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LINEARIZED GRAVITY AND GAUGE CONDITIONS

STEFFEN AKSTEINER AND LARS ANDERSSON

Abstract. In this paper we consider the field equations for linearized gravity
and other integer spin fields on the Kerr spacetime, and more generally on
spacetimes of Petrov type D. We give a derivation, using the GHP formalism,
of decoupled field equations for the linearized Weyl scalars for all spin weights
and identify the gauge source functions occuring in these. For the spin weight
0 Weyl scalar, imposing a generalized harmonic coordinate gauge yields a gen-
eralization of the Regge-Wheeler equation. Specializing to the Schwarzschild
case, we derive the gauge invariant Regge-Wheeler and Zerilli equation directly
from the equation for the spin 0 scalar.
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1. Introduction

In his 1965 paper [37] Penrose showed that, at least formally, all solutions of the
massless spin s field equation on Minkowski space can be obtained from solutions
of the spin (s − 1

2 ) equations. By repeating this process 2s times, one finds that
solutions of to the spin 0 equation (i.e. the free scalar wave equation) are potentials
for the massless spin s field. This is an example of the spin-raising and -lowering
transformations discussed in more detail in [41, section 6.4], see also [41, section
6.7].

The following special case of the construction is relevant here. Given a 2 index
Killing spinor, i.e. a spinor KAB solving the equation

∇(A
A′

KBC) = 0,

and a solution φABC...D = φ(ABC...D) of the spin s zero rest-mass equation

∇AA′

φABC...D = 0,

the spin-lowered field φ̂C...D = φABC...DK
AB is a solution of the spin (s − 1) zero

rest-mass equation.
The analysis of linear field equations on Minkowski space is a key step in the proof

of the non-linear stability of Minkowski space [11, 12]. For the case of Minkowski
space, the linearized Bianchi equation is precisely the massless spin 2 equation.
Thus, the discussion of Penrose shows that the linearized stability problem for the
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2 S. AKSTEINER AND L. ANDERSSON

Einstein equation on Minkowski space can essentially be reduced to a study of the
scalar wave equation.

The problem of non-linear stability of Minkowski space, solved in [12], see also
[32], can be viewed as a warm-up for the black hole stability problem, i.e. the
problem of proving the non-linear stability of the Kerr spacetime in the class of
asymptotically flat vacuum spacetimes, see e.g. [1, 15, 22], and references therein.
The black hole stability problem adds several levels of difficulty over the problem of
stability of Minkowski space. The aspect which we shall focus on in the present dis-
cussion is that the background spacetime (or more properly stated, the asymptotic
state for the evolution) fails to be conformally flat and consequently the relation
between the spin 0 wave equation, viewed as a model problem for the full non-linear
stability problem, and the equations of linearized gravity fails to be as close as on
the Minkowski background.

In particular, the equation for linearized gravity (i.e. the linearized Bianchi
system) on a non-conformally flat vacuum background is not the spin-2 system,
but has a non-trivial right hand side. In fact, the massless spin 2 equation in a
spacetime of Petrov type D has only trivial solutions, cf. [8]. It follows that the
spin-lowering and -raising transformations cannot be applied directly to Maxwell
or linearized gravity on a background spacetime which is not conformally flat.

However, if we consider the field equations of integer spin on a vacuum type D
spacetime, of which Kerr is a special case, then it turns out that an analogue of
the spin-lowering transformation does yield useful results, even for the equations
of linearized gravity. This idea was alluded to already in the paper of Jeffryes, see
[29, p. 340]. Although not stated as explicitly, related ideas play an important role
in the work of Fackerell and Crossman [14, 18].

From the point of view of the black hole stability problem, the two-parameter
Kerr family of rotating black hole solutions are the vacuum type D spacetimes of
most immediate interest. However, most of the results in this paper are valid for
general vacuum type D spacetimes. These include the Kerr-Taub-NUT spacetimes,
see [45, section 21.1], see also [16].

1.1. Spin-lowering the Maxwell field. Recall1 [50] that any vacuum type D
spacetime admits a Killing spinor of the form

KAB = Ψ
−1/3
2 o(AιB). (1.1)

A Killing spinor which in addition satisfies the condition

∇A′
BKAB +∇A

B′

K̄A′B′ = 0

corresponds via

Kab = i(KABǫA′B′ − K̄A′B′ǫAB)

to a Killing-Yano tensor, i.e. a skew 2-tensor Kab = K[ab] satisfying the Killing-
Yano equation

∇(aKb)c = 0,

see [38, 9, 13, 30] for further information.
Let φAB be the Maxwell spinor, i.e. a solution of the massless spin 1 equation.

Then φABK
AB = Ψ

−1/3
2 φ1, where φ1 is the spin weight 0 Maxwell scalar and this

rescaling of φ1 solves a wave equation with potential

(�+ 2Ψ2)(Ψ
−1/3
2 φ1) = 0, (1.2)

1Here and below we use the conventions and notations of the Newman-Penrose (NP) and
Geroch-Held-Penrose (GHP) null-tetrad based formalisms, and the associated two-spinor formal-
ism, see [36, 25, 40, 41] and section 2 below.
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where � = ∇a∇a is the d’Alembertian of the spacetime and Ψ2 is the spin weight
0 Weyl scalar of the background. This is precisely the wave equation derived for
the rescaled spin-weight 0 Maxwell scalar on Kerr by Fackerell and Ipser [19], who
also argued that φ1 can be used as a potential for the Maxwell field on the Kerr
spacetime.

The special case of this spin weight 0 wave equation for the Maxwell field on
the Schwarzschild spacetime was used recently in the proof by Blue [6] of decay
estimates for the Maxwell equation. In this work, Blue was inspired by Price [42]
who showed that the Regge-Wheeler [43] wave equation for axial perturbations of
the Schwarzschild spacetime can be viewed as a wave equation, with potential, for
a rescaled version of the imaginary part of the spin weight 0 linearized Weyl scalar.

1.2. Gauge invariant equations for linearized gravity. We follow the conven-
tion of Price and others in discussing perturbations of GHP quantities and let a
subindex A denote quantities defined on the background and indicate first order
perturbed quantities with a subindex B. See [47, 7] for detailed treatments of per-
turbation theory in the context of tetrad based formalisms. The Regge-Wheeler
wave equation in the form derived by Price can be written as

(�+ 8Ψ2A)(Ψ
−2/3
2A ImΨ2B) = 0,

on the Schwarzschild spacetime, where in Schwarzschild coordinates Ψ2A = −Mr−3.
The approach of Price does not generalize directly to include polar perturbations.

These had previously been treated by Zerilli [52], see also Moncrief [35], who de-
rived a non-local wave equation governing a gauge invariant potential for the polar
degrees of freedom, and related work by Bičák [3] on perturbations of the Reissner-
Nordström solution. Among the difficulties in generalizing Price’s approach to the
Regge-Wheeler equation to cover general perturbations even of Schwarzschild is
that in the background the Ψ2A is non-zero and hence Ψ2B fails to be gauge invari-
ant. In fact, it is only the linearized Weyl scalars Ψ0B,Ψ4B of extreme spin weights
2,−2, which are both coordinate and tetrad-gauge invariant, and hence it is only
those which can be directly viewed as physically measurable quantities.

Teukolsky [48, 49] showed, by calculating in the NP formalism on a Kerr back-
ground, working in the principal Kinnersley tetrad, that suitably rescaled versions of
the extreme spin weight Maxwell (s = 1,−1) and linearized Weyl scalars (s = 2,−2)
on the Kerr spacetime satisfy decoupled and separable wave equations. The result-
ing system is usually called the Teukolsky Master Equation (TME).

Shortly after the work of Teukolsky, Ryan [44] showed that the vacuum Teukolsky
system for linearized gravity can be derived simply by projecting the Penrose wave
equation, i.e. the covariant tensor wave equation

�Rabcd = RabefRcd
ef + 2(RaecfRb

e
d
f −RaedfRb

e
c
f ),

satisfied by the curvature tensor, on a principal null tetrad, and linearizing. This
theme has been taken up and generalized to arbitrary vacuum backgrounds by Bini
et al. [4, 5], where all equations for the Ψ’s and φ’s are calculated from components
of a generalized de Rham operator acting on the Riemann and Maxwell tensor.

