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Abstract

In this work we investigate the question, under what conditions Hilbert spaces
that are induced by measures on the space of generalized connections carry a repre-
sentation of certain non-Abelian analogues of the electric flux. We give the problem
a precise mathematical formulation and start its investigation. For the technically
simple case of U(1) as gauge group, we establish a number of “no-go theorems” as-
serting that for certain classes of measures, the flux operators can not be represented
on the corresponding Hilbert spaces.

The flux-observables we consider play an important role in loop quantum gravity
since they can be defined without recurse to a background geometry, and they
might also be of interest in the general context of quantization of non-Abelian gauge
theories.

1 Introduction

Loop quantum gravity (LQG for short) is a promising approach to the problem of
finding a quantum theory of gravity, and has led to many interesting insights (see [1] for
an extensive and [2] for a shorter non-technical review). It is based on the formulation
of gravity as a constrained canonical system in terms of the Ashtekar variables [3], a
canonical pair of an SU(2)-connection A (in its real formulation) and a triad field E
with a nontrivial density weight. Both of these take values on a spacial slice Σ of the
spacetime. A decisive advantage of these new variables is that both connection and triad
allow for a metric-independent way of integrating them to form more regular functionals
on the classical phase space and hence make a quantization feasible:
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Being a one-form, A can be integrated naturally (that is, without recurse to background
structure) along differentiable curves e in Σ, to form holonomies

he[A] = P exp

[
i

∫

e

A

]
∈ SU(2) . (1)

The density weight of E on the other hand is such that, using an additional real co-vector
field f i it can be naturally integrated over oriented surfaces S to form a quantity

ES,f [E] =

∫

S

f i(∗E)i (2)

analogous to the electric flux through S. Since the variables he[A] and ES,f [E] do not
rely on any background geometry for their definition, they are very natural in the con-
text of diffeomorphism invariant theories, and many important results of LQG such as
the quantization of area and volume are related to the choice of these variables as basic
observables. With this choice, however, LQG is in sharp contrast to the usual formula-
tion of (quantum) gauge theories in which it is assumed that only when integrated over
three or even four dimensional regions in the spacetime, the quantum fields make sense
as operators on some Hilbert space.

All of this makes it worthwhile, to study the representation theory of the observ-
ables (1),(2) in somewhat general terms. Indeed, the representations of the algebra of
holonomies (1) is well studied and powerful mathematical tools have been developed
[4, 5, 6, 7]. It turns out that cyclic representations are in one-to-one correspondence
with measures on the space A of (generalized) connections. We will briefly review some
results of these works in Section 2. About the representations of the flux variables on
the other hand, not so much is known. Therefore, in [8] we considered the representation
theory of the holonomies (or more precisely, a straightforward generalization, the cylin-
drical functions) together with the momentum variables ES,f in rather general terms. In
the present paper, we continue this work by focusing on a specific aspect: Given a cyclic
representation of the cylindrical functions, is it possible to also represent the momentum
variables on the same Hilbert space? It is well known that this is possible for a specific
measure on the space of generalized SU(2) connections, the Ashtekar-Lewandowski mea-
sure µAL. It is distinguished by its simple and elegant definition and by its invariance
under diffeomorphisms of the spacial slice Σ. The representation it induces is therefore
considered as the fundamental representation for LQG.

We will see below, that at least in the somewhat simpler case when the gauge group
is U(1) instead of SU(2), the Ashtekar-Lewandowski representation is not only distin-
guished, it is unique: µAL induces the only diffeomorphism invariant cyclic representa-
tion of the algebra of cylindrical functions which also carries a representation of the flux
observables ES,f . A more general result of this kind was recently established in [9].

2



Recently it became evident that to investigate the semiclassical regime of LQG it may
be useful to also study representations that are not diffeomorphism invariant but encode
information about a given classical background geometry. Interesting representations of
this type for the algebra of cylindrical functions were discovered in [10] for the case of
U(1) as gauge group and a suitable generalization for the SU(2) case was proposed in
[11]. However, these representations do not extend to representations of the cylindrical
functions and the flux observables ES,f . The original motivation of the present work was
to remedy this and construct representations of both, cylindrical functions and fluxes
which are different from the AL-representation. This turned out to be very difficult,
however. Quite contrary to our original goal, the results of the present work show that
the constraints put on by requiring the observables ES,f to be represented are quite
tight, and that consequently it is hard to come up with such a representation that is
different from the Ashtekar-Lewandowski representation.

Since the purpose of the present work is to explore the territory, our results are
mostly concerned with the case of U(1) as gauge group. This case is technically much
less involved than that of a general compact gauge group because the representation
theory of U(1) is so simple. We expect, however, that generalizations of the results to
other compact gauge groups are possible.

Our main results for the U(1) case are the following:

• There is no diffeomorphism invariant measure allowing for a representation of the
flux observables other then µAL.

