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Abstract

This paper is a mathematical study of some aspects of the signalling
pathway leading to the activation of the transcription factor NFAT (nu-
clear factor of activated T cells). Activation takes place by dephospho-
rylation at multiple sites. This has been modelled by Salazar and Höfer
using a large system of ordinary differential equations depending on many
parameters. With the help of chemical reaction network theory we show
that for any choice of the parameters this system has a unique station-
ary solution for each value of the conserved quantity given by the total
amount of NFAT and that all solutions converge to this stationary solu-
tion at late times. The dephosphorylation is carried out by calcineurin,
which in turn is activated by a rise in calcium concentration. We study
the way in which the dynamics of the calcium concentration influences
NFAT activation, an issue also considered by Salazar and Höfer with the
help of a model arising from work of Somogyi and Stucki. Criteria are
obtained for convergence to equilibrium of solutions of the model for the
calcium concentration.

1 Introduction

The phenomena modelled mathematically in this paper are mechanisms which
are part of the way the immune system works at the molecular level. For
background on immunology the reader is referred to [17] or [21]. T cells are
among the most important components of the immune system. They have the
task of recognizing certain antigens and reacting appropriately. More precisely, a
T cell recognizes a peptide (small protein) in combination with an MHC (major
histocompatibility complex) molecule. The recognition takes place through a
surface molecule, the T cell receptor. In what follows attention will be confined
to T helper (Th) cells although some of the statements made may also apply
to other types of T cells. In order for the T cell to be activated a second
signal is also necessary. This comes from another surface molecule, CD28, which
recognizes the molecules B7.1 and B7.2 on the antigen presenting cell carrying
the peptide-MHC complex. The information about these recognition events

1

http://arxiv.org/abs/1201.1094v1


is propagated to the nucleus through various signalling pathways. The result
is that the transcription factors NFAT, NFκB and AP-1 bind to the DNA,
leading to the production of the cytokine IL-2 (interleukin 2). Much remains to
be learned about these signalling pathways and mathematical modelling has a
great potential to contribute to obtaining a better understanding of them.

In the following attention will be concentrated on the part of the signalling
network relating to NFAT (nuclear factor of activated T cells). It should be
noted that although the abbreviation NFAT refers to T cells this transcription
factor is important for signalling in many other types of cells. There are five
different NFAT molecules and the one of relevance in what follows is that known
as NFATc2 or NFAT1. A model for NFAT signalling in T cells was introduced
by Salazar and Höfer [22]. In fact they only deal with part of the pathway. An
important stage in signalling is when there is a flow of calcium ions into the
cytosol. During the activation of T cells this occurs when IP3 (inositol 1,4,5-
trisphosphate) binds to receptors in the endoplasmic reticulum (ER), opening
calcium channels and thus allowing calcium ions to flow down their concentra-
tion gradient. This can be simulated experimentally by treating the cells with
ionomycin, which leads to transport of calcium ions across membranes. The first
step in the NFAT pathway included in the work of [22] and the first one to play
a role in what follows, is this increase in the calcium concentration. The calcium
binds to calcineurin, partly activating it. It also binds to calmodulin, which can
then complete the activation of calcineurin. The activated calcineurin removes
phosphate groups from NFAT, which is present in phosphorylated form in the
cytosol of resting cells. The NFAT then undergoes a conformational change and
moves to the nucleus where it can bind to DNA. The main model in [22] (which
will be called the SH model in what follows) describes the dephosphorylation
of NFAT and its transport between the cytosol and the nucleus. A subsidiary
model describes the calcium influx. The aim of this paper is to obtain a deeper
mathematical understanding of these models.

The SH model is a system of 4N +4 equations and contains 10N+4 param-
eters, where N is the number of phosphorylation sites. The case of interest for
NFAT is N = 13 so that there are 56 equations and 134 parameters. Due to the
large number of variables involved it might seem difficult to analyse the dynam-
ical behaviour of general solutions of this system. Chemical reaction network
theory (CRNT) [9] is a general tool for attacking this type of problem and it
turns out to be very effective in this case. As we will show, one of its strongest
theorems, the Deficiency Zero Theorem, can be applied to this system. The
result is that for a given total amount of NFAT there is a unique stationary
solution of the system and that every other solution converges to the stationary
solution.

The SH model describes the dephosphorylation of NFAT when the concen-
tration of activated calcineurin is constant. In fact the calcium influx which
leads to the activation of NFAT is a dynamical process. To assess the applica-
bility of the SH model it is desirable to know whether the calcium concentration
tends to a constant value at late times. This process is modelled in [22] by a
two-dimensional dynamical system. It will be shown that for certain subsets
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of the parameter space for this model the solutions do converge to a stationary
solution. It is also shown that when this happens the long-time behaviour of the
amounts of the different forms of NFAT occurring in the SH model is that they
converge to the values they converge to in the SH model with an appropriate
choice of parameters.

The paper is organized as follows. Section 2 contains some basic material
about chemical reaction network theory. The dynamical analysis of the SH
model for NFAT phosphorylation with constant stimulation is in section 3. The
dynamics of the calcium influx is investigated in section 4. The last section of
the main text gives conclusions and an outlook. In an appendix the SH model
is compared with a model for the NFAT signalling pathway defined in [10].

2 Chemical reaction network theory

Chemical reaction network theory is a collection of methods for studying the
dynamics of solutions of ordinary differential equations modelling systems of
chemical reactions. Some concepts of this theory will now be reviewed. In
CRNT the basic objects are finite sets S of species, C of complexes and R of
reactions. The elements of C are formal linear combinations of elements of S
with positive integer coefficients while the elements of R are ordered pairs of
elements of C. The number of elements of S, C and R are denoted by m, n̄
and r respectively. The set S consists of the substances taking part in the
chemical reactions and in the example of the SH system it consists of 4(N + 1)
states of NFAT. The complexes are the combinations of species occurring on
the left and right hand sides of the reactions. In the SH model each complex
is just a single species. The reactions are ordered pairs of complexes, each
representing the input and output of one reaction. In the case of the SH model
they can be identified with ordered pairs of species. (Note that a reaction and
the reverse reaction are counted separately.) Given a reaction network let cs be
the concentration of the species with index s. Consider a system of ordinary
differential equations of the form

dcs
dt

= fs(y) =
∑

(y,y′)∈R

r(y, y′)(y′s − ys). (1)

Here r(y, y′) ≥ 0 are the reaction rates. They are assumed non-negative. The
choice of these functions is often referred to as the kinetics. In this section only
the most standard choice of kinetics will be considered. This is mass-action
kinetics, where

r(y, y′) = kyy′cy. (2)

Here kyy′ are positive constants called the rate constants and cy =
∏

s∈S c
ys
s .