Now consider a general vacuum type D background spacetime. Working in a

principal tetrad, let ψs be one of the fields Ψ0B,Ψ
−4/3
2A Ψ4B, φ0,Ψ

−2/3
2A φ2 (letting s

be the spin weight of the field). Further, let

Ba = −(ρna − τm̄a).

Define a generalized wave operator acting on properly weighted quantities by

�T p = gab(Θa + pBa)(Θb + pBb),
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where Θa is the weighted GHP covariant derivative, see section 2 for details. Then,
cf. [4], the TMEs for spin s fields can be written in the form

(�T 2s − 4s2Ψ2A)ψs = 0. (1.3)

As shown by Teukolsky, for the Kerr case, equation (1.3) can be separated into
radial and angular equations. Due to this fact, it has been possible to formally
analyze the Teukolsky system and its solutions and many interesting discoveries
have been made. Among these are the relation of the separability of the system
to the presence of the Carter constant and corresponding symmetry operators, the
calculation of the separation constants, as well as the proof of mode stability for
the Teukolsky system [51].

However, it is not clear from these works that the Teukolsky system is well suited
for the analysis of the asymptotic decay properties of the higher spin fields. Among
the difficulties encountered in attempting to analyze the Teukolsky system are the
facts that it has a long-range potential and lower-order terms with slowly decaying
coefficients. See [28] and citations therein for discussion.

1.3. Spin lowering the linearized Weyl field. Recall that on a vacuum type D
spacetime, the spin-lowered Weyl field ψABCDK

CD, where KAB is a Killing spinor,
satisfies the Maxwell equation, see [31, §3.8], see also [39]. The same statement
holds for the linearized Weyl spinor2 (δψ)ABCD on Minkowski space, and further
in that case lowering the spin by 2 gives (δψ)ABCDK

ABKCD which is a solution to
the spin 0 wave equation. We now consider the equations satisfied by these fields
on a vacuum type D background.

Let (δψ)ABCD be the linearized Weyl spinor on a vacuum type D background,
and let KAB be the Killing spinor as in (1.1). Then, expanding the spin 1 field
(δψ)ABCDK

CD which corresponds to a skew 2-tensor, into weighted scalars gives

the rescaled linearized Weyl scalars φ̂i−1 = Ψ
−1/3
2A ΨiB, i = 1, 2, 3, of spin weights

1, 0,−1 and additional terms arising from linearized tetrad. Thus, by analogy with

the above, it is reasonable to suppose that the fields φ̂0 = Ψ
−1/3
2A Ψ1B, Ψ

−2/3
2A φ̂2 =

Ψ−1
2AΨ3B of spin weights 1,−1, respectively, satisfy an analogue of the Teukolsky

system TMEs, for s = 1,−1, while the spin weight 0 field φ̂1 = Ψ
−2/3
2A Ψ2B can be

expected to satisfy an analogue of the Fackerell-Ipser equation. Further, since the
non-extreme linearized Weyl scalars fail to be gauge invariant, one also expects the
corresponding equations to contain gauge potential terms.

For the spin weight one case, a calculation, see section 3.2, shows

(�T 2 − 4Ψ2

)
(Ψ

−1/3
2A Ψ1B) = −6Ψ

2/3
2A [(þ′ + 2ρ′ − ρ̄′)κB − (ð′ + 2τ ′ − τ̄ )σB + 2Ψ1B],

The equation satisfied by Ψ−1
2AΨ3B is similar. The right hand side of the equation for

Ψ1B corresponds to the right hand sides of the equations for φ0B on a charged type
D background with Ψ2A playing the role of the spin weight 0 Maxwell scalar φ1A,
see section 3.2. The analogous statement holds for Ψ3B after applying a prime. As
we shall see, the conditions that the right hand sides of the equations for Ψ1B,Ψ3B

are zero are tetrad gauge conditions. For the case of the perturbed Maxwell field
this corresponds to turning off the background charge, i.e. imposing the condition
φ1A = 0. The fact that the just mentioned tetrad gauge conditions can be viewed
as the “ghost” of the background charge motivated Chandrasekhar [10, p.240] to
use the term phantom gauge. In fact, Chandrasekhar showed that by imposing the

phantom gauge, the rescalings Ψ
−1/3
2A Ψ1B,Ψ

−1
2AΨ3B satisfy the TMEs, for s = 1,−1,

respectively.

2Here we use a δ to denote linearized quantities, eg. (δψ)ABCD in order to avoid confusion
with spinor indices.
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We show in section 4 below that the phantom gauge can be viewed as prescribing
a gauge source function for the tetrad degrees of freedom along the lines of Friedrich
[23], with the linearized Weyl field itself as part of the gauge source. The phantom
gauge was studied by Chandrasekhar from a formal point of view only, and the
possible implications of this procedure for the hyperbolicity and well-posedness of
the linearized Einstein equations were not analyzed in his work. We show here that
the phantom gauge condition is compatible with a well posed system of equations
for linearized gravity.

Finally, we consider the spin weight 0 linearized Weyl scalar. As the background
Ψ2A is non-vanishing, one has that Ψ2B is coordinate gauge dependent (but tetrad-
gauge independent). Motivated by the previous discussion we consider the equation

satisfied by the spin weight 0 field Ψ
−2/3
2A Ψ2B obtained by lowering the spin of the

the linearized Weyl field by 2. A calculation, cf. section 3.2, shows that this rescaled
spin weight 0 linearized Weyl scalar solves the equation

(�+ 8Ψ2)(Ψ
−2/3
2A Ψ2B) = −3�BΨ

1/3
2A , (1.4)

where the right hand side is the first order perturbation of the wave operator,
acting on the background spin weight zero Weyl scalar. In section 5 we show that,
restricting to the Schwarzschild case, equation (1.4) contains all of the information
in the Regge-Wheeler and Zerilli-Moncrief systems by giving a direct derivation of
these systems starting from (1.4).

The condition that the right hand side of (1.4) vanishes can be viewed as a gener-
alized harmonic coordinate condition. It is worth noting that this gauge condition
can be imposed also in the Schwarzschild case. Imposing this generalized harmonic
gauge condition, the spin weight zero linearized Weyl scalar satisfies the scalar wave
equation

(�+ 8Ψ2A)(Ψ
−2/3
2A Ψ2B) = 0, (1.5)

which can be viewed as a generalization of Price’s version of the Regge-Wheeler
equation not only to the full set of perturbations of Schwarzschild but also to
perturbations of Kerr. Lun and Fackerell [33] considered the situation on Schwarz-
schild and argued formally that by imposing a suitable gauge condition, one obtains
equation (1.5) (specialized to the Schwarzschild case).

We further point out that a generalized harmonic gauge condition with a gauge
source function involving Ψ2B can also be used to modify the potential in (1.5)
so that the equation becomes the Fackerell-Ipser equation. However, as already
discussed by Crossman and Fackerell [14, 18] this is possible only in the rotating
case, and in particular for the Kerr family of spacetimes involves a division by a.
As in the case of [33], the discussion in the papers [14, 18] is quite formal and the
gauge conditions are there not expressed in terms of gauge source functions. It is
interesting to note that the just mentioned work of Crossman and Fackerell took
as a starting point the Maxwell equation for the spin-lowered Weyl field in a type
D spacetime, and its linearization. This has been carried further in the work of
Ferrando et al. [20] where gauge conditions yielding an exact Maxwell system for
the linearized, spin-lowered Weyl field have been considered.

Now, following the approach taken by Blue for the case of Maxwell on Schwarz-
schild, where the spin weight zero scalar was used as a potential for the Maxwell

field, it is an interesting possibility to use Ψ
−2/3
2A Ψ2B as a potential for the full

linearized gravity system. This would allow one to reduce decay estimates for lin-
earized gravity on Kerr to the study of the scalar wave equation with potential
(1.5).

As is indicated by the discussion above, there is a great deal of freedom in using
gauge conditions to change the nature of the (tetrad based) linearized Einstein
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equations. It is to be expected that this remark applies equally to the full, non-linear
system of Einstein equations. The implications of this remain to be considered.
One could in principle go further, and make use of the gauge dependence of Ψ2B

to remove the potential from the equation and achieve a setup (in the rotating

case) where Ψ
−2/3
2A Ψ2B solves the scalar wave equation �(Ψ

−2/3
2A Ψ2B) = 0. We

point out that the gauge conditions chosen by Chandrasekhar, cf. [10, §82], in his
considerations of linearized gravity on the Kerr background included the conditions
Ψ1B = Ψ2B = Ψ3B = 0. This type of gauge condition will not be considered in
detail here.

