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It is well known that integrable charges for short-range (e.g. nearest-neighbor) spin chains with
periodic boundary conditions can be recursively generated by a so-called boost operator. In the
past, this iterative construction has been generalized to periodic long-range spin chains as they
appear in the context of the gauge/gravity correspondence. Here we introduce recursion relations
for open long-range spin chain charges converting a short-range into a long-range integrable model.

INTRODUCTION

Integrable spin chains provide a universal tool for a
variety of different physical problems. They are a nat-
ural concept in condensed matter physics and of great
importance for the most prominent examples of the
gauge/gravity duality, where a long-range generalization
of the Heisenberg spin chain led to impressive progress
[1]. The interaction range of the commuting charges of
this integrable chain increases with the perturbative or-
der of the quantum field theory coupling constant which
gives a beautiful example of a fruitful marriage between
different areas of physics.

While the integrable spin chains employed for the spec-
tral problem of the gauge/gravity duality typically have
periodic boundaries, open boundary conditions arise in
different important contexts: They describe so-called gi-
ant graviton states [2, 3], addition of fundamental matter
to superconformal theories [4] or operator insertions into
Wilson loops [5]. In each case their discovery tremen-
dously simplifies the solution of the underlying problem.

For most periodic short-range spin chains the char-
acteristic integrable charges may be obtained from the
Hamiltonian Q2 via a master symmetry of the form [6, 7]

Qr+1 = i
r [B[Q2],Qr], r = 2, 3, . . . . (1)

The so-called boost operator B[Q2] is discussed below.
While the short-range recursion (1) for periodic chains
was generalized to long-range chains in [8, 9], neither
short- nor long-range recursions are known for open spin
chains where only the even half Q2r of the charges is
conserved, cf. [10]. In this work we introduce recursions
for open long-range integrable spin chains based on a
given set of short-range integrable charges. Motivated
by the gauge/gravity duality, we study a model based on
[11, 12] with local operators L =

∑
a L(a) that act homo-

geneously on the spin chain sites a (cf. Figure 1) and are
invariant under a Lie (super)algebra g. The symmetry g
is assumed not to be broken by the boundary conditions.
The derivations below were accompanied by computer
verifications at the example of a gl(N) spin chain.

∑
a

a

L

FIG. 1: Local operator of range 2 acting on a spin chain.

RECURSION FOR PERIODIC CHAINS

Let us briefly review the recursive construction of pe-
riodic long-range spin chains [8, 9]: The boost operator
in (1) is usually written as B[L] =

∑
a aL(a). While it is

not well-defined on periodic (but on infinite) spin chains,
the commutator [B[Q2],Qr] is. Interestingly, the boost
is merely a special case of a more general class of bilocal
operators which are defined as compositions of two local
operators L1 and L2, cf. Figure 2:

[L1|L2] =
∑

a+|L1|<b

L1(a)L2(b). (2)

Here |L| denotes the interaction range of L. In fact, the
boost can be written as the composition of the identity
I and a local operator in the form B[L] = [I|L] such
that the indentity counts the number of sites in front
of L. This generalization leads to a set of generators
X that may be applied to the Hamiltonian Q2 and the
higher integrable charges Qr. These are local (Xloc =
L), boost (Xboost = [I|Qr]) and bilocal (Xbi = [Qr|Qs])
generators which are distinguished from other candidates
by the fact that they preserve locality and homogeneity.
This locality is guaranteed since both legs of the bilocal
generators individually commute with the charges Qr.

We deform a set of short-range integrable charges de-
fined for instance through (1) by a differential equation:

d

dξ
Qr(ξ) = i[X (ξ),Qr(ξ)], r, s = 2, 3, . . . . (3)

If the initial condition to this equation is given by
a short-range integrable system with charges obeying
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[Qr(0),Qs(0)] = 0, the solutions to (3) furnish a so-called
perturbatively long-range integrable model [13]:

[Qr(ξ),Qs(ξ)] = 0, r, s = 2, 3, . . . . (4)

Here the charges are perturbative series in the small pa-
rameters ξ(X ) associated with the generators X

Qr(ξ) =

∞∑
k=0

ξkQ(k)
r . (5)

In fact, multiple deformation generators X` can be com-
bined, resulting in charges depending on multiple param-
eters ξ`. In the context of the gauge/gravity duality the
deformation parameters become specific functions of the
coupling constant ξ` = ξ`(λ). With higher orders of the
parameters ξ` or the coupling λ, respectively, the inter-
action range of the charge operators typically increases.
This implies that for a given chain, the interaction range
necessarily exceeds the number of spin chain sites at a
certain perturbative order. Beyond this so-called wrap-
ping order, it is not known how to define a non-trivial
long-range spin chain model of gauge/gravity type. Also
this paper will not go beyond this asymptotic regime.