The equation (1) will be abbreviated to ċ = f(c). Here c is a vector of con-
centrations cs and so is a point of Rm. The positive and non-negative orthants
are defined to be the sets of points of Rm whose coordinates are positive and
non-negative, respectively. The quantity c is said to be positive (non-negative)
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if it lies in the positive (non-negative) orthant. Because of its interpretation in
terms of concentrations c should be non-negative in order to be of relevance for
applications.

The positive and non-negative orthants are invariant under the evolution
defined by the ordinary differential equations of a chemical reaction network.
The invariance of the non-negative orthant follows from that of the positive
orthant by continuity. The invariance of the positive orthant is a consequence
of a lemma which will now be proved. (Cf. Lemma II.1 of [25] for a similar
result.)

Lemma 1 Consider a solution cs(t) of (1) with the coefficients r(y, y′) being
given by mass-action kinetics. If cs(t0) > 0 for some s and some time t0 then
cs(t) > 0 for all t ≥ t0 for which the solution exists.
Proof If the statement of the lemma is false then it can be assumed that cs(t1) =
0 for some t1 > t0. The time t1 can be chosen so that cs(t) > 0 for all t < t1.
The quantity cs satisfies an equation of the form

dcs
dt

= −f−(c)cs + f+(c) (3)

where f+ is non-negative. Since cs is positive on the interval [t0, t1) the inequal-
ity

d

dt
(log cs) ≥ −f−(c) (4)

holds. Integrating this equation and exponentiating gives

cs(t1) ≥ cs(t0) exp

(

−
∫ t1

t0

|f−(c(t))|dt
)

. (5)

The integral in this expression is finite and so the inequality implies that cs(t1) >
0, a contradiction. This completes the proof of the lemma.

The reaction network can be represented as a directed graph where the
vertices are the complexes and edges represent reactions. The reaction network
is said to be weakly reversible if whenever it is possible to link the complex y to
the complex y′ by a sequence of reactions it is also possible to link y′ to y in the
same way. In the case of the SH system the network is weakly reversible since
in fact every reaction is reversible. The connected components of the reaction
graph are called linkage classes and their number is denoted by l. In the case of
the SH model l = 1. An important object is the stoichiometric matrix N̄ . Its
columns correspond to the reactions belonging to the network. The entries in
a column are defined by the sums of coefficients of the different species in the
complexes occurring in the reaction, with the coefficients on the left hand side
being counted negatively and the coefficients on the right hand side positively.
In other words, these are the net number of molecules of each species produced
in the reaction. It is an m × r matrix. The cosets of the form c + im N̄ are
called stoichiometric compatibility classes and are invariant under the flow of
the system. The intersection of a stoichiometric compatibility class with the
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non-negative orthant is called a reaction simplex and is also invariant under
the flow by Lemma 1. The rank of N̄ (i.e. the dimension of the stoichiometric
compatibility classes) is denoted by s. The deficiency of the network is defined
by δ = n̄ − l − s. The following is part of the Deficiency Zero Theorem which
was first proved in [14], [15] and [8].
Theorem 1 Let ċ = f(c) be the system of ordinary differential equations de-
fined by a chemical reaction network by means of mass-action kinetics. If the
network is weakly reversible and of deficiency zero then there is a unique posi-
tive stationary solution in each stoichiometric compatibility class. The solution
is asymptotically stable within its class.

An important part of the proof of Theorem 1 is to show that there exists
a Lyapunov function L(c) which is non-increasing along solutions and strictly
decreasing along all positive solutions except for the stationary solution. This
means that the stationary solution is the only possible positive ω-limit point of
a positive solution. The function f can be written in the form Y g where Y is
called the complex matrix. Its columns are in one to one correspondence with
the complexes and the entries in the column corresponding to the complex y are
the components ys. In the case of the SH system Y is just the identity. If c∗
is a stationary solution then f(c∗) = 0. If in addition g(c∗) = 0 the stationary
solution is called complex balanced. Evidently any stationary solution of the SH
system is complex balanced. In fact it is a consequence of the proof of Theorem
1 that for a system satisfying the assumptions of that theorem the intersection
of the kernel of Y with the image of N̄ is {0}, so that any stationary solution
of a system of that type is complex balanced.

3 The model for NFAT phosphorylation

The basic variables in the model of [22] are amounts of different forms of NFAT.
Using amounts rather than concentrations avoids introducing extra factors of
the ratio of the volumes of the two compartments. This is just a matter of
mathematical convenience. Phosphate groups can be attached to this molecule
at up to N = 13 sites. The index n will be used to denote the number of
phosphate groups and runs from zero to N . It is assumed that the phosphate
groups are bound to the sites in a certain order and are removed in the reverse
order. There are thus N phosphorylation states in total. Each of these has
an active and an inactive form. Each of them occurs in the cytosol and in
the nucleus. This gives a total of 4(N + 1) variables decribing the amounts of
the different substances. The processes of attaching a phosphate group and the
conformational change between the active and inactive forms are reversible. It is
necessary to prescribe 6N +2 rate constants to describe the reactions in a given
compartment. However the rate constants describing the transitions between
active and inactive forms are chosen to be the same in both compartments. Rate
constants are also required to describe the transport processes between the two
compartments - the active form is transported into the nucleus and the inactive
form out of the nucleus. It is assumed that there is just one rate constant
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for each of these two processes, independent of the phosphorylation state. A
diagram of this reaction network can be found in [22], Fig. 1. Assuming mass-
action kinetics leads to a system of ordinary differential equations for the time
evolution of the amounts of the different substances.