For linearized gravity on Kerr, among the questions which should be considered
are the choice of potential for linearized gravity and the field equation governing
this. For the gauge invariant scalars Ψ0B,Ψ4B these issues have been extensively
discussed in the literature. Making use of gauge conditions as discussed above
opens up interesting new possibilities. However to make full use of these, the
problem of reconstructing the full solution of linearized gravity from e.g. Ψ2B must
be considered.

1.4. Overview of this paper. The plan of this paper is as follows. In section 2 we
set up notation and give a brief overview of the GHP formalism and its specialization
to vacuum type D backgrounds. We also discuss there gauge issues that arise when
working in a tetrad based formalism. Section 3 starts by introducing the properly
weighted generalized wave operators which occur in the GHP formalism and in
the Teukolsky system. Further, we give there a derivation in the GHP formalism
of the equations for linearized gravity, cf. section 3.2. The gauge nature of the
non-trivial right hand sides of the equations for the scalars of non-extreme spin
weights is discussed in section 4 where we also give gauge-fixed versions of these
systems which lead to new potentials for linearized gravity satisfying well-posed field
equations. In section 5 the gauge invariant Regge-Wheeler and Zerilli equations for
Schwarzschild background are derived from (1.4).

2. Preliminaries and notation

We use the conventions and notations of [25]. In particular we use abstract index
notation with lower case latin indices for tensors and upper case latin indices for
spinors. For tetrad indices we use lower case fraktur font, while for coordinate
indices we use lower case greek letters. Unless otherwise stated we shall consider
only vacuum spacetimes (M, gab) of dimension 4, with signature +−−−.

2.1. GHP formalism. The Geroch-Held-Penrose (GHP) null-tetrad formalism
[25] allows one to represent the Einstein equations in a compact form, and gives an
efficient tool for calculations. Since we will make heavy use of this formalism and
its properties, we give, in order to make the paper reasonably self-contained, a brief
description of its main features.

Consider a null tetrad (eaa) = (la, na,ma, m̄a) consisting of two real null vectors
la, na and two complex linear combinations of spatial vectors ma, m̄a, normalized
such that the only non-vanishing inner products of the tetrad vectors are

lana = −mam̄a = 1.

In order to avoid clutter we suppress the abstract index on the tetrad vectors ea
when convenient. The coframe ea is defined by the relations ea(eb) = δab. We note
the useful relations

gab = lanb + nalb −mam̄b − m̄amb, (2.1a)

δab = lanb + nalb −mam̄b − m̄amb. (2.1b)
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A choice of a null tetrad picks out a 2-dimensional subgroup of the Lorentz group in
each tangent space (and hence also a reduction of the principal SO+(3, 1) bundle of
(M, g), see below) which preserves the null planes spanned by la, na and the spatial
planes spanned by ma, m̄a. These can be represented in terms of a non-vanishing
complex field λ by the boost rotations

la → λλ̄la, na → λ−1λ̄−1na, (2.2a)

and the spin rotations

ma → λλ̄−1ma, m̄a → λ−1λ̄m̄a. (2.2b)

Projecting tensor fields on the spacetime on the null tetrad gives a representation of
these fields in terms of collections of tetrad components which are simply complex
fields on the spacetime. In general, a scalar field η defined by projecting a tensor
field will transform as

η → λpλ̄qη ,

for some integers p, q, under the above defined action of λ. A quantity η which
transforms according to the above rule is said to have type {p, q} and fields with
well defined type are referred to as weighted quantities. Note the notion of weighted
quantity extends to tensors. In particular, the tetrad vectors la, na,ma, m̄a have
types {1, 1}, {−1,−1}, {1,−1}, {−1, 1}, respectively. It is useful to note that
the type is additive under multiplication and hence the weighted quantities form
a graded algebra. The spin and boost weights s, r of a weighted quantity η are
s = 1

2 (p− q), r = 1
2 (p+ q).

The following formal operations take weighted quantities to weighted quantities,

−(bar) : la → la, na → na, ma → m̄a, m̄a → ma, {p, q} → {q, p},
′(prime) : la → na, na → la, ma → m̄a, m̄a → ma, {p, q} → {−p,−q},
∗(star) : la → ma, na → −m̄a, ma → −la, m̄a → na, {p, q} → {p,−q}.

(2.3)
The bar ¯ operation acting on a weighted quantity is simply the complex conjugation
of the field. We have ¯̄η = η and η′′ = (−1)p+qη (note however that we shall consider
only fields with p + q even). Further, the bar ¯and prime ′ operations commute,
while the star ∗ operation commutes with neither of these. Thus, the star operation
has to be treated separately from the bar and prime operations.

For the case of an orthonormalized tetrad, the Levi-Civita connection can be
represented in terms of 24 independent real connection coefficients. In terms of
the null tetrad introduced above, the connection coefficients Γc

ab
= ecb(∇eae

b
b
) com-

bine into 12 complex scalars, called spin coefficients. Of these only 8 are properly
weighted, and can be represented in terms of the quantities

κ = mbla∇alb, σ = mbma∇alb, ρ = mbm̄a∇alb, τ = mbna∇alb, (2.4)

and their primes κ′, σ′, ρ′, τ ′. The effect of the star operation on the spin coefficients
and their primes and complex conjugates can be calculated directly from (2.4), or
see [25, p. 878] for a list. The types of the spin coefficients are

κ : {3, 1}, σ : {3,−1}, ρ : {1, 1}, τ : {1,−1},
and the types of their primes are given according to (2.3).

The remaining 4 spin coefficients

β =
1

2
(nbma∇alb − m̄bma∇amb),

ǫ =
1

2
(nbla∇alb − m̄bla∇amb),
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and their primes β′, ǫ′, are not properly weighted and are not used explicitly in the
GHP formalism.

Let C∗ denote the non-zero complex numbers. As discussed by Ehlers [17],
see also [26, 27], the choice of two null directions gives a reduction of the principal
SO+(3, 1) frame bundle of the spacetime to a principal C∗ bundle B with the action
of C∗ z : (λ, ea) 7→ ea.z(λ) given by (2.2). The weighted quantities may be viewed
as sections of associated complex line bundles3 E{p,q} = B ×z{p,q} C determined by
the representation z{p,q} : (λ, v) → λpλ̄qv of C∗ on C. The restriction of the Levi-
Civita connection to the reduced bundle B induces a connection on the bundles
E{p,q} given by

Θaη = ∇aη − pωaη − qω̄aη, (2.5)

where ωa is the connection form

ωa = −ǫ′la + ǫna + β′ma − βm̄a

=
1

2
(nb∇alb +mb∇am̄b).

Under a gauge transformation ωa transforms as

ωa.z = ωa +
∇aλ

λ
,

Note that ω′
a = −ωa. It follows that

(Θaη)
′ = Θaη

′,

for any properly weighted quantity η.
The GHP operators þ, þ′, ð, ð′ are defined as the Θa covariant derivative along

the tetrad vectors,

þ = laΘa, þ′ = naΘa, ð = maΘa, ð′ = m̄aΘa.

The action of the bar, prime and star operations on the GHP operators follows from
their action on the tetrad vectors. Expanding Θa in terms of the GHP operators
gives

Θa = laþ
′ + na þ−mað

′ − m̄a ð . (2.6)

In terms of the graded algebra of weighted quantities, the covariant derivative Θa

as well as the GHP operators satisfy a (graded) Leibniz rule. Further, as remarked
above, the notions of properly weighted quantity extend to differential forms and
more general objects, and hence also the weighted covariant derivative lifts to act on
such objects. In particular, the tetrad elements themselves are properly weighted
quantities, and the action of Θa and the GHP operators on these can be read off from
the definitions. We have for example þ lc = δc

blaΘalb. Expanding this out using
(2.1b), (2.5) and the definitions of the spin-coefficients gives þ lc = −κ̄mc − κm̄c.
The following equations

þ la = −κ̄ma − κm̄a, þma = −τ̄ ′la − κna, (2.7a)

þ′la = −τ̄ma − τm̄a, þ′ma = −κ̄′la − τna, (2.7b)

ð la = −ρ̄ma − σm̄a, ðma = −σ̄′la − σna, (2.7c)

ð′la = −σ̄ma − ρm̄a, ð′ma = −ρ̄′la − ρna. (2.7d)

and their primes and complex conjugates give the complete set of relations.
The Leibnitz rule for covariant derivative together with (2.7) allows one to read

off the action of the GHP operators on tensors projected on any combination of
tetrad vectors, and hence covariant tensor equations can be expressed equivalently
as collections of scalar equations in the GHP formalism.

