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Abstract

We consider a (d+2)-dimensional class of Lorentzian geometries holographically dual to a rela-

tivistic fluid flow in (d+1) dimensions. The fluid is defined on a (d+1)-dimensional time-like surface

which is embedded in the (d + 2)-dimensional bulk space-time and equipped with a flat intrinsic

metric. We find two types of geometries that are solutions to the vacuum Einstein equations: the

Rindler metric and the Taub plane symmetric vacuum. These correspond to dual perfect fluids with

vanishing and negative energy densities respectively. While the Rindler geometry is characterized

by a causal horizon, the Taub geometry has a timelike naked singularity, indicating pathological

behavior. We construct the Rindler hydrodynamics up to the second viscous order and show the

positivity of its entropy current divergence.
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I. INTRODUCTION

The holographic principle proposes that (d + 2)-dimensional (quantum) gravitational

theories are equivalent to (d + 1)-dimensional field theories living on a boundary of the

higher dimensional spacetime. The most concrete examples of holography are the so-called

gauge/gravity correspondences, where quantum gravity with negative cosmological constant

is dual to certain flat spacetime gauge theories. The gauge theory can be thought of as living

on the timelike boundary at spatial infinity, in which the bulk spacetime is holographically

encoded. A particularly interesting consequence of this duality is that the hydrodynamics

of the gauge theory can be effectively described by the long time, long wavelength dynamics

of a black hole living in the bulk. In this fluid-gravity correspondence, [1, 2] the Navier-

Stokes equations of the fluid are equivalent to the subset of the General Relativity (GR) field

equations called the momentum constraints, which constrain data on the timelike boundary

surface.

However, by studying the dynamics of a Rindler acceleration horizon in flat spacetime [3–

5], two of the authors argued that the relationship between holography and hydrodynamics

is not limited to theories with negative cosmological constant. Recently [6, 7] it has been

shown that one can construct explicit bulk solutions to the vacuum Einstein equations

dual to a particular non-relativistic fluid by perturbing around the Rindler geometry. The

holographic fluid in this case is defined on an arbitrary timelike surface Sc of fixed radial

coordinate r = rc in the bulk geometry [8]. These are the hyperbolas associated with the

worldlines of accelerated observers. Working in a non-relativistic hydrodynamic expansion,

one can solve the field equations subject to the boundary conditions of a fixed flat induced

metric on Sc and a regular event horizon. The momentum constraints on Sc again are the

non-relativistic Navier-Stokes equations.

This result implies that there is an underlying duality between a field theory on Sc and the

bulk interior Rindler space. The nature of holography in asymptotically flat spacetimes has

remained mysterious and it expected that the dual field theory will be nonlocal [9]. Indeed,

an intriguing aspect of these results is that the dual fluid thermodynamics is characterized

by zero equilibrium energy even though it has non-zero temperature. Similarly, one can also

show the entropy density of the fluid is independent of its temperature.

Therefore, studying the hydrodynamics of this fluid may yield valuable clues into the na-
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ture of the microscopic duality. In [7] the authors showed that their results can be obtained

as the non-relativistic limit of an underlying relativistic fluid. In particular, they constructed

a general theory for a viscous relativistic fluid with zero energy density and by matching

to the non-relativistic solution were able to determine some of the viscous transport coef-

ficients. While shear viscosity to entropy density ratio saturates the Kovtun-Son-Starinets

bound of 1/4π [10], the bulk viscosity is not an independent transport coefficient even though

the fluid is non-conformal. In the second order viscous hydrodynamics, there are six inde-

pendent transport coefficients, but by matching to the non-relativistic solution one is only

able to determine four of these. Later, [11] studied how higher derivative corrections to

the gravitational field equations affect the properties of the dual fluid. In the AdS/CFT

correspondence, such terms are associated with quantum corrections or other deformations,

which modify the values of the transport coefficients [12]. Interestingly, in this case only the

second (and higher) order hydrodynamics is affected; the shear viscosity to entropy density

ratio and the first order Navier-Stokes equations are universal.

In this paper, our main goal is to expand upon the results of [7] by completely determining

the relativistic fluid dual to the Rindler spacetime. We start by considering a particular class

of (d+2)-dimensional Lorentzian geometries. These metrics are stationary and on the slices

Sc the intrinsic metric is flat and the extrinsic curvature is such that the Brown-York quasi-

local stress tensor has a perfect fluid form. Thus, these metrics can, in principle, act as

the bulk gravitational dual to a fluid on Sc. Solving the vacuum Einstein equations, we

find there are two possible branches of solutions. One is the Rindler solution described

above and the other is the known as Taub plane symmetric vacuum and is associated with a

fluid of negative energy density. The Taub metric has non-trivial curvature and, crucially, a

naked singularity, which indicates pathological behavior in the dual field theory. In contrast,

the Rindler solution is well-behaved, and using the formalism developed in [7] we find the

bulk solution and fluid stress tensor in a derivative expansion up to second order, fixing the

remaining two transport coefficients. In the fluid-gravity correspondence, the fluid entropy

current is mapped into the area current [13] of the evolving horizon surface. We compute

this current to second order and find that its divergence is positive definite, consistent with

Hawking’s area theorem.

The plan of this paper is as follows. In Section II, we review the general construction of

the solutions developed in [6–8] and describe the Rindler and Taub geometries. In Section
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III, we present the earlier non-relativistic description of the Rindler fluid and use this to

develop and eventually calculate the fully relativistic metric and its corresponding stress

tensor. Section IV is devoted to the calculation of the holographic area entropy current and

its divergence.

Note added: The results in this paper overlap substantially with [14] which was posted

simultaneously on the ArXiv with this paper.