The unknowns are as follows. The amount of active NFAT in the cytoplasm
with n phosphorylated residues is denoted by an, n = 0, 1, . . . , N . The amount
of the corresponding inactive form is denoted by in. The amounts of these
substances in the nucleus are denoted by An and In. All these quantities are
supposed non-negative. Mass-action kinetics is assumed. For 1 ≤ n ≤ N − 1
the dynamical equations for amounts in the nucleus are

dAn

dt
= Kn−1An−1 −KnAn + CnAn+1 − Cn−1An

+l−n In − l+nAn + dan, (6)

dIn
dt

= K ′
n−1In−1 −K ′

nIn + C′
nIn+1 − C′

n−1In

+l+nAn − l−n In − fIn (7)

with rate constantsKn, K
′
n, Cn, C

′
n, l

+
n , l

−
n , d and f . Evolution equations for the

cases n = 0 and n = N can be obtained by taking equations formally identical
to those above with the conventions that K−1 = C−1 = K ′

−1 = C′
−1 = 0 and

that CN = C′
N = KN = K ′

N = 0. Analogous evolution equations for the
quantities an and in can be obtained as follows. Replace An and In by an and
in respectively everywhere except in the last term of each equation. Reverse the
sign in the last term of each equation. Replace Cn, C

′
n, Kn, K

′
n by cn, c

′
n, kn

and k′n. It is stated in [22] that the transport processes are much slower than the
reactions within each compartment. On a heuristic level this can be imported
into the mathematics by assuming that the coefficients d and f are very small.
It may be hoped that solutions of the full system can be approximated by
solutions of the system obtained by setting d = f = 0. In the latter system the
equations describing amounts in the nucleus and the cytoplasm decouple. For
this reason it is referred to in what follows as the decoupled system. To analyse
this system it is enough to analyse the subsystems describing the dynamics in
each compartment.

The SH system satisfies n̄ = 4(N + 1) and l = 1. In order to show that
Theorem 1 applies it therefore suffices to show that the rank of N̄ is 4N + 3.
This rank is equal to 4(N + 1) minus the dimension of the kernel of (N̄)T .
The conditions for a vector to lie in this kernel are easy to analyse. Some of
the conditions imply that all the components of the vector corresponding to
amounts of substances in the cytosol are equal and that those corresponding to
amounts of substances in the nucleus are equal. Finally elements corresponding
to the amounts of the same substance in both compartments are equal. Thus the
kernel is one-dimensional and the rank of the stoichiometric matrix is 4N + 3.
It follows that the deficiency is zero and Theorem 1 applies to the SH system.

Theorem 1 leaves open the question whether under its hypotheses every
solution converges to a stationary solution. It will be shown below that this is
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the case for the SH system. Note first that the total amount of NFAT, which
is the sum of all the variables in the SH system, is a conserved quantity. Thus
each reaction simplex is compact. It follows that all solutions exist globally in
time towards the future and the ω-limit set of any positive solution is connected.
Combining this with the remark about ω-limit points made previously shows
that if a solution does not converge to the stationary solution its ω-limit set
must be contained in the boundary of the positive orthant.

Suppose now that a positive solution c has an ω-limit point in the bound-
ary of the positive orthant. There is a solution of the system, say c∞, passing
through that ω-limit point. The range of c∞ is contained entirely in the bound-
ary. By Lemma 1 the number of non-zero components of c∞ can never decrease.
It might a priori increase but in any case it will be constant after a finite time.
Thus when considering late-time behaviour it may be assumed without loss of
generality than (c∞)s(t) is non-zero for 1 ≤ s ≤ k and identically zero for
k + 1 ≤ s ≤ m. Here 0 ≤ k < m. In fact k > 0 since the sum of the vari-
ables (c∞)s, which is the total amount of NFAT in the cell, is conserved. If
k + 1 ≤ s ≤ m then (ċ∞)s = 0. There are no negative contributions to (ċ∞)s
since reactions having species s on their left hand side are not active. If there
is a link from species s to species s′ in the reaction network with non-zero con-
centration then a positive contribution to (ċ∞)s results. It follows that if s′ is
adjacent to s in the network then k + 1 ≤ s′ ≤ m. Since the reaction graph
is connected this implies that all cs vanish identically, a contradiction. Thus it
has been proved that there can be no ω-limit points on the boundary and the
following result is obtained:
Theorem 2 Let ċ = f(c) be the system of Salazar and Höfer. There is a
unique stationary solution c∗ in each stoichiometric compatibility class and each
positive solution converges to a stationary solution as t→ ∞.

It has been conjectured that under the hypotheses of Theorem 1 every solu-
tion converges to a stationary solution as t → ∞. This is known as the global
attractor conjecture [4] and has recently been proved in the case that there is
only one linkage class by Anderson [2]. Theorem 2 could be deduced from the
result of [2] but it has been shown here that there is a much easier proof in this
relatively simple case.

There are many different ways in which multiple phosphorylation can be
organized and this can give rise to many systems related to the SH model. The
phosphorylation is said to be processive if an enzyme which binds its substrate
once phosphorylates several sites before dissociating. It is said to be distributive
if only one site per binding event is phosphorylated. One type of distributive
phosphorylation is sequential phosphorylation, where the sites are phosphory-
lated in a particular order and dephosphorylated in the reverse order - this is the
case in the SH model. There is also a cyclic variant where dephosphorylation
takes place in the same order as phosphorylation. It is also possible to consider
phosphorylation in a random order or mixtures of the mechanisms introduced.
An extensive discussion of the possibilities and examples of biological systems
where they occur can be found in [23]. For many of these systems an analogue
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of Theorem 2 holds and can be proved in a similar way. For the only properties
required for the proof are as follows:

• each complex consists of one species

• there is only one linkage class

• the network is weakly reversible

Thus the analogues of the SH model with cyclic or random phosphorylation both
have the property that there is a unique stationary solution in each stoichio-
metric compatibility class and that any other solution converges to a stationary
solution.