3By the same construction we can also treat e.g. differential forms as weighted quantities.
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The 10 degrees of freedom of the Weyl tensor can be represented by the five
weighted Weyl scalars

Ψ0 =Wabcdm
alblcmd, Ψ1 =Wabcdn

alblcmd, Ψ2 =Wabcdm
albm̄cnd,

Ψ3 =Wabcdn
albm̄cnd, Ψ4 =Wabcdm̄

anbncm̄d .

Similarly, the Maxwell field strength can be represented by the 3 Maxwell scalars

φ0 = Fabl
amb, φ1 =

1

2
(Fabl

anb + Fabm̄
amb), φ2 = Fabm̄

anb .

We shall refer to the spin coefficients and the Weyl and Maxwell scalars collectively
as GHP quantities.

The Weyl scalars Ψi, i = 0, . . . , 4 have types {4 − 2i, 0} while the Maxwell
scalars φi, i = 0, 1, 2 have types {2− 2i, 0}. The prime operation gives Ψ′

i = Ψ4−i,
i = 0, . . . , 4, and φ′i = −φ2−i, i = 0, 1, 2. Further, Ψ∗

i = Ψi and φ∗i = φi.
We now state, modulo prime and star operations, the Einstein, Bianchi and

Maxwell equations in GHP notation, specialized to the vacuum case. Working in
a tetrad formalism, the Einstein equation takes the form of a system of first-order
equations for the connection coefficients, i.e. in the GHP setting, for the spin
coefficients. These are given by

ð ρ− ð′σ = (ρ− ρ̄)τ + (ρ̄′ − ρ′)κ−Ψ1, (2.8a)

þ ρ− ð′κ = ρ2 + σσ̄ − κ̄τ − κτ ′, (2.8b)

þσ − ð κ = (ρ+ ρ̄)σ − (τ + τ̄ ′)κ+Ψ0, (2.8c)

þ ρ′ − ð τ ′ = ρ′ρ̄+ σσ′ − τ ′τ̄ ′ − κκ′ −Ψ2, (2.8d)

together with their primed and starred versions. The Bianchi equations are given
by

(þ−4ρ)Ψ1 − (ð′ − τ ′)Ψ0 = −3κΨ2, (2.9a)

(þ−3ρ)Ψ2 − (ð′ − 2τ ′)Ψ1 = σ′Ψ0 − 2κΨ3, (2.9b)

together with their primed and starred versions, and the Maxwell equations are

(þ−2ρ)φ1 − (ð′ − τ ′)φ0 = −κφ2, (2.10)

with its primed and starred versions. Further, the GHP operators acting on
weighted quantities satisfy the commutator relations
[
þ, þ′

]
η =

[
(τ̄ − τ ′) ð+(τ − τ̄ ′)ð′ − p(κκ′ − ττ ′ +Ψ2)− q(κ̄κ̄′ − τ̄ τ̄ ′ + Ψ̄2)

]
η,
(2.11a)

[
þ, ð

]
η =

[
− τ̄ ′ þ−κþ′ + ρ̄ ð+σð′ − p(ρ′κ− τ ′σ +Ψ1)− q(σ̄′κ̄− ρ̄τ̄ ′)

]
η, (2.11b)

together with their primed and starred versions.

2.2. Petrov type D spacetimes. In a spacetime of type D we can fix a null tetrad
up to rescalings (and a trivial rearrangement) by aligning the real null vectors with
the principal null directions. Such a tetrad is called a principal tetrad. In a vacuum
type D spacetime, working in a principal tetrad, Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 follows
and due to the Goldberg-Sachs theorem κ = κ′ = σ = σ′ = 0. The only non-
vanishing GHP quantities are

Ψ2, ρ, τ, ρ
′, τ ′,

and the Bianchi identities (2.9) simplify to

þΨ2 = 3ρΨ2, ðΨ2 = 3τΨ2, (2.12)

together with their primed versions. See [16] for further identities valid for the
GHP quantities valid in vacuum type D spacetimes. We record for later use a
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commutation relation for {p, 0} quantities η on vacuum type D backgrounds. The
following identity (and its prime) is a consequence of (2.11b),(2.8a) and (2.8a)∗,

[
þ−aρ, ð−aτ

]
η = ρ̄(ð−aτ)η − τ̄ ′(þ−aρ)η, (2.13)

see [21, equation (2.5)] for a more general relation involving q-weight.

2.3. Perturbation theory and gauge transformations. Here we give a short
overview of gauge transformations in perturbation theory. See [47, 7] for more
details. Perturbations of a spacetime can be understood in terms of curves in the
space of solutions of Einstein field equations, originating at a given background
spacetime. Linear perturbations are tangents to such curves at the origin. We
denote the perturbation parameter by ǫ.

The identification of points of background and perturbed spacetime is called
identification gauge. Introducing coordinates xa in the background, an infinitesi-
mal transformation of the form xa → xa + ǫξa can be interpreted as changing the
identification of points between background and perturbed spacetime. Quantities
which do not change under these transformations are called identification or co-
ordinate gauge invariant. A quantity is coordinate gauge invariant if and only if
it vanishes or is a constant scalar or a constant linear combination of products of
Kronecker deltas in the background, see [46, p.24].

The Weyl scalars ΨiB transform as scalars under coordinate transformations,

ΨiB → ΨiB − ǫ ξµ∂µΨiA +O(ǫ2).

In a type D background, only Ψ2 is non-zero, and hence the spin 0 scalar is the
only one of the ΨiB, i = 0, . . . , 4 which fails to be coordinate gauge invariant.

As mentioned in section 2.1, we choose the background tetrad to be fixed up to a
two-dimensional subgroup of the Lorentz group corresponding to boost rotations of
the future pointing null vectors la, na, and spin rotations of ma, m̄a. However, the
perturbed tetrad has the full transformation freedom under infinitesimal elements
of the Lorentz group

laB → laB, na
B → na

B + ǫ(āma + am̄a), ma
B → ma

B + ǫala,
laB → laB + ǫ(b̄ma + bm̄a), na

B → na
B, ma

B → ma
B + ǫbna,

laB → laB + ǫAla, na
B → na

B − ǫAna, ma
B → ma

B − iǫΘma,

where a, b are complex and A,Θ are real functions (see e.g. the linearized versions
of (2.2) for the third line. A quantity which is invariant under these transformations
will be called tetrad gauge invariant. For the first subset of infinitesimal Lorentz
transformations we have for example

ΨjB → ΨjB + ǫjāΨj−1A, j = 0, ...4;Ψ−1A = 0. (2.14)

A complete table for all GHP quantities can be found in [7, §5.10]. It can be verified
that Ψ0B,Ψ2B and Ψ4B are tetrad gauge invariant.

In the following, in order to avoid clutter in the notation, we will drop the index
A for background quantity, unless it is not clear from the context whether a certain
quantity is evaluated on the background.

3. Equations for linearized gravity and electromagnetism

In this section, we derive equations for linear perturbations of the Weyl com-
ponents Ψ0, ...,Ψ4 on vacuum type D backgrounds, as well as for the linearized
Maxwell scalars φ0, φ1, φ2 on charged type D backgrounds. The gauge invariant
fields Ψ0B,Ψ4B satisfy the Teukolsky system TMEs, for s = 2,−2, while the equa-
tions for the tetrad gauge dependent scalars Ψ1B,Ψ3B correspond to the TMEs for
s = 1,−1, but with a non-trivial right hand side involving a gauge source function,
cf. section 4. For the spin weight zero linearized Weyl scalar Ψ2B we find a new
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wave equation with a non-trivial right hand side. If the right hand side vanishes,
this equation is a direct generalization of the Regge-Wheeler wave equation to type
D. In section 4 below we consider the structure of these right hand sides in more
detail.

We point out that while the equations for the linearized Weyl scalars as well as
the linearized Maxwell scalars decouple in the sense that each individual equation
involves only one of these scalars, the equations for the non-extreme spins are
coupled via linearized spin coefficients, unless further gauge conditions are imposed.

