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Abstract. The linearly polarized Gowdy T
3 model can be regarded as compact Bianchi I

cosmologies with inhomogeneous modes allowed to travel in one direction. We study a hybrid
quantization of this model that combines the loop quantization of the Bianchi I background,
adopting the improved dynamics scheme put forward by Ashtekar and Wilson-Ewing, with a
Fock quantization for the inhomogeneities. The Hamiltonian constraint operator provides a
resolution of the cosmological singularity and superselects separable sectors. We analyze the
complicated structure of these sectors. In any of them the Hamiltonian constraint provides an
evolution equation with respect to the volume of the associated Bianchi I universe, with a well
posed initial value problem. This fact allows us to construct the Hilbert space of physical states
and to show that we recover the standard quantum field theory for the inhomogeneities.

1. Introduction

The Gowdy cosmologies represent a suitable arena to further develop loop quantum cosmology
(LQC) [1] and include inhomogeneous settings, since they provide the simplest inhomogeneous
cosmological spacetimes [2]. Here, we analyze the particular case of the Gowdy model with
three-torus topology and linear polarization. The homogeneous sector of this model (given by
the degrees of freedom that parametrize the subset of homogeneous solutions) coincides with
the Bianchi I model with three-torus topology. In turn, the inhomogeneities describe a content
of linearly polarized gravitational waves traveling in a single direction. In previous studies
we carried out the quantization of this system by means of a hybrid procedure [3, 4]. More
specifically, we applied a Fock quantization for the inhomogeneous sector, in order to deal with
the field complexity, while for the homogeneous sector we employed the quantization of the
Bianchi I model performed in LQC [5], with the main aim of achieving a quantum resolution of
the cosmological singularity.

The quantization of the Bianchi I model in LQC is subject to several ambiguities. One of
them concerns the representation of the curvature tensor of the homogeneous connection in the
quantum theory. Different definitions of this object lead to different schemes of quantization. In
this respect, Ashtekar and Wilson-Ewing have put forward the quantization of the Bianchi
I model within a new improved dynamics scheme [6], which seems to be physically more
appropriate than the scheme employed in [3, 4, 5]. In this note we summarize the hybrid
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quantization of the Gowdy model that results from adopting this new improved dynamics scheme
in the representation of the homogeneous sector. We focus on the new features that the use of this
scheme introduces, such as the complicated structure of the resulting sectors of superselection
(aspect not analyzed in [6]) and the interpretation of the quantum Hamiltonian constraint as
an evolution equation with respect to the volume of the associated Bianchi I universe. We will
discus that this interpretation is valid inasmuch as the corresponding initial value problem is
well posed: physical solutions are completely determined by a countable set of data given on
an initial section of non-vanishing Bianchi I volume. Moreover, this fact allows us to identify
the physical Hilbert space with the Hilbert space of initial data. For the details of this work we
refer to [7].

2. Quantization of the model

The linearly polarized Gowdy T 3 cosmologies are globally hyperbolic spacetimes with three-torus
spatial topology and with two axial and hypersurface orthogonal Killing vector fields ∂σ and ∂δ
[2]. We use global coordinates adapted to the symmetries {t, θ, σ, δ}, with θ, σ, δ ∈ S1. Then the
spatial dependence occurs only in θ, and we can expand the field-like variables in Fourier series
in that coordinate. After performing a partial gauge fixing [4, 7], the reduced phase space is
described by two pairs of canonically conjugate point-particle variables (they do not depend on
θ) and by one field ξ, together with its canonical momentum Pξ . Two global constraints remain
in the model, the spatial average of the θ-momentum constraint (which generates translations
in S1) and the spatial average of the densitized Hamiltonian constraint.

We call inhomogeneous sector the set of degrees of freedom given by the nonzero Fourier
modes of ξ and those of Pξ. To describe this sector we introduce creation and annihilation-like
variables, denoted by {a∗m, am} (m ∈ Z−{0}), defined as if ξ and Pξ were a canonical pair for a
free massless scalar field. In the quantum theory we promote them to annihilation and creation

operators, with [âm, â†m] = 1. F will denote the corresponding Fock space. The generator of
translations on the circle only involves this inhomogeneous sector. It is not difficult to obtain

its quantum counterpart in terms of the basic operators âm and â†m. The states that verify this
constraint form a Fock subspace Fp ⊂ F [4, 7].

