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ABSTRACT

The energy lost by a rotation-powered pulsar is carried by a relativistic flow

containing a mixture of electromagnetic fields and particles. In the inner regions,

this is thought to be a magnetically dominated, cold, electron-positron wind that

is well described by the MHD equations. However, beyond a critical radius rcr,

the same particle, energy and momentum fluxes can be transported by a strong,

transverse electromagnetic wave with superluminal phase speed. We analyze the

nonlinear dispersion relation of these waves for linear and circular polarization,

and find the dependence of rcr on the mass-loading, magnetization and luminosity

of the flow, as well as on the net magnetic flux. We show that, for most isolated

pulsars, the wind lies well outside rcr, and speculate that superluminal modes play

an important role in the dissipation of electromagnetic energy into nonthermal

particles at the termination shock.

Subject headings: plasmas – waves – acceleration of particles – pulsars:general – stars:

winds, outflows
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1. Introduction

Pulsar winds are believed to be launched as relativistic outflows consisting mainly of

electrons and positrons. These winds are Poynting-flux dominated when they are launched

from the pulsar. Outside the light-cylinder (located at ρ = r/rLC = rΩ/c = 1, with Ω the

angular velocity of the pulsar) they move radially, carrying a frozen-in, nearly transverse

magnetic field that is modulated by the pulsar rotation. They can be viewed as nonlinear

waves, whose phase speed equals the radial flow speed (and is, therefore, subluminal). The

simplest analytic description of this flow is the “striped wind” (Coroniti 1990), in which the

magnetic field is purely toroidal, has a magnitude proportional to 1/r, and reverses sign

across a corrugated current sheet that separates the two magnetic hemispheres. Numerical

solutions of the force-free, oblique rotator problem (Spitkovsky 2006), lend qualitative

support to this picture, which has also been used to model the high-energy emission of

pulsars (Pétri & Kirk 2005; Pétri 2011) as well as the orbital modulation of the high and

very high energy emission from gamma-ray binaries that contain pulsars (Pétri & Dubus

2011).

In the absence of dissipation, these subluminal waves propagate at constant speed

and remain Poynting dominated, provided their density is high enough to apply the

MHD approximation (Kirk & Mochol 2011a). However, basic dynamical considerations

indicate that the winds should not be Poynting dominated after they cross the termination

shock (Rees & Gunn 1974; Begelman 1998), and spectral and morphological modeling

of pulsar wind nebulae suggest an even stricter upper limit on the Poynting dominance.

How Poynting flux is converted to kinetic energy flux is still not clear (for reviews see

Gaensler & Slane 2006; Kirk et al. 2009). Reconnection in the current sheet, as proposed

1present address: Institute de Planétologie et d’Astrophysique de Grenoble, UMR 5274,

BP 53 F-38041 Grenoble, France
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by Coroniti (1990) and Michel (1994), proceeds rather slowly (Lyubarsky & Kirk 2001;

Kirk & Skjæraasen 2003; Lyubarsky 2010). In the case of an isolated pulsar such as the

Crab, it fails to convert a significant fraction of the electromagnetic flux before the flow

reaches the termination shock, unless the rate of pair injection by the pulsar is much higher

than conventionally assumed (Arons 2011).

Motivated by this finding, Lyubarsky (2003) suggested that the fields are dissipated

in the termination shock itself. This is not permitted at an MHD shock in a strongly

magnetized flow, where the compression ratio remains close to unity. Nevertheless, it

is possible to imagine a viable scenario in which reconnection in the current sheet of a

striped wind is driven or triggered by the relatively weak compression of the MHD shock

(Pétri & Lyubarsky 2007; Lyubarsky & Liverts 2008). Recent 2D and 3D PIC simulations

exhibit such an effect (Sironi & Spitkovsky 2011), albeit at even higher pair injection rates

than those suggested by Arons (2011).

An alternative picture is offered by superluminal waves. Because the density in the

wind falls with increasing radius, these modes, which are absent in the MHD description,

can propagate outside of a certain critical radius rcr (Usov 1975; Melatos & Melrose 1996).

If this radius lies inside the termination shock, the possibility arises that the flow converts

from a subluminal to a superluminal wave either spontaneously at some point upstream of

the shock, or as an integral part of the shock itself. The latter possibility is an attractive

scenario, since these modes are known to damp much more rapidly than the subluminal

striped wind mode (Lee & Lerche 1978; Asseo et al. 1980), guaranteeing a relatively thin

transition region.

At low amplitudes, transverse, superluminal waves in an electron-positron plasma

have simple properties (e.g., Iwamoto 1993). However, under pulsar conditions, the waves

are strongly nonlinear. Their properties have been investigated in many papers, (for
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example Kaw & Dawson 1970; Max & Perkins 1971; Clemmow 1974, 1977; Asseo et al.

1984; Melatos & Melrose 1996; Skjæraasen et al. 2005). Here we take a new look at

the problem, and extend the known results for both circularly polarized waves, and

linearly polarized waves with a non-zero (phase-averaged) magnetic field, using the

two-fluid (electron-positron) model. In particular, we formulate and solve the equations

that determine into which modes a striped wind of given magnetization can convert.

This amounts to solving the electrodynamic equivalent of the jump conditions across a

magnetohydrodynamic shock front. As a result, we find the cut-off radius of these modes as

a function of the striped wind parameters. We also show that the frequently used “strong

wave limit” does not provide an adequate description of these modes.

The paper is set out as follows: in Section 2 we review the basic equations for plane

waves. Using the “homogeneous” or “H-frame” formulation introduced by Clemmow (1974,

1977), we compute the fluxes of particles, energy and momentum carried as functions of

the wave parameters. In Section 3, we use these relations to solve the jump conditions

that must be fulfilled when the wind converts from a subluminal to a superluminal mode

across a transition layer that is narrow compared to its distance from the pulsar. Section 4

contains a discussion of these results and their relation to the problem of dissipation at the

termination shock.