• The r-Fock measures, as well as any other measure obtained by “importing” a reg-
ular Borel measure on the space of Schwartz distributions to AU(1) with Varadara-
jan’s method do not support a representation of the flux observables.

• Any measure which is “factorizing” in a certain technical sense will, if it supports
a representation of the flux observables, be very close to µAL. Moreover, the only
such measure which additionally is Euclidean invariant, is µAL.

After work on this paper was finished, new results were obtained that generalize the
first point in our list considerably, using ideas presented here and in [8]. The interested
reader may want to take a look at [12],[13].

Let us finish the introduction with a description of the rest of the present work:
In the next section, we prepare the ground by briefly reviewing the projective tech-

niques that are used to define measures on A. Also, we give a description of these
measures which will be used in establishing our results.

In Section 3 we state and explain a necessary and sufficient condition for a measure
µ on A to allow for a representation of the flux observables.
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Section 4 serves to investigate the condition found in Section 3 in detail in the case
the gauge group is U(1). First we introduce the notation necessary for this special case
and also specialize the condition. We then proceed to establishing our main results.

With section 5 we close this work by discussing interpretation and possible conse-
quences of our results and point out problems left open.

2 Measures on the space of generalized connections

We will start by briefly reviewing the projective techniques [5, 6] which can be used to
construct measures on the space of connections. Using these methods we then introduce
a rather explicit representation for such measures which we use in the sequel.

Let Σ be a three dimensional, connected, analytic manifold.

Definition 2.1. By an (oriented) edge e in Σ we shall mean an equivalence class of
analytic maps [0, 1] −→ Σ, where two such maps are considered equivalent if they differ
by an orientation preserving analytic reparametrization.

A graph in Σ is defined to be a union of edges such that two distinct ones intersect
at most in their endpoints. The endpoints of the edges contained in the graph will be
referred to as its vertices, and we will denote the set of edges of a graph γ by E(γ).

Analyticity of the edges is required to exclude certain pathological intersection struc-
tures of the edges with surfaces which would render the Poisson brackets which will be
introduced below ill-defined.

The set of graphs can be endowed with a partial order ≥ by stating that γ′ ≥ γ
whenever γ is contained in γ′ in the sense that each edge of γ can be obtained as
composition of edges of γ′ and each vertex of γ is also a vertex of γ′. Clearly, with this
partial order the set of graphs becomes a directed set.

Also note that if γ′ ≥ γ, one can obtain γ′ from γ by subdividing edges of γ and
adding further edges. Let us denote the graph obtained by subdividing an edge e of a
graph γ by adding a vertex v∗ by sube,v∗ γ (see figure 1), and the graph obtained by
adding an edge e to γ by adde γ (see figure 2).

Let consider a smooth principal fiber bundle over Σ with a compact connected struc-
ture group G, and denote by A the space of smooth connections on this bundle. It turns
out to be convenient to consider a slightly more general class of functions on A than the
holonomies (1):

Definition 2.2. A function c depending on connections A on Σ just in terms of their
holonomies along the edges of a graph, i.e.

c[A] ≡ c(he1 [A], he2 [A], . . . , hen [A]), e1, e2, . . . , en edges of some γ,

where c(g1, . . . , en), viewed as a function on Gn, is continuous, will be called cylindrical.
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e e(1)

(2)e

v
*

γ γ ’

Figure 1: Operation sube,v∗ subdividing an edge e of a graph

γ ’

e

γ

Figure 2: Operation adde, adding an edge e to a graph (note that e does not necessarily
have to begin and end in vertices of γ)
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Now, given a graph γ, any connection of the principal fiber bundle over Σ gives
rise to a connection over (the union of) the edges of γ. We denote the space of these
connections, modulo gauge transformations that are trivial over the vertices of γ, as Aγ .
To each of these spaces Aγ there is a surjective map πγ : A −→ Aγ . Moreover, these
spaces decomposes into the Cartesian product

Aγ = ×
e∈E(γ)

Ae.

There is a bijection between the elements of Ae and parallel transport maps between
the fibers over the beginning and endpoints of e, and upon fixing an element of those
fibers, there are bijections Λe : Ae −→ G. Obviously these bijections are not unique.
Combining the maps Λe of all edges of a graph γ, we also obtain a bijection Λγ : Aγ −→
G|γ|.

Finally, whenever γ′ ≥ γ there is a projection map pγγ′ : Aγ′ −→ Aγ such that
πγ = pγγ′ ◦ πγ′ . The spaces {Aγ} together with the maps {pγγ′} form a projective
family. Consequently, there is a space A, the projective limit of the projective family,
containing all the Aγ with the appropriate inclusion relations implied by the projections
pγγ′ . The cylindrical functions of Definition 2.2 extend to functions on A in a natural
way. Their closure with respect to the sup-norm is an Abelian C* algebra which is
usually denoted by Cyl. Its spectrum can be identified with A, thus endowing it with
a Hausdorff topology in which it is a compact space. This shows that A is the natural
home for the cylindrical functions. Moreover, as a consequence of the the Riesz-Markov
Theorem, cyclic representations of Cyl are in one to one correspondence with positive
Baire measures on A.