II. RICCI FLAT GEOMETRIES AND FLUIDS

In the following we will construct certain (d+2)-dimensional Lorentzian geometries holo-

graphically dual to a fluid flow in (d + 1) dimensions. The fluid is defined on a (d + 1)-

dimensional timelike surface Sc embedded in the (d + 2)-dimensional bulk space-time. We

choose the timelike surface to be defined by fixed bulk radial coordinate, r = rc. Consider

the following metric ansatz for the bulk geometry [8]

ds2 = gABdx
AdxB = −h(r)dt2 + 2dtdr + e2t(r)dxidxi , (1)

where xA = (t, xi, r), i = 1..d and d ≥ 2. On surfaces of r = rc, where rc is a constant, the

induced metric reads

ds2 = γµνdx
µdxν = −h(rc)dt

2 + e2t(rc)dxidx
i . (2)

This metric is flat, as can be seen by the coordinate re-scaling t̄ =
√

h(rc) and x̄i = et(rc)xi,

which leads to the Minkowskian form

ds2 = γµ̄ν̄dx̄
µdx̄ν = −dt̄2 + dx̄idx̄

i , (3)

where x̄µ = (t̄, x̄i)

The Brown-York stress-energy tensor [15] (in units where 16πG = 1) associated with the

r = rc slice is

Tµν = 2(Kγµν −Kµν) , (4)

where Kµν = 1
2
LNγµν and LN is the Lie derivative along the normal to the slice NA. Using

(1) we find that

Tt̄t̄ = ρ = −2d
√
ht′, Tīj̄ = p = 2

√
h

(

(d− 1)t′ +
h′

h

)

δīj̄ , (5)
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where primes represent derivatives with respect to r and the expressions are evaluated at

r = rc. The stress-energy tensor has the form of a perfect fluid with energy density ρ and

pressure p.

We wish to determine whether there is a solution to the vacuum Einstein equations

RAB = 0 , (6)

of this general form. The Hamiltonian constraint, RABN
ANB , where NA is the unit spacelike

normal to the r = rc slices, is

GABN
ANB = R−KµνK

µν +K2 , (7)

where R is the Ricci scalar associated with the induced metric of the slice. Re-expressing

this equation in terms of the Brown-York stress tensor and using the fact that R = 0 for

r = rc, we get

dTµνT
µν = T 2 . (8)

Inserting the general form of a perfect fluid stress tensor and (5), one finds that this condition

is satisfied by two types of equations of state [7]

(i) ρ = 0, (ii) ρ =
−2d

(d− 1)
p . (9)

A. The ǫ = 0 case: Rindler Geometry

Consider first the equation of state ρ = 0. Using Eqn. (5), this condition implies that

t′ = 0 and as a result, t = const.. The remaining field equations imply that h(r) = r, and

we get the metric

ds2 = −rdt2 + 2dtdr + dxidx
i , (10)

which describes a region of flat (d + 2)-dimensional Minkowski space-time in “ingoing

Rindler” coordinates. The null surface r = 0 acts as a causal horizon to accelerated ob-

servers, whose world-lines correspond to the surfaces of constant r = rc. Although the

Rindler metric is just a patch of flat space-time, the associated quantum field theory on this

background has many of the same properties as a black hole solution due to the existence
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of the causal horizon. In particular, surfaces of r = rc have a local Unruh temperature (in

units where ~ = c = 1)

T =
1

4π
√
rc

. (11)

Strictly speaking, a Rindler horizon does not have a Bekenstein-Hawking entropy density.

However, one can assign the Rindler horizon this entropy based on the holographic principle,

or, more concretely, take the entropy to be the thermal entanglement entropy of the quantum

fields in Rindler wedge [16]. This statistical entropy scales like an area, but is a UV divergent

quantity. If a Planck scale cutoff is chosen appropriately, the entanglement entropy agrees

with the Bekenstein-Hawking formula, i.e. in units where 16πG = 1

s = 4π . (12)

Given the existence of an equilibrium Unruh temperature and a Bekenstein-Hawking entropy

density, the metric (10) may be considered as providing a dual geometrical description of

a perfect fluid with zero energy density in one lower space dimension. We will discuss the

hydrodynamics of this case in detail in section III.

B. The ρ < 0 case: Taub Geometry

Consider next the second equation of state in (9). In order to construct the background,

we plug-in the values of the energy density and pressure in terms of the metric functions

into the equation of state, which gives

t′ +
1

d− 1

h′

h
= 0 . (13)

Consider the equation Rrr = 0. It yields

t′ + t′′ = 0 , (14)

which is solved by ,

t(r) = ln(C1r + C2) . (15)

Inserting this into (13), we find

h(r) =
C3

(C1r + C2)d−1
. (16)
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Therefore the dual gravitational solution is

ds2 = − C3

(C1r + C2)d−1
dt2 + 2dtdr + (C1r + C2)

2dxidx
i . (17)

Redefining the radial coordinate r̄ = C1r+C2 and re-scaling the time coordinate, this metric

takes the form

ds2 = − A
r̄d−1

dt2 + 2dtdr̄ + r̄2dxidx
i , (18)

where A is a constant.

In four-dimensions (d = 2) this metric was found by A. H. Taub in 1951 [17]. It can be

considered the vacuum solution exterior to an infinite plane-symmetric object with uniform

mass density. The Kretschmann scalar for this solution reads

RABCDR
ABCD ∼ 1

r̄2(d+1)
, (19)

which implies that there is a curvature singularity at r̄ = 0 and the solution is asymptotically

flat at infinity r̄ = ∞. The curvature singularity at r̄ = 0 is timelike and naked, consistent

with the fact that the energy density computed from the Brown-York stress tensor

ρ =
−2d

√
A

r̄(d+1)/2
(20)

is always negative. The global structure of this metric was analyzed in [18]. At infinity there

are two flat null surfaces, while the timelike naked singularity is located in the interior.

While it seems clear that this branch is problematic, let us nevertheless make a few

remarks.

(i) One can make a spatial boost and re-write the metric in terms of the energy density ρ.