3.1. Weighted wave operators. As is the case for any vector bundle over (M, g)
with covariant derivative, there is a natural generalized wave operator acting on
sections of the bundles E{p,q}. The Weyl and Maxwell scalars are properly weighted
quantities of type {2s, 0} for integer spin weights s. Since we shall be interested
in operators acting on the Weyl and Maxwell scalars, we restrict our attention
to the operator �p = ΘaΘa acting on quantities of type {p, 0}. Expanding this
using (2.6) and (2.7) gives after some calculations using the commutation relations
(2.11a),(2.11b)

�p = 2

[
(þ−ρ̄)(þ′ − ρ′)− (ð−τ̄ ′)(ð′ − τ ′) + σσ′ − κ′κ−Ψ2 (3.1)

+
p

2
(κκ′ − ττ ′ + ρρ′ − σσ′ + 2Ψ2)

]
, (3.2)

Let ωa be the connection form in Θa, cf. section 2.1, and let Ba be a properly
weighted form of type {0, 0}. Then ωa − Ba is again a connection form on the
weigted bundles E{p,q} and Θa+pBa+ qB̄a is again a weighted covariant derivative
on the bundles E{p,q}. In particular, let

Ba = −(ρna − τm̄a). (3.3)

Modifying the covariant derivative with Ba gives the weighted wave operator on
type {p, 0} quantities

�T p = (Θa + pBa)(Θa + pBa).

Note that �T 0 = �. We can now write the vacuum Teukolsky master equation for
a spin weight s field ψ(s) in the form

[�T 2s − 4s2Ψ2]ψ
(s) = 0,

cf. Bini et al. [5, §4].
A calculation shows that acting on a quantity of type {p, 0} we have

�T p = �p + 2pBaΘa + p(ΘaBa) + p2BaBa

= 2(þ−pρ− ρ̄)(þ′ − ρ′)− 2(ð−pτ − τ̄ ′)(ð′ − τ ′)

+ (p− 2)[κκ′ − σσ′] + (3p− 2)Ψ2. (3.4)

Restricting to a type D background we have

�T p = 2(þ−pρ − ρ̄)(þ′ − ρ′) − 2(ð−pτ − τ̄ ′)(ð′ − τ ′) + (3p − 2)Ψ2. (3.5)

since κ, σ vanish there.
Recalling the discussion in section 2.1, Θa transforms properly under the prime

operation. In particular, we have (Θaη)
′ = Θaη

′ and hence also (ΘaΘaη)
′ = ΘaΘaη

′

for any properly weighted quantity. However, modified connection Θa + pBa does
not satisfy this rule since B′

a 6= −Ba. Instead, the operator �T p has the following
transformation rule involving rescalings.
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Lemma 3.1. Let η be a properly weigthed quantity of type {p, 0}. The generalized
wave operator �T p on a vacuum type D background transforms under prime as

(�T pη)
′ = Ψ

−p′/3
2 �T p′(Ψ

p′/3
2 η′). (3.6)

Remark 3.2. It should be noted that the p in �T p denotes the weight of the quantity
on which it acts. Hence the p′ in the right hand side of (3.6) is p′ = −p, since the
type of η′ is {−p, 0}.

Proof. Using the commutation relations and field equations on type D, one gets the
identity

(þ′ + pρ′ − ρ̄′)(þ−ρ)− (ð′ + pτ ′ − τ̄ )(ð−τ)
= (þ−ρ̄)(þ′ + (p− 1)ρ′)− (ð−τ̄ ′)(ð′ + (p− 1)τ ′) + 3pΨ2.

(3.7)

Rescaling the RHS by Ψ
p/3
2 , using Bianchi identities (2.12) gives the result. �

As we shall see, using this transformation property for �T p, half of the equations
for linearized gravity discussed below follow without calculation.

3.2. Perturbation calculations. We now derive the equations for the linearized
Weyl scalars in terms of the weighted wave operators.

Theorem 3.3. On a vacuum type D background we have
[
�T 4 − 16Ψ2

]
Ψ0B = 0, (3.8)

[
�T 2 − 4Ψ2

](
Ψ

−1/3
2 Ψ1B

)
= −6Ψ

2/3
2A [(þ′ + 2ρ′ − ρ̄′)κB − (ð′ + 2τ ′ − τ̄)σB + 2Ψ1B],

(3.9)
[
�T 0 + 8Ψ2

](
Ψ

−2/3
2 Ψ2B

)
= −3�BΨ

1/3
2 , (3.10)

[
�T−2 − 4Ψ2

](
Ψ−1

2 Ψ3B

)
= −6[(þ+ 2ρ− ρ̄)κ′B − (ð + 2τ − τ̄ ′)σ′

B + 2Ψ3B]
(3.11)

[
�T−4 − 16Ψ2

](
Ψ

−4/3
2 Ψ4B

)
= 0, (3.12)

Proof. First we consider the equations for linearized the Weyl scalars Ψ0B,Ψ4B

with extreme spin weights s = 2,−2. The linearized Bianchi identities (2.9a)∗ and
(2.9a) read

(þ′ − ρ′)Ψ0B = (ð−4τ)Ψ1B + 3σBΨ2, (3.13)

(ð′ − τ ′)Ψ0B = (þ−4ρ)Ψ1B + 3κBΨ2. (3.14)

Combining these identities as (þ−4ρ− ρ̄)(3.13) − (ð−4τ − τ̄ ′)(3.14) gives
[
(þ−4ρ− ρ̄)(þ′ − ρ′)− (ð−4τ − τ̄ ′)(ð′ − τ ′)

]
Ψ0B =

[
(þ−4ρ− ρ̄)(ð−4τ)− (ð−4τ − τ̄ ′)(þ−4ρ)

]
Ψ1B

+ 3
[
(þ−4ρ− ρ̄)σB − (ð−4τ − τ̄ ′)κB

]
Ψ2.

(3.15)

The term involving Ψ1B on the RHS vanishes due to (2.13) with a = 4. The
perturbed Ricci identity (2.8c) reads (þ−ρ− ρ̄)σB − (ð−τ− τ̄ ′)κB = Ψ0B and from
(2.12) it follows, that also the Ψ2 term on the RHS reduces to 3Ψ0BΨ2. Recalling
the form of �T p gives equation (3.8) for Ψ0B. Equation (3.12) for Ψ4B follows from
this after applying a prime and using (3.6).

As we shall see, the corresponding wave equations governing the linearized Weyl
scalars Ψ1B,Ψ3B with spin weights s = 1,−1 do not decouple in the sense that
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other perturbed quantities than the given linearized Weyl scalar are involved. The
linearized Bianchi identities (2.9b)∗ and (2.9b)′ read

(þ′ − 2ρ′)Ψ1B =

{
(ð−3τ)Ψ2

}

B

,

−(ð′ − 2τ ′)Ψ1B = −
{
(þ−3ρ)Ψ2

}

B

,

(3.16)

Multiplying both equations by Ψ
−1/3
2 and using the Leibniz rule gives

(þ′ − ρ′)(Ψ
−1/3
2 Ψ1B) =

3

2

{
(ð−2τ)Ψ

2/3
2

}

B

, (3.17)

−(ð′ − τ ′)(Ψ
−1/3
2 Ψ1B) = −3

2

{
(þ−2ρ)Ψ

2/3
2

}

B

. (3.18)

Here we have made use of the fact that Ψ
−1/3
2 can be moved inside the {}B brackets

in view of the background Bianchi identities (2.12).
Combining the above identities as (þ−2ρ− ρ̄)(3.17)+(ð−2τ − τ̄ ′)(3.18), we get

[
(þ−2ρ− ρ̄)(þ′ − ρ′)− (ð−2τ − τ̄ ′)(ð′ − τ ′)

]
(Ψ

−1/3
2 Ψ1B) =

3

2

{[
(þ−2ρ− ρ̄)(ð−2τ)− (ð−2τ − τ̄ ′)(þ−2ρ)

]
Ψ

2/3
2

}

B

.

which gives

[
�T 2 − 4Ψ2

](
Ψ

−1/3
2 Ψ1B

)
= 3

{[
(þ−2ρ− ρ̄)(ð−2τ)− (ð−2τ − τ̄ ′)(þ−2ρ)

]
Ψ

2/3
2

}

B

,

(3.19)
using (3.5). Expanding the right hand side of equation (3.19), leaving off a factor
of 3, we have

[
(þ−2ρ− ρ̄)(ð−2τ)− (ð−2τ − τ̄ ′)(þ−2ρ)

]
B
Ψ

2/3
2 +

+
[
(þ−2ρ− ρ̄)(ð−2τ)− (ð−2τ − τ̄ ′)(þ−2ρ)

][
Ψ

2/3
2

]
B
.