There is another dynamical system related to the modelling of T cell acti-
vation which has deficiency zero and can thus be shown to have the property
that any solution converges to a stationary solution and that there is only one
stationary solution in any stoichiometric compatibility class. This is the kinetic
proofreading model of McKeithan [16] for antigen recognition by the T cell re-
ceptor and its dynamics was analysed mathematically by Sontag [25]. In that
paper the analogue of Theorem 2 is proved for McKeithan’s model. The key
observation is that the deficiency of the network is zero so that Theorem 1 ap-
plies. From there it is possible to obtain the analogue of Theorem 2 for that
system in a way very similar to what has just been done for the SH model.

In the SH model each phosphorylation or dephosphorylation is modelled as a
single reaction and the details of the interaction with the enzyme which catalyses
the process are not included. Suppose that instead the enzyme is incorporated
in the standard Michaelis-Menten way [18]. This means that the reactions
describing the formation of a complex of the substrate with the enzyme and
the dissociation of the complex to give either enzyme and substrate or enzyme
and product are included, using mass-action kinetics. This is what is referred
to as Michaelis-Menten via mass action (MMvma) in [11] and is different from
using an effective Michaelis-Menten kinetics for a single reaction. The analogue
of one of the parts of the decoupled SH model with the simple mass-action
kinetics replaced by MMvma kinetics is similar to what is called a multiple
futile cycle in [26]. In that case there is only one kinase which catalyzes all
phosphorylations and one phosphatase which catalyzes all dephosphorylations.
This is slightly different from the situation in [11], where there is a different
enzyme for each reaction. In [26] upper and lower bounds for the number of
stationary solutions of a system of this type are obtained. It follows from these
that while in the case N = 1 there is only one stationary solution there are at
least three stationary solutions for N = 2 and at least thirteen for N = 13 for
suitable choices of the parameters of the system. This corresponds to the case
where the total concentrations of the enzymes are small compared to the total
concentration of the substrates. The number of stationary solutions is never
greater than 2N − 1, whatever the parameters. If the total concentrations of
the enzymes are sufficiently large compared to the total concentrations of the
substrates then there is at most one stationary solution.
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The equations arising in the decoupled system can be analysed in the same
way as the full system and the analogue of Theorem 2 holds in that case. For
the decoupled system more can be done and the stationary solutions can be
calculated explicitly, as was shown in [22]. They are obtained by setting the sum
of certain pairs of terms to zero. In the terminology of CRNT these stationary
solutions are detailed balanced. Whether this gives the most general stationary
solutions of the decoupled system is not discussed in [22] but it follows from
the analogue of Theorem 2 that they are. To be concrete the system describing
concentrations in the cytosol will be considered. To obtain the class of solutions
found in [22] it is assumed that the first two terms on the second line of the
evolution equation for an cancel. This also gives a similar cancellation in the

evolution equation for in. The condition for this is that in
an

= Ln where Ln =
l−n
l
+
n

.

Next it is assumed that the second and third terms in the evolution equations
for an cancel for 0 ≤ n ≤ N − 1, giving

an+1

an
=
kn
cn
. (8)

Then the first and fourth terms cancel except in the case n = 0. In fact, if
the equations involving Ln are satisfied and the equations (8) are satisfied for
all n ≤ N − 1 then the conditions for a stationary solution of the part of the
decoupled system describing concentrations in the cytosol is satisfied. Note that
these detailed balance conditions cannot be satisfied by a stationary solution of
the full system with non-zero coefficients d and f . They may, however, be
approximately satisfied when d and f are small. For these stationary solutions
of the decoupled system the fraction of the NFAT in the cytosol which is in the
active state can be computed. It is given by

φ =

∑N
n=0 an

∑N
n=0(an + in)

=
1 +

∑N
n=1

(

∏n−1
j=0

kj

cj

)

1 + L0 +
∑N

n=1(1 + Ln)
∏n−1

j=0
kj

cj

. (9)

In order to have a better understanding of the system it is useful to consider
a special case with a reduced number of parameters. This is obtained in the
following way. The coefficients kn, k

′
n, cn and c′n are taken to be independent of

n and denoted by k, k′, c and c′ respectively. It is also assumed that Ln = L0λ
n.

In this case the expression for φ becomes

φ =

∑N
n=0

(

k
c

)n

∑N
n=0(1 + L0λn)(

k
c
)n

=

[

1 + L0

(

λk
c

)N+1 − 1
λk
c
− 1

k
c
− 1

(

k
c

)N+1 − 1

]−1

. (10)

One of the results of [22] is that for large N the function φ resembles a Hill

function φH(c) = cN

A+cN
for a constant A and an exponent N . In what sense

does this resemblance hold? If N is allowed to tend to infinity for fixed A then
the Hill function tends pointwise almost everywhere to a translated Heaviside
function which is zero for c < 1 and one for c > 1. From the point of view of the
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applications this gives rise to a switch behaviour for large N . For values of the
control parameter c smaller than a threshold almost all the NFAT in the cytosol
is in the inactive form while for values larger than the threshold almost all the
NFAT is in the active form. The limiting behaviour of the function (10) as N
tends to infinity depends on the assumptions made about the other parameters
present. If the other parameters are fixed then what is obtained in the limit
does contain a threshold but is not a switch. The amount of activated NFAT
is very small below the threshold but increases gradually above the threshold.
This should be compared with the discussion in [12]. Consider first the effect of
varying c while keeping the other parameters fixed. φ → (1 + L0)

−1 as c → ∞
and φ → (1 + L0λ

N )−1 as c → 0. The quantity λ is assumed to be greater
than one in [22] and so if N is large the value of φ at zero is close to zero.
Consider next what happens if N tends to infinity for fixed values of the other
parameters. In the region where c > λk the inequality k

c
< 1 holds. Then the

limit of φ as N → ∞ is given by

φ∞ =

[

1 + L0

k
c
− 1

λk
c
− 1

]−1

=
c− λk

c− λk + L0(c− k)
. (11)

