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We investigate the stationary end state obtained by evolving a collapsing spherical star with the gauges

routinely adopted to study puncture black holes. We compare the end state of the collapse with the trumpet

solution found in the evolution of a single wormhole slice and show that the two solutions closely agree.

We demonstrate that the agreement is caused by the use of the Gamma-driver shift condition, which

allows the matter to fall inwards into a region of spacetime that is not resolved by the numerical grid, and

which simultaneously finds the stationary coordinates of the trumpet outside the matter.
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I. INTRODUCTION

The possibility of obtaining stable evolutions of
relativistic compact objects within the framework of nu-
merical relativity relies crucially on the choice of suitable
coordinate gauge conditions. In particular, the well-known
puncture approach relies on the gauge conditions to deal
with explicit coordinate singularities present in the com-
putational domain. These gauge conditions are built upon
the ‘‘1þ log’’ lapse condition [1] and the ‘‘Gamma-
driver’’ shift condition [2], and allow the coordinate singu-
larity (puncture) to be advected across the grid by the shift
[3–7]. Hereafter we will refer to these gauge conditions as
the puncture gauges.

It has been shown [3,8–12] that, for a single puncture
without linear momentum or spin, the wormhole topology
of the puncture initial data [13] ceases to be resolved by the
mesh in the code. Instead, the mesh approaches an asymp-
totically cylindrical stationary, solution, i.e., the trumpet
solution. The puncture gauges can thus be viewed as a sort
of ‘‘natural excision’’ which squeezes the singularity into
an unresolved region of the computational domain. It is
nowadays commonly used in binary black-hole simula-
tions by many groups following [6,7].

The puncture gauges have furthermore been tested in a
number of codes solving also the equations of relativistic
hydrodynamics [14–19]. It has been found effective in
handling the black hole that forms in the collapse of a
neutron star [15,20,21], and in binary systems in general
(see, e.g., [16,17,19,22,23] and references therein). In [15],
in particular, it was first shown with three-dimensional
(3D) simulations that when using the puncture gauges no
special treatment beyond standard artificial dissipation for
the metric variables is necessary to follow stably the black-
hole formation and evolution.

In this paper we show that the numerical evolution, with
the puncture gauge, of a collapsing spherical star ap-
proaches the trumpet solution at late times. This result is

not trivial for a number of reasons. First, because in the
collapsing spacetime, and, in particular, in the portion
filled by matter, there is no timelike Killing vector and it
is not clear how a stationary end state can be found.
Second, at the continuum level, the two spacetimes are
clearly different since, for example, slices in the two
foliations have a different topology. Even restricting our
attention to the vacuum region of the collapsing spacetime
and assuming a Killing slice compatible with the 1þ log
lapse condition, it is not obvious that the resulting slice will
be exactly that reported in [3]. Finally, the collapsing
matter inside the apparent horizon is observed to disappear
but it is not clear whether this reflects a physical or a
numerical behavior.
We therefore seek answers to the following questions:

(i) How well do the two end states agree? (ii) Where does
the matter go after the apparent horizon is formed?
(iii) How do the gauges find a stationary slicing of a
spacetime without an explicit timelike Killing vector? In
order to address these questions we evolve the spacetime
of a star collapsing to a black hole using a 1þ log slicing
condition and two variants of the Gamma-driver shift
condition. The different results are then compared quan-
titatively with the trumpet solution, and spacetime dia-
grams are constructed to follow the motion of the matter.
Overall we find that the two spacetimes tend to a common
stationary solution at late times and that this agreement
is primarily caused by the shift condition, which pushes
grid points away from regions of high curvature, prevent-
ing the matter from being resolved on the numerical
mesh.
The plan of the paper is as follows. In Sec. II we briefly

review our numerical methods, presenting the numerical
results and their interpretation in Sec. III. Our conclusions
are summarized in Sec. IV, while we dedicate the
Appendix to a description of our method for constructing
spacetime diagrams for spherical spacetimes.
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II. NUMERICAL SETUP

We perform numerical simulations both in explicit
spherical symmetry by means of the one-dimensional
(1D) code described in [24] and in 3D by means of
BAMMATTER [25]. The latter is developed extending the

hydrodynamics solver of the spherical code into the BAM

code [26]. More specifically, we solve the full set of
Einstein equations in the 3þ 1 formalism coupled to gen-
eral relativistic hydrodynamics (GRHD). In our spherically
symmetric simulations we adopt both the BSSNOK and
Z4c formulations of the Einstein field equations (see [24]
for details), while in 3D we use only the BSSNOK
formulation.