The second term vanishes due to the commutation relation (2.13) with a = 2, but
for the first term, we must use identites valid off the background. Since Ψ2 is a
{0, 0} quantity, we find

[(þ−2ρ− ρ̄)(ð−2τ)− (ð−2τ − τ̄ ′)(þ−2ρ)]BΨ
2/3
2A =

= [−τ̄ ′ þ−κþ′ + ρ̄ ð+σð′ − 2τ þ−2(þ τ)+

+ 2ρ ð+2(ð ρ)− (2ρ+ ρ̄)(ð−2τ) + (2τ + τ̄ ′)(þ−2ρ)]BΨ
2/3
2A

= [−2κρ′ + 2στ ′ − 2(þ τ) + 2(ð ρ) + 2τ ρ̄− 2τ̄ ′ρ]BΨ
2/3
2A

= −2Ψ
2/3
2A [(þ′ + 2ρ′ − ρ̄′)κB − (ð′ + 2τ ′ − τ̄ )σB + 2Ψ1B],

(3.20)

where we used the commutation relation (2.11b) in the first step, background
Bianchi identities in the second step and the Ricci identities (2.8a)′ and (2.8a)
in the last step. Applying a prime and making use of (3.6) gives (3.11).

Finally we consider the spin weight 0 linearized Weyl scalar Ψ2B. Recall that
Ψ2 is non-vanishing in a type D spacetime. For this reason, it is convenient in the
calculations to leave some expressions as {}B brackets. As in the previous cases,
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we start with linearized Bianchi identities. From (2.9b)′ and (2.9b)∗′, we get
{
(þ′ − 3ρ′)Ψ2

}

B

= (ð−2τ)Ψ3B,

−
{
(ð′ − 3τ ′)Ψ2

}

B

= −(þ−2ρ)Ψ3B.

(3.21)

Multiplying both equations by Ψ
−2/3
2 and using the Leibniz rule gives rescaled

equations
{
3(þ′ − ρ′)Ψ

1/3
2

}

B

= Ψ
−2/3
2 (ð−2τ)Ψ3B, (3.22)

−
{
3(ð′ − τ ′)Ψ

1/3
2

}

B

= −Ψ
−2/3
2 (þ−2ρ)Ψ3B. (3.23)

Here we used the fact that Ψ
−2/3
2 can be moved inside the {}B brackets because of

the background Bianchi identities (2.12).
To find a wave equation for Ψ2B, we consider the combination (þ−ρ̄)(3.22) +

(ð−τ̄ ′)(3.23), which gives

(þ−ρ̄)
{
3(þ′ − ρ′)Ψ

1/3
2

}

B

− (ð−τ̄ ′)
{
3(ð′ − τ ′)Ψ

1/3
2

}

B

=

(þ−ρ̄)
(
Ψ

−2/3
2 (ð−2τ)Ψ3B

)
− (ð−τ̄ ′)

(
Ψ

−2/3
2 (þ−2ρ)Ψ3B

)
. (3.24)

Using the identities (þ−ρ̄)(Ψ−2/3
2 φ) = Ψ

−2/3
2 (þ−2ρ− ρ̄)φ and (ð−τ̄ ′)(Ψ−2/3

2 φ) =

Ψ
−2/3
2 (ð−2τ− τ̄ ′)φ, which follow from (2.12), the RHS vanishes due to (2.13) with

a = 2. The operators on the LHS can be put into the {}B brackets because of the
background Bianchi identities (2.12). This gives the identity

{[
�T 0 + 2Ψ2

]
Ψ

1/3
2

}

B

= 0. (3.25)

Expanding the {}B bracket in equation (3.25) gives

0 = 3

{[
�T 0 + 2Ψ2

]
Ψ

1/3
2

}

B

(3.26a)

=

[
�+ 2Ψ2

] (
Ψ

−2/3
2 Ψ2B

)
+ 3

[
�B + 2Ψ2B

]
Ψ

1/3
2 (3.26b)

=

[
�+ 8Ψ2

] (
Ψ

−2/3
2 Ψ2B

)
+ 3�BΨ

1/3
2 . (3.26c)

and hence (3.10). This completes the proof. �

For future reference, we state the following equations which were used in the
proof of theorem 3.3

Corollary 3.4.

[
�T 2 − 4Ψ2

]
(Ψ

−1/3
2 Ψ1B) = 3

{[
(þ−2ρ− ρ̄)(ð−2τ)− (ð−2τ − τ̄ ′)(þ−2ρ)

]
Ψ

2/3
2

}

B

,

(3.27a)
{[
�T 0 + 2Ψ2

]
Ψ

1/3
2

}

B

= 0, (3.27b)

[
�T 2 − 4Ψ2

]
(Ψ−1

2 Ψ3B) = 3Ψ
−2/3
2

{[
(þ−2ρ− ρ̄)(ð−2τ)− (ð−2τ − τ̄ ′)(þ−2ρ)

]
Ψ

2/3
2

}′

B

,

(3.27c)
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The rescaled Bianchi identity (3.18) has the same form as the perturbed Maxwell
equation (2.10) on a charged type D background (φ1A 6= 0)

{
(þ−2ρ)φ1

}

B

= (ð′ − τ ′)φ0B . (3.28)

Therefore the decoupled electromagnetic perturbation equations follow immedi-
ately, and we have the following result.

Corollary 3.5. In a charged type D background the Maxwell components φiB , i =
0, 1, 2 fulfill the equations

[
�T 2 − 4Ψ2

]
φ0B = 2

{[
(þ−2ρ− ρ̄)(ð−2τ)− (ð−2τ − τ̄ ′)(þ−2ρ)

]
φ1

}

B

(3.29)

{[
(þ−ρ− ρ̄)(þ′ − 2ρ′)− (ð−τ − τ̄ ′)(ð′ − 2τ ′)

]
φ1

}

B

= 0 (3.30)

[
�T

′
2 − 4Ψ2

]
φ2B = 2

{[
(þ−2ρ− ρ̄)(ð−2τ)− (ð−2τ − τ̄ ′)(þ−2ρ)

]′
φ1

}

B

(3.31)

For a charged type D spacetime, the background Bianchi identities (2.9) include
a term involving φ1φ̄1 and hence the simple rescaling used above for vacuum type D
backgrounds does not apply. Instead one can use the background Maxwell equations
(2.10), namely

þφ1 = 2ρφ1, ðφ1 = 2τφ1,

as in [18]. But as the Ψ2 rescaling is singular for the limit of flat background, the
φ1 rescaling does not work for the limit of uncharged background.

In the special case of a test Maxwell field on an uncharged background, rescaling
by Ψ2 becomes possible and the equation for φ1B reduces to the Fackerell-Ipser
equation [19] [

�+ 2Ψ2

]
(Ψ

−1/3
2 φ1B) = 0,

while the equations for φ0B and φ2B become the spin s = ±1 TMEs.

4. Gauge source functions

In this section we consider the equations for the gauge dependent quantities
Ψ1B,Ψ2B,Ψ3B in more detail.

4.1. Gauge source functions for the Einstein equations. In [23], Friedrich
derived a frame based, symmetric hyperbolic system for the Einstein-Yang-Mills
system. We specialize to the vacuum case and set the conformal factor Ω = 1.
Then, the result of [23] gives a symmetric hyperbolic system for a set of unknowns
consisting of a null tetrad (or spin frame), the spin coefficients and the Weyl spinor.

Starting from a system of equations involving the tetrad and the curvature com-
ponents as variables, he identified the gauge source functions for this system. These
are, letting (xµ) be coordinates on M ,

Fµ = �xµ,

and
Fab = ∇a(∇ae

b
a)e

c
bgbc,

where (ea) is a null tetrad, cf. [23, equations (2.6), (2.13)], see also [24].
For the frame based hyperbolic system considered by Friedrich one may freely

specify the gauge source functions as functions of the spacetime coordinate, the
tetrad, the connection coefficinets, and the Weyl tensor components, i.e.

