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Coherent wide parameter-space searches for continuous gravitational waves are typically limited
in sensitivity by their prohibitive computing cost. Therefore semi-coherent methods (such as Stack-
Slide) can often achieve a better sensitivity. We develop an analytical method for finding optimal
StackSlide parameters at fixed computing cost under ideal conditions of gapless data with Gaussian
stationary noise. This solution separates two regimes: an unbounded regime, where it is always op-
timal to use all the data, and a bounded regime with a finite optimal observation time. Our analysis
of the sensitivity scaling reveals that both the fine- and coarse-grid mismatches contribute equally
to the average StackSlide mismatch, an effect that had been overlooked in previous studies. We
discuss various practical examples for the application of this optimization framework, illustrating
the potential gains in sensitivity compared to previous searches.

I. INTRODUCTION

Motivation. The detection of continuous gravitational
waves (CWs) from spinning neutron stars (NSs) in our
galaxy remains an elusive goal, despite the global net-
work of detectors LIGO [1], Virgo [2] and GEO 600 [3]
having completed their initial and enhanced science runs
(e.g. see [4–7]). The search for CWs will likely remain
a difficult challenge with uncertain prospects even in the
era of Advanced detectors [8–10] and third-generation de-
tectors such as ET [11]. Two main reasons for this are (i)
astrophysical priors on CWs and (ii) the large parameter
space of signal parameters to explore (cf. [12] for a review
and further references).

(i) Current astrophysical priors contain large uncer-
tainties on the expected strength of CW emissions from
spinning NSs, with a strong bias towards extremely weak
signals, informed by the population of known pulsars
as well as by a statistical analysis of a putative galac-
tic “gravitar” population [13]. (ii) The required number
of templates for a coherent matched-filter search over a
range of unknown signal parameters typically grows very
rapidly with increasing duration of data analyzed. There-
fore only a fraction of the available data can be analyzed
coherently (e.g. see [14–16]).

It was realized early on [17] that in situations where the
total computing cost of the search is constrained, a semi-
coherent approach could typically achieve better sensi-
tivity than coherent matched filtering: shorter segments
of data are analyzed coherently, then the statistics from
these segments are combined incoherently. One method
of incoherent combination simply consists of summing
the statistics from the different segments, which is typi-
cally referred to as the “StackSlide” method in the CW
context (also known as the Radon transform). The tem-
plate bank used for the semi-coherent combination of
coherent statistics is referred to as the fine grid, as it
typically requires a higher resolution than the template
banks of the per-segment coherent searches (referred to
as coarse grids). Details of the respective template banks

will be discussed in Sec. III D.
There are a number of different semi-coherent meth-

ods: for example, recent work [18] has shown that Stack-
Slide sensitivity can be improved by a sliding coherence-
window approach. A closely related variant to StackSlide
is the Hough transform [19], which counts the number of
segments in which the statistic crosses a given thresh-
old, instead of summing the statistics. This is generally
less sensitive, but is designed to be more robust in the
presence of strong non-stationarities. A somewhat differ-
ent semi-coherent approach are cross-correlation meth-
ods, described in more detail in [20].

Related to the semi-coherent methods are the so-
called hierarchical schemes, which consist of following
up “promising” candidates from a (coherent or semi-
coherent) search by subsequent, more sensitive searches,
referred to as “stages”. This procedure is iterated until
the parameter space of surviving candidates is sufficiently
narrowed down for a fully coherent follow-up using all the
data. Work on implementing such schemes in practice is
still ongoing.

Optimization problem. In this paper we focus on the
standard single-stage StackSlide method, which was also
used in previous optimization studies [17, 21], and is rel-
atively straightforward to describe analytically.

Any search method contains a number of tuneable pa-
rameters, such as the template-bank mismatch, the data
selection procedure, and the number and length of seg-
ments to analyze. Hierarchical schemes would further
require specification of the number of stages and the re-
spective distributions of computing costs and candidate
thresholds. The sensitivity of a search generally depends
on all these choices, and we therefore need to study how
to maximize sensitivity as a function of these parameters.

This optimization problem has been studied previously
by Brady and Creighton [17] (henceforth ’BC’) and sub-
sequently by Cutler, Gholami and Krishnan [21] (in the
following ’CGK’). Both studies have focused on the wider
problem of optimizing a multi-stage hierarchical scheme
of StackSlide stages, and have directly resorted to fully
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numerical exploration of the optimization problem. Here
instead we focus on the simpler single-stage search, which
allows us to fully analytically analyze the problem. In the
next step this can be used as a building block to attack
the optimization of hierarchical schemes.

Note that for a network of detectors with different
noise-floors, the choice of detectors to use at fixed com-
puting cost is be part of the optimization problem, but
under the present assumption of “ideal data” the answer
can be obtained independently [22]. More work is re-
quired to develop a practical algorithm to compute the
optimal search parameters for given data from a network
of detectors, including gaps, non-stationarities and vari-
ous detector artifacts.

Summary of main results. Careful analysis of the sensi-
tivity scaling shows that the average StackSlide mismatch
is given by the sum of the average mismatches from the
coarse- and fine-grid template banks, an effect that had
previously been overlooked. Note that we allow for inde-
pendent coarse- and fine-grid mismatches, while BC and
CGK forced them to be equal as an ad-hoc constraint.

The analytic optimization is achieved by using local
power-law approximations to the computing-cost and
sensitivity functions. The results provide analytic self-
consistency conditions for the optimal solution: if the
initial power-law coefficients agree with those found at
the analytic solution, then the solution is self-consistent
and (locally) optimal. If this is not the case, one can iter-
ate over successive solutions or scan a range of StackSlide
parameters, in order to “bootstrap” into a self-consistent
optimal solution.

We find that the analytic solution for StackSlide
searches separates two different regimes depending on the
power-law coefficients: a bounded regime in which there
is a finite optimal observation time, and an unbounded
regime in which the optimal solution always consists of
using all of the available data, irrespective of the available
computing-cost.

Plan of the paper. In Sec. II we discuss the general CW
optimization problem, which includes the single-stage
StackSlide search as the lowest-level building block. In
Sec. III we derive the sensitivity estimate and computing-
cost functions for StackSlide searches, and motivate their
approximation as local power-laws. After deriving in
Sec. IV the general analytical solution and discussing a
few special cases, we provide examples for the practical
application of this framework in Sec. V: directed searches,
all-sky searches, and searches for CWs from NSs in bi-
nary systems.

II. MAXIMIZING PROBABILITY OF A CW
DETECTION

The goal for wide parameter-space CW searches for
unknown signals should be to maximize the probability
of detection, given current astrophysical priors, detector
data, and finite computing resources. Conceptually one

can think of this problem as a hierarchy of two questions:

(i) What parameter-space P ⊆ P(0) to search? More
generally: how to distribute the total available
computing power C0 over the space P(0) of possi-
ble CW signals, given astrophysical priors, detector
data and an (optimal) search method?

(ii) What is the optimal search method? Namely,
which method yields the highest detection proba-
bility pdet on a parameter-space cell ∆P if we spend
computing-cost ∆C on it?

The answer to the first question relies on the second,
but we can analyze the lower-level second question inde-
pendently of the first. There has been surprisingly little
work on this problem so far. The first question has hardly
been addressed at all, except for recent work by Knispel
[23]. The second question has been studied previously
by BC [17] and CGK [21], assuming a specific type of
hierarchical scheme, which we refer to as the classical
hierarchical scheme (CHS).

In the CHS one performs a hierarchy of semi-coherent
searches (called stages), starting with a relatively low-
sensitivity search over the whole initial parameter space
P(1). Promising candidates crossing the first-stage
threshold are selected and constitute the search sub-
space P(2) ⊂ P(1) for the second, higher-sensitivity stage.
This is iterated until eventually after m such stages a
fully-coherent search over all the data can be performed
on the surviving candidates. At this point one has
reached the maximal possible sensitivity for a small por-
tion P(m) ⊂ P(1) of the initial parameter space.

Each stage (i) is characterized by its input parameter-

space P(i), a computing-cost constraint C
(i)
0 and a false-

alarm probability p
(i)
fA . Each stage selects a candidate

subspace P(i+1) ⊂ P(i) to follow up in the next stage.
An optimal per-stage search would result in the highest

detection probability p
(i)
det for given signal strength hrms

and constraints {p(i)
fA , P(i), C

(i)
0 }. The tuneable CHS pa-

rameters are therefore the number m of stages and the

per-stage constraints {p(i)
fA , C

(i)
0 }. These can be varied

in order to maximize the overall detection probability
pdet(hrms) for the given total signal parameter-space P(0),

computing cost C0 =
∑m
i=1 C

(i)
0 and false-alarm proba-

bility pfA =
∏m
i=1 p

(i)
fA .

This formulation of the CHS suggests that each stage
(i) could be considered an independent optimization

problem for given external constraints {p(i)
fA ,P(i), C

(i)
0 }, if

none of its internal parameters interfere with the over-
all hierarchical scheme. One might contend that the
parameter-space resolution of the search violates this
clean factorization: the follow-up space P(i+1) from stage
(i) depends on its parameter-space resolution, which
might impact the required computing-cost of the next
stage. However, it is easy to see that (to first order) such
a coupling is not expected. The number of candidates
Ncand returned from any stage (except for the last one)
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will be dominated by the number NfA of false alarms.
Therefore Ncand ≈ NfA ≈ pfAN , where N is the num-
ber of (approximately) independent templates searched
in this stage. This can be estimated as N ≈ VP/v0, in
terms of the (metric) volume VP of the parameter space
P, and the volume v0 covered by one template. Therefore
the number Ncand of follow-up candidates from any stage
does indeed depend on its parameter-space resolution,
which depends on the internal stage parameters. How-
ever, the computing cost of the next stage depends pri-
marily on the volume of the follow-up parameter-space,
which is VfA ≈ NfA v0 ≈ pfA VP, and is therefore inde-
pendent of internal stage parameters. It is interesting to
note that each stage (i) in this scheme achieves a reduc-
tion of the input parameter-space volume by roughly a

factor of the false-alarm probability p
(i)
fA , irrespective of

the internal details of that search.