The projective techniques yield an elegant characterization of measures on A: On
the one hand, a measure µ gives rise to a family of measures {µγ} where µγ is a measure
on Aγ by pushing µ forward with the maps πγ . The measures {µγ} bear consistency
relations among each other: Whenever γ′ ≥ γ one has

pγγ′∗µγ′ = µγ .

On the other hand, it was shown in [7] that also the converse holds true: Every con-
sistent family {µγ} of measures on the Aγ gives rise to a measure µ on A. Moreover,
properties of the measures translate between these two presentations: If the measure µ
is normalized, so are the measures {µγ} and vice versa. If the measure µ is positive so
are the measures {µγ} and vice versa.

Finally note that via the maps Λγ described above, the family {µγ} can be pushed
forward to obtain a family of measures on Cartesian products of G. We will denote these
measures by {µ̃γ}. Everything said about the relation between µ and {µγ} certainly
also holds for µ and {µ̃γ}.
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In all of the following we will restrict ourselves to a certain subclass of measures on
A: We just consider measures µ such that

dµ̃γ(g1, . . . , g|E(γ)|) = fγ(g1, . . . , g|E(γ)|) dµH(g1) . . . dµH(g|E(γ)|), (3)

where µH is the Haar measure on G. Thus we exclude measures whose cylindrical
projections pushed forward to G|γ|, (Λγ)∗µγ , would also contain a pure point part and
a part singular with respect to the product of Haar measures on G. So in all of the
following we will consider measures which can be characterized in terms of a family
{fγ} of functions

fγ : G|E(γ)| −→ C

via (3). Note that the representation in terms of these functions does in general depend
on the choice of identifications {Λe}. The dependence is however, a rather simple one.
To simplify the notation, in the following we will assume a fixed choice of Λγ , and do
not explicitly distinguish anymore between families {µγ} and {µ̃γ}. Note also that there
is no dependence on the maps Λγ in the case that the measure µ is gauge invariant.

Let {fγ} be a family of functions defining a positive, normalized measure µ on A by
way of (3). Then positivity implies

fγ ≥ 0 pointwise on G|E(γ)|, for all γ. (pos)

Normalization implies
∫

G

fe(g) dµH(g) = 1 for all edges e. (norm)

Consistency implies

fγ(ge1 , . . . , gen) =

∫
fadde(γ)(ge, ge1 , . . . , gen) dµH(ge), (add)

fγ(ge1 , . . . , gei , . . . , gen) =

∫
fsubei

(γ)(ge1 , . . . , g, g
−1gei , . . . , gen) dµH(g). (sub)

It is easy to check, that also the converse holds true:

Proposition 2.3. Let a family {fγ}γ of functions fγ on G|E(γ)| be given that fulfills
(pos), (norm), (add) and (sub). Then this family defines a positive normalized measure
µ on A by virtue of (3).

Let us close this section by pointing out that a wide variety of measures on A has
been constructed with the projective techniques reviewed above. Most important is
perhaps the Ashtekar-Lewandowski measure µAL [6] which is obtained by setting all fγ
equal to 1. Other measures are the diffeomorphism invariant Baez measures [14], the
heat kernel measure of [5], the r-Fock measures constructed from the Gaussian measure
of the free electromagnetic field [10], and the measures obtained with the complexifier
method [15].
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3 Admissibility

Up to now we have only considered representations of the algebra Cyl of cylindrical
functions. Now we will turn to the momentum observables ES,f defined in (2). First,
we should note that to avoid pathologies, it is required to put certain restrictions on the
surfaces S to be considered. In the following, we will always assume that the surfaces
S are analytically embedded in Σ, simply connected and such that S = S − ∂S. We
caution the reader that we will not always explicitly state this in the following. Also let
us restrict the vector fields f used in the definition of the ES,f to be smooth and bounded.
Under these assumptions, one can compute the Poisson brackets for the c ∈ Cyl with
the ES,f [16]:

{ES,f , c} = XS,f [c], where XS,f [c] =
κ

2

∑

v∈S∩γ

∑

e∈E(v)

σ(v, e)fi(v)X
i
e[c]. (4)

In this formula we have assumed without loss of generality that all the intersections of γ
and S are vertices of γ. Moreover, Xe denotes the right or left invariant vector-field on
SU(2), depending on whether e is ingoing or outgoing, respectively, acting on the entry

corresponding to e of c written as a function on SU(2)|E(γ)|. Finally, σ(v, e) is the sign
of the natural pairing between orientation two-form on S and tangent of e in v (and 0
if e is tangential). κ is the coupling constant of gravity.