When λk tends to c the function φ∞ tends to zero. Let c̃ = c− λk. Then

φ∞ =
c̃

(1 + L0)c̃+ L0k(λ− 1)
(12)

for c > λk. In the region where c < λk we get φ∞ = 0. Thus φ∞ is a truncated
translated Hill function with exponent one as mentioned in [12]. There is also
another interesting way of passing to the limit N → ∞ which is more closely
related to what is done in [22]. To see this it is convenient to introduce the

variable µ = L
2
N

0 λ. Inverting this gives L0 =
(

µ
λ

)
N
2 . Substituting this into the

expression for φ gives

φ =

[

1 +

(

λ

µ

)
N
2

(

k
c

)N+1 −
(

µ
λ

)N+1

k
c
− µ

λ

k
c
− 1

(

k
c

)N+1 − 1

]−1

. (13)

Denote the limit of this function as φ̂∞. Assume that µ
λ

is a fixed number

which is less than one. When c >
√

λ
µ
k the function φ̂∞ is equal to one while

when c <
√

λ
µ
k it is equal to zero. Thus φ̂∞ is a translated Heaviside function

and this limit behaves in a similar way to the limit of a Hill function when the
exponent is allowed to tend to infinity while all other parameters are fixed. It
is interesting to note that the threshold in φ̂∞ occurs in a different place from
the threshold in φ∞. In the example plotted in Fig. 2(b) of [22] the parameters

are chosen as λ = 10 and µ = 1. Then the threshold for φ̂∞ is at about
3.3. At the threshold value of c the function φ has exactly the value one half.
One key property implemented by this choice of parameters is that the reaction
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constants are such that there is a strong tendency for weakly phosphorylated
NFAT to change from the inactive to the active conformation and for highly
phosphorylated NFAT to change from the active to the inactive one.

The validity of the above explicit formulae is restricted to the decoupled
system but they do provide some information about the full system where d
and f are non-zero. When all other parameters are fixed there is a unique
stationary solution in a given reaction simplex for each choice of non-negative
values of d and f . It can easily be shown, using the compactness of the reaction
simplex, that the stationary solution depends continuously on the parameters.
Since its position is known explicitly when d = f = 0 its position is known
approximately when these two parameters are small.

For any solution of the SH system let φ be the proportion of NFAT in the
cytosol which is in the active state and ψ the fraction of NFAT in the nucleus
which is in the inactive state. Let Z be the fraction of NFAT which is in the
nucleus. Let V1 and V2 be the volume of cytosol and nucleus. Then by the
conservation of the total amount of NFAT the relation

fZψV2 = d(1 − Z)φV1 (14)

holds for any stationary solution and so

Z =
dφV1

dφV1 + fψV2
. (15)

If f and d small then we can obtain approximate expressions for φ and ψ as
functions of the reaction constants. Thus a corresponding approximation is
obtained for Z.

4 Modelling the calcium influx

The model presented in the last section gives a description of how the propor-
tion Z of active NFAT in the nucleus depends on the parameters describing
the state of the cell. An idealized experiment would then consist in modifying
the rate constants c and C by stimulating the cell and measuring the resulting
change in Z. In real experiments things are more complicated. Consider now
the experiments carried out in [19]. There, among other things, the following
type of experiment was done. A population of T cells was treated with differ-
ent concentrations of ionomycin and the production of IL-2 by these cells was
measured. To get production of IL-2 the second signal is also required and it is
produced artificially by stimulating the cells with PMA (phorbol 12-myristate
13-acetate). The result for a given level of stimulation is a curve describing
the number of cells producing different amounts of IL-2. If all the cells were
identical this curve would reduce to a Dirac δ but in reality this is smeared out
to a smooth curve by the natural variability of the cells. When the stimulus is
varied the following phenomenon is observed. The curve in general consists of
two peaks separated by a region of production rates where there are very few
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cells. As the stimulus is varied the height of one of the peaks grows while that
of the other shrinks. The value at which the maximum of a peak is attained
is essentially unchanged. The interpretation of this result is that a given cell
either produces almost no IL-2 or produces IL-2 at a close to maximal rate. It
exhibits a switch behaviour. This corresponds to the switch-like dependence of
φ on c found in the model.

In the analysis of these results it is supposed that the number of cells where
IL-2 production is switched on closely reflects the number of cells where Z is
almost one. On the other hand the idea that different levels of stimulation can be
modelled by taking different constant values of c and C may be oversimplified
and this issue will now be looked at in more detail. The idealized situation
would be to set a constant level of calcineurin activity by setting a constant
calcium concentration. In fact it is observed experimentally that when a calcium
influx is caused by stimulating the TCR and CD28, or by treating the cell with
ionomycin and PMA, the concentration of calcium often displays oscillations.
It is also possible that these oscillations, rather than being an unimportant
side effect, encode information. A rise in calcium concentration does not only
affect the NFAT signalling pathway but also other characteristics of the cell.
This raises the question of how one signal can control several outputs. One
possibility is that the information is encoded in the time dependence of the
calcium concentrations and that the oscillations have an important role to play
in this. Some experimental results on calcium oscillations in liver cells and
T cells are described in [24] and [5] respectively. For an extensive review of
modelling of calcium dynamics and signalling see [7].

The constants c and C represent the concentration of active calcineurin
and so in modelling the effects of calcium influx they should be replaced by
functions of time. How does the concentration of active calcineurin depend on
the concentration of calcium? In [22] this is modelled by an equation of the
form

dz

dt
= a(z0 − z)y − bz (16)

where z is the concentration of active calcineurin, y is the concentration of
calcium in the cytosol and a and b are constants. It remains to model the
dependence of the calcium concentration on time, possibly including oscillations.
In [22] this is done by means of a system of two ordinary differential equations.
These equations contain the concentration of IP3. With a view to modelling
stimulation by ionomycin it will be assumed that the concentration of IP3 is
constant. Then the model for the calcium concentration is schematically of the
following form:

ẋ = ρ[−α(x− y) + βy − λf(y)(x − y)], (17)

ẏ = α(x − y)− βy + λf(y)(x− y) + γ − δy. (18)

Here x is the concentration of calcium in the lumen of the endoplasmic reticu-
lum. The quantities α, β, γ, δ, λ and ρ are positive constants and f is a positive
function describing the response of the IP3 receptor to the calcium concentra-
tion. In [22] it is chosen to be a Hill function with exponent two. This system is
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essentially a special case of one introduced by Somogyi and Stucki [24]. The only
reason it is not included is that the model in [24] has ρ = 1. Thus it implicitly
assumes that the cytosol and the lumen of the endoplasmic reticulum have the
same volume. In [24] another variant was also considered where the fact that y
is much smaller than x is used to replace x − y by x wherever it occurs in the
above system. The above system will be called the modified Somogyi-Stucki
model while the other variant will be called the unmodified Somogyi-Stucki
model. Note that in the unmodified system a multiplicative constant like ρ can
be removed by rescaling the variable x and some of the parameters. It is re-
marked in [24] that taking f(y) = y2 and α = 0 in the unmodified model gives
a system which is equivalent to the well-known Brusselator [20].