The optimal per-stage search method is essentially un-
known, but following BC and CGK we focus on a known
good strategy, namely the StackSlide method. While dif-
ferent semi-coherent methods differ in the details and
their exact sensitivity, they share the main characteris-
tics of coherently searching N shorter segments of length
∆T , and combining them incoherently in some way. We
roughly expect the sensitivity per cost of different meth-
ods to behave qualitatively similarly to the StackSlide
method, but more work would be required to study this
in detail.

III. PROPERTIES OF A SINGLE-STAGE
STACKSLIDE SEARCH

The general StackSlide scheme consists of dividing the
data (of total duration T ) into N segments of duration
∆T = T/N , then performing a coherent matched-filter
search on each segment and combining these statistics in-
coherently to a new statistic Σ by summing them across
segments. The coherent matched-filter statistic used is
the F-statistic, which was first derived in [24] and ex-
tended to multiple detectors in [25]. Using the same
amount of data as a fully coherent search, the resulting
semi-coherent statistic is less sensitive, but substantially
cheaper to compute over a wide parameter space. At
fixed computing cost a semi-coherent search is therefore
generally more sensitive than a fully coherent F-statistic
search.

Notation: we distinguish quantities Q that can refer to
either the coherent or the incoherent step in the following

way: we use a tilde, i.e. Q̃ when referring to the coherent

step, and a hat, i.e. Q̂ when referring to the incoherent
step. For the following derivations we restrict ourselves
to a single-detector formalism for simplicity, but we state
the (trivial) generalization to Ndet ≥ 1 detectors of rele-
vant results.

A. The StackSlide search method

Let k = 1 . . . N be the index over segments, and λ ∈ P
a point in the search space P of signal parameters. The
“ideal” StackSlide statistic Σ0(λ) is defined as

Σ0(λ) ≡
N∑

k=1

2Fk(λ) , (1)

i.e. a simple sum of F-statistic values {2Fk(λ)}Nk=1 com-
puted at the same template point λ across all N seg-
ments.

This would require computing the F-statistic over the
same template bank as Σ0 in every segment. However,
the metric resolution of Σ0 is generally finer than that
of the single-segment F-statistics [26], and therefore this
approach would spend unnecessary computing cost on
the coherent F-statistic. In practice F is therefore com-

puted over a coarse grid of Ñ templates in each segment
k, and is interpolated in order to sum F on the fine grid

of N̂ ≥ Ñ templates (e.g. see [27]).
Typically the interpolation consists of picking the clos-

est (in the metric sense) coarse-grid point λ̃k(λ̂) to the

fine-grid point λ̂ from every segment k, i.e. we approxi-
mate Eq. (1) by

Σ(λ̂) ≡
N∑

k=1

2Fk
(
λ̃k(λ̂)

)
≈ Σ0(λ̂) , (2)

which we refer to as the “interpolating” StackSlide statis-
tic Σ. The following sensitivity optimization focuses ex-
clusively on this interpolating StackSlide method, which
is the most relevant approach for current practical ap-
plications. The subtle difference between interpolating
StackSlide Σ and ideal StackSlide Σ0 with respect to its
sensitivity and mismatches has been overlooked in previ-
ous studies, and will be important for the optimization
problem.

B. Mismatch and metric

1. F-statistic mismatch

In the presence of a signal timeseries s(t, λs) with phase

parameters λs, the statistic 2Fk(λ̃) in a point λ̃ follows a
non-central χ2-distribution with four degrees of freedom

and non-centrality parameter ρ2
k(λs, λ̃). We denote this

probability distribution as

P
(
2Fk|ρ2

k

)
= χ2

4(2Fk; ρ2
k) , (3)

which has the expectation value

E
[
2Fk(λs, λ̃)

]
= 4 + ρ2

k(λs, λ̃) . (4)

The quantity ρk is often referred to as the coherent signal-
to-noise ratio (SNR). In the case of a perfectly-matched
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template λ̃ = λs, the resulting “optimal” SNR [24] in
segment k can be expressed as

ρ2
k(λs, λs) =

2

Sn

∫ tk+∆T

tk

s2(t, λs) dt

≡ 2

Sn
h2

rms,k ∆T , (5)

where tk is the start-time of the kth segment, Sn is the
(single-sided) noise power spectral density at the signal
frequency fs. In the second equality we defined the rms
signal strength hrms,k [21] in segment k, which is a use-
ful measure of the intrinsic signal strength in the detec-
tors, independently of the quality and the amount of data
used.

The signal strength hrms,k depends on the intrinsic
signal amplitude h0, the sky-position, polarization an-
gles, and detector orientation during segment k. One
can show [24, 28] that averaging h2

rms,k isotropically over
sky-positions and polarization angles yields the relation
〈h2

rms,k〉sky,pol = (2/25)h2
0. Furthermore, for segment

lengths of order ∆T & O (1 days), the averaging in
Eq. (5) results in hrms,k tending towards a constant over
all segments. Therefore it will be convenient to approxi-
mate hrms,k ≈ hrms, and so we can write

ρ2
k(λs, λs) ≈

2

Sn
h2

rms ∆T ≡ ρ2
opt(∆T ) , (6)

which defines the average optimal SNR ρopt for given
segment length ∆T .

Note that this approximation only applies to the
perfectly-matched SNR ρk(λs, λs). The “mismatched”

SNR ρk(λs, λ̃) in an offset template λ̃ = λs + ∆λ is re-
duced with respect to the optimal SNR ρopt(∆T ). The
corresponding relative loss defines the (segment-specific)

mismatch function µ̃k(λs, λ̃), namely

µ̃k(λs, λ̃) ≡ 1− ρ2
k(λs, λ̃)

ρ2
opt(∆T )

= g̃ij,k(λs) ∆λi ∆λj +O
(
∆λ3

)
, (7)

where Taylor-expansion for small offsets ∆λ defines the
(coherent) metric tensor g̃ij,k(λ) for segment k. The con-
cept of the parameter-space metric was first introduced
in [29, 30], and analyzed in the context of a simplified
CW statistic [14] and the F-statistic [31].

The per-segment coarse-grid template bank is con-
structed under the constraint that no signal point λs ∈ P
should exceed a given maximal mismatch m̃ to its clos-
est (i.e. with the smallest mismatch) coarse-grid template

λ̃k(λs), namely

µ̃k

(
λs, λ̃k(λs)

)
≤ m̃ for all λs ∈ P . (8)

2. Mismatch of “ideal” StackSlide

The “ideal” StackSlide statistic Σ0 defined in Eq. (1)
is the basis for the definition of the semi-coherent metric

[17, 26, 32]). The statistic Σ0 follows a non-central χ2-
distribution with 4N degrees of freedom, denoted as

P
(
Σ0|ρ2

Σ0

)
= χ2

4N (Σ0; ρ2
Σ0

) , (9)

with non-centrality parameter

ρ2
Σ0

(λs, λ̂) ≡
N∑

k=1

ρ2
k(λs, λ̂) , (10)

where λs are the signal parameters and λ̂ is the location
of a fine-grid template. The corresponding expectation
value is

E
[
Σ0(λs, λ̂)

]
= 4N + ρ2

Σ0
. (11)

The perfectly-matched non-centrality parameter
ρ2

Σ0
(λs, λs) can be expressed as

ρ2
Σ0

(λs, λs) =
N∑

k=1

ρ2
k(λs, λs)

= Nρ2
opt(∆T )

= ρ2
opt(T ) , (12)

which is identical to that of a perfectly-matched F-
statistic over the same total duration T , as seen from
Eq. (6). The reason why the StackSlide statistic Σ0 is
less sensitive than the F-statistic for the same amount
of data T stems from the different degrees of freedom
of the respective distributions, namely χ2

4(ρ2) for the F-
statistic as opposed to χ2

4N (ρ2) for StackSlide Σ0.

The mismatch function µ̂0(λs, λ̂) of ideal StackSlide is
defined in analogy to Eq. (7) as

µ̂0(λs, λ̂) ≡ 1−
ρ2

Σ0
(λs, λ̂)

ρ2
opt(T )

= ĝij(λs) ∆λi ∆λj +O
(
∆λ3

)
, (13)

where ∆λ ≡ λ̂−λs is the offset between the fine-grid tem-

plate λ̂ and the signal location λs, and Taylor-expansion
in small ∆λ defines the (semi-coherent) metric tensor ĝij .
Using Eqs. (12) and (7), we can rearrange the expression
for the mismatch as

µ̂0(λs, λ̂) =
1

N

N∑

k=1

µ̃k(λs, λ̂)

≈

(
1

N

N∑

k=1

g̃ij,k(λs)

)
∆λi∆λj , (14)

which shows that the ideal StackSlide mismatch µ̂0 and
metric ĝij are segment-averages of the coherent mis-
matches and metrics, respectively.

The fine-grid template bank of a StackSlide search is
constructed under the constraint that no signal point
λs ∈ P should exceed a given maximal mismatch m̂ to its
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closest (i.e. with the smallest mismatch) fine-grid tem-

plate λ̂(λs), namely

µ̂0

(
λs, λ̂(λs)

)
≤ m̂ for all λs ∈ P . (15)

3. Mismatch of “interpolating” StackSlide

We can now combine the above results to derive the
mismatch of the interpolating StackSlide statistic Σ de-
fined in Eq. (2). This statistic follows a non-central χ2

4N
distribution, namely

P
(
Σ|ρ2

Σ

)
= χ2

4N (Σ; ρ2
Σ) , (16)

with non-centrality parameter

ρ2
Σ(λs, λ̂) ≡

N∑

k=1

ρ2
k

(
λs, λ̃k(λ̂)

)
, (17)

where λs are the signal phase parameters, and λ̃k(λ̂) is
the closest coarse-grid template in segment k to the fine-

grid point λ̂.