This yields

ds2 = −ρ2r̄2

4d2
uµuνdx

µdxν + 2uµdx
µdr̄ + r̄2Pµνdx

µdxν . (21)

One could then formally allow the variables ρ(xµ) and uµ(xµ) and solve the field equations

order by order in a derivative expansion in ∂µρ and ∂µuν as is done in the fluid-gravity

correspondence [1]. However, unlike the Rindler solution, in this case there is no casual

horizon in the background zeroth order solution. Therefore, interpreting this geometry

as being dual to a finite temperature state of a field theory (and then perturbations of this
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state as hydrodynamics) is problematic. For instance, imposing the thermodynamic identity

ρ+ P = sT yields

sT =

(

d+ 1

1− d

)

p . (22)

Since p > 0, this equation implies formally a state of negative temperature (or negative

entropy). A related fact is that the squared speed of sound v2s = dP
dρ

is negative, which

indicates the dual field theory is characterized by an instability. It would be interesting to

understand the role of this type of exotic solution in asymptotically flat holography. (ii)

Following [7] we can create a scalar field Lagrangian that mimics the equation of state for

the Taub metric. We consider

I =

∫

dd+1√−gF (X, φ) , (23)

where X = −(1/2)gµν∂µφ∂νφ. The stress-tensor is given by

Tµν = −2
∂F

∂gµν
+ gµνF . (24)

This gives

Tµν =
∂F

∂X
∂µφ∂νφ+ gµνF . (25)

If we identify the four-velocity (of a potential flow)

uµ =
∂µφ

2
√
X

, (26)

the stress-tensor has the form of a perfect fluid with pressure F and

ρ = 2X
∂F

∂X
− F . (27)

Imposing the equation of state, we find the condition on F (X), which leads to an action of

the form

I =

∫

dd+1x√−gX− 1

2
( d+1

d−1
) . (28)

III. THE RINDLER/FLUID CORRESPONDENCE

A. General Setup and Non-relativistic regime

In order to study the hydrodynamics of the fluid living on the r = rc slices in Rindler

geometry, we have to perturb this background. The first step is to make a set of coordinate
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transformations to obtain a new metric (or class of metrics). These transformations should

keep the induced metric at rc flat. The transformed metric should also preserve a perfect

fluid form of the Brown-York stress energy tensor associated to the slice, as well as the

timelike Killing vector and the homogeneity in the xi direction. It was shown in [7] that

these set of conditions uniquely identify the two diffeomorphisms, namely a boost and the

translation. The boost of the metric takes the form,

√
rct →

√
rct− γβix

i, xi → xi − γβi√rct + (γ − 1)
βiβj

β2
xj , (29)

where γ = (1− β2)−1/2 and βi = r
−1/2
c vi is the boost parameter.

One can also perform a linear shift of the radial coordinate and re-scaling of t, which

moves the horizon from r = 0 to an r = rh < rc,

r → r − rh, t → (1− rh/rc)
−1/2t . (30)

The resulting metric for the flat space-time is

ds2 =
dt2

1− v2/rc

(

v2 − r − rh
1− rh/rc

)

+
2γ

√

1− rh/rc
dtdr − 2γvi

rc
√

1− rh/rc
dxidr

+
2vi

1− v2/rc

(

r − rc
rc − rh

)

dxidt+

(

δij −
vivj

r2c (1− v2/rc)

(

r − rc
1− rh/rc

))

dxidxj . (31)

We now can investigate the hydrodynamic system dual to the above metric. To do that,

we need to consider the dynamics of the metric perturbations within a hydrodynamic limit.

One can perturb (31) by promoting the spatial velocity and horizon radius to be functions of

space and time: vi(t, xi) and rh(t, x
i), while rc remains fixed. The metric is no longer flat and

no longer a solution of the vacuum Einstein equation. In previous works [6, 7] a particular

non-relativistic hydrodynamical expansion, first proposed in [2, 19], was introduced. In

terms of a small parameter ǫ,

vi ∼ ǫvi(ǫxi, ǫ2t) P ∼ ǫ2P (ǫxi, ǫ2t) , (32)

where the non-relativistic pressure P (t, xi) is defined as a small perturbation of the horizon

radius [22]

rh = 0 + 2P +O(ǫ4) . (33)

Using (32) one scales down the amplitudes (ǫ can be thought of as the inverse of the

speed of light), while at the same time scaling to large times t and spatial distances xi.
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Expanding the metric (31) out to O(ǫ2) in this manner yields the “seed metric” solution

originally found by [6]

ds2 = −rdt2 + 2dtdr + dxidx
i

− 2

(

1− r

rc

)

vidx
idt− 2vi

rc
dxidr

+

(

1− r

rc

)

[

(v2 + 2P )dt2 +
vivj
rc

dxidxj
]

+

(

v2

rc
+

2P

rc

)

dtdr . (34)

The seed metric is the unique singularity-free solution to the vacuum Einstein equations up

to O(ǫ3), provided ∂iv
i = 0. As required, the induced metric on the slice r = rc is flat.

The Brown-York stress-tensor for the seed metric is [6]

Tµνdx
µdxν =

d~x2

√
rc

− 2vi√
rc

dxidt+
v2
√
rc

dt2 + r−3/2
c

[

Pδij + vivj − 2rc∂ivj

]

dxidxj +O(ǫ3) .