Fµ = Fµ(xα, eα
a
,Γa

bc
,Wabcd), (4.1)

Fab = Fab(x
α, eαa ,Γ

a

bc,Wabcd), (4.2)
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without changing the principal part of the resulting symmetric hyperbolic system,
see the discussion in [24], in particular [24, p. 1462]. As we are in a geometric
situation where it is natural to adapt to a specific background geometry and to use
a GHP weighted tetrad, it is convenient to consider the following modified gauge
source functions. They differ from the expressions given by Friedrich by lower order
terms, which do not change the principal part of the resulting reduced system.

To define the coordinate gauge source function, fix a background metric ĝab on

M , with Levi-Civita derivative ∇̂a and let V a be the tension field for the identity
map (M, gab) → (M, ĝab) defined by

V aξa = gcd(∇̂c −∇c)ξd,

holds for any 1-form ξa, see [2] for details. Then a gauge source function for the
coordinate degrees of freedom can be given by the equation

Fµ = V µ. (4.3)

Further, let Θa be the weighted GHP covariant derivative and let (ea) be a weighted
GHP tetrad. A gauge source function for the tetrad degrees of freedom can be given
by the equation

Fab = Θa(Θae
b
a)e

c
bgbc. (4.4)

These are the expressions which we shall consider below.

4.1.1. Gauge source functions for the Linearized Einstein equations. Consider lin-
earized perturbations around vacuum spacetime (M, gab). The work of Friedrich
on hyperbolic reductions carries over immediately to the linearized vacuum field
equations. Thus we may consider linearized frame based systems with unknowns
consisting of the linearized tetrad, the linearized spin coefficients and the linearized
Weyl scalars. The reduced system is extracted by specifying linearized coordinate
and frame gauge source functions Fµ

B , FBab which may be specified freely as func-
tions of the unknowns which are linear as functions of eαBa

,Γa

Bbc
,WBabcd. Thus,

with this restriction, we may consider gauge source functions

Fµ
B = Fµ

B(x
α, eαBa

,Γa

Bbc
,WBabcd),

FBab = FBab(x
α, eαBa,Γ

a

Bbc,WBabcd).

4.2. Linearized Weyl scalars and gauge. In the following discussion it is in
some steps convenient to use a δ to denote first order linearized fields. In particular,
δgab = hab and denote the resulting perturbations in geometric fields defined in
terms of gab by e.g. δRab. We have

δRab = −1

2
�hab −Ra

c
b
dhcd +∇(avb),

where, letting h = gabhab, and working in a coordinate system (xµ),

vα = ∇βh
βα − 1

2
∇αh = gβνδΓα

βν.

The vector field vα defined by this expression is precisely the linearization of the
tension field V α around gab (playing the role of the background metric ĝab above).
Thus vα is the appropriate coordinate gauge source function for linearized pertur-
bations hαβ of gαβ and the gauge condition which corresponds to (4.3) is given
by

vα = Fα
B .

The standard harmonic gauge, also known as deDonder gauge, with respect to the
background metric is given by the condition Fα

B = 0. In this gauge, the linearized
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Einstein equations in terms of the linearized metric hab take the form of a wave
equation

�hab + 2Ra
c
b
dhcd = 0,

where � = ∇c∇c is the covariant d’Alembertian.
Let (M, g) be a vacuum type D spacetime. Working in a principal null tetrad,

let ψ = Ψ
1/3
2 . Recall that Ψ2 is of type {0, 0} and is thus a well-defined function on

spacetime. In notation used in this section, the condition that the right hand side
of (3.10) vanishes, i.e.,

�BΨ
1/3
2 = 0,

takes the form
(δ�)ψ = 0.

We have
(δ�)ψ = −hab∇a∇bψ − va∇aψ. (4.5)

We can view this equation as specifying part of the coordinate gauge degrees of
freedom. In the Schwarzschild case, working in a principal tetrad, ψ is real, and
hence (4.5) specifies one component of va. In the general case, ψ is complex, while
va is real. Taking the real and imaginary parts of (4.5) gives two real equations for
va.

In order to analyze this equation in the Kerr case, it is convenient to calculate in
a coordinate system and tetrad which is non-singular on the horizon. A tetrad in
the ingoing Kerr coordinate system (also known as ingoing Eddington-Finkelstein
coordinates) was described by Teukolsky [49, §5]. In this tetrad, the components
∇aψ are non-vanishing on the horizon.

As mentioned above, it is compatible with the well-posedness of the reduced field
equations to allow the gauge source functions to depend on the Weyl scalars. Thus
we may also consider gauge conditions of the form

− 3�BΨ
1/3
2 − 6Ψ

1/3
2 Ψ2B = 0, (4.6)

which leads to the wave equation

(�+ 2Ψ2)(Ψ
−2/3
2 Ψ2B) = 0, (4.7)

for Ψ2B. Thus, in the gauge given by (4.6), Ψ
−2/3
2 Ψ2B satisfies the Fackerell-Ipser

equation. This substantiates the discussion in the work of Crossman and Fackerell
[14, 18]. In the Kerr case, calculation shows that the gauge source function given
by (4.6) will have terms depending on 1/a, and hence this gauge condition behaves
in a singular manner in the Schwarzschild limit. Equation (4.7) is not known to be
separable or admit a symmetry operator, see however [18, p. 617]. This discussion
shows that in the rotating case, also a generalized harmonic gauge condition leading
to a homogenous wave equation

�(Ψ
−2/3
2 Ψ2B) = 0,

(which admits symmetry operators) is compatible with a well-posed reduced system.
Next we consider the phantom gauge condition. A calculation shows that

ΘambΘalb = 2[þ′κ− ð′σ − ρ̄′κ+ τ̄σ +Ψ1].

Restricting to a type D background this expression vanishes, and the first order
linearization gives

FBlm :=
1

2

{
ΘambΘalb

}

B

= [(þ′ − ρ̄′)κB − (ð′ − τ̄)σB +Ψ1B]. (4.8)

Now we can write the equation for Ψ1B in the form
[
�T 2 − 4Ψ2

]
(Ψ

−1/3
2 Ψ1B) = −6Ψ

2/3
2A [FBlm + 2ρ′κB + 2τ ′σB +Ψ1B].
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Thus, Chandrasekhar’s phantom gauge condition can be written in terms of the
gauge source function as

FBlm = −2ρ′κB − 2τ ′σB −Ψ1B.

In view of the discussion above, this form of the gauge source function is compatible
with a hyperbolic system for the linearized Einstein equations. The equation for
Ψ3B can be handled along the same lines.

5. Gauge invariant equations on Schwarzschild background

Price [42] has shown that for linearized gravity on a Schwarzschild background,
r3ImΨ2B describes odd parity perturbations. He used the special coordinates of
Newman and Penrose [36, p.572] for the perturbed spacetime, which can be un-
derstood as a coordinate gauge. Price expressed the perturbed spin coefficients,
which occur in the Ψ2B equation, in terms of perturbed metric coefficients. These
coefficients are real in the odd parity case and therefore cancel. Price then used the
definition of ImΨ2B in terms of perturbed Riemann tensor components, to relate
it to the perturbed metric coefficients. He showed that these coincide up to a time
derivative, in Regge-Wheeler (RW) gauge, with the RW variable Q for odd parity
perturbations.

Starting from (3.26c),
[
�+ 8Ψ2

] (
Ψ

−2/3
2 Ψ2B

)
= −3�BΨ

1/3
2 , (5.1)

we rederive the known result, that the imaginary part satisfies the gauge invariant
RW equation [35], which reduces to the result of Price in RW gauge. We also show
that the real part gives the gauge invariant Zerilli equation. Price was not able to
derive this equation, possibly due to his choice of special coordinates.

The conventions of Martel and Poisson [34] will be used in this section. Indices
a, b, . . . for coordinates t, r and A,B, . . . for coordinates θ, ϕ. This notation differs
from the convention used by Regge-Wheeler and Zerilli in that KMP = KRW− 1

2 l(l+
1)G. Metric perturbations are denoted gµν = gAµν+pµν , since hµν is used for some
spherical harmonic decomposed components. It should be noted that we still use
the signature (+−−−) while Martel and Poisson use the signature (−+++). Using
Schwarzschild coordinates gab = diag(f,−f−1,−r2,−r2 sin2 θ), where f = 1 − 2M

r

and Ψ2 = −M/r3, the Kinnersley frame reads

la =
(
f−1, 1, 0, 0

)
, na =

1

2

(
1,−f, 0, 0

)
, ma =

1√
2r

(
0, 0, 1,

i

sin θ

)
.