The mismatch function µ̂(λs, λ̂) of interpolating Stack-
Slide is therefore

µ̂(λs, λ̂) ≡ 1− ρ2
Σ(λs, λ̂)

ρ2
opt(T )

=
1

N

N∑

k=1

µ̃k

(
λs, λ̃k(λ̂)

)
, (18)

which allows us to express the mismatched non-centrality
parameter as

ρ2
Σ(λs, λ̂) =

(
1− µ̂(λs, λ̂)

)
ρ2

opt(T ) . (19)

The extra offset per-segment, δλk ≡ λ̃k(λ̂)− λ̂, incurred

due to using the closest coarse-grid point λ̃k(λ̂) instead of

the fine-grid point λ̂ tends to increase the mismatch with
respect to the ideal mismatch function µ̂0 of Eq. (14). In
order to quantify this effect, we write the effective per-

segment offset from a signal as ∆λ̃k ≡ λ̃k(λ̂)− λs, while

the ideal per-segment offset would be ∆λ̂ ≡ λ̂ − λs. We

can write ∆λ̃k = ∆λ̂ + δλk, and inserting this into the
coherent-metric of Eq. (7) we obtain (neglecting higher-
order terms O

(
∆λ3

)
):

µ̃k

(
λs, λ̃k(λ̂)

)
= g̃ij,k ∆λ̃ik∆λ̃jk

= µ̃k(λs, λ̂) + g̃ij,k δλ
i
k δλ

j
k + 2g̃ij,k ∆λ̂i δλjk , (20)

where in the first term we recover the ideal per-segment
mismatch function of Eq. (14), the second term repre-
sents an extra mismatch due to the offset δλk, while
the last term depends on the opening angle θk of the

λs

λ̂
λ̃k(λ̂)

θk

∆λ̃k
∆λ̂

δλk

FIG. 1: Mismatch triangle formed by the signal point λs, clos-

est fine-grid template λ̂, and the coarse-grid template λ̃k(λ̂)

closest to λ̂ in segment k.

mismatch triangle (see Fig. 1), namely 2|∆λ̂||δλk| cos θk,
with mismatch norm defined as |x|2 ≡ g̃ij,k xixj .

We assume that the fine-grid point λ̂ falls randomly
into the Wigner-Seitz cell of the closest coarse-grid tem-

plate λ̃k(λ̂) in segment k. Given that the coarse-grid
metric g̃ij,k generally varies across segments, we further
assume that the offset δλk approximates a uniform ran-
dom sampling of the coarse-grid Wigner-Seitz cell. In-
serting Eq. (20) into (18), we see that the average over the

angle-term |∆λ̂||δλk| cos θk will tend to zero, as any sign
of cos θk is equally likely, while the average norm |δλk|2
will tend to the average mismatch 〈µ̃〉 of the coarse-grid
template bank, and so we obtain

µ̂(λs, λ̂) ≈ µ̂0(λs, λ̂) + 〈µ̃〉 . (21)

When estimating the sensitivity of the interpolating
StackSlide statistic, we will further average this expres-
sion over randomly-chosen signal locations λs, and there-
fore the above approximate averaging expressions will be-
come exact, and we obtain

〈µ̂〉 = 〈µ̂0〉+ 〈µ̃〉 , (22)

where averaging is performed over the coarse- and fine-
grid template banks (i.e. the respective Wigner-Seitz
cells).

The probability distribution of signal mismatches in a
given template bank constructed with a certain maximal
mismatch m depends on the structure and dimension-
ality of the template bank. The corresponding average
mismatch can be expressed as 〈µ〉 = ξ m, where ξ ∈ (0, 1)
is a characteristic geometric factor of the template bank.
Such mismatch distributions were studied quantitatively,
for example in [33]. For hyper-cubic lattices, the geomet-
ric relation is well known to be exactly 〈µ〉 = m/3, which
was used in previous optimization studies [17, 21]. For
the more efficient A∗n-lattices this geometric factor is ap-
proximately ξ ≈ 0.5−0.6 for low dimensions n . 6. Here
we allow for general geometric factors ξ, but for simplicity
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we assume it to be identical for the fine- and coarse-grid
template banks, and so Eq. (22) can be written as

〈µ̂〉 = ξ(m̂+ m̃) , with ξ ∈ (0, 1) , (23)

where m̂ and m̃ are the maximal mismatch parameters
of fine- and coarse-grid template banks, respectively.

Averaging the non-centrality parameter ρ2
Σ of Eq. (19)

over random signal parameters λs at fixed signal strength
hrms, we can now obtain the expression

〈
ρ2

Σ

〉
= [1− ξ(m̂+ m̃)]

2Ndet

Sn
h2

rms T , (24)

where we (trivially) generalized the result to the case of
a network of Ndet detectors. In this case Sn refers to the
harmonic mean over individual-detector PSDs, and hrms

is a noise-weighted average over rms-amplitudes from dif-
ferent detectors (e.g. see [28]). The fact that both the
coarse- and fine-grid mismatches enter this expression has
been overlooked in previous studies [17, 21], where only
the fine-grid mismatch m̂ had been included1.

C. Sensitivity estimate

The false-alarm and false-dismissal probabilities for a
given threshold Σth of the StackSlide statistic Σ of Eq. (2)
are

pfA(Σth) =

∫ ∞

Σth

χ2
4N (Σ; 0) dΣ , (25)

pfD(Σth, ρ
2
Σ) =

∫ Σth

−∞
χ2

4N (Σ; ρ2
Σ) dΣ , (26)

where the special case of a coherent F-statistic search
corresponds to N = 1.

Sensitivity is often quantified in terms of the weakest
(rms-) signal strength hth required to obtain a given de-
tection probability p∗det = 1 − p∗fD at a given false-alarm
probability p∗fA. This requires inverting Eq. (25) to ob-
tain the critical threshold Σ∗th = Σth(p∗fA), then substi-
tuting this into Eq. (26) and inverting to find the critical
non-centrality parameter

ρ∗2Σ = ρ2
Σ(p∗fA, p

∗
fD, N) . (27)

The signal location λs is generally unknown, there-

fore the mismatch µ̂(λs, λ̂) of the closest template λ̂ and
the corresponding mismatched non-centrality parameter

ρ2
Σ(λs, λ̂) of Eq. (19) follow a random distribution. In

order to estimate the threshold rms signal strength hth,
one would have to compute pfD(p∗fA, hth) by averaging
the right-hand side of Eq. (26) over the (known) mis-
match distribution of µ̂. Furthermore, for statements

1 These studies additionally imposed the ad-hoc constraint of
m̃ = m̂ in the computing-cost expressions

about physical upper limits and sensitivity of a given
search pipeline, it is often required to quantity the sensi-
tivity in terms of the intrinsic GW amplitude h0, instead
of the rms detector strain hrms, which would require fur-
ther averaging of Eq. (26) over the (potentially) unknown
sky-position and polarization parameters. This problem
has recently been studied in detail in [34].

For our present purpose it will be sufficient to obtain
the correct scaling of sensitivity with StackSlide param-
eters {N,T, m̃, m̂}, while the absolute sensitivity level is
less important. We will therefore employ the usual sim-
plification of this problem, which consists in averaging
ρ2

Σ instead of pfD(ρ2
Σ) over the mismatch distribution of

µ̂, so we approximate

pfD(p∗fA, hth) =
〈
pfD(p∗fA, ρ

2
Σ)
∣∣
hth

〉
λs

≈ pfD

(
p∗fA,

〈
ρ2

Σ

〉
λs

)
. (28)

The results of [34] indicate that this indeed approxi-
mately preserves the scaling of sensitivity as a function
of StackSlide parameters.

We can now use Eq. (24) to translate the critical non-
centrality parameter ρ∗2Σ of Eq. (27) into a threshold rms
signal-strength hth, namely

h−2
th =

2Ndet

ρ∗2Σ

[1− ξ(m̂+ m̃)]
T

Sn
. (29)

Following the Neyman-Pearson criterion we want to max-
imize detection probability p∗det = 1 − p∗fD at fixed
false-alarm probability p∗fA and at fixed signal strength
hrms. Equivalently2 we can fix the false-alarm and false-
dismissal probabilities and minimize the required thresh-
old rms signal strength hth, which is the traditional op-
timization approach used in previous studies [17, 21].

1. Gauss approximation for large N

One approach (used in [19, 21]) to make further ana-
lytical progress consists in assuming a large number of
segments, i.e. N � 1, and invoke the central limit theo-
rem to approximate χ2

4N by a Gaussian distribution

P
(
Σ|ρ2

Σ

) N�1
≈

(
2πσ2

Σ

)−1/2
exp

[
− (Σ− Σ̄)2

2σ2
Σ

]
, (30)

with mean and variance of χ2
4N (ρ2

Σ) given by

Σ̄ = 4N + ρ2
Σ ,

σ2
Σ = 2(4N + 2ρ2

Σ) .
(31)

2 Due the monotonicity of pfD as a function of hrms.
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This allows us to analytically integrate Eqs. (25), (26),
which yields

pfA(Σth) =
1

2
erfc

(
Σth − 4N

2
√

4N

)
, (32)

pfD(Σth, ρ
2
Σ) =

1

2
erfc

(
ρ2

Σ − (Σth − 4N)

2
√

4N + 2ρ2
Σ

)
, (33)

where erfc(x) ≡ 1 − erf(x) is the complementary error-
function. Substituting Eq. (32) into Eq. (33), we obtain

β ≡ ρ2
Σ − 2α

√
4N

2
√

4N + 2 ρ2
Σ

, (34)

where we defined

β ≡ erfc−1(2 p∗fD) = −erfc−1(2 p∗det) ,

α ≡ erfc−1(2 p∗fA) .
(35)

Solving Eq. (34) for the critical non-centrality parameter
ρ∗2Σ , we obtain3

ρ∗2Σ (α, β,N) = 2α
√

4N + 4β2

+ 2β

√
4N + 4α

√
4N + 4β2 , (36)

which we refer to as the “Gauss approximation”. In-
troducing the average per-segment SNR ρF as ρ2

F ≡〈
ρ2

Σ

〉
/N , one can consider two interesting limits of the

false-dismissal equation (34):

(i) strong-signal limit (ρ2
F � 1): the per-segment SNR

of the signal is large, and we obtain

ρ∗Σ ≈
√

8β , (37)

which is somewhat pathological, as β � 1 and
therefore the detection probability is extremely
close to pdet = 1. Neither false-alarm threshold nor
the number of segments N matter for detectability4

in this case.