2. Superluminal waves in an electron-positron plasma

An analytical treatment of non-linear waves in a cold plasma was first undertaken

by Akhiezer & Polovin (1956) who considered a one-component electron plasma in a

background of fixed ions. In their approach, all wave quantities depend only on the phase

φ of the wave. For waves propagating in the x-direction, φ = ω(t− x/vφ), where vφ is the

phase velocity and ω the frequency of the wave. Both subluminal and superluminal waves
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(vφ < c and vφ > c respectively) are possible, and the longitudinal and transverse modes are,

in general, coupled. Pulsars are most likely surrounded by an electron-positron pair plasma,

possibly loaded with a small number of protons, so that a single-fluid approximation is

not valid. Also, the wave amplitudes near the pulsar are expected to be high enough to

drive even the proton component of a plasma to relativistic velocity, suggesting that the

rest mass of the fluid particles is unimportant. Consequently, rather than considering the

general case of an electron-ion plasma, attention has been concentrated on the much simpler

two-fluid electron-positron plasma. In such a plasma, both linearly and circularly polarized

waves with purely transverse fields can propagate without introducing fluctuations in the

charge-density (Asseo et al. 1975; Kennel & Pellat 1976). It is these waves that we consider

in the following.

Far from the pulsar (at ρ ≫ 1), the magnetic field is twisted into a tightly-wound

spiral form, and it is an excellent approximation to neglect the phase-averaged radial field

component compared to the toroidal one. Since pulsar winds are radial, this means that the

phase-averaged component of the magnetic field is transverse. Furthermore, in this region,

the radius of curvature of the wavefront is much larger than one wavelength, so that the

waves can be approximated as locally plane.

In the following, we identify the (radial) propagation direction of the wave as the x-axis

and the toroidal direction as the z-axis, so that Ex = 0 and Bx = 0. The equations to be

solved are the continuity equations and the equations of motion for each of the two particle

species, along with Maxwell’s equations. These are given in Appendix A, where it is shown

that, from Maxwell’s equations and making use of the assumption of purely transverse

waves, the two species have the same density: γ+n+ = γ−n− (a plus (minus) subscript

denotes positrons (electrons)). Furthermore, the Lorentz factors are equal: γ+ = γ− and
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the other components of the dimensionless four-velocity of the two species are related by:

ux+ = ux− uy+ = −uy− uz+ = −uz− .

To keep the notation simple, we henceforth drop the plus and minus subscripts and express

everything in terms of the positron fluid quantities.

For superluminal waves, Clemmow (1974, 1977) showed the problem is significantly

simplified if one performs the calculations in a frame of reference that propagates with

a speed c2/vφ with respect to the lab. frame. In this frame, which we call the H-frame,

the wave quantities do not depend on space but only on time, and the phase of the wave

is just φ = ωt. An immediate consequence of Faraday’s equation is that in this frame

the magnetic field, in addition to being homogeneous, is also constant. In the following,

unprimed symbols denote quantities in the H-frame; we use primed symbols for quantities

in the lab. frame.

2.1. Circular polarization

The circularly polarized wave is described in the H-frame by three (phase-independent)

parameters: the (constant) proper number density of each species n = n0, the component

of the four-velocity in the direction of propagation ux = ux0, and the magnitude of the

four-velocity component perpendicular to the propagation direction
√

u2
y + u2

z, which, for

this wave mode, equals the dimensionless strength parameter denoted by a and defined in

terms of the electric field amplitude E0 as

a = e |E0| / (mcω) . (1)

Consequently, the Lorentz factor of the fluids is also phase-independent: γ = γ0 =
√

1 + u2
x0 + a2. The frequency ω coincides with the (proper) plasma frequency, ωp:

ω = ωp =

√

8πn0e2

m
. (2)
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In terms of these quantities, the particle flux density J and the (0, 0), (0, x) and (x, x)

components of the stress energy tensor are given by (see Appendix B, equations A37-A39

and A40-A42):

J = n0γ0c

(

2ux0

γ0

)

(3)

T 00 = n0γ0mc2
(

2γ0 +
a2

γ0

)

(4)

T 01 = n0γ0mc2 (2ux0) (5)

T 11 = n0γ0mc2
(

2u2
x0

γ0
+

a2

γ0

)

(6)

and are also phase-independent.

2.2. Linear polarization

The linearly polarized mode requires an additional parameter to fix the amplitude of

the phase-averaged magnetic field. In the H-frame, the four parameters are: the proper

number density n0 and the component ux0 of the four velocity in the direction of propagation

both taken at phase zero, (the point in the wave where the magnitude of the electric field is

maximal, and uz = uy = 0), the nonlinearity parameter q, used by Kennel & Pellat (1976),

and the ratio λ of the (phase-independent) magnetic field to the electric field E0 at phase

zero. Physically q is double the ratio at phase zero of the energy density in the fluids to

that in the electric field, as measured in the H-frame:

q =
32πn0γ

2
0mc2

E2
0

. (7)
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Defining the normalized field variable y = E/E0, one finds:

ux = ux0 + 4γ0(1− y)λ/q (8)

γ = γ0 + 2γ0
(

1− y2
)

/q (9)

uy = 0 (10)

|uz| =
√

γ2 − u2
x − 1

= 2γ0
√

N(y)/q (11)

where N(y) is a fourth-order polynomial, as follows from (8) and (9), and γ0 =
√

1 + u2
x0.

Periodic wave solutions exist provided N(y) has four distinct real roots y1...4, in which

case y oscillates between the values y2 and y3 (assuming the ordering y1 < y2 < y3 < y4).