(35)

In [7] it was noticed that this result can be obtained as a non-relativistic expansion of a

relativistic viscous fluid stress tensor. To see this, we work in the relativistic hydrodynamic

expansion in the derivatives ∂µ. This is equivalent physically to an expansion in a small,

dimensionless Knudsen number, λ =
ℓmfp

L
, where ℓmfp is the mean free path of the underlying

system and L the characteristic scale of the perturbations to this system. The stress tensor

has the form of a perfect fluid plus viscous terms which are first order in derivatives,

T fluid
µν = ρuµuν + pPµν − 2ηKµν − ξPµν(∂λu

λ) . (36)

Here Kµν = P λ
µP

σ
ν ∂(λuσ) is the fluid shear, η the shear viscosity, and ξ the bulk viscosity

[23]. The viscous terms above are written in the Landau or transverse frame [20], which can

be defined as a condition on the first order part of the relativistic stress tensor

T (1)
µσ u

σ = 0 . (37)

This frame is usually constructed so that the viscous fluid velocity is defined as the velocity

of energy transport. The seed stress tensor in (35) follows from the ǫ expansion if we identify

uµ =
1√

rc − v2
(1, vi), ρ = 0 +O(ǫ3), p =

1√
rc

+
P

r
3/2
c

, η = 1 . (38)

This is consistent with the earlier equilibrium calculation of ρ and p. Note that the bulk

viscosity term in (36) actually drops out and bulk viscosity is not an independent transport
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coefficient. This is due to the fact that at viscous order we can impose the ideal order

equation ∂µu
µ = 0, which follows from ρ = 0.

In GR, the momentum constraint equations on the surface Sc can be expressed in terms

of the Brown-York stress tensor

RµAN
A = ∂νTBY

µν = 0 , (39)

At second and third order in ǫ, momentum constraint equations are

R
(2,3)
µA NA = r−1/2

c R
(2,3)
tµ + r1/2c R(2,3)

rµ = 0 . (40)

At second order, this is equivalent to the incompressibility condition ∂iv
i = 0 we discussed

above. At third order one finds the Navier-Stokes equations with a particular kinematic

viscosity

∂tvi + vj∂jvi + ∂iP − rc∂
2vi = 0 . (41)

Therefore, imposing the incompressible Navier-Stokes equations on the fluid variables guar-

antees the dual metric is a solution to the field equations.

In [7] the higher order corrections to the seed metric (34) and the corresponding correc-

tions to the Navier-Stokes equations and the stress tensor were determined. As before, these

corrections match the non-relativistic expansion of some relativistic fluid hydrodynamics.

For example, to second order, in the Knudsen number, O(λ2), the general stress tensor for

the Rindler fluid has the form

TRel
µν = ρuµuν + pPµν − 2ηKµν

+ c1Kλ
µKλν + c2Kλ

(µΩ|λ|ν) + c3Ω
λ

µ Ωλν + c4P
λ
µP

σ
ν DλDσ ln p

+ c5Kµν D ln p+ c6D
⊥
µ ln pD⊥

ν ln p , (42)

where D = uµ∂µ, D
⊥
µ = P ν

µ∂ν , and Ωµν = P λ
µP

σ
ν ∂[λuσ]. There are also viscous corrections to

the energy density ρ at this order, which can be parameterized very generally as

ρ = b1KµνKµν + b2ΩµνΩ
µν + b3D ln pD ln p+ b4D

2 ln p+ b5D
⊥
µ ln pD⊥µ ln p . (43)

The ci, i = 1..6, and bj , j = 1..5, are the possible new transport coefficients. The form of the

Brown-York stress tensor at O(ǫ4) and O(ǫ5) matches the expansion of (42) at these orders,

with

b1 = −2
√
rc, b2 = 0, c1 = −2

√
rc, c3 = −4

√
rc, c2 = c4 = −4

√
rc . (44)
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To fix the remaining second order transport coefficients one has to work to even higher

orders in the ǫ expansion.

B. The relativistic fluid

The non-relativistic results of [7] suggest that there is underlying relativistic description

of the fluid dual to Rindler space-time. In this section we develop an approach to the

hydrodynamics of this system which is entirely relativistic. The first step is to write the

metric (31) in a manifestly boost covariant form. This metric is

ds2 = gABdx
AdxB = −(1 + p2(r − rc))uµuνdx

µdxν − 2puµdx
µdr + Pµνdx

µdxν . (45)

In this line element we replaced rh with the relativistic pressure p using the formula

p =
1√

rc − rh
. (46)

The coordinates xµ = (t, xi). The fluid velocity is defined as uµ = γ(1, vi), where γ =

(r2c − v2)−1/2 and Pµν = γµν + uµuν . If one expands this metric in powers of vi and defines

p =
1

√
rc

+
P

r
3/2
c

, (47)

then up to O(ǫ2) (45) reproduces the seed metric. An additional check is to compute the

Brown-York stress tensor for this metric at r = rc. The space-like unit normal to this surface

is

nr =
√
grr; nµ =

grµ√
grr

. (48)

Therefore, we need to find the inverse metric (this is also needed in the our calculations later

on). Using the formula gACgCB = δAB, we find

grr = p−2Φ; grµ = p−1uµ; gµν = P µν , (49)

where we have defined Φ = 1 + p2(r − rc) for convenience. Thus, we find nr = p−1 and

nµ = uµ. Using

Kµν =
1

2

(

nA∇Aγµν + γµλ∂νn
λ + γλν∂µn

λ
)

, (50)
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(4) gives

Tµνdx
µdxν = pPµνdx

µdxν , (51)

which is the ideal part of (36) with ρ = 0.