Non-Triviality. Without specifying the operator X in
(3), the induced deformations a priori look like similar-
ity transformations with no impact on the spectrum. The
key point is that X can be well-defined on infinite but not
on periodic chains, while [X ,Qr] is well-defined on both.
This is the case for boost and bilocal charges, which re-
quire an ordering of the spin chain sites. Hence, equation
(3) does not constitute a similarity transformation on the
periodic chain if X is chosen to be a bilocal operator.
Local operators X , well-defined on infinite and periodic
chains, induce similarity transformations on both.

RECURSION FOR OPEN CHAINS

Open boundary conditions only allow for half of the
conserved charges Q2r. The odd charges defined on a
periodic chain commute only up to boundary terms

[Q2r+1,Qs] = Lbdr
L + Lbdr

R , r = 1, 2, . . . , s = 2, 3, . . . .
(6)

The local boundary operators Lbdr
L/R are non-vanishing

only at the left or right boundary of the open chain, re-
spectively, and vanish on a chain without boundaries.
For the left side acting at site a they take the form

Lbdr
L (a) = qqL(a)− L(a), (7)

where qqL(a) := I(a)⊗L(a+ 1) contains a spectator leg.
Another important class of operators are spanning terms:

Lbdr
L&R = qqL qq− qqL − L qq + L. (8)

∑
a+|Q2r|<b

a

Q2r

b

Qs

FIG. 2: Bilocal operator acting close to the left boundary.

They vanish on all spin chains except for those of length
|L| where they act on both boundaries at the same time.
In the asymptotic regime considered here, the spin chain
length is assumed to exceed the range of the operators.
Hence, these contributions vanish.

If we want to define recursion relations for chains with
open boundaries, two main puzzles arise: Firstly, bilocal
operators with odd charges cannot induce local deforma-
tions in the above way, since the odd charges do not com-
mute anymore. Still the respective parameters appear in
the open chain’s perturbative spectrum [12]. Secondly,
the even charges acquire additional boundary terms on
the open chain that cannot be generated on an infinite
chain without boundaries.

In order to overcome these problems, we introduce the
notion of semi-infinite spin chains. These are chains with
an open boundary on one side of the chain and infinite
extent on the other side. They will allow us to insert the
odd charges on the bulk leg of a bilocal operator shielded
from the boundary by the leg towards the boundary. In
what follows we will mainly discuss left-open chains, i.e.
chains with an open boundary on the left and infinite
extent on the right side. All quantities for the right-open
case can be obtained using the parity transformation.

The crucial idea is to generate charge deformations on
the left- and right-open chain and to combine these defor-
mations to operators commuting on a finite open chain.
We therefore modify equation (3) according to

d

dξ
Qr,L/R(ξ) = i[XL/R(ξ),Qr,L/R(ξ)]|L/R, (9)

where |L/R denotes the application of open boundary con-
ditions, i.e. elimination of terms like (7) for the left or
right side, respectively. Boost generators BL[Q2s+1] =
[I|Q2s+1] or BR[Q2s+1] = [Q2s+1|I] may now be used on
the left- or right-open chain, respectively. By definition
of the bilocal operator, the charge Q2s+1 will not see the
boundary of the chain since it is shielded by the identity
operator. Hence, the odd charges, which commute with
the even charges in the bulk of the chain, may be used for
deformation. Similarly we can use the even charges in-
serted into a bilocal operator [Q2r|Q2s+1] or [Q2s+1|Q2r]
as a buffer towards the boundaries, cf. Figure 2. In this
construction the odd charges defined modulo boundary
terms thus only live in the bulk of the chain.

We will now explain how to combine the charge struc-
tures generated on the semi-infinite chains in order to
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obtain commuting long-range charges on a finite open
chain. Consider an arbitrary charge term on the left- or
right-open spin chain composed of a bulk and boundary
contribution and commuting on the respective chain:

Q2r,L/R = Qbulk
2r +Qbdr

2r,L/R. (10)

Here the bulk part is defined to contain no spectator
legs and the boundary term vanishes in the bulk. The
following argument applies to all pairs of charge terms
which have the same bulk structure Qbulk

2r in the left-
and right-open case. For the left-open semi-infinite spin
chain, we can expand the vanishing commutator

[Q2r,L,Q2s,L]|L = Lbdr
R |L = 0 (11)

in terms of the summands in (10) to find

[Qbulk
2r ,Qbulk

2s ] = Lbdr
L + Lbdr

R , (12)

[Qbulk
2r ,Qbdr

2s,L] + [Qbdr
2r,L,Qbulk

2s ] + [Qbdr
2r,L,Qbdr

2s,L] = −Lbdr
L .