In turn, the homogeneous sector is formed by the rest of degrees of freedom: the two point-
particle variables and the zero mode of ξ, together with its momentum. This sector coincides
with the phase space of the Bianchi I model. We describe it in the Ashtekar-Barbero formalism.
Using a diagonal gauge, the nontrivial components of the densitized triad are pi/4π

2, with
i = θ, σ, δ, and ci/2π are those of the su(2) connection. They satisfy {ci, pj} = 8πGγδij ,
where γ is the Immirzi parameter and G is the Newton constant. In order to represent this
sector in the quantum theory we choose the kinematical Hilbert space of the Bianchi I model
constructed in LQC [5, 6], that we call HBI

kin
. We recall that, on HBI

kin
, the operators p̂i have

a discrete spectrum equal to the real line. The corresponding eigenstates, |pθ, pσ, pδ〉, form an
orthonormal basis (in the discrete norm) of HBI

kin
. Owing to this discreteness, there is no well

defined operator representing the connection, but rather its holonomies. They are computed
along straight edges in the fiducial directions. The so-called improved dynamics prescription
states that, when writing the curvature tensor in terms of holonomies, we have to evaluate
them along edges with a certain minimum dynamical (state dependent) length µ̄i. We use
the specific improved dynamics prescription put forward in [6]: all the elementary operators

which represent the matrix elements of the holonomies, called N̂µ̄i
, produce a constant shift

in the Bianchi I volume of the compact spatial section. In order to simplify the analysis, it
is convenient to relabel the basis states in the form |v, λσ, λδ〉, where v is proportional to the

volume and such that the operators N̂±µ̄i
cause a shift on it equal to ±1, and the parameters λi

are all equally defined in terms of the corresponding parameters pi, and verify that v = 2λθλσλδ.
The Hamiltonian constraint of the Gowdy model is formed by the Hamiltonian constraint of



the Bianchi I model plus the coupling term which involves both homogeneous and inhomogeneous

sectors. Out of the basic operators p̂i, N̂µ̄i
, âm, and â†m, we represent it as an operator Ĉ well

defined on a dense domain of the kinematical Hilbert space HBI
kin

⊗ F [7]. We choose a very

suitable symmetric factor ordering such that Ĉ decouples the states of HBI
kin

⊗F with support on

v = 0, namely, the states with vanishing homogeneous volume. Moreover, our operator Ĉ does
not relate states with different orientation of any of the eigenvalues of the operators p̂i. Owing
to this property we can then restrict the homogeneous sector (also in the domain of definition

of Ĉ) to e.g. the space spanned by the states |v > 0, λσ > 0, λδ > 0〉. We call the resulting

Hilbert space HBI,+
kin

. Remarkably, for this restriction of the homogeneous sector we do not need
to impose any particular boundary condition or appeal to any parity symmetry. Note that both
HBI

kin
and HBI,+

kin
are non-separable Hilbert spaces, feature which is not desirable for a physical

theory. This problem is overcome by the very action of the Hamiltonian constraint operator.
Indeed, Ĉ defined on (a dense domain in) HBI,+

kin
⊗F turns out to leave invariant some separable

Hilbert subspaces that provide superselection sectors. Specifically, the homogeneous sector of
these superselection sectors is the space spanned by the states |v = ε+4n, λσ = λ⋆

σωε, λδ = λ⋆
δωε〉.

Here ε ∈ (0, 4] and n ∈ N; therefore v takes support on semilattices of constant step equal to
4 starting in a minimum non-vanishing value ε. In addition, λ⋆

a (a = σ, δ) is some positive real
number and ωε runs over the subset of R+ given by

{(
ε− 2

ε

)z ∏

k

(
ε+ 2mk

ε+ 2nk

)pk
}
,

where mk, nk, pk ∈ N, and z ∈ Z when ε > 2, while z = 0 otherwise. One can check that indeed
this set is dense in R

+ and countable [7]. Therefore, any of these sectors provide separable
Hilbert spaces contained in HBI

kin
. We denote them as Hε,λ⋆

σ,λ
⋆

δ
= Hε ⊗ Hλ⋆

σ
⊗ Hλ⋆

δ
. Note that

the fact that the states with support on v = 0 are removed means that there is no analog in our
quantum theory of the cosmological singularities, classically requiring that some pi vanish. We
thus solve these singularities already at the kinematical level in a very simple way.

