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Abstract

It is well known that the tri-bimaximal neutrino mixing pattern V0 can be derived from a class

of flavor models with the non-Abelian A4 symmetry. We point out that small corrections to

V0, which are inherent in the A4 models and arise from both the charged-lepton and neutrino

sectors, have been omitted in the previous works. We show that such corrections may lead the

3× 3 neutrino mixing matrix V to a non-unitary deviation from V0, but they cannot result in a

nonzero value of θ13 or any new CP-violating phases. Current experimental constraints on the

unitarity of V allow us to constrain the model parameters to some extent.
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I. INTRODUCTION

Thanks to a number of convincing neutrino oscillation experiments [1], we have known

two neutrino mass-squared differences (∆m2
21 and |∆m2

31|) and two neutrino mixing angles

(θ12 and θ23) to a good degree of accuracy [2]. The smallest neutrino mixing angle θ13

remains unknown, but there are some preliminary hints that it might not be very small

(e.g., θ13 ∼ 7◦ [2–4]). Nevertheless, current experimental data are consistent very well

with a constant neutrino mixing matrix — the so-called tri-bimaximal mixing pattern [5]
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ω = ei2π/3, Ql = Diag{1, ω,−ω2} and Qν = Diag{1, 1, i} [6]. The diagonal phase matrix

Ql can be rotated away by redefining the phases of three charged-lepton fields, but Qν may

affect the neutrinoless double-beta decay if neutrinos are the Majorana particles. Given

the standard parametrization of the Maki-Nakagawa-Sakata-Pontecorvo (MNSP) neutrino

mixing matrix [7], V0 corresponds to θ12 = arctan(1/
√
2) ≈ 35.3◦, θ13 = 0◦ and θ23 = 45◦.

A more realistic form of the MNSP matrix V is expected to slightly deviate from V0 due to

some nontrivial perturbations1, such that both nonzero θ13 and CP violation can emerge.

It is possible to derive the tri-bimaximal mixing pattern V0 from some neutrino mass

models with certain flavor symmetries [9]. In this connection the earliest and most popular

application is the non-Abelian discrete A4 symmetry (see, e.g., Refs. [10–12]). But the

neutrino mixing matrix derived from a specific A4 model is in general not equal to V0

1 For instance, a possible interrelation with the quark-lepton complementarity is discussed in Ref. [8].
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unless some approximations are made. In other words, small corrections to V0 are generally

inherent in the A4 models and can arise both from the charged-lepton sector and from

the neutrino sector. This observation is particularly interesting for an A4 model built in

the vicinity of the TeV scale, because the resultant corrections to V0 may not be strongly

suppressed. We show that such corrections can lead the 3 × 3 neutrino mixing matrix V

to a non-unitary deviation from V0, although they cannot give rise to a nonzero value of

θ13 or any new CP-violating phases. We find that current experimental constraints on the

unitarity of V allow us to constrain the parameters of an A4 model to some extent.

The remaining part of this paper is organized as follows. In section II we first outline

the salient features of a typical A4 model and then diagonalize the 6× 6 mass matrices of

charged leptons and neutrinos. We show that both Uω and Uν in Eq. (2) get modified in

this framework. In section III we work out the non-unitary departure of the resultant 3×3

MNSP matrix V from the tri-bimaximal mixing pattern V0 = UT
ω U

∗
ν . We also constrain the

model parameters to some extent by taking account of current experimental constraints

on the unitarity of V . Section IV is devoted to a summary and some concluding remarks.

II. CORRECTIONS TO Uω AND Uν IN A TYPICAL A4 MODEL

Let us consider a simple but typical A4 model proposed by Babu and He in Ref. [12].

The model is an extension of the standard electroweak SU(2)L ×U(1)Y model with some

additional particles, and it is supersymmetric and A4 × Z4 × Z3-invariant. The particle

content and charge assignments are summarized in Table I. The discrete symmetries force

the superpotentials of quarks and leptons to have the following forms:

Wq = ydijQid
c
jHd + yuijQiu

c
jHu ,

Wℓ = MEEiE
c
i + fℓLiE

c
iHd + he (E1χ1 + E2χ2 + E3χ3) e

c
1

+hµ

(

E1χ1 + ωE2χ2 + ω2E3χ3

)

ec2 + hτ

(

E1χ1 + ω2E2χ2 + ωE3χ3

)

ec3 ,

Wν = fνLiν
c
iHu +

1

2
fSa

νc
i ν

c
iSa +

1

2
fS

b

νc
i ν

c
iSb

+
1

2
fχ′ [(νc

2ν
c
3 + νc

3ν
c
2)χ

′
1 + (νc

1ν
c
3 + νc

3ν
c
1)χ

′
2 + (νc

2ν
c
1 + νc

1ν
c
2)χ

′
3] , (3)

where the notations are self-explanatory [12]. Note that the quark sector is completely

the same as that in the minimal supersymmetric standard model, and the Z4 symmetry
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TABLE I: The particle content and charge assignments of the model [12], where the subscript i

(for i = 1, 2, 3) stands for the family index.