Here Lbdr
L/R are boundary terms acting on the left or right

boundary only. In order to promote the charges (10) to
an integrable model on a finite open chain, we define

Q2r = Qbulk
2r +Qbdr

2r,L +Qbdr
2r,R. (13)

This definition implies

[Q2r,Q2s] = [Qbdr
2r,L,Qbdr

2s,R] + [Qbdr
2r,R,Qbdr

2s,L] = Lbdr
L&R ' 0.

(14)
The commutators on the right hand side of (14) rep-
resent spanning terms (8) and vanish in the regime of
asymptotic spin chains discussed here. The so-defined
charges Q2r thus commute on the finite open chain.
Equation (14) explicitly demonstrates how the defini-
tion of long-range integrable spin chains breaks down
at the order where the charge operators span the whole
state. This is a characteristic feature of open and peri-
odic gauge/gravity long-range spin chains.

As mentioned above, for these arguments to work it is
important that the left- and right-open charge deforma-
tions in (10) have the same bulk structure. To guarantee
this for all deformations, we modify the definition of the
bilocal generator by adding a local contribution to (2):

[L1|L2] = · · ·+ 〈L1|L2〉. (15)

Here the local overlap of L1 and L2 is defined as [15]

〈L1|L2〉 =

a+|L1|∑
b≥a−`12

(1− 1
2δa−b,`12) 1

2{L1(a),L2(b)}, (16)

with `12 = 1
2 (|L2|−|L1|). The regularized operators obey

[Qr|Qs] + [Qs|Qr] = QrQs, (17)

which implies that [Qr|Qs] and −[Qs|Qr] induce the
same bulk structure on the left- and right-open chain.

Generator X Left-Open Right-Open Parameter

Boost Charge [I|Q2r+1] −[Q2r+1|I] α

Bilocal Charge [Q2r|Q2s+1] −[Q2s+1|Q2r] β

Basis Change Gr,s Gr,s γ

Local Charge Q2r+1 −Q2r+1 δ

TABLE I: Generators on the left- and right-open spin chain.

The same applies to the boost charges, cf. Table I. Fur-
thermore the dispersion relation of 〈Qr|Qs〉 equals the
dispersion relation of [Qr|Qs]. Local odd charges Q2r+1

generate pure boundary terms (6), i.e. the bulk part on
the left- and right-open chain is trivially equal. For the
local charges the relative minus sign in Table I implies
the non-triviality of the deformation. A plus results in a
similarity transformation.
Non-Triviality. Bilocal operators require an ordering

of the spin chain sites. Consequently, they are in general
not compatible with periodic boundaries and this incom-
patibility rendered the periodic deformations induced by
(3) non-trivial. On the other hand, bilocal operators are
compatible with open boundary conditions. Why are the
deformations defined by (9) still non-trivial? In the open
case the non-triviality stems from the fact that we deform
the charges by adding two contributions on which either
left- or right-open boundary conditions were applied, cf.
(13). In general, a corresponding transformation cannot
be performed on a finite open chain which has bound-
aries on both sides. It is thus non-trivial. The construc-
tion with left- and right-open spin chains is necessary for
deformation generators including the odd charges. De-
formations induced by even charges can be equally well
performed on a finite open chain. Thus, even local (Q2r),
boost (B[Q2r]) or bilocal ([Q2r|Q2s]) charges indeed cor-
respond to similarity transformations [16].

DEFORMATIONS & BETHE ANSATZ

We now derive the open long-range Bethe ansatz. We
discuss in detail on the left-open chain how the different
deformations modify one- and two-magnon eigenstates
and the one-magnon eigenvalues qr(p) of the charges Qr.
Boost operators (α) of odd charges serve as generators

of long-range deformations via the equation (cf. (9))

d

dα2k+1
Qr = i[BL[Q2k+1],Qr]|L. (18)

If we evaluate a boosted charge on a one-magnon state
|p〉 in the bulk of the spin chain [9]

[
BL[Q2k+1],Qr

]
|p〉 = iq2k+1(p)

∂qr(p)

∂p
|p〉, (19)

we find that boost deformations (18) imply a differential
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equation for the one-magnon charge eigenvalues

dqr(p)

dα2k+1
= −q2k+1(p)

∂qr(p)

∂p
. (20)

Introducing an integration constant t typically labeling
the spin representation, this equation is solved by

qr(u, t) =
i

r − 1

(
1

(u+ i
2 t)

r−1
− 1

(u− i
2 t)

r−1

)
. (21)

Here we implicitly define the rapidity u and the rapidity
map x(u) associated with the momentum p by [17]

eip(t,u) =
x(u+ i

2 t)

x(u− i
2 t)

, x(u) = u exp

(
−
∞∑
k=1

α2k+1

2ku2k

)
.