Because of the normalization of y, one has y3 = 1 and |y2| ≤ 1. The strength parameter of

the wave, as defined in (1) is

a =
2

π

∫ 1

y2

dy γ/
√

N(y) (12)

and the wave frequency is given by

ω =
2γ0
a
√
q
ωp . (13)

The phase-averaged fluxes are:

〈J〉 = n0γ0c

〈

2ux

γ

〉

(14)

〈

T 00
〉

= n0γ0mc2
〈

2γ +
4γ0 (y

2 + λ2)

q

〉

(15)

〈

T 01
〉

= n0γ0mc2
〈

2ux +
8γ0yλ

q

〉

(16)

〈

T 11
〉

= n0γ0mc2
〈

2u2
x

γ
+

4γ0 (y
2 + λ2)

q

〉

(17)

and the phase-averaged electric field is

〈E〉2
4π

= n0γ0mc2

(

4γ0 〈y〉2
q

)

. (18)



– 10 –

Ampère’s law enables these averages to be expressed as integrals over the normalized

electric field y:

〈A(y)〉 =

∫ 1

y2
dy A(y)γ/

√

N(y)
∫ 1

y2
dy γ/

√

N(y)
(19)

(see Appendix A).

If the phase-averaged magnetic field vanishes (λ = 0) one finds y2 = −1, and the

integrals in (13)–(18) can be expressed in closed form in terms of elliptic integrals. For

λ 6= 0, closed forms can be found to lowest order in an expansion in the small parameter q

(see Kennel & Pellat 1976). However, these are not adequate to describe the pulsar case,

as we show in the following section. In the general case, one must resort to numerical

integration, noting that the integrands have integrable singularities at each of the limits.

2.3. Conserved quantities

In order to identify those parts of the wind of a given pulsar in which superluminal

waves can propagate, one has to associate the wave properties with wind quantities inferred

from the observational data. A pulsar wind transports particles, energy and magnetic flux,

and exerts a ram-pressure on its surroundings. Across a stationary shock front the quantities

J ′, T ′01 and T ′11 are conserved. Also, from Faraday’s law, the transverse electric field

component E ′ is conserved. Across a thin transition front where one wave-mode converts

into another, and which is stationary on the oscillation timescale, the phase-averaged values

of these quantities are conserved.

However, it is the relative magnitudes of these quantities, rather than their absolute

values, that determine the physics of wave propagation. We therefore introduce three
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dimensionless quantities:

µ =
〈T ′01〉
mc 〈J ′〉 (20)

ν =
〈T ′11〉
mc〈J ′〉 (21)

η =
〈E ′〉2/4π
mc〈J ′〉 (22)

which are conserved across a transition layer and are independent of the density parameter

n0. µ is the mass-loading parameter introduced by Michel (1969), which corresponds to the

Lorentz factor each particle would need if they were to carry the entire energy flux.

For the superluminal wave modes discussed above, these quantities can be computed

by Lorentz transforming their values in the H-frame into the pulsar, or lab. frame. A boost

of (dimensionless) speed β> = c/vφ in the negative x direction is required, for which explicit

expressions are given in Appendix B. (We use the notation β> and Γ> for the speed and

associated Lorentz factor of the H-frame of the superluminal wave, and β< and Γ< for the

phase (or bulk) speed and associated Lorentz factor of the subluminal wave, both as seen

from the lab. (pulsar) frame.) Applying these boosts, one obtains, for linearly polarized

modes, expressions for µ, ν and η, as functions of the four input parameters ux0, q, λ and β>

that must be evaluated by numerical integration. The case of circular polarization, where

η = 0, is much simpler, since µ and ν are given in closed form as functions of ux0, a and β>.

For the cold subluminal wave modes, such as the striped wind (in the absence of

dissipation), µ and ν are independent of radius in the inner parts of the wind where a

single-fluid MHD description is adequate (Kirk & Mochol 2011a). Their values can be

estimated from standard pulsar models (e.g., Lyubarsky & Kirk 2001). However, these

two quantities are almost equal in highly relativistic winds, and it proves more convenient

to use, instead of ν, the magnetization parameter σ, defined as the ratio of magnetic to
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particle energy flux according to:

µ = Γ<(1 + σ) (23)

ν =
Γ2
<(1 + σ)− (1 + σ/2)

√

Γ2
< − 1

(24)

In the striped wind, the third parameter, η, depends on the phase-averaged magnetic field

value

b = 〈B′〉 /
〈

B′2
〉1/2

, (25)

via the expression:

η = b2σβ<Γ< . (26)

Without loss of generality, we may choose 〈B′〉 ≥ 0, so that 0 ≤ b ≤ 1. Both b and η are

functions of latitude in the striped pulsar wind, since the spacing in phase of the current

sheets varies. At latitudes greater than the inclination angle between the magnetic and

rotation axes, conventionally denoted by α, the sheets vanish (zero spacing), whereas on

the equator, they are equally spaced (separated in phase by π).

Thus, for given µ, σ and b, the jump conditions can be solved for three of the four

input parameters ux0, q, b and β>, provided the fourth is specified. The wave frequency,

normalized to ωp, can then be constructed from (13).

3. Results

3.1. Circular polarization

For circular polarization, the jump conditions can be solved analytically (Kirk 2010).