As mentioned above, our gauges are built upon the 1þ
log condition [1] for the lapse � and the Gamma-driver
condition for the shift �i [2] written in the form

@t� ¼ �i�;i � �2�LK̂; (1)

@t�
i ¼ �S

~�i � ��i þ �j�i
;j; (2)

where we always choose�L ¼ 2=�, with either�S ¼ 1 or
�S ¼ �2 and � ¼ 2=M. The Gamma-driver condition (2)
may be obtained as the first integral of what is imple-
mented in most numerical-relativity codes. A comparison
of the behavior of the condition (2) with the standard form
in the evolution of puncture black holes is presented in [4].

For the evolution of the matter we adopt the Valencia
flux-conservative formulation of the equations of GRHD
[27–29] for a perfect fluid. A property of flux-conservative
formulations is that they preserve (exactly in the contin-
uum) certain integral quantities such as the total rest mass
of the fluid, M0, or its momentum and energy density.
The equations of state employed to describe the fluid are
the ideal-gas or the polytropic equations of state [28]: no
significant differences were found when using one or the
other.

In both codes the numerical evolution in time relies on
the method-of-lines with Runge-Kutta integrators and
finite difference approximations. The GRHD equations
are solved by means of a high-resolution shock-capturing
scheme based on the local Lax-Friedrich central scheme
[30] combined with convex essentially nonoscillatory [31]
reconstruction [24,25].

In analogy with [15] and in contrast to [24], we do not
find it necessary to excise the hydrodynamical variables in
the collapse evolutions. Artificial Kreiss-Oliger dissipation
is added in the evolution of the metric fields following the
standard procedure [26]. Instead, we find it important to set
the GRHD eigenvalues to zero if unphysical values are
computed (‘‘eigenvalue excision’’). Note that this is com-
patible with the use of the local Lax-Friedrich central
scheme, which requires only an estimate of the local speed.
Unphysical values can be produced in a neighborhood
of the center of the collapse, due to numerical errors.

In 3D simulations we also found it important to set a
ceiling on the Lorentz factor W in order to prevent the
code from crashing after the formation of the apparent
horizon. In particular W is set to the ceiling value
Wceil ¼ 1010 when (and only when) the velocity becomes
larger than the speed of light. Simulations employing the
excision of the hydrodynamical quantities were also per-
formed. In this case, the matter variables are set to the
atmosphere value in a small region well inside the apparent
horizon. As expected, no differences were found. In the
following we focus on simulations without excision.
The initial stellar model is an unstable spherical con-

figuration widely used in the literature, e.g., [28]. Adopting
units in which c ¼ G ¼ M� ¼ 1, the configuration chosen
has central rest-mass density �c ¼ 7:993� 10�3, gravita-
tional (ADM) massM ¼ 1:448 (M0 ¼ 1:535) and circum-
ferential radius R ¼ 5:838 (isotropic coordinate radius
rR ¼ 4:268). The collapse is triggered imposing a negative
velocity perturbation which is larger than the truncation
error [28]. For the vacuum simulations we use standard
puncture data [13] in isotropic coordinates and with an
ADM mass, which is the same as that of the star.
The simulations in 1D were performed on a grid with

uniform spacing with resolutions �r ¼ 0:02, 0.01, 0.005.
The simulations in 3D, on the other hand, were performed
imposing an octant symmetry on a cell-centered Cartesian
grid with 8 fixed mesh refinement levels, with the resolu-
tions of finest level given by �xyz ¼ 0:05, 0.03125, 0.025,

and where the resolution doubles from one level to the
next.