With these basic criteria satisfied, we can consider perturbations of this metric. At

this point (45) is simply a boosted form of the flat Rindler metric. To perturb, we now

treat uµ(xµ) and p(xµ), but leave rc fixed. This follows the standard approach used in the

fluid-gravity correspondence [1]. The metric is no longer a solution to the vacuum Einstein

equations, but one can expand and work order by order in derivatives of the relativistic

fields uµ and p. Now

ds2 = g
(0)
ABdx

AdxB = −Φuµ(x
µ)uν(x

µ)dxµdxν − 2p(xµ)uµdx
µdr + Pµν(x

µ)dxµdxν (52)

is the solution at zeroth order, i.e. RAB = 0+O(λ). The strategy for solving the equations

is as follows. One introduces a first order correction to the metric δg(1),

g = g(0) + δg(1) . (53)

The corrected metric at first order induces a δR
(1)
AB at the same order (necessarily involving

only radial derivatives). We want to solve for the metric δg(1) so that

δR
(1)
AB + R̂

(1)
AB = 0 , (54)

where R̂
(1)
AB comes from the zeroth order metric. This method can be generalized to solve

for the metrics at higher order in λ. If we have a solution to (n− 1) order g(n−1), then one

introduces a correction δg(n) so that

δR
(n)
AB + R̂

(n)
AB = 0 . (55)

The first step is to compute the general form of δR
(n)
AB. The Christoffel symbols are

δΓA
BC =

1

2
gAD
(0)

(

∇̄Bδg
(n)
CD + ∇̄Cδg

(n)
BD − ∇̄Dδg

(n)
BC

)

, (56)

where ∇̄A is covariant derivative with respect to the background Rindler metric. Hence, we

need the Christoffel symbols for the Rindler metric. These have the form

Γ̄r
µν =

1

2
Φuµuν ; Γ̄r

µr =
1

2
puµ; Γ̄µ

νλ =
1

2
puµuνuλ (57)
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with the rest being zero.

In our solution, we will choose the gauge so that at all orders

grr = 0; grµ = −puµ . (58)

This implies that δg
(n)
rr = 0 and δg

(n)
rµ = 0. Expanding out (56) gives the following results:

δΓr
rr = 0 (59)

δΓr
µr =

1

2
p−1uλ∂r(δg

(n)
µλ ) (60)

δΓr
µν = −1

2
p−2Φ∂r(δg

(n)
µν )−

1

2
uµuνu

λuσδg
(n)
λσ (61)

δΓµ
rr = 0 (62)

δΓµ
rν =

1

2
P µλ∂r(δg

(n)
νλ ) (63)

δΓµ
νλ =

1

2

(

−p−1uµ∂r(δg
(n)
νλ )− pP µτuνuλu

σδg(n)στ

)

(64)

Now we use the formula

δR
(n)
AB = −∇̄AδΓ

C
CB + ∇̄CδΓ

C
AB . (65)

The final result is

δR(n)
rr = −1

2
∂2
r (P

λσδg
(n)
λσ ) (66)

δR(n)
rµ =

1

4
puµ∂r(P

λσδg
(n)
λσ ) +

1

2
p−1∂2

r (u
λδg

(n)
µλ ) (67)

δR(n)
µν = −1

2

(

uµ∂r(u
λδg

(n)
νλ ) + uν∂r(u

λδg
(n)
µλ ))

)

− 1

2
∂r(δg

(n)
µν )−

1

2
p−2Φ∂2

r (δg
(n)
µν )

− 1

2
uµuν∂r(u

λuσδg
(n)
λσ +

1

4
Φuµuν∂r(P

λσδg
(n)
λσ ). (68)

Notice that these satisfy

δR
(n)
µAn

A = 0 . (69)

Using (55) we can now obtain the general solution for δg
(n)
AB. This solution needs to be

consistent with the following boundary conditions: (i) no singularity appearing at r = 0

and (ii) induced metric remains flat on r = rc. The second implies that all the n ≥ 1 order

corrections must vanish at r = rc. Projecting into components normal and transverse to uµ
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we find

P λ
µP

σ
ν δg

(n)
λσ = 2p2

∫ rc

r

1

Φ
dr′

∫ r′

0

P λ
µP

σ
ν R̂

(n)
λσ dr

′′ , (70)

uλP σ
µ δg

(n)
λσ = (1/2)(1− r/rc)V

(n)
µ (x)− 2p

∫ rc

r

dr′
∫ rc

r′
dr′′P λ

µ R̂
(n)
rλ , (71)

uλuσδg
(n)
λσ = (1− r/rc)A

(n)(x) + p

∫ rc

r

dr′
∫ rc

r′
dr′′

(

pP λσR̂
(n)
λσ − p−1ΦR̂(n)

rr − 2R̂
(n)
rλ u

λ
)

.

(72)

where V
(n)
µ (V

(n)
µ uµ = 0) and A(n) are free, undetermined functions at this stage.

C. The first viscous order

With this general solution for any n, we now consider the first order solution, which

requires the R̂
(1)
AB computed from the zeroth order equilibrium Rindler metric. To start, we

need the Christoffel symbols to first order in λ. These can be read off from the second order

connection presented in Appendix A.

Using these results, we find ultimately for Ricci tensor components

R̂(1)
rr = 0

R̂(1)
rµ = 0

R̂(1)
µν = ∂(µpuν) +Dp uµuν +

1

2
p(∂λu

λ)uµuν + pu(µaν) , (73)

where the operator D = uλ∂λ and aµ = uν∂νuµ.

The equation RµAn
A = 0 is the momentum constraint. However, as we saw earlier (69)

the δRµA piece satisfies this condition automatically. Therefore we must have uνR̂µν = 0.

Projecting along uµ and orthogonal to uµ with the projector, one finds the relativistic ideal

hydro equations

∂µu
µ = 0 , (74)

aµ + P λ
µ ∂λ ln p = 0 . (75)

So, as expected, the momentum constraints are the relativistic Navier-Stokes equations.
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Inserting (73) into (70-72) yields the solution

uµP λ
ν δg

(1)
µλ = (1/2)(1− r/rc)V

(1)
ν (xµ) , (76)

P λ
µP

σ
ν δg

(1)
λσ = 0 , (77)

uµuνδg(1)µν = (1− r/rc)A
(1)(xµ) . (78)

To determine these functions, we need to impose “gauge” conditions on the 1st order, viscous

part of the Brown-York stress tensor. Using (4) we find the first order part of the stress

tensor is

T (1)
µν =

(

(rcp)
−1A(1) + 2p−1Dp

)

γµν + (rcp)
−1(A(1)uµuν − u(µV

(1)
ν) )