An example is plotted in Fig. 1, which shows the refractive index ck′/ω′ = β>, the strength

parameter a and the component of the particle speed in the propagation direction, ux0, as
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x0
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ω’/ωp
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Fig. 1.— The circularly polarized modes that satisfy the jump conditions for µ = 12, σ = 3 as

a function of lab. frame frequency normalized to the proper plasma frequency. No solutions

exist below a cut-off frequency that is close to ω′/ωp = 1. Two solutions, one with ux0 ≈ µ

and one with small ux0 (denoted by solid and dashed lines, respectively) exist above the

cut-off, up to ω′/ωp ≈ 1.36, where a → 0 for the low-ux0 mode. The modes have the same

refractive index for given ω′/ωp, which equals the speed β> of the H-frame seen from the

lab. frame.
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a function of lab. frame frequency ω′ normalized to the (proper) plasma frequency ωp. In

this example, we have chosen moderate values of the energy and momentum fluxes in the

lab. frame: µ = 12, σ = 3 (and, therefore, Γ< = 3), in order to display the structure of

the solutions near the frequency cut-off. Since the wavenumber k vanishes in the H-frame,

the refractive index is trivially obtained from the Lorentz transformation of the wave

number and frequency: ω′ = Γ>ω and k′ = β>Γ>ω/c, (this also applies, of course, to

the case of linear polarization) and the dispersion relation ω = ωp implies ω′/ωp = Γ>.

However, the corresponding strength parameter a is found only after solving the full set

of equations. As can be seen from this figure, there are no physical solutions for ω′ < ω0,

two solutions for ω0 < ω′ < ω1 and only one physical solution for ω′ > ω1. (The full

expressions for ω0,1 are cumbersome, but for µ & σ3/2 ≫ 1 (corresponding to a mildly

supermagnetosonic outflow), one finds ω0 ≈ ωp

[

1 + (4µ2 − σ3)σ/ (32µ4) + O
(

µ−5/3
)]

and

ω1 ≈ ωp (µ/8)
1/4 [1 + O

(

µ−1/3
)]

, (cf. Kirk 2010).) Thus, the imposition of a finite energy

flux per particle prohibits wave propagation at frequencies close to the cut-off ω′ = ωp

found from linear theory. At intermediate frequencies, waves of two different amplitudes,

and different values of ux0 are available to transport the required fluxes. One of these

disappears (a → 0) at finite ω′/ωp, leaving only a single solution of the jump conditions at

high frequency.

In the case of a pulsar wind, the wave frequency is dictated by the rotation of the

neutron star, but the plasma density decreases with increasing distance from the star. Thus,

rather than solving the jump conditions as a function of frequency, more insight can be

gained by solving as a function of radius. The connection between flux density and radius

is found in terms of the luminosity per unit solid angle of the (radial) wind, dL/dΩs:

〈F ′〉 =
1

r2
dL

dΩs

, (27)
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which can be expressed in dimensionless form in terms of the quantity

aL =

√

4πe2

m2c5
dL

dΩs

. (28)

Physically, aL is the strength parameter of the circularly polarized vacuum wave that would

be needed to carry the entire pulsar luminosity at the surface ρ = 1. For a spherically

symmetric wind aL = 3.4× 1010L
1/2
38 , where L38 = L/ (1038 erg s−1). This quantity is related

to the multiplicity parameter κ, defined as the Goldreich-Julian charge density at the light

cylinder divided by e (see, for example Lyubarsky & Kirk 2001; Kirk & Mochol 2011a) by

κ = aL/ (4µ) (29)

Writing the energy flux density as µ 〈J ′〉 leads to the expression

〈J ′〉 =
2n0cΓ

2
>ω

2a2L
ρ2ω2

pµ
. (30)

Applying this to the case of circular polarization, where 〈J ′〉 = 2n0u
′
x0 and ω = ωp,

one finds u′
x0 = Γ2

>a
2
L/ (µρ

2). Then, the inequalities u′
x0 < γ′ ≤ µ and Γ> > 1 imply that

circularly polarized waves propagate only when ρ > aL/µ. We therefore introduce the

dimensionless scaled radius

R = ρµ/aL

= ρκ/4 (31)

which can be constructed after solving the jump conditions from the expression

R =
Γ>ω

ωp

√

2µ

γ0 (〈J ′〉 /n0γ0)
(32)

for both circularly and linearly polarized modes.

Figure 2 shows the properties of circularly polarized waves as functions of R for

parameters appropriate to pulsar winds: σ = 100 and µ = 10100 (and, therefore, Γ< = 100).
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Near the cut-off radius, which lies close to R = 1, the mode properties are similar to those

seen in Fig. 1, except that the refractive index, now plotted as as a function of radius, is

no longer degenerate. The detailed properties of these solutions have been discussed in

Kirk (2010). However, note that these curves do not describe the radial evolution of a

wave packet, as erroneously suggested in that paper and assumed by Asseo et al. (1984)

(who considered linear polarization), but simply specify the wave modes into which a

wind of given µ and σ can convert at a given radius. The difference arises because the

radial momentum flux density, ν, is not a conserved quantity in the radial evolution of the

superluminal modes (see also Kirk & Mochol 2011b).

3.2. Linear polarization

When the phase-averaged magnetic field vanishes, the properties of linearly polarized

modes are similar to those of circularly polarized modes. This is illustrated in Fig. 3, where

one sees that the refractive indices are practically identical.

This figure also shows the nonlinearity parameter q. For linear polarization, q is defined

in terms of quantities measured at phase zero. This point in the wave is, however, special.

It corresponds to the turning points of the “saw-tooth“ waveform (Max & Perkins 1971),

where the fluid velocity either vanishes or lies precisely in the propagation direction. These

points do not play a large role in determining the average properties of the wave. As a

result, q varies substantially, especially close to points where ux0 changes sign (log(R) ≈ 0.4

in the figure). One consequence is that an expansion of the fluxes using q as a small

parameter is inadequate over most of the range relevant for pulsars, despite the fact that

the waves are highly nonlinear (see the discussion in §4). In the case of circular polarization,

the quantities that enter into the definition of q (Eq. 7) are phase-independent. The value

of q is a useful characterization of the mode in this case, and Fig. 3 clearly illustrates that
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one of the two solutions for given R is a relatively weak wave, with q ∼ few, whereas the

other is stronger, with q ∼ 10−2.