III. RESULTS

We next describe the results of the different numerical
simulations. Before that, however, it is useful to recall
some of the basic properties of the evolutions that from
the puncture spacetime lead to the trumpet solution or that
from a stellar spacetime lead to a black-hole solution.
Puncture spacetime.—The evolution of the puncture

spacetime is described in Ref. [3,11]. The initial
Schwarzschild slice in the isotropic coordinate evolves,
driven by the puncture gauges, to the stationary trumpet
solution. Approximate stationarity is achieved within an
evolution time of about 60M, depending on the details of
the gauge choice. Asymptotically, there is a coordinate
singularity at the puncture point at r ¼ 0, which corre-
sponds to a sphere with Schwarzschild radius R0 � 1:3M.
The trumpet slice extends from R0 to spatial infinity, i0,
while the wormhole slice of the initial data reaches from
the outer i0 to an inner spatial infinity. Conceptually, it is
important to distinguish between the analytical solution
and the numerical solution on a discrete grid, and also
between the wormhole slice of the analytical evolution
and the trumpet slice which is only reached asymptotically.
The evolution starts with a wormhole slice which, due
to the continuity of the analytical solution, remains a
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wormhole slice. It asymptotes to a trumpet slice in the
sense that the region inside R0 has a coordinate size that
tends toward zero. Numerically, this inner region is effec-
tively excised once its coordinate size drops below the grid
spacing. Assuming that there is no grid point at the punc-
ture itself, after a short evolution time the numerical grid
only has grid points outside R0, that is, only the trumpet
part of the initial wormhole is represented. Anticipating
the discussion of matter, the key difference is that the
initial data with matter lives neither on a wormhole nor a
trumpet slice, since the matter ‘‘covers’’ the inner region of
the slice.

Collapsing spacetime.—The dynamics of a collapsing
unstable star in general relativity has been discussed in
great detail in a number of papers and we refer the inter-
ested reader to Refs. [15,28,29] for some of the most recent
work. For the test case considered here (�S ¼ 1), the
introduction of the perturbation is sufficient to drive the
star over the stability threshold and induce its gravitational
collapse. As a result, matter essentially freely falls toward
the center, leading to an exponential growth of the rest-
mass density and a related rapid variation of the metric
functions. This is shown in the top panel of Fig. 1, which
exhibits the radial profile of the rest-mass density at some
representative times. The ‘‘singularity-avoiding’’ proper-
ties of the 1þ log slicing condition drive the lapse function
to very small values near the origin. This is shown in the
middle panel of Fig. 1, while the bottom one refers to the

evolution of the shift. Note that as the matter rushes toward
the center, the shift still succeeds in arresting the motion of
the radial coordinates outside the matter distribution (ignor-
ing the atmosphere), thereby preventing slice stretching (in
the sense of stretching of the spatial coordinates) as for the
black-hole evolutions. At about t� 50M, an apparent hori-
zon forms indicating unambiguously the presence of a
black hole. This time represents the time when a first
comparison between the two spacetimes can, in principle,
be made. We also note that because the coordinate radius of
the apparent horizon is initially rAH & 2M, part of the
matter is outside of it, but it is then rapidly accreted.
As highlighted in [15], the gauge conditions in Eqs. (1)

and (2) allow us to follow the subsequent evolution without
having to excise either the hydrodynamical or the gravita-
tional field variable. The conservation of the rest mass is
very good up to the horizon formation: �M0ðtÞ=M0ð0Þ �
0:05%. After the formation of the apparent horizon, the
matter inside is observed to disappear from the numerical
grid, so that by t ¼ 300M the amount of matter on the slice
is that in the atmosphere, M0ð300Þ � 10�6M0ð0Þ. As we
will discuss in Sec. III B, a suitable change in the value of
�S for the shift condition can avoid this behavior.
As a side remark we note that in our 1D simulations

we observe a better behavior of the Z4c formulation of
the Einstein equation with respect to the BSSNOK one
in terms of constraint violation and long-term stability. In
particular, at t ¼ 2500M, the L2 norm of the Hamiltonian
constraint is about 4 orders of magnitude lower with Z4c.
Furthermore, at t ¼ 2500M, the irreducible mass of the
final black hole in the Z4c evolutions is within the numeri-
cal error of the ADM mass of the initial data. In contrast,
the BSSNOK simulations display a significant deviation in
the irreducible mass of the black hole after t ¼ 300M. In
view of this, in what follows, the 1D results we will present
refer exclusively to those obtained for the Z4c formulation.