− 2∂(µuν) − 2p−1u(µ∂ν)p, (79)

where we have imposed ∂µu
µ = 0. We now require the stress tensor satisfies a Landau-like

condition (37). This yields an equation for V
(1)
µ :

V (1)
µ = −2rcP

ν
µ∂νp+ 2rcpaµ . (80)

The second condition we demand is for p to be the pressure at all viscous orders. Thus the

term proportional to γµν must vanish. This implies

A(1) = −2rcpD(ln p) . (81)

Feeding these results back into the stress tensor, we find simply

T (1)
µν = −2Kµν . (82)

So, as we expected, the shear viscosity η = 1. The complete solution for the metric to first

order is (imposing the ideal hydrodynamics equations)

ds2 = −(1 + p2(r − rc))uµuνdx
µdxν − 2puµdx

µdr + Pµνdx
µdxν

+ 2p(r − rc)D(ln p)uµuνdx
µdxν − 4p(r − rc)u(µP

λ
ν)∂λ ln pdx

µdxν . (83)

D. The second viscous order

In order to solve to second order in λ, we need to find R̂
(2)
AB. The first step is to compute

the connections out to second order. Then it’s a matter of grinding though the calculations
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of the Ricci tensor, determining the solution, and then computing the Brown-York stress

tensor. This will fix all of the second order ci transport coefficients. The connections and the

Ricci tensor that come from metric (83) are complicated, so we present them in Appendix

A.

We find that at second order the momentum constraint equations RµAn
A = 0 projected

once on uµ and once on P µ
σ are:

∂µu
µ − p−1∂σu

λ∂λu
σ − p−1P ρσ∂ρu

ν∂σuν = 0 (84)

aµ + P λ
µ ∂λ ln p− p−1P νσ∂ν∂σuµ + p−1uµP

νσ∂νu
λ∂σuλ + 2p−1P νσ∂νuµ∂σlnp = 0. (85)

Solving the equations (70-72) for δg
(2)
µν we get:

uµP λ
ν δg

(2)
µλ =

1

2
p2(r − rc)

2
(

−2P µ
ν ∂µu

ρ∂ρlnp+ 2P λρ∂λuν∂ρlnp− P ρσ∂ρ∂σuν + uνP
ρσ∂σuµ∂ρu

µ
)

+ (r − rc)V
(2)
ν (xµ) (86)

P λ
µP

σ
ν δg

(2)
λσ = (r − rc)P

α
µ P

β
ν

(

−∂αlnp∂β lnp+ 2∂α∂β lnp+ 2∂(αuβ)u
ρ∂ρlnp− 2uσ∂σ∂(αuβ)

+2uσ∂σu(β∂α)lnp− aβaα − 3

2
∂αu

λ∂βuλ +
1

2
P σρ∂σuβ∂ρuα + ∂σu(α∂β)u

σ

)

+
1

4
p2(r − rc)

2P α
µ P

β
ν

(

−2∂σu(α∂β)u
σ + P σλ∂σuβ∂λuα + ∂αu

λ∂βuλ

)

(87)

uµuνδg(2)µν =
1

4
p2(r − rc)

2
(

∂σu
α∂αu

σ + P σλ∂σu
ν∂λuν + 4P σλ∂σlnp∂λlnp

)

+
1

4
p4(r − rc)

3
(

−∂σu
α∂αu

σ + P σλ∂σuβ∂λu
β
)

+ (r − rc)A
(2)(xµ). (88)

The corresponding Brown-York stress energy tensor is:

Tµν = γµν
(

p+ p−1
(

−A(2) + ∂σu
λ∂λu

σ + P ρσ∂ρu
ν∂σuν

))

+ puµuν

+
(

−2∂(µ)uν) + 2u(µ∂ν)lnp+ 2uµuνu
λ∂λlnp

)

− p−1uµuνA
(2) + 2p−1u(µP

ρ
ν)V

(2)
ρ

− p−1P α
µ P

β
ν

(

−4∂αlnp∂β lnp+ 2∂α∂βlnp+ 2∂(αuβ)u
ρ∂ρlnp− 2uσ∂σ∂(αuβ)

−3

2
∂αu

λ∂βuλ +
1

2
P σρ∂σuβ∂ρuα + ∂σu(α∂β)u

σ

)

. (89)

As before, we impose the gauge condition that the pressure be unchanged from its equilib-

rium value. This condition eliminates the derivative parts of first term proportional to γµν

in (89) and fixes A(2) to a non-zero value. Note however that the stress tensor now has a

term proportional to uµuν (in the third line above). Hence the traditional Landau gauge
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T
(2)
µν uµ = 0 will be inconsistent. To fix V

(2)
µ we instead require

T (2)
µν u

νP µ
σ = 0. (90)

With these values fixed, the stress tensor can be put in a more conventional form:

Tµν = pPµν − 2Kµν − 2p−1uµuν KαβKαβ − 2p−1KµρKρ
ν − 4p−1Kρ

(µΩ|ρ|ν) − 4p−1ΩµρΩ
ρ
ν

− 4p−1P α
µ P

β
ν ∂α∂βlnp− 4p−1KµνDlnp+ 4p−1D⊥

µ lnpD
⊥
ν lnp (91)

Due to the uµuν tern, one can see that the energy density is no longer zero. It gets following

correction in the second order:

ρ = Tµνu
µuν = −p−1∂σu

λ∂λu
σ − p−1P ρσ∂ρu

ν∂σuν = −2

p
KµνKµν . (92)

We can also read of from the stress tensor the transport coefficients. In the notation of [7],

we get:

c1 = −2p−1, c2 = c3 = c4 = c5 = −4p−1, c6 = 4p−1. (93)

which is in agreement with [7], who found the first four transport coefficients and the energy

density.