Qi dci uci Li ec1, ec2, ec3 νci Ei Ec
i Hu Hd χi χ

′
i Sa,b

SU(2)L 2 1 1 2 1 1 1 1 2 2 1 1 1

U(1)Y 1/3 2/3 −4/3 −1 2 0 −2 2 1 −1 0 0 0

A4 1 1 1 3 1, 1
′

, 1
′′

3 3 3 1 1 3 3 1

Z4 1 1 0 1 3 0 1 1 1 0 2 2 2

Z3 1 2 0 0 0 1 0 0 2 0 0 1 1

works as an R-parity such that the superpotentials possess two units of charge. Thanks

to the supersymmetry and new scalars in Eq. (3), it is possible to obtain the vacuum

expectation values [12]

〈Sa〉 = 0 , 〈Sb〉 = vs , 〈Hu〉 = vu , 〈Hd〉 = vd ,

〈χ〉 =
(

vχ, vχ, vχ
)

, 〈χ′〉 =
(

0, vχ′ , 0
)

, (4)

where v2u + v2d = v2 with v ≃ 174 GeV. Thus the A4 symmetry is broken after χ and χ′

develop their vacuum expectation values.

In the basis of (e, E) versus (ec, Ec)T , we obtain the 6 × 6 mass matrix of charged

leptons from Eqs. (3) and (4):

MℓE =







0 fℓvd1

H ME1





 , (5)

where 1 denotes the 3× 3 identity matrix, and

H =













he hµ hτ

he ωhµ ω2hτ

he ω2hµ ωhτ













vχ =
√
3 Uω













he 0 0

0 hµ 0

0 0 hτ













vχ . (6)

Note that fℓ, ME and hα (for α = e, µ, τ) can all be arranged to be real in a suitable

phase convention, and the mass scale ME is assumed to be extremely large in comparison

with the magnitudes of fℓvd and hαvχ. The 6 × 6 Hermitian matrix MℓEM†
ℓE can be
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diagonalized via the unitary transformation V †
l MℓEM†

ℓEVl, where Vl is given by

Vl ≃











1+
HH†

M2
E

fℓvd
ME

1

−fℓvd
ME

1 1+
HH†

M2
E

















Uω 0

0 1





 (7)

as a good approximation. The masses of three standard charged leptons turn out to be

mα ≃
√
3
fℓvd
ME

vχhα , (8)

where α runs over e, µ and τ . Eq. (7) shows that Uω receives a small correction:

Uω −→ U ′
ω =

(

1+
HH†

M2
E

)

Uω . (9)

It is actually U ′
ω that characterizes the contribution of charged leptons to the lepton flavor

mixing in this A4 model.

Now we turn to the neutrino sector. The type-I seesaw mechanism [13] is implemented

in the A4 model under consideration, and thus the overall neutrino mass matrix is a

symmetric 6× 6 matrix:

Mννc =







0 fνvu1

fνvu1 MR





 , (10)

where MR takes the form

MR =













fS
b

vs 0 fχ′vχ′

0 fS
b

vs 0

fχ′vχ′ 0 fS
b

vs













. (11)

The symmetric neutrino mass matrix in Eq. (10) can be diagonalized via the orthogonal

transformation V T
ν MννcVν , where the unitary matrix Vν is given by

Vν ≃











1− 1

2
· |fν |2v2u
M∗

RM
T
R

f ∗
ν vu
M∗

R

−fνvu
MR

1− 1

2
· |fν |2v2u
MT

RM
∗
R

















UνPν 0

0 UR





 (12)

to a good degree of accuracy. In this expression Uν has been given in Eq. (2), Pν denotes a

diagonal phase matrix [12], and UR is a unitary matrix responsible for the diagonalization
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of MR. The masses of three light (active) neutrinos turn out to be m1 ≃ |m0 (1 + x)|,
m2 ≃ |m0 (1 + x) (1− x)| and m3 ≃ |m0 (1− x)|, where

m0 =
f 2
ν v

2
ufS

b

vs

f 2
S
b

v2s − f 2
χ′v2χ′

, x = −fχ′vχ′

fS
b

vs
. (13)