A. Agreement of the end-states

In this section we investigate the asymptotic slice
reached at the end of the evolution by the collapsing star
and compare it with the corresponding trumpet one. This is
shown in Fig. 2, which reports several metric fields at time
t ¼ 300M. This time is well after the apparent horizon is
first found (i.e., tAH � 50M), and represents in both cases a
time when the solution has become essentially stationary.
From top to bottom the different panels refer, respectively,
to: the trace of extrinsic curvature (K), the conformal factor
(�), the lapse (�), and the shift (�r). It is quite apparent
that at the selected time the two spacetimes are extremely
similar and it is difficult to distinguish the solutions by a
visual inspection.
To obtain a more quantitative estimate of the differences

we have computed the behavior of the fields in the collaps-
ing spacetime near the origin and obtained the following
fitting functions for the stationary solution for r � 1:
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FIG. 1 (color online). Radial profiles of the rest-mass density �
(top panel), of the lapse function � (middle panel), and of the
shift � � �r (bottom panel) at some representative times of the
evolution. Note that at t� 50M an apparent horizon is first found
and that by t ¼ 300M the amount of matter on the final time
slice is essentially that in the atmosphere.
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KM� 0:30� 0:37
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; (3)
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2:0
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�
1:09

: (5)

The fits for (4) and (5) contain the exponent of r as a fitting
parameter, but not for (3). The result agrees well with the

corresponding expressions in [32]. In particular, the non-
integer exponent for the lapse in (5) is very close to the
analytic expression for the trumpet solution in isotropic
coordinates, which has exponent 1.091 [32]. This is inter-
esting since the numerical coordinates are not isotropic,
although one could argue that close to the puncture the
isotropy of the initial data is maintained during the
evolution.
This result is confirmed when considered also in a

coordinate-independent manner. Following the prescrip-
tion suggested in [3], we analyze the dependence of the
lapse versus the extrinsic curvature and report in Fig. 3
the differences at different times. More specifically, we
show with solid lines the relative difference ��=� �
�punc=�coll � 1, between the lapse of the puncture evolu-

tion,�punc, and that of the collapsing star,�coll, either when

the apparent horizon has just formed (t� 50M) or when
the solutions have reached a stationary stage (t� 300M).
It is clear that the relative difference decreases in time

and, at time t ¼ 300M, it is below 0.1%. By performing
convergence tests we have also determined that the
numerical errors are at the same level as the 0.1% disagree-
ment. Also reported in Fig. 3, with dashed lines, is the
relative difference between the puncture data and the
analytic solution for the trumpet solution [11,32]

K ¼ ��0ðRÞ=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Rð�Þ þ �2 � 1

p ð4Rð�Þ�2 � 4Rð�Þ þ 6Þ
2Rð�ÞðRð�Þ�2 � 2Rð�Þ�� Rð�Þ þ 2Þ ; (6)
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FIG. 3 (color online). Relative difference ��=� �
�punc=�coll � 1, between the lapse of the puncture evolution,

�punc, and that of the collapsing star, �coll, as a function of the

trace of the extrinsic curvature, K, at different coordinate times.
For a fair comparison, data at the same K are found by inter-
polation. The dashed lines refer to the relative differences
between the analytic result and the puncture evolution. By
construction, for early times this difference is much smaller
than the difference between puncture and matter simulations.
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where R is the Schwarzschild radius, �0 is the derivative of
� with respect to R, and we set M ¼ 1. As expected, the
relative difference is, in this case, much smaller initially,
but it becomes comparable with the one computed for the
collapsing spacetime at later times.