We then restrict the study to any of these superselection sectors and define the homogeneous
terms of the Hamiltonian constraint operator Ĉ on the span of the states |ε + 4n, λ⋆

σωε, λ
⋆
δωε〉.

The Hamiltonian constraint turns out to provide a difference equation in the parameter v [7].
Therefore, if we regard v as an internal time, the constraint can be interpreted as an evolution
equation in it. The condition that this constraint imposes is very complicated and the solutions
can be obtained only formally. This is in part owing to the fact that one of the inhomogeneous
terms creates in every step of the evolution an infinite number of particles (for a detailed
discussion see [3, 4, 7]). Nonetheless, thanks to the precise structure of the superselection
sectors for the variables λa we can argue that a set of countable data given on the initial section
v = ε completely determines the physical solutions. This issue is non-trivial. Actually, both
the separability of the support of λa and the fact that it is dense in R

+ have been essential to
show it (the details can be found in [8]). At the end of the day, the initial value problem is well
posed and it is indeed feasible to make the above interpretation of the constraint as an evolution
equation in v.

We can thus identify solutions with initial data. Furthermore, we can construct a(n over)
complete set of observables acting on the space of initial data and impose reality conditions
on them [7, 8]. This determines a unique inner product that endows the space of initial data
with a Hilbert structure. Then, we finally impose the S1 symmetry and identify the resulting
Hilbert space with the physical Hilbert space. The result is that the physical Hilbert space is
Hλ⋆

σ
⊗ Hλ⋆

δ
⊗ Fp, with Hλ⋆

σ
⊗ Hλ⋆

δ
being the physical Hilbert space of the Bianchi I model in

LQC [8].



3. Conclusions

This work summarizes the quantization in the framework of LQC of the Gowdy T 3 model with
linear polarization, which is an inhomogeneous cosmological spacetime with spatial dependence
in a single direction θ. In order to perform it, first, at the classical level, we fix the gauge
partially. The reduced system is subject to two global constraints: the spatial average of the
θ-momentum constraint and the spatial average of the densitized Hamiltonian constraint. These
constraints are imposed à la Dirac in the quantum theory. Moreover, they are represented by
means of a hybrid approach, which combines the polymeric techniques of LQC with those of the
Fock quantization. The former ones, applied in the representation of the homogeneous sector
of the system, allow us to resolve the cosmological singularity in the quantum theory, while the
Fock quantization for the inhomogeneities successfully deal with the field complexity.

Employing this hybrid approach we obtain well defined operators for the constraints. For
the Hamiltonian constraint operator, we choose a very convenient symmetric factor ordering,
such that it allows us to restrict the study of the homogeneous sector to suitable, separable
superselection sectors. In any of them, the Hamiltonian constraint provides a difference equation
in the volume of the homogeneous sector of the Gowdy model, which coincides with the Bianchi
I model. We have interpreted this volume as an internal time and the Hamiltonian constraint as
an evolution equation in that time. We have argued that this interpretation is valid, inasmuch as
the corresponding initial value problem is well posed. In fact, a countable dense set of initial data
completely specifies the physical solutions, and then we can characterize the physical Hilbert
space as a Hilbert space of initial data. The physical inner product is fixed by demanding reality
conditions on a complete set of observables and imposing the S1 symmetry. We conclude that
the physical Hilbert space is the physical Hilbert space of the Bianchi I model in LQC tensor
product a Fock space Fp.

It is important to note that, if the model is totally deparametrized and quantized as in
standard quantum field theory, it admits a unique Fock quantization with unitary dynamics
and such that the vacuum is invariant under S1 translations [9, 10, 11]. The physical Hilbert
space for the inhomogeneities, namely Fp, is actually equivalent to that obtained for them in
the standard quantization of the deparametrized model. Therefore we recover the standard
description of the inhomogeneities, which can be seen as degrees of freedom propagating over
the polymerically quantized Bianchi I background. This result, although expected, is not trivial
since homogeneous and inhomogeneous sectors have been quantized with very different methods
and they are coupled in a very involved way by the Hamiltonian constraint.
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