In the present section we are going to consider the following problem: Given a mea-
sure µ onA, what are the conditions µ has to satisfy in order to allow for a representation
of the ES,f on the Hilbert space H = L2(A, dµ) by selfadjoint operators?

Since the operators representing the ES,f will in general be unbounded, it is necessary
to make the notion “representation” in the question formulated above a bit more precise
by putting some requirement on the domains of the operators representing the ES,f . In
[8] we have argued that a reasonable requirement is that the smooth cylindrical functions
Cyl∞ be in those domains. Let us adopt this requirement and cite from [8] a simple
criterion for a measure µ to carry such a representation:

Proposition 3.1. Let a positive measure µ on A be given. Then a necessary and
sufficient condition for the existence of a representation of the ES,f on H = L2(A, dµ)
by symmetric operators with domains containing Cyl∞ is that derivations XS,f map
differentiable cylindrical functions that are zero almost everywhere with respect to µ to
functions that are again zero µ-a.e. (condition (nul) of [8]), that they extend to Cyl∞

as well-defined operators, and that for each surface S and co-vector field f on S there
exists a constant CS,f such that

|∆S,f (c,1)| ≤ CS,f ‖c‖H for all c ∈ Cyl∞ (5)
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where the sesquilinear form ∆S,f is given by

∆S,f (c, c
′)

.
=
〈
π (XS,f [c]) 1 , π

(
c′
)
1
〉
H
−
〈
π (c)1 , π

(
XS,f [c

′]
)
1
〉
H
, c, c′ ∈ Cyl .

In the following, we will also denote by ∆S,f(c) the anti-linear form ∆S,f(c,1).
Let us sketch how this result comes about. The Poisson brackets (4) suggest to

represent the ES,f as π(ES,f ) = i~XS,f , since this obviously promotes these brackets
to commutation relations. The problem is that despite the i in the definition of π
suggested above, the π(ES,f ) will in general not be symmetric, since the measure can
have a non-vanishing “divergence” with respect to the vector fields XS,f , i.e. formally

i~XS,f [dµ] 6= 0.

Certainly this equation does not make sense as it stands. However, the form ∆S,f

defined in Proposition 3.1 is the appropriate definition for this divergence. The condition
on µ exhibited in Proposition 3.1 is simply the requirement that ∆S,f be given by
an L2 function, FS,f , say. If this is the case, we can represent ES,f as π(ES,f ) =
i~XS,f + ~FS,f/2, which, as can be easily checked, is symmetric.

Before we proceed, let us make two remarks: The first one is that a priory it is only
necessary to require the “divergences” ∆S,f to be operators on H, i.e. they do not have
to be square integrable. As soon as one requires Cyl∞ to be part of the domain, they are
automatically L2. The second remark we want to make is that it was realized already in
[5], that when considering more general measures then µAL, a divergence term will have
to be added to the XS,f to make them symmetric. The requirement of compatibility
between measure and vector-field used there, seems too restrictive, however, since it
implies that the divergence is a cylindrical function.

Let us call a surface S admissible with respect to a positive measure µ, if the action
of the derivations XS,f can be extended to equivalence classes under the measure µ, and
if furthermore the ∆S,f are in L2(A, dµ) for all smooth co-vector fields f . Then the
following is a simple corollary of Proposition 3.1:

Proposition 3.2. A surface S is admissible with respect to a positive measure µ, coming
from a family {fγ} via (3) iff for all co-vector fields f there is a constant Cf such that

‖XS,f [ln fγ ]‖L2(Aγ ,dµγ )
≤ CS,f for all graphs γ,

where the fγ are the functions characterizing µ according to (3).

Proof. Assume S to be admissible with respect to µ, and let F be cylindrical on γ. Then
there are constants CS,f such that

|∆S,f (F )| =

∣∣∣∣
∫

FXS,f [ln fγ ]fγ dµ
|E(γ)|
H

∣∣∣∣ ≤ CS,f ‖F‖µ = CS,f ‖F‖L2(Aγ ,dµγ)
,
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so XS,f [ln fγ ] is in L2(Aγ , dµγ). This allows us to plug it into ∆S,f , yielding

‖XS,f [ln fγ ]‖
2
µ
= |∆S,f (XS,f [ln fγ ])| ≤ CS,f ‖XS,f [ln fγ ]‖µ

whence ‖XS,f [ln fγ ]‖µγ
≤ CS,f , independently of γ.

Vice versa, assume that there are constants CS,f , such that ‖XS,f [ln fγ ]‖µ ≤ CS,f ,
independently of γ. Then for F cylindrical on γ,

|∆S,f(F )| =

∣∣∣∣
∫

FXS,f [ln fγ ]fγ dµ
|E(γ)|
H

∣∣∣∣ =
∣∣∣〈F , XS,f [ln fγ ]〉L2(Aγ ,dµγ)

∣∣∣

≤ ‖F‖L2(Aγ ,dµγ)
‖XS,f [ln fγ ]‖L2(Aγ ,dµγ)

≤ CS,f ‖F‖L2(A,dµ) ,

independently of γ.