(ii) weak-signal limit (ρ2
F � 1): the per-segment SNR

of the signal is small, and using N � 1 we find

ρ∗2Σ ≈ 2
√

4N (α+ β) , (38)

which we refer to as the “weak-signal Gauss ap-
proximation” (WSG), which was first used in [19]
to estimate the sensitivity of the Hough method.
This approach results in the “classic” semi-coherent
sensitivity scaling as a function of N , namely

h−2
th ,WSG

=
Ndet

2Sn

[1− ξ(m̂+ m̃)]

α+ β

T√
N
. (39)

3 The second solution has β < 0, corresponding to pfD > 0.5.
4 This has been noted previously for radio observations[35]

In practice we find that the WSG approximation is
often not well satisfied, and the deviations of the N -
scaling in Eq. (38) from the exact form of Eq. (27) can
lead to dramatically different optimal solutions. Already
the Gauss approximation of Eq. (36) is not well satisfied
for small false-alarm probabilities pfA � 1 and segment
numbers in the range N . O (1000), as can be seen in
Fig. 2. A more reliable approximation was recently in-
troduced in [34], namely using the Gaussian distribution
only for the false-dismissal equation (26), while keeping
the central χ2-distribution for the false-alarm equation
(25). For the present work this approach would not be
well-suited, however, as we need the sensitivity equa-
tion in the form of a power-law in T and N , similarly
to Eq. (39).

2. Local power-law approximation for ρ∗Σ

We can incorporate the exact N -scaling of the criti-
cal non-centrality parameter ρ∗2Σ of Eq. (27) by locally
expressing it as a power-law in the form

ρ∗2Σ (p∗fA, p
∗
fD, N) = r0N

1/(2w) , (40)

where w(p∗fA, p
∗
fD, N0) is a parameter quantifying the rela-

tive deviation of the exact N -scaling from the WSG limit
of Eq. (38), where w = 1. The power-law coefficients can
be computed as

w =

(
2
∂ log ρ∗2Σ

∂ logN

)−1

, r0 = ρ∗2Σ N
−1/(2w)
0 , (41)

evaluated at a point {p∗fA, p∗fD, N0}.
The function w(N) is shown in Fig. 2, for a refer-

ence false-dismissal probability of p∗fD = 0.1 and different
choices of false-alarm probability p∗fA, both for the ex-
act solution Eq. (27) and for the Gauss approximation of
Eq. (36). We see that the exact N -scaling w increasingly
deviates from the WSG approximation (w = 1) at lower
false-alarm probabilities and at smaller N . The Gauss
approximation tends to agree better with the exact scal-
ing at larger N (as expected), and at higher false-alarm
probabilities.

Using the power-law approximation of Eq. (40), we can
now express the threshold signal strength of Eq. (29) as

L0(N,T, m̃, m̂) ≡ r0 Sn

2Ndet
h−2

th

= [1− ξ(m̃+ m̂)] T N−1/(2w) , (42)

which defines the objective function L0 that we want to
maximize as a function of the StackSlide parameters.

We see that, without further constraints the optimal
solution would simply be m → 0, N → 1 and T →
Tmax, i.e. a fully coherent search over all the available
data Tmax with an infinitely fine template bank. This
would obviously require infinite computing power, and
we therefore need to extend the optimization problem by
a computing-cost constraint.
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FIG. 2: N -scaling coefficient w defined in Eq. (40) as a
function of N , for false-dismissal probability p∗fD = 0.1, and
different false-alarm probabilities p∗fA ∈ [10−10, 10−5, 10−2].
Solid lines show the scaling obtained from the exact solution
Eq. (27), while dashed lines refer to the Gauss approximation
of Eq. (36). The WSG approximation corresponds to w = 1.

D. Template counting

For both the coarse5 and the fine grid, the respective

number of templates6 {Ñ , N̂ } covering the parameter
space P is given [33, 36] by the general expression

N = θnm
−n/2 Vn , with Vn ≡

∫

Tn

√
det g dnλ , (43)

where m is the maximal-mismatch parameter, det g is
the determinant of the corresponding parameter-space
metric gij , and Vn denotes the metric volume of the n-
dimensional space Tn ⊆ P spanned by the template-bank.
The normalized thickness θn depends on the geometric
structure of the covering, for example θZn

= nn/2 2−n for
a hyper-cubic lattice Zn.

An important subtlety in Eq. (43) is the dimensional-
ity n of the template-bank space Tn, which can be smaller
than the dimensionality of the parameter space P, as pre-
viously discussed in [17, 21]. The template-bank dimen-
sionality n is generally a (piece-wise constant) function of
the StackSlide parameters {N,∆T,m}, which determine
the metric resolution. The extent of P along certain di-
rections can be “thin” compared to the metric resolution
and would require only a single template along this direc-
tion, effectively not contributing to the template-bank di-
mensionality. For different StackSlide parameters, how-
ever, the resolution might be sufficient to require more

5 We assume a roughly constant number of coarse-grid templates
Ñ across all segments.

6 The templates in this formulation are not to be confused with
the “patches” used in BC [17] and CGK [21]. A “patch” in the
BC/CGK framework corresponds to a line of templates along
the frequency axis.

than one template along this direction, adding to the
template-bank dimensionality n.

Following [14, 17, 21], the correct dimensionality for
given StackSlide parameters can be determined by the
condition that n should maximize the number of tem-
plates Nn computed via Eq. (43), i.e.

Ññ = max
n
Ñn , and N̂n̂ = max

n
N̂n . (44)

This can be understood as follows: if N decreases when
adding a template-bank dimension, then the correspond-
ing parameter-space extent is thinner than the metric
resolution and therefore adds “fractional” templates. On
the other hand, if N decreases by removing a dimension,
then its extent is thicker than the metric resolution and
requires more than one template to cover it.

An interesting alternative formulation can be obtained
by expressing Eq. (44) as the condition Nn/Nn−1 > 1
for including an additional dimension n. For constant
metrics and simple parameter-space shapes, i.e. Vn =∫ √

g dnλ =
√
g∆λ1 ×∆λ2 . . .×∆λn, this can be shown

to be equivalent to

θn
θn−1

∆λn
dλn

> 1 , (45)

where dλn ≡
√
mgnn is the metric template extent along

dimension n, in terms of the diagonal element gnn of
the inverse metric gij . This shows that Eq. (44) boils
down to (apart from the lattice-thickness ratio) the re-
quirement that the parameter-space extent ∆λn along a
given dimension n must exceed the corresponding metric
template resolution dλn.

The coherent (coarse-grid) metric volume Ṽñ is typi-
cally a steep function of the coherence time ∆T , and can
often be well approximated (over some range of ∆T ) by

a power law, namely Ṽñ(∆T ) ∝ ∆T q̃. We can therefore

write Eq. (43) for Ñ in the power-law form

Ññ(m̃,∆T ) = k̃ m̃−ñ/2 ∆T q̃ , (46)

where k̃ = θñṼñ(∆T0) ∆T−q̃0 for some choice of segment
length ∆T0.

The semi-coherent (fine-grid) metric volume V̂n̂ gen-
erally depends on both ∆T and N and can typically
[17, 26, 32] be factored in the form

V̂n̂(N,∆T ) = γn̂(N) Ṽn̂(∆T ) , (47)

in terms of the refinement factor γn̂(N) ≥ 1 and the

coherent-metric volume Ṽn̂(∆T ) of the fine-grid template
space. Typically γ(N) can be well approximated (over
some range of N) by a power law, namely γ(N) ∝ N p̂.

We can therefore write Eq. (43) for N̂ in the power-law
form

N̂n̂(m̂,∆T,N) = k̂ m̂−n̂/2 ∆T q̂ N p̂ , (48)

where k̂ = θn̂V̂n̂(∆T0, N0) ∆T−q̂0 N−p̂0 for some choice of
parameters {∆T0, N0}.
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E. Computing-cost model

The total computing cost Ctot of the interpolating
StackSlide statistic has two main contributions, namely

Ctot(m̃, m̂,N,∆T ) = C̃ + Ĉ , (49)

where C̃(m̃,N,∆T ) is the computing cost of the F-

statistic over the coarse grid of Ññ templates for each

of the N segments, and Ĉ(m̂,N,∆T ) is the cost of in-
coherently summing these F-values across all segments

on a fine grid of N̂n̂ templates. Note that we neglect all
other costs such as data-IO etc, which for any compu-
tationally limited search will typically be much smaller
than Ctot.

1. Computing cost C̃ of the coherent step

The computing cost of the coherent step is

C̃(m̃,N,∆T ) = N Ññ(m̃,∆T )Ndet c̃1(∆T ) , (50)

where c̃1(∆T ) is the F-statistic computing cost of a single
template for a single segment and a single detector. Here
we used the fact that to first order [31] the number of

detectors has no effect on the number of templates Ñ .
As discussed previously in [21], there are two funda-

mentally different implementations of the F-statistic cal-
culation currently in use: a direct SFT-method [37], and
a (generally far more efficient) FFT-method based on
barycentric resampling [24, 38].