Because both m0 and x are complex, it is possible to adjust their magnitudes and phases

such that the resultant values ofmi (for i = 1, 2, 3) satisfy current experimental data on the

neutrino mass spectrum [12]. Eq. (12) shows that UνPν , which signifies the contribution

of neutrinos to the lepton flavor mixing, receives a small correction:

UνPν −→ U ′
νPν =

(

1− 1

2
· |fν |2v2u
M∗

RM
T
R

)

UνPν . (14)

In other words, U ′
ν is not exactly unitary and its departure from Uν is in general an

unavoidable consequence in the type-I seesaw mechanism [14].

III. NON-UNITARY CORRECTIONS TO V0

With the help of the results obtained in Eqs. (9) and (14), we are able to calculate

the MNSP matrix V = U ′
ω
T (U ′

νPν)
∗ and demonstrate its non-unitary deviation from the

tri-bimaximal mixing pattern V0. We find

V = UT
ω

(

1+
H∗HT

M2
E

)(

1− 1

2
· |fν |

2v2u
MRM

†
R

)

U∗
νP

∗
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≃ V0P
∗
ν +

1
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2
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where

V ′
0 = Q∗

l V0 =
1√
6











2
√
2 0

−1
√
2

√
3

1 −
√
2

√
3











Qν , (16)

and Ql and Qν have been given below Eq. (2). In obtaining Eq. (15) we have omitted

the higher-order and much smaller corrections. Because of vu = v sin β and vd = v cos β

in the supersymmetric A4 model under consideration, vd ≪ vu might hold for a very

large value of tanβ. Depending on the magnitudes of f 2
ℓ and |fν|2, the term proportional

to 1/(f 2
ℓ v

2
d) or 1/(|fν|2v2u) in Eq. (15) might not be negligibly small. These two terms,

which are inherent in the model itself, measure the non-unitary contribution to V or the

departure of V from V ′
0P

∗
ν . This observation makes sense since it indicates that the exact

tri-bimaximal neutrino mixing pattern V0 is not an exact consequence of a class of A4

flavor models.

One may parametrize the analytical result obtained in Eq. (15) as follows:

V = Ql (1− η)V ′
0P

∗
ν = V0P

∗
ν −QlηV

′
0P

∗
ν , (17)

where the Hermitian matrix η signifies the non-unitary deviation of V from V0P
∗
ν . Note

that the diagonal phase matrix Ql in V can always be rotated away through a redefinition

of the phases of three charged leptons, and the diagonal phase matrices Qν and P ∗
ν in V

only provide us with the Majorana phases which have nothing to do with leptonic CP

violation in neutrino oscillations. Note also that η itself is real in this A4 model, as one

can easily see from Eq. (15), and thus the unitarity violation of V does not give rise to

any new CP-violating phases. Moreover, it is impossible to obtain nonzero Ve3 or θ13 from

this typical A4 model, simply because ηeµ = −ηeτ holds. Such a disappointing observation

implies that the residual flavor symmetry remains powerful to keep Ve3 or θ13 vanishing

and forbid CP violation, even though the MNSP matrix V is not exactly unitary.

Current experimental data allow us to constrain the matrix elements of η and then

constrain the model parameters to some extent. A recent analysis yields [15]

|η| <













2.0× 10−3 6.0× 10−5 1.6× 10−3

6.0× 10−5 8.0× 10−4 1.1× 10−3

1.6× 10−3 1.1× 10−3 2.7× 10−3













. (18)
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In view of Eqs. (15) and (16), we immediately obtain

ηeµ = −ηeτ =
∆m2

21

6|fν|2v2u
=

∆m2
21

6|fν |2v2 sin2 β
,

ηµτ =
∆m2

31 + 2∆m2
32

12|fν|2v2u
≃ ∆m2

31

4|fν |2v2 sin2 β
, (19)

where ∆m2
21 ≡ m2

2 −m2
1 ≃ 7.6 × 10−5 eV2 and ∆m2

31 ≡ m2
3 −m2

1 ≃ m2
3 −m2

2 ≡ ∆m2
32 ≃

±2.4 × 10−3 eV2 [2]. Eq. (19) leads us to a simple but instructive relation for three

off-diagonal matrix elements of η:

ηeµ
ηµτ

= − ηeτ
ηµτ

≃ 2

3
· ∆m2

21

∆m2
31

. (20)

Therefore, |ηeµ|/|ηµτ | = |ηeτ |/|ηµτ | ≃ 2.1×10−2. Comparing this prediction with Eq. (18),

one may self-consistently get |ηeµ| = |ηeτ | < 2.3× 10−5 by taking |ηµτ | < 1.1× 10−3. So it

is more appropriate to use the upper bound of |ηµτ | to constrain the lower bound of |fν|
by means of Eq. (19). We arrive at

|fν | =
1

2v sin β
·
√

|∆m2
31|

√

|ηµτ |
>

4.2

sin β
× 10−12 . (21)

This result, which depends on the value of tan β in the supersymmetric A4 model, implies

that the Yukawa coupling of neutrinos should not be too small in order to preserve the

unitarity of V at an experimentally-allowed level. It clearly indicates that an arbitrary

choice of fν in the neglect of small unitarity violation of V is inappropriate for model

building, because the correlation between fν and the deviation of V from the tri-bimaximal

mixing pattern is an intrinsic property of a class of A4 models.

The diagonal matrix elements of η consist of the contributions from both the charged-

lepton sector and the neutrino sector, as shown in Eq. (15). Their competition depends

on the sizes of fℓ, fν and tanβ. For simplicity, here we assume that the charged-lepton

contribution to ηαα (for α = e, µ, τ) is dominant. Then it is straightforward to obtain

ηαα ≃ − m2
α

f 2
ℓ v

2
d

= − m2
α

f 2
ℓ v

2 cos2 β
. (22)

As a result,

ηee : ηµµ : ηττ ≃ m2
e : m

2
µ : m2

τ ≃ 1 : 44566 : 12880040 , (23)
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where we have input the central values of three charged-lepton masses at the electroweak

scale [16]. Comparing this prediction with Eq. (18), one may self-consistently arrive at

|ηee| < 2.1×10−10 and |ηµµ| < 9.3×10−6 by taking |ηττ | < 2.7×10−3. It is therefore more

appropriate to use the upper bound of |ηττ | to constrain the lower bound of |fℓ| with the

help of Eq. (22). We find

|fℓ| ≃
mτ

v cos β
√

|ηττ |
>

0.19

cos β
, (24)

where mτ ≃ 1746.24 MeV has been input at the electroweak scale [16]. This result, which

also depends on the value of tan β in the supersymmetric A4 model, shows that the Yukawa

coupling of charged leptons should be relatively large in order to preserve the unitarity of

V as constrained by current measurements. We stress that an arbitrary choice of either

fℓ or fν in the neglect of small unitarity violation of V might be problematic for model

building, simply because they receive constraints both from the model itself and from

the experimental data. In this sense one must be cautious to claim that an A4 flavor

model can predict the tri-bimaximal neutrino mixing pattern whose matrix elements are

constant and thus have nothing to do with the model parameters [17]. In fact, the slight

(non-unitary) deviation of V from the tri-bimaximal mixing pattern is likely to impose a

strong restriction on some model parameters like fℓ, fν and tanβ.

IV. SUMMARY

We have examined a class of A4 flavor models to see whether the tri-bimaximal neutrino

mixing pattern V0 is an exact consequence of such models. We find that small corrections

to V0 are actually inherent in the A4 models and may arise from both the charged-lepton

and neutrino sectors. We have demonstrated that such corrections may lead the MNSP

matrix V to a non-unitary deviation from V0, but they cannot result in a nonzero Ve3 (or

θ13) or any new CP-violating phases. In particular, the slight unitarity violation of V is

sensitive to several model parameters, including the Yukawa couplings of charged leptons

and neutrinos. We have shown that current experimental constraints on the unitarity of

V allow us to constrain the model parameters to some extent.

We stress that the departure of V from V0 explored in this work is an intrinsic property

of a class of flavor models with the non-Abelian A4 symmetry. Different departures may
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result either from the vacuum-expectation-value misalignments in a certain A4 model or

from some purely phenomenological perturbations [18]. The non-unitary deviation of V

from V0 is in some sense more interesting because it might give rise to new CP-violating

effects in a variety of long-baseline neutrino oscillation experiments [19]. Since a lot of

attention has been paid to how to derive the tri-bimaximal neutrino mixing pattern V0,

the points revealed in our paper should be taken into account when one attempts to build

specific flavor models with discrete family symmetries.
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