4 Admissibility in the U(1) case

Up to now, our considerations applied either to a general compact connected gauge
group, or at least to SU(2). From now on, we will turn our attention to the analogous,
but technically much simpler case G = U(1), i.e. the electromagnetic field. We caution
the reader, that from now on, all measures are assumed to be obtained from families of
functions {fγ} via (3), without explicitly stating it.

Let us start by introducing some notation. We will be very brief and refer to [10] for
more thorough information on the U(1) theory. Let us parametrize U(1) as g(ϕ) = exp iϕ
where ϕ is in [0, 2π]. The Haar measure is then simply given by dϕ/2π. The irreducible
representations are labeled by n ∈ Z and are parametrized by πn(g(ϕ)) = exp inϕ.

In the following, we will denote by AU(1) the space of generalized U(1) connections.

The charge network functions Tγ,n on AU(1) are defined as

Tγ,n(ϕ1, . . . , ϕ|E(γ)|) = ein1ϕ1 . . . ein|E(γ)|ϕ|E(γ)| .

They form an orthonormal basis in L2(AU(1), dµAL). Let us also introduce their integrals
with respect to a measure µ

f (n)
γ :=

∫
Tγ,n dµ.

Since f
(n)
γ is nothing else then a specific Fourier coefficient of the function fγ , we will call

the family {f
(n)
γ } the Fourier coefficients of the measure µ. The requirements (norm),

(pos), (sub), (add) have straightforward analogs in the family {f
(n)
γ }. We furthermore

note that
∥∥Tγ,n

∥∥
µ
= 1 for any normalized µ.
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For the U(1) theory, the co-vector-fields f in the definition of ES,f are just functions,
so we can simplify notation by replacing them all by 1. The action of the vector-fields
X on the charge network functions then read

XS [Tγ,n] =
κ

2

( ∑

e∈E(γ)

I(S, e)ne

)
Tγ,n,

where I(S, e) is the signed intersection number of e and S which we define as follows:
Call an intersection of an edge e and a surface S proper if it is not the start or endpoint
of e and e is transversal to S at the intersection. Let P± be the number of proper
intersections of S and e with positive/negative relative orientation of S and e at the
intersection point and I± the number of intersections with positive/negative relative
orientation that are not proper. Then I(S, e) = P+−P−+(I+− I−)/2. Finally, we note
the following useful formula:

∆S(Tγ,n) =
κ

2

( ∑

e∈E(γ)

I(S, e)ne

)
f (n)
γ . (6)

We will now examine more closely the admissibility of surfaces with respect to mea-
sures on AU(1). We will see that the reasons for surfaces not to be admissible can be
manifold: Firstly, note that since the representation labels ne in (6) can be arbitrary
large, admissibility requires that the higher Fourier components of the measure have to
be suitably damped. This is the reason why the r-Fock measures do not have admissible
surfaces, as we will show below.

Another reason for non-admissibility is that the vector fields XS act on cylindrical
functions as sums of derivatives. The number of terms in this sum can be very large
when the intersections of graph and surface become numerous. Therefore to allow for
admissible surfaces, fγ must contain sufficient information about the geometry of the
edges contained in γ to tell how many times an edge can intersect with a given surface.
This is not possible if the measure is required to be diffeomorphism invariant – we will
prove below that, with the exception of µAL, such measures do not have any admissible
surfaces.

Finally, for the same reason fγ has to contain information about the positions of the
edges of γ relative to each other. We will see below that this forces factorizing measures,
i.e. measures for which the fγ factorize into a product of functions just depending on
single edges, to be extremely close to µAL in a certain sense, if they are to allow for
admissible surfaces.

Diffeomorphism invariant measures.
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Of special importance for quantum gravity are measures that do not depend on any geo-
metric background structures (such as a metric or a connection) on Σ. The requirement
of background independence can be formalized as follows: Analytic diffeomorphisms φ
naturally act on the space of graphs by mapping a graph γ to its image φ(γ) which
clearly is a graph again. Consequently, they also act on cylindrical functions by

F [A] ≡ F (he1 [A], . . . , hen [A]) 7−→ F (hφ(e1)[A], . . . , hφ(en)[A]) =: φ(F )[A].

A measure µ is called invariant under analytic diffeomorphisms, or shorter, diffeomor-
phism invariant, if ∫

F dµ =

∫
φ(F ) dµ

for all F ∈ Cyl and all analytic diffeomorphisms φ. A measure coming from a family
{fγ} of functions in the sense of (3) is clearly diffeomorphism invariant iff fγ = fφ(γ) for
all graphs and all analytic diffeomorphisms φ.

Examples of diffeomorphism invariant measures are the Baez measures [7] and µAL.
A bit surprisingly, it turns out that at least in the U(1) case considered here, µAL is the
only such measure that has admissible surfaces. This shows again that µAL is a very
special measure.