It is possible to model the behavior of the data from the
collapsing spacetime near the origin and at t ¼ 300M as

KM� 0:30� 0:92�: (7)

Similarly, a Taylor expansion of Eq. (6) around � ¼ 0
(i.e., for the values of the lapse near the puncture) can be
performed by using the implicit function Rð�Þ in [32],
yielding

Kð�Þ ¼ 0:300 937� 0:930 916�þOð�2Þ; (8)

which closely agrees with Eq. (7).
Finally, we note that we did not find significant differ-

ences between the 1D and the 3D results for the collapsing
spacetime. This is summarized in Fig. 4, where the top
panel shows � versus K for the 1D and the 3D data at time
t ¼ 300M: they are visually indistinguishable. Similarly,
the bottom panel shows that the relative differences be-
tween the 1D and the 3D data are generically below 2%.

B. Where does the matter go once inside the horizon?

As discussed above, the numerical evidence obtained
when using the Gamma-driver shift condition with�S ¼ 1
is that the matter inside the apparent horizon is progres-
sively ‘‘dissipated’’ (see also [15] where this was first
discussed). This behavior is clearly displayed in the upper
panel of Fig. 5, in which the total rest mass normalized to

the initial value is plotted in time (dashed red line). Note
that at about 10M after the formation of the apparent
horizon the normalized rest mass drops smoothly to zero
except for a small bump near t ¼ 65M generated by
numerical errors inside the horizon. Also shown is the
irreducible mass of the black hole normalized to the
ADM mass (solid blue line), which is obviously zero
before the apparent horizon is found. This behavior may
appear puzzling since it is geometrically clear that the
matter cannot leave the foliation (see, e.g., Fig. 6.11 of
[33]). In addition, since we are using high-resolution
shock-capturing schemes, our numerical methods should
be sufficiently robust, for reasonable spatial resolutions, to
handle extremely large gradients as the matter piles up in
the collapse. Indeed, we have experimented with various
reconstruction algorithms and resolutions and found that
both affect slightly the rate and the initial time of the
disappearance of the fluid. More specifically, more dissi-
pative schemes result in an earlier disappearance of the
matter, while higher resolutions can delay it. However,
neither improvement prevents the disappearance of the
matter from the grid.
In order to establish whether this behavior is instead due

to an excessive stretching of the spatial coordinates gen-
erated by the Gamma-driver shift condition, we have per-
formed the same simulations using either a shift gauge
speed �S ¼ �2, or simply setting �i ¼ 0. We recall that
this is possible since the 1þ log lapse condition is a pure
slicing condition, so that the foliation is unaffected by a
change of radial gauge (see, for example, [10,34]).
The results of these tests are shown in the bottom panel

of Fig. 5, where we report with the evolution of the
total rest-mass (dashed red lines) and of the normalized
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extrinsic curvature K at time t ¼ 300M for the collapse in 1D
(red solid line) and the puncture evolution (blue solid line)
spacetimes, and the collapse in 3D (red dashed line) and collapse
(blue dashed line) spacetimes. Bottom panel: relative differ-
ences. Note that 1D results, computed on a finer grid, are
interpolated for the comparison.
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irreducible mass (solid blue lines) when�S ¼ �2. Clearly,
while the behavior of the irreducible mass is independent
of the choice for �S, that of the rest mass is not. When
using the�S ¼ �2 radial gauge, in fact, the matter remains
on the numerical grid, so that the rest mass is conserved
well beyond the formation of the apparent horizon. The
cause of this difference must therefore to be attributed to
the large stretching of the spatial coordinates with�S ¼ 1.
Specifically, we identify two effects. First, matter falls
inside the innermost grid point as the inner boundary is
effectively an outflow boundary for the matter;M0 starts to
drop to the atmosphere value approximately 10M before
the stellar surface passes through the innermost gridpoint.
At this time, the areal radius of the innermost gridpoint
grows rapidly to approximately 1:9M (see also Fig. 6 later).
Second, the effective resolution in areal radius near the
time of the stellar surface passing through the innermost
gridpoint is approximately an order of magnitude lower
than in the initial data. The stretching is thus so large that
the matter ‘‘percolates’’ through the grid as the numerical
methods are not able to reproduce its steep gradients. As a
result, the spacetime ‘‘empties’’ itself and this explains the
very good match with the trumpet solution reported in
Fig. 3. Conversely, when �S ¼ �2, the radial gauge does
not distort the grid significantly, allowing for an excellent
conservation of the rest mass on the grid. Note that the
latter is not the result of the rather high spatial resolution,
but it is simply the result of the coordinate time ‘‘freezing’’
induced by the collapsed lapse function. Of course, be-
cause the spacetime is not able to remove its matter con-
tent, the match with the trumpet solution is in this case
much worse and ��=�� 10�1 for KM * 0:21.