The properties of linearly polarized waves which carry a non-zero phase-averaged

magnetic field in the toroidal direction are shown in Fig. 4. The refractive index is plotted

for superluminal waves that correspond to µ = 10100, σ = 100, and four different values of

the parameter b, that describes the relative amount of phase-averaged magnetic flux carried

in the subluminal wave (see Eq. 25). It can be seen that the cutoff moves to greater R as b

rises. In the striped wind model, this corresponds to moving away from the equator, where

b = 0.

Although the refractive indices for non-zero b have similar shape to those for b = 0,

there is one potentially important difference: for b > 0.65 the lower branch cuts across the

β> = 0 axis, and continues towards solutions with negative phase speed. Zero refractive

index indicates that the H-frame coincides with the lab. frame. These solutions are standing

waves in the pulsar wind, with constant magnetic field and wavelength ≫ rLC. Negative

refractive index indicates propagation towards the pulsar, in the sense that the velocity

of the H-frame is inward propagating. Nevertheless these modes still carry the particle,

energy, momentum and magnetic fluxes outwards towards the nebula.

Conversion of a subluminal wave into a superluminal wave is accompanied by a

substantial transfer of energy from the fields to the particles. This is quantified in Fig. 5,

where the phase-averaged Lorentz factor 〈γ′〉 seen in the lab. frame is plotted as a function

of R, for the same values of µ, σ, and b as in Fig. 4. For the smaller b values, b = 0 and

b = 0.2, the upper branch of the solution has 〈γ′〉 ≈ µ, which implies that almost all of

the field energy is converted to particles in the equatorial regions of the wind. At higher

latitudes, only a part of the Poynting flux can be converted, since the phase-averaged

magnetic flux cannot be dissipated. However, even at b = 0.95, the upper branch of the
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Fig. 2.— The properties of circularly polarized waves for µ = 10100, σ = 100, as a function

of dimensionless radius in the pulsar wind. The inverse hyperbolic tangent of the refractive

index ck′/ω′ = β> is plotted, in order to bring out both the nonrelativistic regime, β> ≪ 1,

near R = 1 and the relativistic regime, Γ> ≫ 1, at R ≫ 1.
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Fig. 3.— A comparison of the refractive indices for circularly and linearly polarized modes

for µ = 10100, σ = 100. The nonlinearity parameter q, defined in (7), is also plotted for

each mode.
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dispersion relation carries particles with a mean Lorentz factor one order of magnitude

larger than those of the incoming, striped wind solution.

3.3. Latitude dependence

According to the above figures, superluminal waves cannot propagate in the inner

parts of a pulsar wind. The radius at which propagation becomes possible is close to

R = 1 for vanishing phase-averaged magnetic field, and rises with this quantity. However,

in the striped wind model, the luminosity of the wind, and, hence, the parameter aL is a

function of latitude. In particular, the energy flux carried by the fields is proportional to

sin2 θ, where θ is the colatitude, (measured from the rotation axis). The flux carried by the

particles, on the other hand, is expected to be much smaller, but its angular dependence

is uncertain. Assuming, for simplicity, that the ratio σ of these fluxes is independent of

colatitude, one has

aL = aL,eq sin θ (33)

aL,eq = 4.2× 1010L
1/2
38 , is the value of aL in the equatorial plane.

The dependence of the average magnetic field carried by the striped wind on latitude

depends on the inclination angle α between the magnetic and rotation axes. Two current

sheets are present in the striped wind, located at phases

φ = ±φsheet + 2nπ

= ±arccos (cotα cotθ) + 2nπ , (34)

where n is an integer (Kirk et al. 2002). At θ = atan(cotα), the sheets merge, and vanish

at higher latitudes (smaller colatitudes θ). At these sheets, the magnetic field reverses
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direction, so that

b(θ, α) =

(

−
∫ φsheet

0

dφ+

∫ π

φsheet

dφ

)

/π

= 1− 2arccos (cotα cotθ) /π (35)

At those latitudes where there are no sheets, the striped wind model predicts an azimuthally

symmetric magnetic field, i.e., no wave.

From curves similar to those plotted in Fig. 4 it is possible, for each value of b, to

identify the critical radius inside which the mode cannot propagate. This can then be

interpolated to give a function Rcr(b). Together with the definition Rcr = ρcrµ/aL, this leads

to

µρcr
aL,eq

= sin θRcr [b(θ, α)] . (36)

This surface is plotted in Fig. 6, for the case of the perpendicular rotator (magnetic

inclination angle α = π/2), and, in Fig. 7, for various values of α.

The location of the termination shock is determined by the balance between the

momentum flux carried by the wind and the external pressure. If we make the reasonable

assumption that the latter is independent of latitude, the approximate location ρts(θ) of the

shock is given for σ ≫ 1 by (Lyubarsky 2002, Eq. 9):

(

dρts
dθ

)2

+ ρ2ts = ρ20 sin
2 θ (37)

where ρ0 is a constant. The normalization of the radius of the termination shock surface

depends on the external pressure and has to be calculated for each individual object. In

Fig. 6 three examples are shown, labeled by the ratio of the equatorial radius of the shock to

that of the critical surface, ρeq,ts/ρeq,cr. It can be seen that if this ratio is significantly larger

than unity, the cut-off surface falls almost entirely within the termination shock, except

for a very small region close to the pole, where both surfaces have a cusp. A qualitatively
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similar conclusion applies also for different magnetic inclination angles, as shown in Fig. 7:

for ρeq,ts/ρeq,cr & a few, almost the whole critical surface falls within the termination shock

radius, apart from a small region at latitudes close to the magnetic inclination angle α. The

plots have been calculated using µ = 10100 and σ = 100, and show one quadrant of the

poloidal plane. The 3D surface is generated by reflection in the ρ axis and rotation about

the z-axis.