Now some remarks will be made on the dynamics of solutions of the system
(17)-(18). Note first that the only terms on the right hand side of the evolu-
tion equation for a given unknown which are negative contain a factor of that
unknown. Thus it can be shown as in the proof of Lemma 1 that a solution
which starts positive remains positive. Taking a linear combination of the two
evolution equations shows that any stationary solution (x∗, y∗) satisfies y∗ = γ

δ
.

Substituting this back in the equation ẋ = 0 gives

x∗ =
γ[α+ β + λf(y∗)]

δ[α+ λf(y∗)]
. (19)

Thus, in particular the system has exactly one stationary solution for any choice
of the parameters and the function f . Linearizing the system about the station-
ary solution gives

dx̃

dt
= ρ{[−α− λf(y∗)]x̃ + [α+ β − λf ′(y∗)(x∗ − y∗) + λf(y∗)]ỹ}, (20)

dỹ

dt
= [α+ λf(y∗)]x̃+ [−α− β + λf ′(y∗)(x∗ − y∗)− λf(y∗)− δ]ỹ. (21)

The determinant of the linearization at (x∗, y∗) is δρ(α + λf(y∗)) > 0. Thus
the linearized stability of the stationary point is determined by the sign of the
trace of the linearization which is given by

− (1 + ρ)α− β − δ − (1 + ρ)λf(y∗) + λf ′(y∗)(x∗ − y∗). (22)

The stationary solution is a hyperbolic source if and only if

ρ < (α+ λf(y∗))
−1[−α− β − δ − λf(y∗) + λf ′(y∗)(x∗ − y∗)]. (23)

Since x∗ and y∗ do not depend on ρ this shows that the region of instability is
non-empty and is bounded by a smooth hypersurface in parameter space.

In the model of [22] the nonlinearity is given by f(y) = y2

A+y2 . It follows that

f ′(y) = 2Ay
(A+y2)2 and so

−(1 + ρ)f(y∗) + f ′(y∗)(x∗ − y∗)
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= −(1 + ρ)
y2∗

A+ y2∗
+

2Ay∗
(A+ y2∗)

βγ

δ[α(A+ y2∗) + λy2∗)]

=
{−(α+ λ)(1 + ρ)y2∗ +A[−(1 + ρ)α+ 2β]}y2∗

(A+ y2∗)[α(A + y2∗) + λy2∗]
. (24)

This means in particular that in this case a necessary condition for the positivity
of the trace is

(γ

δ

)2

<
A[2β − (1 + ρ)α]

(α + λ)(1 + ρ)
. (25)

Now it will be proved that every solution of the Somogyi-Stucki model is
bounded. Note first that

d

dt
(x + ρy) = ρ(γ − δy). (26)

Let LC be the part of the line x + ρy = C for which y ≥ γ/δ. No solution can
cross it in the direction of increasing y. Let L′ be the line y = γ

α+β+δ+λ
. It

cannot be crossed in the direction of decreasing y. Let H be the zero set of the
right hand side of (17). Its equation can be written as

x = y

[

1 +
β

α+ λf(y)

]

. (27)

This curve starts at the origin and as x tends to infinity along it y tends to
infinity. Let

M =
γ

δ

[

1 +
β

α+ λf(γ
δ
)

]

. (28)

Then the curve crosses the line y = γ/δ when x =M . Define a region RC to be
that bounded by the y-axis, the line LC , the vertical line joining the endpoint
of LC with L′ and the part of L′ between its intersection with that vertical
line and the y-axis. For C ≥ M + ργ

δ
this region is invariant under the flow.

Hence any solution which starts in RC remains there and is bounded. Since
the union of the allowed RC cover the region y ≥ γ

α+β+δ+λ
it follows that any

solution which tended to infinity would have to lie in the strip y < γ
α+β+δ+λ

.
Hence for a solution which is unbounded y > M implies ẏ < 0, a contradiction,
and all solutions are bounded. It follows from Poincaré-Bendixson theory that
unless the trace of the linearization at the stationary solution vanishes each
solution either converges to a stationary solution or to a periodic solution. The
condition on the trace is required so as to rule out possible orbits homoclinic to
the stationary solution.

For certain ranges of the parameters it can be shown that there are no
periodic solutions. To see this note first that any periodic solution must lie in
the region y > γ

α+β+δ+λ
. For it can neither lie entirely in the complement of

that region, due to the monotonicity of y there, nor leave that region. It must lie
in some RC and in fact it must do so for some C ≤M+ ργ

δ
. For the boundary of

RC with any larger value of C can only be crossed in one direction. In particular
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for this solution x can never exceed M . Consider the divergence of the vector
field defining the dynamical system. If the divergence is negative on a region
containing the solution being considered then a contradiction is obtained. This
divergence is given by replacing x∗ and y∗ in (22) by x and y respectively and
can be written in the form

− [(ρ+ 1)α+ β + δ + (ρ+ 1)λf(y) + λf ′(y)y] + λf ′(y)x. (29)

The last term is the only positive one and it can be bounded above by 3
√
3λM

8A
3
2

when x ≤ C. Hence if

3
√
3λM

8A
3
2

≤ (ρ+ 1)α+ β + δ (30)

the divergence is negative on RC . It follows that a sufficient condition for the
absence of periodic solutions is that

3
√
3λγ

8A
3
2 δ

(

1 +
β

α+ λf(γ
δ
)

)

≤ (ρ+ 1)α+ β + δ. (31)

When there are no periodic solutions it can be concluded that every solution
converges to the stationary solution.