(i) The SFT-method consists in interpolating fre-
quency bins of short Fourier transforms (“SFTs”)
of length TSFT, using approximations described in
[28, 37]. The resulting per-template cost c̃1(∆T ) is
directly proportional to the segment length ∆T :

c̃SFT
1 (∆T ) = c̃SFT

0

∆T

TSFT
, (51)

where c̃SFT
0 is an implementation- and hardware-

dependent fundamental computing cost.

(ii) In the FFT-method the cost of searching a fre-
quency band ∆f using an (up-sampled by u) FFT
frequency-resolution of u/∆T is proportional to
Nf log 2Nf , where Nf = u∆f ∆T is the number
of frequency bins. We can therefore express the
per-template F-statistic cost c̃1(∆T ) as

c̃FFT
1 (∆T ) = c̃FFT

0 log(2u∆f∆T ) , (52)

where c̃FFT
0 is an implementation- and hardware-

dependent fundamental computing cost.

Using the power-law model of Eq. (46) for Ñ , we can
write the coherent computing cost in the form

C̃(m̃,N,∆T ) = κ̃ m̃−ñ/2N η̃ ∆T δ̃ , (53)

where

η̃ = 1, δ̃ = q̃ + ∆δ̃ , (54)

and where ∆δ̃ is either

∆δ̃ =

{
∆δ̃SFT ≡ 1 ,

∆δ̃FFT ≡ [log(2u∆f∆T0)]
−1

,
(55)

depending on whether the F-statistic is computed using
the SFT- or FFT-method, respectively. The expression

for ∆δ̃FFT can be obtained via Eq. (62) and depends (al-
beit weakly) on the reference segment length ∆T0. The
corresponding proportionality factors κ̃ are found as

κ̃SFT = θñNdet
c̃SFT
0

TSFT

Ṽñ(∆T0)

∆T q̃0
,

κ̃FFT = θñNdet
c̃FFT
0

∆δ̃FFT

Ṽñ(∆T0)

∆T δ̃0
.

(56)

2. Computing cost Ĉ of the incoherent step

The computing cost of the StackSlide step is

Ĉ(m̂,N,∆T ) = N N̂n̂(m̂,∆T,N) ĉ0 , (57)

where ĉ0 is the implementation- and hardware-dependent
fundamental cost of adding one value of 2Fk for one fine-

grid point λ̂ in Eq. (2), including the cost of mapping the

fine-grid point to its closest coarse-grid template λ̃k(λ̂).
The incoherent step operates on coherent multi-detector
F-statistic values, and therefore does not depend on the
number of detectors Ndet.

Using the power-law model of Eq. (48) for N̂ , we can
write the incoherent computing cost as

Ĉ(m̂,N,∆T ) = κ̂ m̂−n̂/2N η̂ ∆T δ̂ , (58)

where

η̂ = p̂+ 1 , δ̂ = q̂ , (59)

and the proportionality factor

κ̂ = θn̂ ĉ0
V̂n̂(N0,∆T0)

N p̂
0 ∆T q̂0

, (60)

for given reference values {N0,∆T0}.

3. General power-law computing-cost model

Combining Eqs. (53) and (58) we arrive at the follow-
ing power-law model for the total computing cost, defined
in Eq. (49), namely

Ctot = κ̃ m̃−ñ/2N η̃ ∆T δ̃ + κ̂ m̂−n̂/2N η̂ ∆T δ̂ . (61)
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If a given computing-cost function does not follow this
model, we can always produce a local fit to Eq. (61),
which should be valid over some range of parameters
{∆T,N}, namely

δ ≡ ∂ logC

∂ log ∆T
, η ≡ ∂ logC

∂ logN
, (62)

κ ≡ C(m0, N0,∆T0)

m
−n/2
0 Nη

0 ∆T δ0
, (63)

for reference values {m0, N0,∆T0}. Note that δ gen-
erally depends only on ∆T0, while η depends only on
N0, due to the way these dependencies typically fac-
tor (cf. Sec. III E). The mismatch dependency ∝ m−n/2

is exact according to Eq. (43), but a given computing-
cost function might still deviate from this behaviour
(e.g. the BC/CGK computing-cost function discussed in
Sec. V C). In this case one can extend the power-law fit
by extracting the “mismatch-dimension” n via

n ≡ −2
∂ logC

∂ logm
. (64)

It will be more convenient in the following to work in
terms of {N,T} instead of {N,∆T}, where T = N ∆T
is the total time span of data used. Changing variables,
we obtain the computing-cost model in the form

Ctot = κ̃ m̃−ñ/2N−ε̃ T δ̃ + κ̂ m̂−n̂/2N−ε̂ T δ̂ , (65)

where we defined

ε ≡ δ − η , (66)

generally satisfying ε > 0 for all realistic cases considered
here. Note that m and N are dimensionless, therefore the
respective units of [C/κ] are [T δ].

IV. MAXIMIZING SENSITIVITY AT FIXED
COMPUTING COST

We want to maximize the objective function L0 ∝ h−2
th

defined in Eq. (42) under the constraint of fixed com-
puting cost, Ctot = C0. We therefore need to find the
stationary points of the Lagrange function

L(N,T, m̃, m̂,$) = L0 +$ [C̃ + Ĉ − C0] , (67)

where stationarity with respect to the Lagrange multi-
plier, i.e. ∂$L = 0, returns the computing-cost constraint

C̃ + Ĉ = C0.
Before embarking on the full optimization problem, it

is instructive to consider two special cases, namely (i) a
fully coherent search, and (ii) searches where the comput-
ing cost is dominated by one contribution, either coherent

C̃ or incoherent Ĉ.

A. Special case (i): Fully coherent search

The fully coherent search is a special case of Eq. (67)
with the additional constraint N = 1, and therefore

∆T = T , m̂ = 0, and Ĉ = 0. This leaves us with the
reduced Lagrangian

L(T, m̃,$) = (1− ξm̃)T +$ [κ̃ m̃−ñ/2 T δ̃ − C0] . (68)

Requiring stationarity with respect to {T, m̃,$} results
in the optimal StackSlide parameters

ξ m̃opt =

(
1 +

2δ̃

ñ

)−1

, (69)

Topt =

(
C0

κ̃

)1/δ̃

m̃
ñ/(2δ̃)
opt . (70)

Interestingly the optimal mismatch m̃opt is independent
of both the computing-cost constraint C0 and the ob-
servation time T . The scaling of the resulting threshold
signal strength hth with computing cost C0 is therefore

h−1
th ∝ C

1/(2δ̃)
0 . (71)

In practical applications we often find δ̃ ≈ 3 − 7, and
so Topt and h−1

th will increase very slowly with increas-
ing computing cost C0. This indicates that a brute-force
approach of throwing more computing power at a fully
coherent search will typically yield meagre returns in sen-
sitivity.

B. Special case (ii): Computing cost dominated by
one contribution

If either the coherent C̃ or incoherent Ĉ contribution
dominates the total computing cost (65), we can write

Ctot ≈ κm−n/2N−ε T δ , (72)

where all StackSlide parameters now refer to dominant
contribution only.

We assume that the negligible computing-cost contri-
bution implies that we can also neglect the corresponding
mismatch: if the respective step is cheap, one can easily
increase sensitivity by reducing the corresponding mis-
match until it is negligible, i.e. we assume 〈µsc〉 ≈ ξ m.
This qualitative argument will be confirmed by the gen-
eral solution in the next section. We can therefore write
the objective function Eq. (42) as

L0(N,T,m) ≈ (1− ξ m)N−1/(2w) T . (73)

Using Eq. (72) we can obtain

N(C0,m, T ) = (C0/κ)−1/εm−n/(2ε) T δ/ε , (74)

∆T (C0,m, T ) = (C0/κ)1/εmn/(2ε) T−η/ε , (75)
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which shows that increasing T at fixed C0 results in more
and shorter segments, while increasing C0 at fixed T re-
sults in fewer and longer segments (assuming ε > 0).
Substituting this into Eq. (73) yields the threshold sig-
nal strength

h−2
th ∝ (C0/κ)1/(2wε)

[
(1− ξm)mn/(4wε)

]
T a/(2wε) ,

(76)
where we introduced the parameter

a ≡ 2wε− δ , (77)

which will be of critical importance in determining the
character of the optimal solution.

The objective function L0 ∝ h−2
th can be easily maxi-

mized over mismatch m, resulting in

ξ m
(0)
opt =

[
1 +

4wε

n

]−1

, (78)

which is independent of both C0 and T . This solution
differs from Eq. (69) of the fully coherent case, even when

the coherent cost dominates (where ε̃ = δ̃ − 1).
We see in Eq. (76) that there is no extremum of hth

(at least in regions of approximately constant power-law
exponents). Given that w ≥ 1 and generally ε > 0, we
can distinguish two different regimes depending on the
sign of critical scaling exponent a defined in Eq. (77):

a > 0: sensitivity improves (i.e. h−1
th increases) with in-

creasing T (at fixed C0). Therefore sensitivity is
only limited by the total amount of data Tmax avail-
able.

a < 0: sensitivity improves (i.e. h−1
th decreases) with de-

creasing T , so one should use less data (until the
assumptions change).

In practice these extreme conclusions will be modified,
as the power-law exponents will vary (slowly) as func-
tions of N and T , and the assumption of a dominating
computing-cost contribution might also no longer be sat-
isfied. The marginal case a = 0 marks a possible sensi-
tivity maximum, namely if increasing T results in a < 0
and decreasing T leads to a > 0.

We can obtain a useful qualitative picture of the full
optimization problem by considering the two extreme

cases of dominating computing contribution C̃ or Ĉ:

• if C̃ � Ĉ: we always have ã > 0 (for all cases

of interest η̃ = 1, δ̃ > 2 and w ≥ 1). Therefore
sensitivity improves with increasing T . As seen in
Sec. IV C 3 this shifts computing cost to the inco-
herent contribution. Eventually one either uses all
the data Tmax or the coherent cost no longer dom-
inates.

