraction (and densitometry), X-ray long spacings in excess water are able to provide information on the bilayer thickness and hydration of the crystalline and gel phases of lipid bilayers. This is without performing the usual water dependence in a multilayer swelling experiment (see Eqs. (1)–(5)). This method has been applied previously in a limited number of cases (Köberl et al. 1998). The application here to the available database for diacyl and dialkyl glycolycerolipids, and some glycosphingolipids, shows that the crystalline phases are almost anhydrous and that hydration of the gel phase is much less than that of the corresponding glycosphospholipids.

A caveat for gel-phase diacyl monoglycosyldiacylglycerols is that the chain-length dependence of the long spacing is less than would be expected for untitled chains (Sen et al. 1990; Mannock et al. 2001). Particularly the 1,2-(n:0)2GLcαDGs are anomalous, in
that the wide-angle reflections are characteristic of an untitled L_β phase but indicate no change in area per chain with chain length that could explain the low incremental changes in long spacing. Clearly direct determinations of chain tilts are needed in aligned glycolipid bilayers (cf. Tristram-Nagle et al., 1993), and also precise measurements of the chain-length dependence of the x-ray short spacings (cf. Sun et al., 1996).

Acknowledgement

I gratefully acknowledge Christian Griesinger and the Dept. for NMR-based structural biology for financial support.

Appendix A.

Chain-length dependence of the repeat spacing for phosphatidycholine gel phases.

For the gel phase of disaturated phosphatidycholines, both the degree of hydration (n_h) and the area per lipid molecule (A_i) are independent of the lipid chain length (Tristram-Nagle et al., 1993; Sun et al., 1996). In addition, the x-ray long spacings, depend linearly on chain length, n_c (see Fig. A1). Under these boundary conditions, differentiating Eq. (1) in the main text with respect to n_c gives the chain-length dependence of the long spacing as:

$$\frac{\partial d_{100}}{\partial n_c} = \frac{2}{A_i} \left(\frac{\partial n_l}{\partial n_c} \right)$$ \hspace{1cm} (A.1)

For (n:0)$_2$PCs at 19 °C, $\partial n_l/\partial n = 0.02270 \pm 0.00014 \text{nm}^2/\text{CH}_2$ (Tristram-Nagle et al., 1993). From Fig. A1 and Eq. (A.1), the area per lipid is then: $A_i = 0.485 \pm 0.012 \text{nm}^2$, which agrees reasonably well with the constant value of $A_i = 0.473 \pm 0.006 \text{nm}^2$ deduced by Tristram-Nagle et al. (1993) from direct measurements of chain tilts for the individual chain lengths.

For phosphatidycholine gel phases, both chain tilt (θ_i) and chain cross-sectional area (A_{ch}, see Fig. 3) vary with chain length in a compensating fashion, such that the lipid area A_i remains constant. At 19 °C, the chain tilt ranges from $\theta_i = 32 \pm 5^\circ$ for (16:0)$_2$PC to $\theta_i = 35 \pm 5^\circ$ for (20:0)$_2$PC (Tristram-Nagle et al., 1993), whereas the apparent value deduced from Eq. (6) in the main text by assuming that $\partial d_{100}^{\text{cross}}$ is constant is: $\theta_i = 43 \pm 1^\circ$. This result from the chain-length dependence of d_{100} is clearly an overestimate, because θ_i increases with increasing chain length.

Whereas the chain cross-sectional area of the 1,2-diacyl-3-α,ω-glucoaryl-sn-glycerol gel phases is reported not to vary with chain length (unlike the phosphatidylcholine gel phases – see Fig. 3), there are no wide-angle X-ray data available for the gel phases of the 1,2-diacyl-3-β,ω-galactosyl-sn-glycerols. Therefore, it is interesting to explore the consequences of applying Eq. (A.1) (i.e., the assumption of constant n_h and A_i) to the chain-length dependence of the long spacings for the gel phases of these glycolipids.

Densitometric data are not available for the diacyl glycolipids, but for (O:n:0)$_2$GlcBDGs: $\partial d_{100}/\partial n_c = 0.0226 \pm 0.0006 \text{nm}^2/\text{CH}_2$ in the gel phase at 20 °C (Marsh, 2010). Using this volumetric increment per CH$_2$ group, and $\partial d_{100}/\partial n_c = 0.223 \pm 0.006$ and 0.232 ± 0.007 nm/CH$_2$ from Table 1, then yields areas per lipid of $A_i = 0.41 \pm 0.02$ and 0.39 ± 0.02 nm2 for the (n:0)$_2$GlcCerG and (n:0)$_2$GalβG, respectively, in the L_α phases. These areas lie close to twice the cross-sectional area of a lipid chain: $2A_{ch} = 0.404 \pm 0.008 \text{nm}^2$, which is the smallest value that the area per lipid may take, and would imply that the chains are not appreciably tilted in the gel phase of these diacyl glycolipids. That all chain lengths have rigorously zero tilt is, of course, contrary to the model with constant area per lipid, A_i.

Application of Eq. (A.1) to the gel phase of the (O:n:0)$_2$GlcBDGs yields an apparent area per lipid: $A_i = 0.36 \pm 0.04 \text{nm}^2$, which is less than the minimum possible value (i.e., $2A_{ch}$). A qualitatively similar, if not more anomalous, result is obtained for the L_α phase of the (O:n:0)$_2$GalβG. The assumption of constant n_h and A_i seems not to apply to the L_α and L_c phases of these dialkyl glycolipids, which calls into question whether it applies either to the diacyl glycolipids.

References