Finally for the metric solution δg
(2)
µν we get:

δg(2)µν = uµuν

(

1

2
p2(r − rc)

2
(

KαβKαβ + 2P σλ∂σlnp∂λlnp
)

+
1

2
p4(r − rc)

3
(

ΩαβΩ
αβ
)

+ 2(r − rc)
(

KαβKαβ
)

)

+ 2u(µP
ρ
ν)

(

1

2
p2(r − rc)

2
(

4Ω σ
ρ ∂σlnp+ P λσ∂λ∂σuρ

)

−(r − rc)(−P λσ∂λ∂σuρ + 2Kσ
ρ∂σlnp− 2Ω σ

ρ ∂σlnp)

)

+ (r − rc)
(

2KµρKρ
ν + 4Kρ

(µΩ|ρ|ν) + 4ΩµρΩ
ρ
ν + 4P α

µ P
β
ν ∂α∂β lnp+ 4KµνDlnp

−4D⊥
µ lnpD

⊥
ν lnp

)

+ p2(r − rc)
2 (ΩµρΩ

ρ
ν ) . (94)

For reference, the inverse metric of (94) is presented in Appendix B.
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IV. THE ENTROPY CURRENT

In [13] it was shown that in the fluid-gravity correspondence the entropy current of the

dual fluid on the boundary can be mapped into the area current of the black hole event

horizon. Thus the second law of thermodynamics is equivalent on a geometrical level to

Hawking’s area theorem. Here we will follow this general prescription to calculate the

entropy current for the Rindler fluid to second order in the gradient expansion. Given the

exotic properties of the Rindler fluid, it is clearly of interest to determine whether it behaves

consistently with the second law.

First, since metric solution is no longer stationary, the event horizon is dynamical and its

location varies in time and space. In order to find rh(x
µ) we will need to solve the following

equation in the derivative expansion

gAB∂A(r − rh(x
µ))∂B(r − rh(x

µ)) = 0 . (95)

Using our previous results for the metric, it is straightforward to show at second order

rh = rc −
1

p2
+

2

p3
uµ∂µlnp−

3

2p4
KαβKαβ − 1

2p4
ΩαβΩ

αβ

− 8

p4
DlnpDlnp+

1

p4
D⊥µlnpD⊥

µ lnp+
4

p4
D(Dlnp) . (96)

We can define a co-dimension 2 hyper-surface by two null normals to the hyper-surface. The

ingoing null geodesics nA and the outgoing null geodesics ℓA are:

ℓµ = Aµ, ℓr = B, nr = −1, nµ = 0 . (97)

The unknown functions Aµ and B can be found from the following relations:

ℓAℓA = 0, nAnA = 0, ℓAn
A = −1 . (98)

From these conditions we see that there is another freedom in determining ℓµ in any order

except from the zeroth order. Therefore, we impose the requirement that the vector ℓA will

be the normal vector to foliations of hyper-surfaces that do not intersect with each other.

This requirement is called the Frobenius condition and is expressed by the equation:

v ∧ dv, vA ≡ gABℓ
B . (99)
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This gives us, on the event horizon (putting r = rh(x
µ)) , the same null normal vector that

we get by calculating the normal to the event horizon directly from the equation that defines

the normal to the event horizon: ℓA = gAB∂B(r − rh).

To second order, the vector ℓA on the horizon is:

ℓr = ℓµ∂µrh =
2

p3
uµ∂µlnp−

6

p4
uµ∂µlnpu

ρ∂ρlnp−
2

p4
P µρ∂µlnp∂ρlnp+

2

p4
uµuρ∂µ∂ρlnp (100)

ℓµ =
1

p
uµ − 1

2p3
P µρP λσ∂λ∂σuρ −

2

p3
Ωµλ∂λlnp+

2

p3
P µν∂ν lnpu

ρ∂ρlnp−
2

p3
P µνuρ∂ν∂ρlnp .

(101)

In order to compute the entropy current we will employ horizon expansion θ(ℓ) along the

horizon generator ℓA

θ(ℓ) =
(

gAB + ℓAnB + ℓBnA
)

∇AℓB =
1

p
∂µ

(√
gpℓ(0)µ +

√
gpℓ(1)µ +

√
gpℓ(2)µ

)

. (102)

We can identify the entropy current as the term in the brackets up to a overall factor of

1/4G (which in our units of 16πG = 1 is 4π) [21].

In order to compute the entropy current we therefore need two ingredients: The square root

of the metric determinant, and the null generator ℓµ. We explained how to get the latter.

The former can be derived by computing the expansion of the null normal ℓ̃A, where ℓ̃r = ℓr

and ℓ̃u = ℓ(0)µ, then we will get only the first term in the brackets of (102) and we can

identify immediately the square root of the determinant of the metric.

Combining all the ingredients we get the following result for entropy current:

Sµ =
pℓµ

4G

(

1− 1

p2

(

KαβKαβ − 5

2
ΩαβΩ

αβ + 2P αβ∂α∂β lnp+ 2KDlnp− 2P αβ∂αlnp∂βlnp

))

.

(103)

Taking the divergence and imposing the Navier-Stokes equations gives

∂µS
µ =

1

2Gp

(

Kαβ +
1

2p
(−5Kαβu

µ∂µlnp+ 4∂αlnp∂β lnp− 4∂α∂βlnp− 3Kµ
αKµβ − 4Ω ν

α Ωνβ)

)2

,

(104)

which is clearly non-negative, just as expected from the area increase theorem applied to

the Rindler horizon.
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Appendix A: The Connections and Ricci Tensor

The connections up to 2nd order from the first order metric (83) are:

Γr
µr =

1

2
(3∂µlnp+ puµ + uµu

λ∂λlnp+ uσ∂σuµ)

+ (r − rc)(∂µu
λ∂λlnp+ uµP

λρ∂ρlnp∂λlnp− P λρ∂ρuµ∂λlnp) (A1)

Γr
µν =

1

p
(−∂(µuν) + u(µ∂ν)lnp+

1

2
puµuν + uµuνu

λ∂λlnp)