• if Ĉ � C̃: the incoherent parameter â can have
any sign. If â > 0 one would increase T until all
the data Tmax is used (or we reach â = 0). If â < 0
one would decrease T until the incoherent cost no
longer dominates.

These limiting cases show that the type of optimal solu-
tion will be determined solely by the incoherent critical

exponent â = 2wε̂− δ̂, namely

T
(0)
opt =

{
finite if â ≤ 0 ,

∞ otherwise ,
(79)

which we refer to as the bounded and the unbounded
regime, respectively.

C. General optimality conditions

We now return to the full optimization problem of
Eq. (67), namely:

L = L0 +$ [C̃ + Ĉ − C0] , (80)

L0 = [1− ξ(m̃+ m̂)] T N−1/(2w) , (81)

C̃ = κ̃ m̃−ñ/2N−ε̃ T δ̃ , (82)

Ĉ = κ̂ m̂−n̂/2N−ε̂ T δ̂ . (83)

It will be useful introduce the computing-cost ratio

κ ≡ C̃/Ĉ , (84)

and express the respective contributions as

C̃ =
C0

1 + κ−1
, Ĉ =

C0

1 + κ
. (85)

Using Eqs. (82), (83) to solve for T and N , respectively,
we obtain

ND =
(C0/κ̂)δ̃

(C0/κ̃)δ̂

[
m̃−ñ/2 (1 + κ−1)

]δ̂
[
m̂−n̂/2 (1 + κ)

]δ̃ , (86)

TD =
(C0/κ̂)ε̃

(C0/κ̃)ε̂

[
m̃−ñ/2 (1 + κ−1)

]ε̂
[
m̂−n̂/2 (1 + κ)

]ε̃ , (87)

where D is the determinant of the matrix [δ̃, η̃; δ̂, η̂],
which for all cases of practical interest seems to be posi-
tive definite, namely

D ≡ δ̃η̂ − δ̂ η̃ > 0 . (88)

The segment length ∆T = T/N can similarly be obtained
as

∆TD =
(C0/κ̃)η̂

(C0/κ̂)η̃

[
m̂−n̂/2 (1 + κ)

]η̃
[
m̃−ñ/2 (1 + κ−1)

]η̂ . (89)
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1. Stationarity with respect to mismatches {m̃, m̂}

Requiring stationary with respect to the mismatches,
i.e. ∂m̃L = ∂m̂L = 0, yields

$C̃ = −2ξ
m̃opt

ñ
TN−1/(2w) ,

$Ĉ = −2ξ
m̂opt

n̂
TN−1/(2w) ,

(90)

which results in the remarkable relation

m̃opt/ñ

m̂opt/n̂
= κ . (91)

The ratio of optimal mismatch per dimension is simply
given by the computing-cost ratio κ. This result confirms
an assumption made in Sec. IV B about the optimal solu-
tion, namely that a negligible computing-cost contribu-
tions also implies that one can neglect the corresponding
mismatch.

2. Stationarity with respect to number of segments N

Requiring stationarity with respect to N (treated as
continuous), i.e. ∂NL = 0 yields

L0 + 2w$
[
ε̃ C̃ + ε̂ Ĉ

]
= 0 , (92)

and substituting Eqs. (90) and (81), we obtain

m̃opt

m̃
(0)
opt

+
m̂opt

m̂
(0)
opt

= 1 , (93)

where we used the asymptotic optimal mismatches m
(0)
opt

defined in Eq. (78) for the two limiting cases of dom-
inating coherent or incoherent computing-cost, respec-
tively. Equation (93) can be interpreted as defining
a two-dimensional ellipse in

√
m with semi-major axes√

m
(0)
opt. Combining this with Eq. (91) we obtain the op-

timal mismatches

ñ

m̃opt
=

ñ

m̃
(0)
opt

+
n̂

m̂
(0)
opt

κ−1 ,

n̂

m̂opt
=

n̂

m̂
(0)
opt

+
ñ

m̃
(0)
opt

κ ,
(94)

which reduces to the limiting cases of Eq. (78) when
either computing cost dominates, i.e. when κ � 1 or
κ � 1. We can express the optimal mismatch prefactor
in Eq. (81) as

[1− ξ(m̃+ m̂)]opt =

[
1 +

1

4w

ñκ + n̂

ε̃κ + ε̂

]−1

. (95)

The optimal mismatches Eq. (94) only depend on the
computing-cost ratio κ. Substituting into Eq. (87) we

therefore obtain a relation of the form T0 = T (C0,κopt)
for given observation time T0, which can (numerically) be
solved for κopt = κ(C0, T0). Similarly, one could specify
N0 and solve Eq. (86) for κopt = κ(C0, N0). In either
case the optimal mismatches are obtained from Eq. (94)
and the optimal number and length of segments from
Eqs. (86) and (87), fully closing the optimal solution at
fixed T .

3. Monotonicity relations with T

It is interesting to consider the behaviour of the opti-
mal “fixed-T” solution of the previous section as a func-
tion of T . We see in Eq. (94) that m̃opt is monotonically
increasing with κ, while m̂opt is decreasing, i.e.

∂κm̃opt > 0, and ∂κm̂opt < 0 . (96)

We generally assume D ≡ δ̃η̂ − δ̂η̃ > 0 and ε > 0 which
implies that the right-hand side of Eq. (87) is mono-
tonically decreasing with κ, while the left-hand side is
monotonically increasing with T . Therefore κ must be
montonically decreasing with T , i.e.

∂Tκ < 0 . (97)

Therefore the optimal solution shifts computing cost
from the coherent to the incoherent step with increasing
T , which had already been used in Sec. IV B. Combining
this with Eq. (96) we find

∂T m̃opt < 0, and ∂T m̂opt > 0 , (98)

and using this with Eqs. (86) and (89), we can further
deduce

∂TNopt > 0 , and ∂T∆T opt < 0 , (99)

namely increasing T results in more segments of shorter
duration.

4. Stationarity with respect to observation time T

Requiring stationarity of L with respect to T , i.e.
∂TL = 0, yields the final condition

L0 +$
[
δ̃ C̃ + δ̂ Ĉ

]
= 0 , (100)

which combined with Eq. (92) results in

ã C̃ + â Ĉ = 0 , (101)

where the critical exponents a are defined in Eq. (77).
We generally expect ã > 0, as discussed in Sec. IV B,
and therefore the stationarity condition can only have a
solution if

â ≡ δ̂ − 2η̂ + 2(w − 1) ε̂ < 0 . (102)
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This conclusion is consistent with the analysis of
Sec. IV B: â < 0 characterizes a bounded regime with fi-

nite optimal T
(0)
opt, while â > 0 characterizes an unbounded

regime with T
(0)
opt →∞.

If T
(0)
opt exceeds the available data Tmax, then we sim-

ply apply the fixed-T solution of Sec. IV C 2. Otherwise
Eq. (101) directly yields

κopt = − â
ã
, (103)

closing the optimal solution via Eqs. (94), (86) and (87).

5. Monotonicity relations with C0

For a bounded optimal solution with T
(0)
opt ≤ Tmax, we

see from Eq. (103) that κopt and {m̃opt, m̂opt} are inde-
pendent of the computing-cost constraint C0. Inserting
Eqs. (86),(87) into Eq. (42), we can therefore read off the
scaling

h−1
th ∝ C

(ã−â)/(4wD)
0 , (104)

which shows that any “reasonable” search should satisfy

ã > â , (105)

in order for sensitivity to improve with increasing C0 (as-
suming D > 0). Furthermore, from Eqs. (86), (87) and
(89) we obtain the monotonicity relations:

∂C0Nopt ∝ δ̃ − δ̂ ,
∂C0Topt ∝ ε̃− ε̂ ,

∂C0
∆T opt ∝ η̂ − η̃ .

(106)

We expect η̂ > η̃ = 1, therefore the optimal segment
length ∆T opt will generally increase with C0.

The behaviour of the optimal number of segments is

less clear-cut: if δ̃ < δ̂ thenNopt decreases with C0, which
can result in a fully coherent search being optimal, de-

spite T
(0)
opt < Tmax. A StackSlide search is therefore not

guaranteed to be more sensitive than a fully coherent
search at the same computing power, even when compu-
tationally limited.

Similarly, Topt can either increase with C0 (if ε̃ > ε̂),
or decrease: a more expensive and more sensitive search
can be using less data.

V. EXAMPLES OF PRACTICAL APPLICATION

In order to illustrate the practical application of this
analytical framework and its potential gains in sensitivity
we consider a few different examples of CW searches.

A. Directed searches for isolated neutron stars

Directed searches target NSs with known sky-position
but unknown frequency and frequency derivatives, i.e.
{f, ḟ , f̈ , . . .}. The approximate phase metric of this pa-
rameter space for isolated NSs is known analytically and
constant over the parameter space, e.g. see [Eq. (10) in
[15]]. The number of coarse-grid templates scales as

Ñ ∝ ∆Tn(n+1)/2 , (107)

while the refinement of the semi-coherent metric [Eq. (92)
in [26]] scales as

γn ∝ Nn(n−1)/2 . (108)

The coherent computing-cost exponents Eq. (54) are
therefore

δ̃ = ñ(ñ+ 1)/2 + ∆δ̃ , η̃ = 1 , (109)

where ∆δ̃ depends on the F-statistic implementation as
given by Eq. (55). The incoherent computing-cost expo-
nents Eq. (59) are

δ̂ = n̂(n̂+ 1)/2 , η̂ = 1 + n̂(n̂− 1)/2 , (110)

which results in ε̂ = n̂− 1.
For ñ ≥ 2 the condition ã = δ̃−2+2(w−1)ε̃ > 0 holds

as expected, while the critical boundedness parameter of
Eq. (102) now reads as

â =
n̂

2
(3− n̂)− 2 + 2(w − 1)(n̂− 1) , (111)

which for the first few values of n evaluates to

â1 = −1 ,

â2 = −3 + 2w ,

â3 = −6 + 4w ,

â4 = −10 + 6w.