Proposition 4.1. Let µ be a diffeomorphism invariant normalized measure on AU(1)

coming from a family {fγ} of functions in the sense of (3). If there exists an open,
simply connected surface admissible with respect to µ, then µ = µAL.

Before proving this Proposition, we have to provide a rather technical Lemma:

Lemma 4.2. Given a graph γ, an open, simply connected surface S and a vector m =
(m1, . . . ,m|E(γ)|) ∈ Z

|E(γ)|, there is an analytic diffeomorphism φA
m of Σ such that

I(S, φA
m(e1)) = m1, . . . I(S, φA

m(e|E(γ)|)) = m|E(γ)|,

where e1, . . . , e|E(γ)| are the edges of γ.

Proof. Let us start by considering a single edge e. The first observation we make is that
for arbitrary m ∈ Z there is a smooth diffeomorphism φm of Σ such that I(S, φm(e)) =
m. For example, this diffeomorphism might “drag out” some part of e to create the
desired intersections but be the identity far away from e (see figure 3). Note that such
a diffeomorphism exists, whether e is a loop or not, that its existence depends however
on just admitting surfaces that are open and simply connected.

The problem is that φm will in general not be analytic. Therefore we have to establish
now that there is even an analytic diffeomorphism φA

m which does the same job, i.e. for

12



S

φ(e)

e

Figure 3: An example for e and φ(e)

S

T

(e)φm

Figure 4: The tube T

which I(S, φA
m(e)) = m. We will do this by using powerful mathematical results on real

analytic manifolds and analytic approximations to diffeomorphisms.
Note first that since S does not contain its boundary, all intersections of φm(e) with

S happen in the inside of S. Therefore there is a tube T containing φm(e) such that
every other curve starting at the starting point and ending at the endpoint of φm(e)
and lying entirely inside T will also have the signed intersection number m with S (see
figure 4). Therefore, if we manage to map e into T such that the endpoints of the image
are close to that of φm(e), we are done.

Let us first recall the famous result by Grauert [17] that every real analytic paracom-
pact manifold can be analytically embedded into R

n for some large enough n. Therefore
we will, without loss of generality, regard Σ as embedded into R

n in this way.
Now Rn comes with a globally defined metric ρ(p, p′) = ‖p− p′‖ and induces a metric

tensor on Σ that locally on Σ gives rise to a metric ρ′. As Σ is embedded, the topology
induced by ρ on Σ and that given by ρ′ coincide. That said, we turn to a powerful
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result by Huebsch and Morse [18] on approximations of diffeomorphisms of manifolds
analytically embedded in R

n: Theorem 1.4 of [18], slightly specialized to our needs,
reads

Theorem 4.3 (Theorem 1.4 of [18]). Let Σ be analytically embedded in R
n, φ a smooth

diffeomorphism of Σ and δ > 0. Then there is an analytic diffeomorphism φA of Σ that
satisfies

ρ(φ(p), φA(p)) ≤ δ.

That is, we can approximate φm by an analytic diffeomorphism, the quality of the
approximation being measured by ρ. What remains to be shown is that this also gives
an approximation controlled by ρ′. To this end, let us parameterize e by t ∈ [0, 1] and
let ǫ be chosen such that the ǫ-balls Uǫ(e(t)) wrt. ρ′ in Σ lie within the tube T for
all parameter-values t. Since the topology coming from ρ′ and that induced by ρ on Σ
coincide, we can find δ(t) > 0 such that the intersection of the δ-ball Uδ(t)(e(t)) in R

n

with Σ lies within Uǫ(e(t)). Since the embedding of Σ and the metric tensors are all
continuous, we can choose δ(t) continuous. Letting δ be the (nonzero) minimum of δ(t),
we can invoke the above theorem to find φA

m which indeed sends all the points of e into
T , the endpoints of the image being close to those of φm(e). Therefore I(S, φA

m(e)) = m,
and we have proven the theorem for the case of a single edge.

A similar reasoning shows the existence of an analytic diffeomorphism φA
m, mapping

a given graph γ to one such that I(S, φA
m(e1)) = m1, I(S, φ

A
m(e2)) = m2, . . .: Again it is

not hard to see that there is a smooth diffeomorphism doing the job and that it can be
suitably approximated by an analytic diffeomorphism. Since no new idea but just a lot
more notation is needed in this case, we refrain from giving the details.