When the cut-off surface falls inside the termination shock, superluminal waves can

propagate in the wind. It is therefore possible, if the ratio ρeq,ts/ρeq,cr > 1, that different

modes coexist in the same wind but at different latitudes. The MHD description is more

appropriate for the higher latitudes (close to α), and the superluminal wave solutions exist

closer to the equatorial plane of the wind. If req,ts/req,cr < 1, no superluminal modes can

be supported by the wind at any latitude. In the extreme case where req,ts/req,cr ≫ 1,

practically the whole wind can support these waves.

The above calculations have been conducted for µ ≈ 104. In this case the critical

surface in the equatorial plane is located at ρcr ∼ 107 for the Crab pulsar, whereas the

termination shock is located at roughly ρts ∼ 109. For the Vela pulsar, the critical radius

lies at ρcr ∼ 106, which is also well within the termination shock, located for this pulsar at

ρts ∼ 108 (Kargaltsev & Pavlov 2008). This value of µ, corresponds to pair multiplicities

of κ = 2.5 × 106 and κ = 2.5 × 105 for the Crab and Vela, respectively, much higher than

conventional estimates (de Jager 2007), which would place the critical surface even closer

to the pulsar. Thus, at least for young, energetic pulsars, ρeq,ts/ρeq,cr ≫ 1 and superluminal

waves can propagate in essentially the entire equatorial wind.

However, the situation is different for pulsars which are members of binary systems,

since the wind of the companion star can provide an obstacle capable of sustaining the

termination shock relatively close to the pulsar. One example is the system PSR B1259-63,
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containing a 48ms pulsar in an eccentric orbit about a B2e star. At periastron, the

separation of the stars is ρ ∼ 4.3 × 104, while at apastron it becomes ρ ∼ 6 × 105. Very

high-energy (TeV) gamma-rays were predicted to emerge from the termination shock of

this pulsar (Kirk et al. 1999), and subsequently were detected (Aharonian et al. 2005, 2009;

Abdo et al. 2011) at binary phases close to periastron. Assuming µ ≈ 104 in this young

pulsar, the critical radius at the equator is ρcr ∼ 2.4× 105, which is greater than periastron

but smaller than apastron separation. Therefore, if the termination shock created by the

interaction of the stellar wind with the pulsar wind lies close to the B2e star, superluminal

modes may play a role in determining its properties near apastron, but not near periastron.

It would, therefore, be interesting to search for an observable diagnostic of this transition,

such as an orbital modulation of the radiation from the shock front.

4. Discussion

Nonlinear superluminal waves in electron-positron plasmas have been the subject of

many papers over the last few decades. Nevertheless, their role in pulsar winds is still in

need of clarification. One of the sources of this confusion is rooted in the use of the “strong

wave limit” to simplify the treatment of linearly polarized waves (Max & Perkins 1971;

Kennel et al. 1973; Kennel & Pellat 1976). This corresponds to taking only the lowest order

terms in the parameter q defined in (7). To this order, the particle flux in the H-frame

vanishes – particles are said to be “locked” into the wave in this frame. Furthermore, the

energy densities of particles and fields are in equipartition to lowest order in q. These

properties led Kennel et al. (1973) and Kennel & Pellat (1976) to assert that a strong wave

would impose a rather severe upper limit on the particle flux from a pulsar.

The formulation we present in §2 and apply in §3 avoids this limit. It demonstrates

that highly nonlinear superluminal waves can carry a substantial particle flux, although the
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minimum radius at which they can propagate moves outwards as the flux increases. These

waves exhibit a wide range of q values (see Fig. 3). Particles are not locked into the wave

motion in the H-frame, and energy is not necessarily in equipartition. Physically, the reason

for this apparent contradiction is that q does not adequately characterize the wave solution,

since it is defined at a highly non-representative point in the phase of the wave; there exists

a large family of nonlinear waves that have no counterpart with q = 0.

The question of the stability of superluminal waves has attracted considerable

attention. Asseo et al. (1978) found that radiation reaction would damp these waves

within a few wavelengths, for parameters appropriate to the Crab pulsar. However, this

conclusion was based on the q = 0 limit discussed above, and may not apply to large q

modes. Again working analytically in the limit q = 0, Asseo et al. (1980) found rapidly

growing Weibel-like instabilities, but noted that they are stabilized when the phase-averaged

magnetic field is sufficiently strong. For circular polarization, Lee & Lerche (1978, 1979)

also found rapidly growing instabilities when the plasma is locked into the wave in the

H-frame. Particle-in-cell simulations have been used by several authors to investigate this

question. Leboeuf et al. (1982) injected a self-consistent wave and found it to be highly

unstable when excited just above the cut-off frequency, but much less so when excited

at higher frequencies. Skjæraasen et al. (2005) injected a nonlinear wave into a uniform

plasma, and again found a strong instability that could be partially stabilized in the

presence of streaming motion. Although our results do not address this question directly, it

can be seen from the dispersion relations presented in Figs. 2 and 4 that the H-frame moves

relativistically with respect to the pulsar (Γ> ≫ 1) for R & 10. An instability that grows

locally in the H-frame with growth-rate comparable to the wave frequency in that frame,

propagates a distance of Γ2
> wavelengths in the pulsar reference frame in one e-folding time.