(112)

In the WSG limit (i.e. w → 1) this is always â < 0, and
therefore the search falls into the bounded regime. How-
ever, in general w > 1 and therefore directed StackSlide
searches can be either bounded or unbounded.

Directed search for Cassiopeia-A

As a concrete example we consider the directed search
for the compact object in Cassiopeia-A (CasA). This
search has been performed using LIGO S5 data, and the
resulting upper limits have been published in [7]. For the
present example we use the search setup as originally pro-
posed in [15], namely a fully coherent F-statistic search

(using the “SFT” method, i.e. ∆δ̃ = 1) using data span-
ning T = 12 days, with a maximal template-bank mis-
match of m̃ = 0.2. The setup assumed two detectors
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with identical noise floor Sn and a 70% duty cycle, which
we can formally incorporate as Ndet = 2 × 0.7 = 1.4
in Eqs. (50) and (29). The parameter space spanned
a frequency range of f ∈ [100, 300] Hz and spindown-
ranges corresponding to a spindown-age of τ = 300 y, see
[15]. The template-bank dimension for the given Stack-
Slide parameters was determined as ñ = 3, resulting in a

power-law scaling of δ̃ = 7 according to Eq. (109).
In order to compare sensitivity estimates of different

search setups, we use nominal (per-template) false-alarm
and false-dismissal probabilities of

p∗fA = 10−10, p∗fD = 0.1 . (113)

We use a rough estimate of ξ = 0.5 (e.g. see [Fig. 8
in [33]]) for the geometric average-mismatch factor of
the A∗3-lattice that was used in this search. Integrating
Eqs. (25),(26) and solving for ρ∗F yields ρ∗F ≈ 8.35. Sub-
stituting this into Eq. (29) with m̂ = 0, m̃ = 0.2 yields
an estimate for the weakest detectable signal hth of the
original F-statistic search:

hth√
Sn

∣∣∣∣
ref

≈ 5.2× 10−3
√

Hz, (114)

Timing a current StackSlide code using the SFT-
method, one can extract approximate timing parameters

c̃SFT
0 = 7× 10−8 s, ĉ0 = 6× 10−9 s , (115)

which results in a total computing cost for the original
search7 of C0 ≈ 472 days on a single cluster node. This
number is used as the computing-cost constraint C0 for
this example.

First we consider an optimal coherent search as de-
scribed in Sec. IV A, namely using Eq. (69) we find

ξ m̃opt ≈ 0.18 =⇒ m̃opt ≈ 0.36 , (116)

and using Eq. (70) this results in Topt = 13.6 days, which
is only about ∼ 13% longer then the original search pro-
posal of [15]. The total improvement in the minimal sig-
nal strength hth is less than 2% compared to Eq. (114),
which shows that the original search proposal was re-
markably close to an optimal coherent search.

Next we consider a StackSlide search over the same
parameter space using the same computing cost C0. As-
suming the optimal solution will have segment lengths in
the range 1 days . ∆T . 7 days, and a total span of
T . 365 days, the parameter-space dimensions would be
ñ = 2, n̂ = 3 (see [15]). This results in power-law expo-

nents δ̃ = 4, δ̂ = 6 , η̂ = 4, and therefore ε̃ = 3, ε̂ = 2,
and ã = 2 + 6(w − 1), â = −2 + 4(w − 1). In order to
simplify the example we use the WSG approximation, i.e.

7 Using the original timing constant c̃
(0)
SFT = 6× 10−7 s of [15], we

correctly recover the original estimate of C̃ ≈ 20× 200 days

w = 1, which implies that the search would be bounded
(â < 0). We can therefore use Eq. (103) to obtain the
optimal computing-cost ratio as

κopt = 1 . (117)

Note that when w > 1.25 we would have â > 0 and
therefore this search would become unbounded. From
Eq. (78) we obtain m̃

(0)
opt ≈ 0.29, m̂

(0)
opt ≈ 0.55, and using

Eq. (94) we find the respective optimal mismatches as

m̃opt ≈ 0.16 , m̂opt ≈ 0.24 . (118)

Using Eq. (63) we can extract the computing-cost coeffi-
cients κ̃ ≈ 3.14× 10−17 and κ̂ ≈ 3.12× 10−34 (with time
measured in seconds), and plugging this into Eqs. (86),
(87) we find the optimal StackSlide parameters as

Nopt = 139 , ∆T opt ≈ 1.9 days ,

Topt ≈ 266.5 days ,
(119)

which is self-consistent with the initially-assumed
template-bank dimensions, as it falls into the assumed
ranges for ∆T and T .

We can estimate the resulting sensitivity by solving
Eqs. (25),(26), which yields ρ∗Σ ≈ 17.3, and substituting
into Eq. (29) we find a weakest detectable signal strength
hth of

hth√
Sn

∣∣∣∣
opt

≈ 2.4× 10−3
√

Hz , (120)

which is an improvement on the optimal coherent sensi-
tivity by more than a factor of two.

Figure 3 illustrates the behaviour of the optimal so-
lution as a function of T without using the WSG ap-
proximation. This is obtained by numerically solving
Eq. (87) for κopt(T ), which yields mopt(T ) via Eq. (94)
and Nopt(T ) via Eq. (86). We see that the non-WSG
approximated optimal solution results in somewhat dif-
ferent StackSlide parameters than the WSG solution of
Eq. (119), but it hardly gains any further sensitivity.

Increasing the total computing cost C0 would increase
the relative advantage of the StackSlide method com-
pared to a fully-coherent search: the coherent search

would gain sensitivity as h−1
th ∝ C

1/14
0 according to

Eq. (71), while the StackSlide search would gain sensitiv-

ity as h−1
th ∝ C

1/10
0 according to Eq. (104) (in the WSG

approximation), so here the StackSlide search is more “ef-
ficient” at converting increases of computing-power into
gains of sensitivity.

B. All-sky CW search using Einstein@Home

As an example for a wide parameter space all-sky
search with massive computing power, we consider two
recent CW searches performed on the Einstein@Home
computing platform [6, 39, 40], namely the StackSlide
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FIG. 3: Numerical optimal fixed-T solution for a directed CasA search as a function of T . The dashed vertical line indicates
the analytical WSG-optimal solution of Eq. (118), while the dotted vertical line corresponds to the exact optimal solution.
Panel (a) shows the weakest detectable signal strength compared to the reference value hth,ref of Eq. (114), for the exact hth

and for the WSG-approximated hWSG
th (using w = 1). (b) shows the optimal mismatch parameters m̃opt(T ) and m̂opt(T ), (c)

shows the optimal computing-cost ratio κopt(T ) and (d) the optimal number of segments Nopt(T ) (treated as continuous).

searches labelled ’S5GC1’ and ’S6Bucket’, which em-
ployed an efficient grid mapping implementation de-
scribed in [27].

An Einstein@Home search divides the total workload
into many small workunits, each of which covers a small
fraction of the parameter space and requires only a couple
of hours to complete on a host machine. These searches
consisted of roughly 107 workunits. The E@H platform
delivers a computing power of order 100 Tflop/s, and
these searches ran for about 6 months each, so we can
estimate their total respective computing cost is of order
Ctot ∼ 1021 flop (i.e. ∼ 1 Zeta flop). Each E@H workunit
is designed to require about the same computing cost,
which allows us to base the present analysis on just a
single workunit.

The detector data used in these searches contained
non-stationarities and gaps, and the template banks were
constructed in somewhat semi-empirical ways that are
hard to model analytically. In order to simplify this anal-
ysis we assume gapless stationary Gaussian data, and we
use the analytic metric expressions from [26] to estimate
the number of templates. This example is therefore “in-
spired by” recent E@H searches, but does not represent a
detailed description of their computing cost or sensitivity.

The two searches ’S5GC1’ and ’S6Bucket’ covered a

fixed spindown-range corresponding to a spindown age of
τ = f0/ḟ = 600 y at a reference frequency of f0 = 50 Hz.
Each workunit covers a frequency-band of ∆f = 0.05Hz,
the spindown range of ∆ḟ = 2.7 × 10−9 Hz/s and a
(frequency-dependent) fraction q of the sky. We can in-
corporate the sky-fraction q by using template counts
qN in the computing-cost expressions, where N are the
all-sky expressions from [26]. For simplicity we fix the
parameter-space dimension to n = 4, namely {sky, fre-
quency, spindown}, and we use [Eq. (56),(50) in [26]]8 for

the number of coarse-grid templates Ñ and the refine-
ment factor γ(N) of [Eq. (77) in [26]] (assuming gapless
data).

For a workunit at 50 Hz, the reference StackSlide pa-
rameters are:

• S5GC1: q = 1/3, N = 205, ∆T = 25 h

• S6Bucket: q = 1/51, N = 90, ∆T = 60 h

For both searches the mismatch distributions of the

8 There are missing terms in both [Eqs. (57) and (83) in [26]], but
one can use their Eqs. (50) and (84) instead to compute det g.
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δ̃ δ̂ η̂ w N ∆T [d] m̃ m̂ C0[h] κ hth√
Sn

[
√

Hz]

S5GC1 8.7 7.7 2.0 1.1 205 1.0 0.50 0.50 0.91 2.545 2.69× 10−3

Tmax = 1 y 10.0 9.0 2.0 1.1 528 0.7 0.14 0.17 0.91 0.869 2.19× 10−3

S6Bucket 4.6 3.6 2.0 1.2 90 2.5 0.50 0.50 2.54 13.914 2.20× 10−3

Tmax = 1 y 3.7 2.7 2.0 1.2 175 2.1 0.58 0.32 2.54 1.815 1.93× 10−3

TABLE I: Einstein@Home example setups ’S5GC1’ and ’S6Bucket’, with corresponding results from an iterative optimization
at fixed computing power C0, with assumed maximal observation time of Tmax = 1 y. The gains in weakest detectable signal
strength hth are ∼ 23% and ∼ 14 %, respectively.

coarse- and fine-grid template banks are not well quan-
tified, so we simply assume hyper-cubic template banks
(ξ = 1/3) with m̃ = m̂ = 0.5, i.e. an average total mis-
match of 〈µ〉 = 1/3. Plugging these parameters into
the template-counting formulae of [26], together with
the timing constants of Eq. (115) from the Cas-A ex-
ample, we find a reference per-workunit computing cost
of C0 ≈ 0.91 h for S5GC1, and C0 ≈ 2.5 h for S6Bucket9.
Table I shows the estimated sensitivity for these refer-
ence searches assuming the same false-alarm and false-
dismissal probabilities as in the previous section.