(22)
Bilocal deformations (β) are generated by

d

dβ2r,2s+1
Qt = i[[Q2r|Q2s+1],Qt]|L. (23)

In the bulk, the action of a bilocal charge on an or-
dered two-magnon state is given by [Qr|Qs]|u < u′〉 =
qr(u)qs(u

′)|u < u′〉, where we neglect local contributions
(2) whose impact is discussed below. To build an asymp-
totic two-particle eigenstate, we define

|u, u′〉 = |u′ < u〉+ S(u, u′)|u < u′〉. (24)

Then (23) induces a differential equation on S(u, u′) [9]

dS(u, u′)

dβ2r,2s+1
|u < u′〉 = i[Q2r|Q2s+1]|u < u′〉 (25)

which is solved by the two-particle scattering factor

S(u, u′) = e−2iθ2r,2s+1(u,u′)S0(u− u′). (26)

Here S0(u − u′) = (u − u′ − i)/(u − u′ + i) denotes the
undeformed scattering factor and the so-called dressing
phase is given by [11, 14]

θr,s(u, u
′) = βr,s

(
qr(u)qs(u

′)− qs(u)qr(u
′)
)
. (27)

Basis changes (γ) of the charges are important to ad-
just the interaction range of higher order charge terms [9].
They are implemented by introduction of an associated
parameter class γ and a rotation generator Gr,s:

d

dγr,s
Qr = [Gs,r,Qr], (28)

with [Gs,r,Qr] = Qs and γeven,odd = 0. We do not discuss
the range of higher order deformations and assume γ = 0.

Local Operators (δ) can deform the spectrum of open as
opposed to periodic chains non-trivially. When a magnon
is reflected at a boundary, its momentum or rapidity flips
sign, i.e. u → ū = −u [18]. In analogy to (24) we define

an asymptotic boundary scattering state |u, ū〉 = |ū〉 +
SL(u)|u〉 and rephrase the statement that local operators
LA,L induce a phase in form of a differential equation

dSL(u)

dδA,L
|u〉 = iLA,L|u〉, (29)

where in the bulk LA,L|u〉 = `A,L(u)|u〉. Equation (29) is
solved by the boundary scattering factor

SL(u) = e2iφL(u)S0,L(u), (30)

with φL(u) = δA,L(`A,L(u) − `A,L(ū)). The only local
operators LA,L contributing to the integrable deforma-
tions above are the odd charges Q2t+1, i.e. the reg-
ulator (16) of the boosts, as well as via (23) the lo-
cal regulator of the bilocal charges 〈Q2r|Q2s+1〉. Using
q2t+1(ū) = −q2t+1(u), the boundary phase takes the form

φL(u) = δ2t+1,Lq2t+1(u)− θ2r,2s+1(u, ū), (31)

including a boundary part of the dressing phase (27).
The Bethe equations have to be satisfied by roots uk,

k = 1, . . . ,M describing eigenstates of the finite chain:

ei(pk−p̄k)L = SL(uk)SR(ūk)

M∏
j=1

j 6=k

S(uk, uj)S
−1(ūk, uj).

Above, we have derived the corresponding deformations
of the bulk and boundary scattering factors according to

S(u, u′)S−1(ū, u′) = S0(u, u′)S−1
0 (ū, u′)e2i(θ(u,u′)−θ(ū,u′)),

SL(u)SR(ū) = SL,0(u)SR,0(ū)e2i(φL(u)−φR(ū)). (32)

Due to integrability multi-magnon eigenvalues are given
by sums over one-magnon eigenvalues. Importantly,
these Bethe equations for the finite open spin chain are
merely asymptotic, i.e. valid for chains longer than the
range of the charges. Their generalization to higher rank
algebras follows in analogy to the periodic case [8, 9].

CONCLUSIONS

Here we have shown how to generate long-range inte-
grable charge operators as deformations of short-range
models defined on open spin chains. All deformations
presented above can be combined yielding expansions in

multiple moduli, e.g. Q2r = Q(0)
2r + α3β2,3Q(3,2|3)

2r + . . . .
Different choices of the parameters α, β, γ and δ corre-
spond to different integrable systems covering the whole
moduli space found in [12]. The existence of this long-
range recursion is remarkable since so far neither for
short- nor for long-range open spin chains an iterative
construction was known. It would be highly desirable to
find a way of extending the presented long-range recur-
sion to the short-range case. A study of the interaction
range of the charges at higher orders including a detailed
investigation of the flatness of moduli space would be
important to reproduce the range patterns found in [12].
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