Thus, although such instabilities may be present, their effect on the structure of the pulsar

wind or the termination shock might not be dramatic.
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In §3 we show that superluminal waves are capable of carrying the particle, energy

and magnetic fields thought to be transported by a pulsar wind when they reach the

termination shock of an isolated pulsar, except for a range of latitudes around the (rotation)

pole. In fact, at most latitudes, there is a large range of radii between ρcr and ρts in

which propagation is possible. Our results do not address the question of where conversion

from a striped wind to a superluminal wave might occur. However, since these waves are

subsequently damped, it would seem likely that they could be sustained only within an

extinction length of the termination shock itself, in which case their excitation and damping

can be regarded as forming a part of this structure.

Lyubarsky (2003) suggested the physics of the “termination shock” should differ

from that of an MHD shock and permit reconnection of the alternating component of the

incoming magnetic field. A quantitative investigation based on analytic considerations and

1D PIC simulations (Pétri & Lyubarsky 2007) found that the effectiveness of reconnection

depends on the ratio of the Larmor radii of electrons in the downstream flow to the

wavelength of the stripes. Since this quantity increases monotonically with radius in a

striped wind, these results imply that reconnection can be important only outside of a

critical radius. Specifically, reconnection is predicted not to play a role for R < π/12 (in

our notation). At larger radii, the magnetic field is more effectively dissipated, until, at

R > π
√
σ/3, full dissipation is achieved. However, this theory does not take account of the

role of superluminal waves, although these waves are able to propagate in the region in

which reconnection is predicted.

Sironi & Spitkovsky (2011), on the other hand, performed 2D and 3D PIC simulations.

They found that the shock triggered reconnection, leading to full dissipation of the magnetic

field, over the entire parameter range investigated. In our notation, this range extends over

1/20 . R . 4. According to Fig. 4, superluminal waves of very high phase speed (small β>)



– 27 –

might be expected to play a role at the upper end of this range. However, the simulations

do not appear to reveal their presence. The particle spectrum found in these simulations

varies considerably, being closer to that observed in the Crab Nebula for lower values of R.

However, as we show in §3, the termination shocks in the nebulae around isolated young

pulsars are expected to lie much further from the pulsar than the range covered by these

simulations, leaving us free to speculate that the physics controlling the structure and

particle acceleration process might be substantially different in these objects.

5. Conclusions

We have reexamined the properties of transverse superluminal waves in an electron-

positron plasma for parameters appropriate to pulsar winds. Our principal new results

are:

• The properties of circularly and linearly polarized modes with vanishing phase-

averaged magnetic field are similar (Fig. 3).

• The widely used strong-wave approximation (q = 0), which underlies the assertion

that these waves limit the particle flux, is inadequate. There is no wave-intrinsic limit

on the particle flux.

• The cut-off surface, inside of which these waves cannot propagate, has a strong

latitude dependence. (Fig. 7). It lies well inside the termination shock for young

isolated pulsars, but must cross it at some phase of the binary orbit in the case of

PSR B1259-63.

• At high latitudes, where the phase-averaged magnetic flux carried by the wind is

large, long wavelength, quasi-homogeneous modes of infinite phase speed (i.e., with

β >= 0, Fig. 4) can arise close to the cut-off surface.



– 28 –

On the basis of these results, and of recent discussions in the literature of reconnection

in the termination shock (Pétri & Lyubarsky 2007; Sironi & Spitkovsky 2011), we speculate

that the physics of particle acceleration and the structure of this shock may be strongly

influenced by the presence of superluminal waves.

A. Two-fluid equations

Following Clemmow (1977) and Kennel & Pellat (1976), we present the solutions to

the equations describing a cold, two-fluid plasma where transverse electromagnetic waves of

superluminal phase speed can propagate. The equations are written in the H-frame and a

plus (minus) index denotes positrons (electrons). It is convenient for the calculations to

introduce complex quantities for the transverse four-velocity and the electric and magnetic

fields:

u⊥,± = uy,± + iuz,± (A1)

E = Ey + iEz (A2)

B = By + iBz (A3)

Using these, the continuity equation and the equations of motion for each species, expressed

in the H-frame, are:

d

dt
(γ±n±) = 0 (A4)

γ
du‖,±

dt
= − e

mc
Im(u⊥,±B

∗) (A5)

γ
du⊥,±

dt
=

e

mc
(γE + iu‖,±B) (A6)

γ
dγ±
dt

=
e

mc
Re(u⊥,±E

∗). (A7)

where e is the magnitude of the electron charge.
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In the H-frame, all space derivatives disappear. Conservation of magnetic flux,

∇ · B = 0, is automatic, and the remaining Maxwell’s equations (Ampere, Faraday and

Coulomb law, respectively) become:

1

c

dE

dt
= −4πe(n+u⊥,+ − n−u⊥,−) (A8)

dB

dt
= 0 (A9)

4πρ = 4πe(n+γ+ − n−γ−) = 0. (A10)

where ρ is the charge density. From (A10), the charge density must vanish in the H-frame.

In combination with the continuity equation, we get

n+γ+ = n0γ0 = n−γ− ,

where n0,γ0 are constants. The restriction to purely transverse electric fields (which is

implied in the way Ampere’s law is expressed above) means that the radial current must

vanish: n+ux+ = ux−n−. In this case, the net force acting on the plasma in the transverse

direction vanishes, so that uy,z+ + uy,z− is constant. In keeping with the approximation

of toroidal fields (corresponding to the z-direction in the plane wave approximation) and

radial propagation (x-direction), we set this constant to zero, so that uy+ = −uy− and

uz+ = −uz−. Because of these relations, we can restrict ourselves to solving the equations

for the positively charged fluid, and will henceforth drop the plus subscript for simplicity.
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A.1. Circular polarization

The simplest solution of these equations is the case of a circularly polarized wave.