With the above Lemma at hand, the proof of the Proposition is now straightforward:

Proof of Proposition 4.1. Let µ be a diffeomorphism invariant normalized measure on
A and S a surface which is admissible with respect to µ. Pick an arbitrary graph γ and
a vector m ∈ Z

|E(γ)| and denote the analytic diffeomorphism provided by Lemma 4.2 by
φm. One computes

∣∣∣∆S(Tn,φm(γ))
∣∣∣ = ~

κ

2

∣∣∣∣∣
∑

I

nImI

∣∣∣∣∣
∣∣∣f (n)

φm(γ)

∣∣∣ = ~
κ

2

∣∣∣∣∣
∑

I

nImI

∣∣∣∣∣
∣∣∣f (n)

γ

∣∣∣

where the last equality is due to the diffeomorphism invariance of the measure. Since
S is assumed to be admissible, this has to be bounded independently of n. But as m is

arbitrary, |
∑

I nImI | can be made arbitrarily large whenever n 6= 0. So in this case f
(n)
γ

has to be zero. f
(0)
γ has to be 1 due to normalization. Since γ was arbitrary, we have

shown that indeed µ = µAL.

14



Factorizing measures.

Let {fγ}γ be a family defining a positive normalized measure on AU(1). We will call this
measure factorizing if

fγ(g1, . . . , g|E(γ)|) =

|E(γ)|∏

i=1

fei(gi) where E(γ) = {e1, . . . , e|E(γ)|}.

Examples for factorizing measures are the heat kernel measures and µAL. Factorizing
measures are particularly easy to deal with, and regarding admissibility, we find the
following

Proposition 4.4. If µ is a positive, normalized, factorizing measure on AU(1) (defined
by a family of functions {fe}) and S is an admissible surface with respect to µ. Then,
of all the edges e intersecting S once and with a given relative orientation, at most
countably infinitely many can have fe 6= 1.

This result is a bit technical, but it has interesting consequences, for example for
Euclidean invariant measures: If Σ = R

3, we call a measure µ Euclidean invariant if for
all cylindrical functions F and all Euclidean transformations T

∫
F dµ =

∫
T (F ) dµ.

A consequence of Proposition 4.4 is

Corollary 4.5. Let µ be an Euclidean invariant positive, normalized, and factorizing
measure on AU(1), possessing an admissible surface. Then µ = µAL.

Let us first prove the Proposition.

Proof of Proposition 4.4. Consider a surface S and a graph γ with N edges such that
all edges are intersecting S exactly once, and with the same relative orientation (see
figure 5). An easy computation shows that

f−1
γ (ϕ) |XS [fγ ]|

2 =
N∑

I=1

∣∣∣∣
f ′
eI
(ϕeI )

feI (ϕeI )

∣∣∣∣
2 N∏

K=1

feK (ϕeK ) +
∑

I 6=J

f ′
eI
(ϕeI )

feI (ϕeI )

f ′
eJ
(ϕeJ )

feJ (ϕeJ )

N∏

K=1

feK (ϕeK ).

Using (norm) and the symmetry properties of the derivatives with respect to the Haar
measure, we see that the integral over the second term vanishes, and therefore

∫

U(1)N
f−1
γ |XS [fγ ]|

2 dµN
H =

N∑

I=1

∫ 2π

0

1

feI
|∂ϕfeI (ϕ)|

2 dϕ. (7)
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Figure 5: Surface and graph considered in the proof of Proposition 4.4

Because of (pos), 1/feI is strictly positive, so

∫ 2π

0

1

feI
|∂ϕfeI (ϕ)|

2 dϕ ≥ 0

with equality iff feI (ϕ) = const. Normedness fixes the constant to be 1. On the other
hand, because S is assumed to be admissible, Proposition 3.2 requires the right hand
side of (7) to be bounded independently of γ. If there would be a more than countably
infinite number of edges e intersecting S once and with the chosen relative orientation,
for which fe is non-constant, there would be subsequences e1, e2, . . . among these edges
such that with γN := ∪N

I=1eN ,
∫
f−1
γ |XS [fγ ]|

2 dµN
H would get arbitrarily large for large

N . So at most a countably infinite number of these edges can have fe non constant.

Let us now prove the corollary.

Proof of Corollary 4.5. Let µ be an Euclidean invariant, positive, normalized, factor-
izing measure and S a surface admissible with respect to µ. With {fe}, we denote
the family of functions on U(1) defining it. Consider an arbitrary edge e. By Euclidean
moves, it can always be mapped to an edge e′ which intersects S at least once. Subdivide
e′ into edges e′1, e

′
2, . . . such that each of them intersects S precisely once. Consider one

of those, e′I . By moving it around by Euclidean moves, one can obtain an uncountable
family of edges intersecting S once. Apply Proposition 4.4 and use Euclidean invariance
to conclude fe′

I
= 1. Do this for all the e′1, e

′
2, . . .. Then (sub) shows that fe′ = 1. Use

Euclidean invariance to finally conclude fe = 1.

Varadarajan Measures.