Not surprisingly, much of what we discussed so far for
�S ¼ �2 applies also when considering �i ¼ 0. However,
the same dynamics that leads a �i ¼ 0 shift condition to
fail in a curved spacetime, is responsible for the late-time
failure of the simulations having �S ¼ �2 as gauge speed.
As a result, a Gamma-driver shift condition with �S ¼ 1
appears to be the most robust choice for all those situations
in which a compact fluid object may collapse to a black
hole.

Finally, we show in Figs. 6 and 7 the spacetime diagrams
as built from the numerical data. The axes in Fig. 6 refer to
the time and spatial coordinates used, respectively, in the
simulations with �S ¼ 1 (upper panel) and �S ¼ �2 (bot-
tom panel). The shaded green area corresponds to the
region of the spacetime covered by matter, vertical lines
are line of constant Schwarzschild radius while horizontal
lines are lines of constant coordinate time. The thick red
line emerging after t� 50M is the apparent horizon.
Figure 6 can be compared with other numerically gener-
ated diagrams of collapsing spacetimes obtained either in
other gauges [35], or with excision techniques [29], or for
puncture evolutions of single black holes [11]. The figure
clearly shows how the matter is ‘‘squeezed’’ from the

numerical grid when �S ¼ 1, while it remains on the
grid when �S ¼ �2. In both cases an apparent horizon is
found. The comparison of the lines of the constant
Schwarzschild radius in the two panels highlights the
stretching of the spatial coordinate discussed before.
Figure 7 displays the causal spacetime diagram of the

collapse. Similarly to Fig. 6 the thick red line denotes
the apparent horizon, the thick green line the surface of
the collapsing star and the shaded area shows the region
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FIG. 6 (color online). Spacetime diagram of the collapsing
star. Data are from 1D simulations with gauge speed �S ¼ 1
(top panel) and �S ¼ �2 (bottom panel). The horizontal blue
lines are lines of constant coordinate time. The thick red line
denotes the apparent horizon. The vertical blue lines are lines of
constant Schwarzschild radius R which values are on top of the
lines. The shaded green area bounded by the thick green lines
shows the region of the matter.
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filled by the matter. The coordinates ðX; TÞ are constructed
so that the light speeds have magnitude one, with light
cones opening at 45	 in the diagram. The method em-
ployed for the construction is discussed in the Appendix.
Because it is easier to use, the data employed to construct
the diagram refers to a 1D simulation with�S ¼ �2, but in
principle we expect that a very similar diagram would be
produced with�S ¼ 1. At early times the causal spacetime
diagram clearly shows the extremely high speed of the
stellar surface and the causal separation between the points
initially belonging to the exterior and those that are caus-
ally connected to the collapse (see the gauge-wave prop-
agating at the speed of light). At late times it is evident that
the collapse of the lapse prevents the slices from evolving
forward into the singularity; furthermore, the inset demon-
strates that there is always some numerical data inside the
horizon.