Then B = 0, and we have:

u⊥ = u⊥0e
iωpt (A11)

E = E0e
iωpt (A12)

u‖ = u0 (A13)

n = n0 . (A14)

The frequency coincides with the (proper) plasma frequency:

ωp =

√

8πn0e2

m
(A15)

and the magnitude of the perpendicular component of the four-momentum equals the

strength or nonlinearity parameter a, defined using the electric field amplitude as

u⊥0 = a ≡ e |E0|
mcωp

. (A16)

The parallel component of the four-velocity is a constant.

In the laboratory frame, which moves at speed −c/vφ as seen from the H-frame, the

frequency of the wave is

ω′ = Γ>ωp0 (A17)

where Γ> is the Lorentz factor of the transformation between the H-frame and the lab.

frame.

A.2. Linear polarization

Near the equatorial plane of a pulsar wind, the wave is linearly polarized and the

relevant field components are the polar electric field and the toroidal magnetic field. In the
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H-frame then, this requirement corresponds to Ez = 0 and By = 0, i.e., E = Ey becomes

real and B = iBz purely imaginary (and constant). It follows that the z-component of the

four velocity is constant Im (u⊥). In a pulsar, a non-zero uz corresponds to an azimuthal

current loop, and, therefore, is proportional to the integrated magnetic flux crossing the

enclosed surface. In the split-monopole geometry, this quantity falls off inversely with

radius, and we set it to zero, so that u⊥ is a real variable.

Ampere’s law becomes

dE

dφ
= −mcω

e

u⊥

αγ
(A18)

where φ = ωt and

α =
ω2

γ0ω2
p

. (A19)

Multiplying the equations of motion (A5) and (A6) by n and integrating, the four-velocity

components can be expressed in terms of the variable y = E/E0, the electric field normalized

to the maximum value of its modulus (i.e., −1 ≤ y ≤ 1) as follows:

u‖ = u0 + αa2Bz(1− y)/E0 (A20)

γ = γ0 +
αa2

2

(

1− y2
)

(A21)

u2
⊥ = γ2 − u2

‖ − 1 . (A22)

Having expressed all other unknowns in terms of the electric field, it remains to

calculate the phase dependence of y, which is given by the equation

α2a2
(

dy

dφ

)2

=
u2
⊥

γ2
(A23)

or, explicitly:

α2a2
(

dy

dφ

)2

=
N(y)

[q/2 + (1− y2)]2
(A24)
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(Kennel & Pellat 1976) with q, Q and b given by the expressions:

q =
4γ0
αa2

(A25)

Q = 2

(

1− u0

γ0
λ

)

(A26)

λ =
Bz

E0

. (A27)

and

N(y) = (1− y)2[(y + 1)2 − 4λ2 − q] + (1− y)qQ (A28)

is a quartic in y. Periodic waves exist if N has four real roots, which are (in order):

y1 = ζ cos (ξ − 4π/3)− 1/3 (A29)

y2 = ζ cos (ξ − 2π/3)− 1/3 (A30)

y3 = 1 (A31)

y4 = ζ cos (ξ)− 1/3 (A32)

where

ζ = 2
(

4 + 12λ2 + 3q
)1/2

/3 (A33)

ξ = arccos

[

3
√
3

√
2
(√

3u
)3/2

(

16/27 + 2q/3− 2λqu0/γ0 − 16λ2/3
)

]

(A34)

provided ξ is real.

The nonlinear dispersion relation follows by demanding that the change in phase in a

half-cycle of the field oscillation equal π:

π =

∫ 1

y1

dy

dy/dφ
(A35)

The phase-averaged value of a quantity A that depends on y is given by

〈A〉 = 1

π

∫ 1

y1

A(y)

dy/dφ
dy (A36)
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If the phase-averaged magnetic field vanishes (λ = 0), N(y) reduces to a quadratic

in y2, with y2 = −1 and y3 = 1. In this case, the integrals in (A35) and (A36) can be

expressed in closed form in terms of elliptic integrals, at least for the functions of interest.

For non-zero λ, on the other hand, y oscillates between y2 > −1 and y3 = 1. The dispersion

relation and the phase-averages must then be evaluated by numerical integration.

The components of the stress energy tensor consists of a fluid and a field contribution.

In the H-frame these are:

T 00
part = 2mc2〈nγ2〉 = 2n0γ0mc2〈γ〉 (A37)

T 01
part = 2mc2〈nγux〉 = 2n0γ0mc2〈ux〉 (A38)

T 11
part = 2mc3〈nu2

x〉 = 2n0γ0mc3
〈

u2
x

γ

〉

(A39)

for the fluids, and

T 00
EM =

〈E2〉+B2

8π
=

〈y2〉+ λ2

8π
E2

0 (A40)

T 01
EM =

c〈E〉B
4π

=
c〈y〉λE2

0

4π
(A41)

T 11
EM = T 00

EM (A42)

for the fields. For the circularly polarized modes, λ = 0, 〈y〉 = 0, and 〈y2〉 = 1. In addition,

ux = ux0 and γ = γ0 are phase-independent.
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B. Lorentz boosts

The phase-averaged particle flux, energy, energy flux, and x-momentum flux densities

and the electric field transform according to:

J ′ = Γ> (2β>n0γ0 + J) (B1)

T ′00 = Γ2
>

(

T 00 + β>T
01 + β2

>T
11
)

(B2)

T ′01 = Γ2
>

[(

1 + β2
>

)

T 11 + β>

(

T 00 + T 11
)]

(B3)

T ′11 = Γ2
>

(

T 11 + 2β>T
01 + β2

>T
00
)

(B4)

〈E ′〉 = Γ> (β>λE0 + 〈E〉) (B5)
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