We can apply the analytical optimal solution from
Sec. IV with the extracted power-law coefficients at the
reference StackSlide parameters found in Table I. This
initially places us into the unbounded regime (i.e. â > 0)
for both ’S5GC1’ and ’S6Bucket’. We therefore expect
to improve sensitivity by increasing T until we hit the as-
sumed upper bound of Tmax = 1 y, so we solve Eq. (87)
for κopt(Tmax), substitute into Eq. (94) for {m̃opt, m̂opt}
and obtain Nopt from Eq. (86).

In order to find a self-consistent solution, we need to
iterate this procedure: we extract new power-law coeffi-
cients at the new solution, then re-solve until the param-
eters converge to better than 1% accuracy. In the case of
the ’S5GC1’ search, the converged solution falls into the
unbounded regime. In the case of ’S6Bucket’ the con-
verged solution falls into the bounded regime, but with

T
(0)
opt > Tmax. The optimal observation time is therefore
Topt = 1 y in both cases, and the resulting converged so-
lutions and power-law coefficients are given in Table I.
We see that (under the present idealized conditions) we
could gain ∼ 23% in detectable signal strength hth com-
pared to the ’S5GC1’ setup, and ∼ 14% compared to the
’S6Bucket’ setup.

C. All-sky search examples from CGK

The all-sky search examples studied in CGK [21] pro-
vide another interesting test case for our optimization

9 The actual E@H workunits take about 6 h to complete on a ma-
chine with these timings, but these setups included bigger refine-
ment factors γ due to gaps in the data, and used rather different
template-bank designs.

framework. CGK considered a multi-stage optimiza-
tion, but we can treat their first-stage result as a single-
stage optimization problem at fixed given computing
cost. CGK discussed four different cases, namely a search
for either “young” (Y) neutron stars (τ = f/ḟ = 40 y)
or “old” (O) neutron stars (τ = 106 y), using either a
“fresh-data” (f) or “data-recycling” (r) mode (a distinc-
tion that is irrelevant for our present purpose). The op-
timized CGK StackSlide parameters and computing-cost
constraints are found in [Tables I-VIII in [21]], and are
summarized in Table II. For the sensitivity estimates we
use the same false-alarm and false-dismissal probabilities
as in Sec. V A.

Note that we expect our results to improve on the sen-
sitivity of the CGK solution, as they incorporated an
ad-hoc constraint of m = m̃ = m̂, and the total average
mismatch in [Eq.(46) in CGK] incorrectly included only
the contribution from one template grid instead of both,
as discussed in Sec. III B 3.

The functional form of the template-bank equations
(originally from BC [17]) in the CGK computing-cost
model [Eq.(53) in CGK] is not consistent with the generic
form of Eq. (43) with respect to the mismatch scaling.
We therefore resort to extracting (potentially fractional)
“mismatch dimensions” {ñ, n̂} using Eq. (64), in order to
fully reproduce their computing-cost function with the
power-law model of Eq. (61). The scaling parameters
{δ, η} are extracted via Eq. (62) and w from Eq. (41).
The resulting values are given in Table II, assuming the
FFT/resampling method for the F-statistic calculations.

Using the extracted scaling coefficients to compute the
optimal solution from Sec. IV results in a solution that
is inconsistent with the initially extracted scaling coeffi-
cients. An iteration over solutions, allowing both N and
T to vary, did not converge. We therefore solve a sim-
pler problem by fixing the number of segments to the
original CGK values, i.e. we constrain the solutions to
N = NCGK. We proceed by solving Eq. (86) for κopt(N),
closing the solution via Eqs. (94) and (87). We then ex-
tract new power-law coefficients at this solution and it-
erate this procedure until convergence to better than 1 %
accuracy is achieved. The resulting fixed-N optimal solu-
tions are given in Table II. The respective improvements
of the weakest detectable signal strength hth compared
to the original CGK solutions are ∼ 15 % in the young
(Y) pulsar case, and ∼ 5 % in the old (O) pulsar case.
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ñ n̂ δ̃ δ̂ η̂ w N ∆T [d] m̃ m̂ C0[Zf] κ hth√
Sn

[
√

Hz]

Y/r 3.0 4.0 3.1 6.0 4.2 1.7 10 2.6 0.78 0.78 0.94 0.071 7.31× 10−3

N = NCGK 3.0 4.0 3.1 6.0 4.2 1.7 10 2.1 0.17 0.48 0.94 0.482 6.38× 10−3

Y/f 3.0 4.0 3.1 6.0 4.2 1.7 9 2.7 0.78 0.78 0.82 0.086 7.42× 10−3

N = NCGK 3.0 4.0 3.1 6.0 4.2 1.7 9 2.2 0.18 0.46 0.82 0.526 6.50× 10−3

O/r 2.5 2.5 3.0 10.0 7.4 1.8 8 14.8 0.35 0.35 0.74 0.004 2.61× 10−3

N = NCGK 2.8 2.5 3.0 10.0 7.4 1.8 8 14.6 0.03 0.34 0.74 0.090 2.46× 10−3

O/f 2.5 2.6 3.0 10.0 7.3 1.7 9 11.8 0.21 0.21 0.35 0.009 2.65× 10−3

N = NCGK 2.7 2.5 3.0 10.0 7.3 1.7 9 12.4 0.04 0.33 0.35 0.107 2.56× 10−3

TABLE II: CGK example search setups for young (’Y’) and old pulsars (’O’), using either fresh (’f’) or recycling (’r’) data-
modes. The first line of each example gives the original CGK solution with respective extracted power-law coefficients, and
the second line shows our optimal self-consistent solution with constraint N = NCGK. The computing cost C0 is measured in
Zeta-flop (1Zf = 1021flop).

D. CWs from binary neutron stars

For CWs from NSs in binary systems with known sky-
position (such as Sco-X1 and other LMXBs), the search
parameter space typically consists of the intrinsic signal
frequency and orbital parameters of the binary system,
i.e. (projected) semi-major axis, orbital period P , pe-
riapse angle, eccentricity and eccentric anomaly. The
corresponding template-counting formulae were initially
studied in [41] for coherent searches. These have re-
cently been extended to semi-coherent searches by Mes-
senger [32], giving explicit template scalings in two limit-
ing cases, namely (i) short coherent segments compared
to the orbital period, i.e. ∆T � P , and (ii) long coherent
segments, i.e. ∆T � P .

(i) Short coherent segments (∆T � P )

One can change parameter-space coordinates and
Taylor-expand in small ∆T/P � 1 to obtain the coher-
ent template scaling [Eq. (24) in [32]]:

Ññ ∝ ∆T ñ(ñ+1)/2 , (121)

where ñ is the effective coherent parameter-space dimen-
sion using the new coordinates. The coherent cost power-

law coefficients are therefore δ̃ = ñ(ñ + 1)/2 + ∆δ̃ and
η̃ = 1.

The semi-coherent template scaling including eccen-
tricity results in a 6-dimensional semi-coherent template
bank, i.e. n̂ = 6, and a template scaling [Eq. (28) in [32]]

of N̂ecc ∝ N ∆T 7. In the case of small eccentricity one
has n̂ = 4, and the template scaling given in [Eq. (29) in

[32]] is N̂circ ∝ N ∆T 5. In both cases the semi-coherent

power-law exponents satisfy δ̂ ≥ 5, and η̂ = 2, resulting
in the critical parameter â > 0. This implies that the
boundedness-condition Eq. (102) is always violated, i.e.
one should use all the available data.

(ii) Long coherent segments (∆T � P )

In this limit the template scalings in both the coherent

and semi-coherent step are [Eqs. (32,33) in [32]]: Ñ ∝
N̂ ∝ ∆T 2, which is unusual as there is no refinement.

Therefore η̃ = η̂ = 1, and δ̃ = 2 + ∆δ̃, while δ̂ = 2,
and therefore ε̂ = 1. We see that always ã > 0 and
â = 2(w − 1) > 0, and therefore binary-CW searches
in the long-segment limit also fall into the unbounded
regime, i.e. one should use all the data.

VI. DISCUSSION

We have derived an improved estimate of the Stack-
Slide sensitivity scaling, correctly accounting for the mis-
matches from both coarse- and fine-grid template banks,
which had been overlooked by previous studies. By
locally fitting sensitivity and computing-cost functions
to power laws we are able to derive fully analytical
self-consistency relations for the optimal sensitivity at
fixed computing cost. This solution separates two dif-
ferent regimes depending on the critical parameter â of

Eq. (102): a bounded regime with a finite optimal T
(0)
opt,

and an unbounded regime where T
(0)
opt →∞.

Several practical examples are discussed in order to
illustrate the application of this framework. The corre-
sponding sensitivity gains in terms of the weakest de-
tectable signal strength hth are found to be ∼ 100%
compared to a fully coherent directed search for CasA,
and about 5% − 20% compared to previous StackSlide
searches such as Einstein@Home and the examples given
in CGK [21]. We show that CW searches for binary
neutron stars seem to generally fall into the unbounded
regime where all the available data should be used irre-
spective of available computing power.

This study only considered single-stage StackSlide
searches on Gaussian stationary gapless data from detec-
tors with identical noise-floors. Further work is required
to extend this analysis to more realistic data conditions.
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