In [22] numerical simulations were done for the above model with certain
values of the parameters. These are:

α = 0.001, γ = 0.38, δ = 1, λ = 0.16, ρ = 10, A = 0.25. (32)

In two different simulations β was chosen to be 0.1 and 1. In both these cases the
quantity (22) is negative and so the stationary solution is a hyperbolic sink. For
β = 0.1 the inequality (25) is violated and so this necessary condition suffices
to verify that the stationary solution is a sink in that case. For β sufficiently
large with the other parameters as above the trace is positive. The value of
β for which the trace vanishes is about 8.2. For β = 0.1 the inequality (31)
is satisfied and the criterion for the absence of periodic solutions applies. For
β = 1 it does not.

Suppose that for certain values of the parameters in (17)-(18) and certain ini-
tial data the solution converges exponentially to the stationary solution (x∗, y∗)
as t → ∞. In other words, assume there are positive constants η and R such
that

|x(t) − x∗|+ |y(t)− y∗| ≤ Re−ηt. (33)

The equation (16) can be rewritten as

dz

dt
= −(b+ ay)z + az0y. (34)

Define
z∗ =

az0y∗
b+ ay∗

. (35)
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Then it follows from the variation of constants formula that

z(t) = z(t0)e
−b(t−t0)e

−a
∫

t

t0
y(s)ds

+

∫ t

t0

e−b(t−s)e−a
∫

t

s
y(u)duaz0y(s)ds (36)

and hence that z(t) = z∗ + . . . where the remainder decays exponentially as
t→ ∞.

What can be said about the asymptotic behaviour of solutions of the system
obtained when the SH model is generalized by replacing the constants c and
C by functions of t which converge to constants c∗ and C∗ respectively as t →
∞? Denote by X(t) a solution of the system of ODE obtained from the SH
model by allowing the coefficients to be time dependent. Denote this system
by Ẋ = F (X). Suppose that these coefficients converge to positive limits as
t→ ∞ and that their time derivatives tend to zero. If tn is a sequence tending
to infinity as n → ∞ consider the translates Xn(t) = X(t + tn). Because of
the compactness of the reaction simplex these are uniformly bounded. Using
this in the evolution equations shows that the time derivatives X ′

n(t) are also
uniformly bounded. Differentiating the equation shows that the sequence X ′′

n(t)
is uniformly bounded. By the Arzela-Ascoli theorem there is a subsequence Xnr

which converges together with its first derivatives uniformly on compact subsets
to a limit X∞(t). The functions Xn satisfy

Ẋn(t) = F (Xn(t)) = F (X(t+ tn)) = F∞(Xn(t)) + . . . . (37)

Here F∞ is obtained by replacing the coefficients in F by their limiting values
and the remainder term converges to zero as n→ ∞. Hence

Ẋ∞(t) = F∞(X∞(t)) (38)

and X∞(t) solves the SH system. All solutions of the SH system tend to the
same limiting value X∗. Thus by passing to a subsequence once more it can be
seen that each sequence {tn} has a subsequence along which X(t) converges to
X∗. Thus in fact X(t) → X∗.

If a solution of (17)-(18) does not converge to a stationary solution then it
must converge to a periodic solution. Moreover, there are solutions where this
happens whenever the parameters are such that the stationary point (x∗, y∗) is
unstable. In this case it is more difficult to understand the behaviour of z and
of the modified version of the SH model with variable c and C.

5 Conclusions and outlook

In this paper the properties of some mathematical models of parts of the NFAT
signalling pathway have been investigated. One of the main results concerns a
model describing the phosphorylation states of the transcription factor NFAT
and the transport of these between the cytosol and the nucleus. Using chemical
reaction network theory it was shown that for any value of the parameters in
this system every solution converges to a stationary solution as t→ ∞ and that
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this stationary solution is uniquely determined by the total amount of NFAT in
the cell. Moreover it was shown that in the case where transport between the
two compartments is slow compared to the reactions within each compartment
the stationary solution can be approximated by explicit expressions derived in
[22]. It was exhibited in which way this model can behave as a switch.

The parameters in the model describing the phosphorylation states include
some which reflect the concentration of active calcineurin in the cytosol. It is a
priori not clear that it is sufficient to assume that this concentration is constant
and for this reason a model allowing a time-dependent calcineurin concentration
was examined. The concentration of active calcineurin depends on the calcium
concentration in the cytosol and this concentration is affected when a T cell
is activated. The core model studied is a two-dimensional dynamical system
closely related to a model for calcium dynamics introduced in [24]. Solutions
of this model become periodic at late times for some values of the parameters
and converge to a constant at late times for others. Criteria were obtained for
the parameter values leading to these two different outcomes. It was shown
that when the solution converges to a constant at late times this leads to a
calcineurin concentration which also becomes constant and that the resultant
densities of the phosphorylation states of NFAT in these cases are as in the case
of constant calcineurin concentrations.

In the course of this work the following additional questions arose. The
criteria obtained for when exactly the system (17)-(18) does or does not have
periodic solutions are far from exhaustive. In particular, one question left open
is if there are parameter values for which the stationary solution is stable but
there nevertheless exist periodic solutions. It was shown how the SH model is
affected by an asymptotically constant input. It would be interesting to know
how it is affected by an asymptotically periodic input. More generally it may
be asked what can be said about a possible generalization of CRNT where the
reaction constants are replaced by periodic functions.

It was remarked that the results obtained for a model like the SH model,
where mass action kinetics are used, may change essentially if another type
of kinetics, such as Michaelis-Menten via mass action, is used. What happens
when this is replaced by effective Michaelis-Menten kinetics? Here we are talking
about different ways of modelling the same system of chemical reactions and it
should be possible to relate them in a mathematically rigorous way.