+ p(r − rc)(3u(µ∂ν)lnp+
1

2
puµuν +

1

2
uλ∂λ(uµuν) + uµuνu

λ∂λlnp)

+ p2(r − rc)
2(2u(µ∂ν)u

ρ∂ρlnp− P λρ∂λ(uµuν)∂ρlnp)

+ (r − rc)
(

2∂µlnp∂ν lnp+ 2∂µ∂ν lnp+ 2u(µ∂ν)u
ρ∂ρlnp+ 2∂(µuν)u

ρ∂ρlnp

− uµuνu
λ∂λlnpu

ρ∂ρlnp+ uλ∂λ(uµuν)u
ρ∂ρlnp+ uµuνu

λ∂λu
ρ∂ρlnp

+uµuνu
ρuλ∂ρ∂λlnp+ 2uλ∂λu(µ∂ν)lnp+ 2u(µu

λ∂λ∂ν)lnp
)

(A2)

Γν
µr =

1

2
p
(

−∂µu
ν − uµP

νλ∂λlnp+ P νσ∂σuµ

)

(A3)

Γν
µσ =

1

2

(

puνuµuσ − 2uν∂(µuσ) + 2uνu(σ∂µ)lnp+ 2uµuσu
λ∂λlnp

)

+
1

2
p2(r − rc)

(

−2u(σ∂µ)u
ν + P νλ∂λ(uσuµ)

)

+ p(r − rc)P
νρ∂ρlnp

(

2∂(µuσ) − 2u(µ∂σ)lnp− 2uµuσu
λ∂λlnp

)

+ p(r − rc)P
νλ

(

2u(σ∂µ)uλu
ρ∂ρlnp− 2∂(µuλP

ρ
σ)∂ρlnp− 2∂(µ(puσ)P

ρ
λ∂ρlnp)

−∂λ(uσuµu
ρ∂ρlnp− 2u(µP

ρ
σ)∂ρlnp)

)

(A4)
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The Ricci tensor calculated from the 1st order metric (83) up to 2nd order is:

R̂(2)
rr =

1

2
p2 (−∂νu

µ∂µu
ν + P µσ∂µu

ν∂σuν)

R̂(2)
rµ =

1

2
p(2uµu

ρ∂ρlnp− 2P νρ∂νuµ∂ρlnp+ uµP
νλ∂ρlnp∂ν lnp− ∂ν∂µu

ν − uµ∂νu
νuλ∂λlnp

− uµP
νλ∂ν∂λlnp+ ∂νu

νuσ∂σuµ + P νσ∂ν∂σuµ)

+
1

2
p3(r − rc)(−uµ∂σu

ν∂νu
σ + uµP

νλ∂νu
σ∂λuσ) (A5)

R̂(2)
µν = −1

2
∂µlnp∂ν lnp+ 2∂µ∂ν lnp+ 2u(µ∂ν)u

ρ∂ρlnp+ ∂(µuν)u
ρ∂ρlnp+

3

2
uλ∂(uµuν)u

ρ∂ρlnp

+ 2uµuνu
λ∂λu

ρ∂ρlnp+ 2uµuνu
ρuλ∂λ∂ρlnp + 2u(µu

λ∂λ∂ν)lnp− ∂σu
σ∂(µuν) − uσ∂σ∂(µuν)

+ ∂σu
σu(µ∂ν)lnp+ u(µu

σ∂σ∂ν)lnp+ uσ∂σu(µ∂ν)lnp + uµuν∂σu
σuλ∂λlnp− ∂ν∂µlnp

− u(µ∂ν)lnpu
λ∂λlnp−

1

2
uµuνu

ρ∂ρlnpu
λ∂λlnp−

1

2
uρ∂ρuµu

λ∂λuν −
1

2
∂µu

σ∂νuσ

+
1

2
P σρ∂σuν∂ρuµ −

1

2
P σρ∂ρ(uµuν)∂σlnp+

1

2
uµuνP

σλ∂σlnp∂λlnp

+ p2(r − rc)

(

−∂σu(ν∂µ)u
σ − u(ν∂µ)∂σu

σ +
1

2
∂σu

σuλ∂λ(uµuν) + u(µ∂ν)u
σ∂σlnp

− 1

2
P σρ∂ρ(uµuν)∂σlnp+ uµuνu

λ∂λu
σ∂σlnp+

1

2
∂µu

λ∂νuλ − P σρ∂ρuν∂σuµ

)

+
1

2
p4(r − rc)

2
(

−uµuν∂λu
σ∂σu

λ + uµuνP
σρ∂σu

λ∂ρuλ

)

. (A6)

Appendix B: Inverse metric

The inverse metric of (94) to the 2nd order is:

grr =
1

p2
(

1 + p2(r − rc)
)

− 2

p2
(r − rc)u

λ∂λlnp

− 1

2
(r − rc)

2
(

KαβKαβ − 6P ρλ∂λlnp∂ρlnp
)

− 1

2
p2(r − rc)

3ΩαβΩ
αβ

− 2

p2
(r − rc)KαβKαβ (B1)

grµ =
1

p
uµ − 2(r − rc)P

µλ∂λlnp+
1

2
p(r − rc)

2
(

4Ωµσ∂σlnp+ P µρP λσ∂λ∂σuρ

)

− 1

p
(r − rc)

(

−P µρP λσ∂λ∂σuρ + 2Kµσ∂σlnp− 2Ωµσ∂σlnp
)

(B2)

gµν = P µν −
(

2Kµ
ρKνρ + 4Kρ(µΩ

ν)
|ρ| + 4Ωµ

ρΩ
ρν + 4P µαP νβ∂α∂βlnp+ 4KµνDlnp

−4D⊥µlnpD⊥ν lnp
)

(r − rc)− p2(r − rc)
2Ωµ

ρΩ
ρν (B3)
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