V. CONCLUSION

By comparing the numerical evolution of a single punc-
ture with that of a collapsing star when using the same
puncture gauges, we have shown numerically that the two
spacetimes tend to the same trumpet solution at late times,
a possibility already conjectured in [15]. Let us explicitly
address the questions raised in the Introduction: (i) In the
domain covered by the numerical coordinates, at late
times, the spacetimes agree within the precision of our

calculations. (ii) The apparently bizarre agreement, which
is not possible at the continuum level, is caused primarily
by the Gamma-driver shift condition, which stretches the
numerical spatial grid. The matter is rapidly forced inside
the innermost grid point, preventing it from being resolved
and effectively removing it from the spatial slice. Thus, in
the domain covered by the numerical coordinates the
spacetimes agree, solving the apparent contradiction.
(iii) Since the matter is lost inside the innermost gridpoint,
at late times, on the numerical grid the evolution is simply
that of the vacuum Schwarzschild solution.
We also note that if the matter in the slice is sufficiently

compact and in the vacuum region and one has a Killing
slicing which is compatible with the ‘‘1þ log’’ gauge, then
in the vacuum region the slice must agree with the original
‘‘1þ log’’ trumpet [36]. Our analysis also demonstrates
that, while the puncture gauges with �S ¼ 1 results in
robust numerical evolutions in a collapse scenario, by
construction the resulting coordinates are not appropriate
for a detailed study of the dynamics of the matter near the
singularity.
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APPENDIX: THE CONSTRUCTION OF
SPACETIME DIAGRAMS

In this appendix we describe our approach to the con-
struction of spacetime diagrams in spherical symmetry.
The approach is based on that of [37]. The most general
spherical line element can be written as

ds2 ¼ ��2dt2 þ �rrðdrþ �rdtÞ2 þ ���d�
2; (A1)

where d�2 ¼ d�2 þ sin2�d	2 is the standard metric on
the two-sphere. The incoming and outgoing radial light
speeds are given by

c
 ¼ ��r 
 �ffiffiffiffiffiffiffi
�rr

p : (A2)

Ingoing and outgoing null coordinates ðu; vÞ satisfy the
equations of motion

@tu ¼ �cþ@ru; @tv ¼ �c�@rv; (A3)

in coordinates ðt; r; �;	Þ. Assuming that near the outer
boundary r� space is almost flat, we arrive at the boundary
condition

vðt; r�Þ ¼ 2t� u: (A4)
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FIG. 7 (color online). Causal spacetime diagram of the col-
lapsing star. Data are from 1D simulations with gauge speed
�S ¼ �2. The coordinate axes are constructed so that the light
speeds have magnitude one. The horizontal blue lines are lines of
constant coordinate time. The thick red line denotes the apparent
horizon. The shaded green area bounded by the thick green lines
shows the region of the matter.
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We introduce the scalar fields

X ¼ 1
2ðv� uÞ; T ¼ 1

2ðuþ vÞ: (A5)

They satisfy the equations of motion

@tX ¼ �r@rX þ �ffiffiffiffiffiffiffi
�rr

p @rT;

@tT ¼ �r@rT þ �ffiffiffiffiffiffiffi
�rr

p @rX;
(A6)

and are naturally adjusted to the causal structure of the
spacetime. In terms of ðT; X; �;	Þ the spherical line ele-
ment becomes

ds2 ¼ c 4ð�dT2 þ dX2Þ þ ���d�
2; (A7)

where c 4 is a conformal factor determined by

c 4 ¼ �rr

ð@rXÞ2 � ð@rTÞ2
: (A8)

To construct spacetime diagrams we simply evolve the
fields ðu; vÞ. As initial data we choose u ¼ �r and v ¼
r. There are potential problems associated with the break-
down of the coordinate chart, but we will not concern
ourselves with those issues here. From our computations
we observed, however, that the method requires further
development (e.g., a treatment of the fields at the horizon)
to construct spacetime diagrams for every numerically
generated spacetime (cf. Sec. III B of [11]). In particular
we found the construction of causal spacetime diagrams
with �S ¼ 1 troublesome, perhaps because more sophisti-
cated boundary conditions are required.
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