Ultimately, in understanding T cell activation, the interaction of the NFAT
signalling pathway with the signalling pathways leading to other important tran-
scription factors should be understood. Is it enough, when examining the cou-
pled network, to confine attention to stationary solutions? Or so more com-
plicated dynamical phenomena play a role? That they may do so is suggested
by the results of [6] where it is shown that for instance NFAT and NFκB react
to time-dependent calcium signals in different ways. A first step towards doing
this could be to examine the influence of the dynamical behaviour within each
of the individual pathways. One dynamical system describing NFκB signalling
is given in [10]. The signal pathway leading from the T cell receptor to AP-1
passes through a MAP-kinase cascade. Mathematical modelling of this pathway
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revealing switch-like behaviour has been carried out in [1]. An insightful review
of the possible contributions of theory and computation to the understanding
of signalling pathways, with particular attention to T cells, has recently been
given by Chakraborty and Das [3].

Acknowledgements I am grateful to Ria Baumgrass and Bernold Fiedler for
helpful discussions.

A Remarks on the model of Fisher et. al.

The purpose of this appendix is to discuss the relation of the SH model discussed
in the main part of the text to a model introduced by Fisher et. al. in [10]. The
building blocks in the latter model are NFAT and calcineurin. The NFAT may
be unphosphorylated or fully phosphorylated and intermediate states are not
included. The calcineurin may be active or inactive and the active form may
bind to the different forms of NFAT. Concentrations of all these substances in
the cytosol and the nucleus are considered and all of them may be transported
between the two compartments. There are twelve concentrations in all. They
satisfy a system of equations which, in neutral notation, can be written as:

dx1
dt

= k1x5 − k2x1 + k17
vc
vn
x2 − k18x1 + k15x9 − k16x1x3

dx2
dt

= k1x6 − k2x2 + k18
vn
vc
x1 − k17x2 + k15x10 − k16x2x4

dx3
dt

= −k11x5x3 + k12x7 + k5
vc
vn
x4 − k6x3 + k15x9 − k16x3x1 + k19Ix11 − k20x3

dx4
dt

= −k11x6x4 + k12x8 − k5x4 + k6
vn
vc
x3 + k15x10 − k16x4x2 + k19Ix12 − k20x4

dx5
dt

= −k1x5 + k2x1 − k4x5 + k3
vc
vn
x6 − k11x5x3 + k12x7

dx6
dt

= −k1x6 + k2x2 − k3x6 + k4
vn
vc
x5 − k11x6x4 + k12x8

dx7
dt

= k11x5x3 − k12x7 + k7
vc
vn
x8 − k8x7 − k13x7 + k14x9

dx8
dt

= k11x6x4 − k12x8 + k8
vn
vc
x7 − k7x8 − k13x8 + k14x10

dx9
dt

= k16x1x3 − k15x9 + k13x7 − k14x9 + k9
vc
vn
x10 − k10x9

dx10
dt

= k16x2x4 − k15x10 + k13x8 − k14x10 + k10
vn
vc
x9 − k9x10

dx11
dt

= k5
vc
vn
x12 − k6x11 − k19Ix11 + k20x3

dx12
dt

= −k5x12 + k6
vn
vc
x11 − k19Ix12 + k20x4
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Here all quantities other than the unknowns xi are positive constants. To see
the relation of these equations to those of [10] it suffices to note that they are
written in the same order in both cases. There are conserved quantities

J1 = vn(x1 + x5 + x7 + x9) + vc(x2 + x6 + x8 + x10). (39)

and
J2 = vn(x3 + x7 + x9 + x11) + vc(x4 + x8 + x10 + x12). (40)

J1 is the total concentration of NFAT in all forms and J2 the total concentration
of calcineurin.

These equations do not appear to incorporate any switch-like mechanism
and so it is difficult to see how they could model the behaviour observed in [19].
The network structure contains rather little information about the nature of
the substances involved and so it is to be expected that important information
influencing the dynamics is encoded in the numerical values of the reaction
constants ki. For instance, the fact that the central role of calcineurin in this
context is that of a phosphatase is not visible from the equations. In [10]
specific experimentally motivated values are chosen for the ki and the character
of calcineurin as a phosphatase is encoded in the fact that k13 is much greater
than k14. In view of this it is perhaps not surprising that CRNT is not too
helpful in this case. There are sixteen complexes and only one linkage class.
Since the rank of N̄ cannot be more than the number of species, which is
twelve, the deficiency must be at least three. Thus this system is far from the
low deficiency situation where CRNT is most powerful. Nevertheless a couple
of simple conclusions can be drawn.

Because of the conserved quantities the reaction simplex is compact and all
solutions exist globally in time. Suppose that a solution with J1 > 0 and J2 > 0
has an ω-limit point on the boundary of the positive quadrant. Then arguing
as in Section 2 we can conclude that there is a solution c∗ lying in the boundary
and that at late times it has a constant number of non-zero components. Let
n1 be the number of non-zero components and n0 = n− n1. Let S1 and S0 be
the corresponding subsets of S. It is impossible that there is a reaction whose
left hand side is a species belonging to S1 and whose right hand side includes a
species belonging to S0. Inspecting the pairs of species where there are reactions
of this type in both directions shows that each of the following three sets are
subsets of either S0 or S1

S ′
1 = {x1, x2, x5, x6},S ′

2 = {x3, x4, x11, x12},S ′
3 = {x7, x8, x9, x10}. (41)

Moreover if S ′
3 ⊂ S1 then S1 = S. This possibility is ruled out by the fact that

the solution lies on the boundary of the positive orthant. Inspecting the system
once again and using the form of the nonlinear terms shows that if both S ′

1

and S ′
2 are subsets of S1 a contradiction is obtained. Thus the only remaining

possibilities are S1 = S ′
1 of S1 = S ′

2. However each of these implies the vanishing
of one of the conserved quantities. It can be concluded that a solution for which
Z1 and Z2 are non-zero has no ω-limit points on the boundary.
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It follows from the Brouwer fixed point theorerm as in Theorem I.8.2 of [13]
that there exists a stationary solution in the reaction simplex. Since it has been
shown that this solution does not lie on the boundary it must lie in the interior.
Thus this system has at least one positive stationary solution for any choice of
the parameters and any biologically relevant initial data. On the other hand this
argument gives no indication as to whether there might be multiple stationary
solutions or more complicated dynamics such as periodic solutions.
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