In [10] Varadarajan made the remarkable observation that one can “import” measures
defined on the space of tempered distributions on R

3 to AU(1). In this subsection, we will
consider the properties of such imported measures with respect to admissibility of sur-
faces. Let for this purpose be Σ = R

3, equipped with the Euclidean metric. Furthermore
denote with S the Schwarz test function space on R

3.
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We start with the observation that

he[A] = exp i

∫

e

Ads = exp i

∫

R3

F (0)
e (x)A(x) d3x,

where

F (0)i
e (x) =

∫ 1

0
ėi(t)δ(x − e(t)) dt

is the “distributional formfactor” of the edge e. Using this notation, the Fourier trans-
forms of a measure µ can be written as

f (n)
γ =

∫
exp−i

∫

R3

A(x)

(
∑

I

nIF
(0)
eI

)
(x) d3x dµ[A]. (8)

An important observation of Varadarajan was that the right hand side of (8) formally
has the same structure as the Fourier transform (or generating functional)

F(F ) =

∫
exp−i

(∫

R3

A(x)F (x)d3x

)
DA, F ∈ S3 (9)

for a positive regular Borel measure DA on the space (S3)′ of tempered distributions.
Such measures were extensively studied in quantum field theory. The analogy between

(8) and (9) is a priory only formal, because the F
(0)
eI of (8) are certainly not in S3. But

Varadarajan realized that on can define measures on A by setting

f (n)
γ =:

∫
exp−i

∫

R3

A(x)

(
∑

I

nIFeI

)
(x) d3xDA, (10)

where now

F i
e(x) :=

∫ 1

0
ėi(t)F (x− e(t)) dt (11)

for a fixed positive F ∈ S3. Consistency of the {f
(n)
γ } follows from the behavior of (11)

under composition, and positivity and normedness of the resulting measure on A from
the corresponding properties of the measure DA on (S3)′.

A natural question to ask is whether the resulting measures have admissible surfaces.
The answer is in the negative, as the following proposition shows:

Proposition 4.6. Any measure obtained from a regular normalized Borel measure on
(S3)′ by Varadarajan’s method as described above has no admissible surfaces.
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Proof. Let µ be a measure obtained from a regular Borel measure DA on (S3)′ as
described above, let S be any surface and e an edge intersecting S precisely once. For
convenience, let us choose a parametrization of e such that e ∩ S = e(1/2).

As a preparation we note that

|∆S(Te,n)| = ~
κ

2
|n|
∣∣∣f (n)

e

∣∣∣ = ~κ |n| |F(nFe)|

where F is the Fourier transform of DA and Fe the form factor of e as defined above.
Now we define the edge eǫ for 0 < ǫ < 1:

eǫ(t) := e((1 − ǫ)/2 + ǫt), t ∈ [0, 1].

Thus eǫ becomes shorter and shorter with vanishing ǫ, but still intersects S. Moreover,
it is easy to check that Feǫ −→ 0 for ǫ −→ 0, in the topology of S3.

Now we appeal to the Bochner-Minlos Theorem (see for example [19]) which states
that the Fourier transform F of DA is continuous (in the topology of S3) and that
F(0) = 1. Therefore, by making ǫ small, we can bring F(nFeǫ) as close to 1 as we wish.
As on the other hand |n| can be arbitrarily large, we see that |∆S(Teǫ,n)| can be made
arbitrarily large. Hence it can not be bounded by a constant independent of eǫ, n and
therefore S can not be admissible. Since S was completely arbitrary, this completes the
proof.

5 Discussion

In the present paper, we have investigated under which circumstances, certain “flux-
like” variables can (not) be represented on measure spaces over the space of generalized
connections. This investigation was motivated by recent work on the semiclassical sector
of loop quantum gravity. However, many of the results we have obtained concern only the
simpler case of a U(1) gauge theory. Thus, an immediate task would be to generalize the
results obtained in this work to other gauge groups, most notably to SU(2). However,
in view of the results obtained above, we have to acknowledge already now that the
task of finding interesting measures supporting the flux operators is more difficult then
on might at first think. There are two ways to interpret these difficulties: One is
to say that background dependent measures lead to a different phase of the theory
whose ultraviolet behavior is simply not suited for this kind of observables, so they
cease to exist. A situation vaguely similar is encountered in quantum field theory on
curved spacetimes. There, in some representations of the field algebra, the operator
quantizing the stress energy tensor of the field is well defined. In other representations
whose energy content is less well behaved, this operator is not well defined anymore
(elementary discussion and further references in [20]) The other way to interpret the
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difficulties is to maintain that we have simply not gathered enough experience with
background dependent representations yet, to see how such measures with admissible
surfaces have to be constructed.

At this point, we are quite dissatisfied with the ratio of mathematical to physical
considerations we produced in the present work. Our guess from the experiences with
the admissibility condition is that if measures other than µAL exist which have a
sufficiently large number of admissible surfaces, then we are not likely to find them by
chance or by changing the measures that have already been constructed just a little bit.
Rather, one would need some idea from physics on how to construct such measures. If
on the other hand, such measures do not exist, we would like to better understand why
this is so from the point of view of a physicist. The works [10, 21, 19] among other
things, take first steps in this direction. In any case, many interesting questions are
still to be investigated, and we hope to come back to some of them in future publications.
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