With ψ = Ψ
1/3
2 , the RHS of (5.1) reduces to

�Bψ
(4.5)
= −pµν∇2

µνψ − (∇µpσµ − 1

2
∇σpµ

µ)∇σψ

=
(
− pµr∂µ − (∂µp

rµ)− prρΓµ
µρ + grr(∂rpµ

µ)
)
∂rψ.

(5.2)

Further simplifications will occur in odd and even part, which are investigated in
the next sections.

To relate Ψ2B to Regge-Wheeler and Zerilli variables we do a calculation analo-
gous to that of Price [42, Appendix D]. Starting from

−2Ψ2B =RAαβγδ(l
αnβlγnδ)B −RAαβγδ(l

αnβmγm̄δ)B

+RBαβγδ(l
αnβlγnδ)A −RBαβγδ(l

αnβmγm̄δ)A,
(5.3)

we get

−2Ψ2B = RBtrtr +
i

r2 sin θRBrtθφ +
4M

r3
pαβl

αnβ . (5.4)
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The second term is purely imaginary and known from the calculations of Price.
The perturbed Riemann tensor is related to metric perturbations pµν via

RBαβγδ =
1
2 (pβγ;αδ + pαδ;βγ − pαγ;βδ − pβδ;αγ +RAασγδp

σ
β +RAσβγδp

σ
α). (5.5)

With these relations one can check explicitly that ImΨ2B corresponds to odd parity
and ReΨ2B corresponds to even parity perturbations.

5.1. Imaginary part and Regge Wheeler equation. The odd parity metric
perturbation can be expressed as [34, eq. 5.1 - 3]

pab = 0, paB =
∑

lm

hlma X lm
B , pAB =

∑

lm

hlm2 X lm
AB,

where X lm
B and X lm

AB are vector and tensor spherical harmonics. It follows that
tr pµν = 0 and after a short calculation (5.2) reduces to

�Bψ = 0.

ImΨ2B corresponds to odd parity perturbations and Im(5.1) reduces in this case
to

[
�+ 8Ψ2

]
(Ψ

−2/3
2 ImΨ2B) = 0.

Introducing tortoise coordinates r∗ by ∂r∗ = f∂r cancels 2Ψ2 from the potential,
a rescaling by r cancels first order ∂r terms and we are left with a gauge invariant
Regge Wheeler equation

[
∂2t − ∂2r∗ + f

l(l+ 1)

r2
− f

6M

r3

]
(r3ImΨ2B) = 0.

To relate this to the Regge Wheeler variable Q, we look at (5.4). For odd parity
perturbations it gives (Rodd

B )trtr = 0 = podd
αβ l

αnβ and with (5.5),

Rodd
Brtθφ

r2 sin θ =
l(l + 1)

2

[(
ht
r2

)

,r

−
(
hr
r2

)

,t

]
,

(for convenience we suppress spherical harmonics and the related indices). It follows
that just the imaginary part contributes to the perturbations. We now have

−r3ImΨ2B,t =
r3

4
l(l+ 1)

[(
ht
r2

)

,r

−
(
hr
r2

)

,t

]

,t

=
f(l+ 2)!

4r(l − 2)!

[
hr +

1

2
h2,r −

1

r
h2

]
=

(l + 2)!

4(l − 2)!
Qodd,

which is the gauge invariant variable of Moncrief [35] and in RW gauge reduces to
the result of Price [42].

5.2. Real part and Zerilli equation. The even parity metric perturbations can
be written [34, eq. 4.1 - 3]

pab =
∑

lm

hlmab Y
lm, paB =

∑

lm

jlma Y lm
B , pAB = r2

∑

lm

K lmΩABY
lm +GlmY lm

AB ,

(5.6)
where Y lm, Y lm

B and Y lm
AB denotes the even parity scalar, vector and tensor spherical

harmonics. ReΨ2B is not gauge invariant, but transforms as

Ψ2B → Ψ2B − 3M

r4
ξr.
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For some coordinate gauge transformation xµ → xµ + ξµ. Therefore we rewrite the
wave equation for the gauge invariant quantity, using Appendix A

Ψ̃2B := r3ReΨ2B +
3M

2

(
K +

λ

2
G

)
, (5.7)

where λ = l(l + 1). The Ψ2B equation (5.1) for even parity perturbations reads
[
∂2t − ∂2r∗ + f

λ

r2
− f

6M

r3

]
Ψ̃2B =

3Mfr�Br
−1 +

3M

2

[
∂2t − ∂2r∗ + f

λ

r2
− f

6M

r3

](
K +

λ

2
G

)
.

(5.8)

The perturbed wave operator term (5.2) does not vanish, but gives

�B
1

r
= − 1

r2

[
λf

r2
jr −

(
3Mf

r2
+
f2

2
∂r

)
hrr + ∂thtr +

(
M

fr2
− 1

2
∂r

)
htt + f∂rK

]
.

(5.9)

Expanding (5.4) for even parity perturbations gives after some calculationsRBrtθφ =
0 and

ReΨ2B =M(f−1htt − fhrr)

+
r3

4

[
∂2rhtt + ∂2t hrr −

m

r2
∂r(f

−1htt − fhrr)−
2m

r2f
∂thtr − 2∂2trhtr

]
.

(5.10)
The whole equation is now given in terms of metric perturbations. To compare
the result to others, we express all metric components in terms of gauge invariants
(denote with a tilde according to the conventions of Martel and Poisson). Using

the equations of Appendix A, Ψ̃2B takes the form

Ψ̃2B =
Λr

4

[
K̃ +

2f

Λ

(
fh̃rr − r∂rK̃

)]
, (5.11)

where λ = l(l + 1), µ = (l − 1)(l + 2) = λ − 2, Λ = µ + 6M/r. The RHS of (5.8)
can also be expressed in terms of gauge invariant quantities

RHS = −f 6M
r3

Ψ̃2B +
3Mfλ

2r2
K̃. (5.12)

The first term cancels the RW potential on the LHS! Now we rescale (5.8) by Λ−1

(which depends on r),
[
∂2t − ∂2r∗ + f

λ

r2
+ Λ(∂2r∗Λ

−1)

]
(Λ−1Ψ̃2B) =

3Mfλ

2r2
Λ−1K̃ − 2(∂r∗Λ

−1)(∂r∗Ψ̃2B).

(5.13)

A straight forward but tedious calculation shows that the RHS can be written as

3Mfλ

2r2
Λ−1K̃ − 2(∂r∗Λ

−1)(∂r∗Ψ̃2B) = f
6M

r3
λ

Λ
Λ−1Ψ̃2B, (5.14)

the new potential term on the LHS simplifies to

Λ(∂2r∗Λ
−1) =

12Mf

Λ2r4

(
6M2

r
+ 3Mµ− µr

)
, (5.15)

and we finally end up with
[
∂2t − ∂2r∗ +

12Mf

Λ2r4

(
6M2

r
+ 3µM +

µ2r

2
+
µ2r2

6M

(µ
2
+ 1

))]
(Λ−1Ψ̃2B) = 0.

(5.16)

This is the gauge invariant Zerilli equation. The relation to Moncrief’s gauge in-

variant variable is simply Qeven = 4Λ−1Ψ̃2B.



LINEARIZED GRAVITY AND GAUGE CONDITIONS 21

Appendix A. Even partity perturbations in Schwarzschild coordinates

We used equations of the unpublished appendix of [34], which is available as
arXiv:gr-qc/0502028. For convenience we repeat the required results of appendix
C.

The even-parity metric perturbations (5.6) transform under even parity gauge
ξa = (ξlmt Y lm, ξlmr Y lm, ξlmY lm

A ) as

δhtt = −2
∂

∂t
ξt +

2Mf

r2
ξr, δhtr = − ∂

∂r
ξt −

∂

∂t
ξr +

2M

r2f
ξt,

δhrr = −2
∂

∂r
ξr −

2M

r2f
ξr, δjt = − ∂

∂t
ξ − ξt,

δjr = − ∂

∂r
ξ − ξr +

2

r
ξ, δK = −2f

r
ξr +

λ

r2
ξ,

δG = − 2

r2
ξ.

Martel and Poisson extracted the following gauge invariant quantities

h̃tt = htt − 2
∂

∂t
jt +

2Mf

r2
jr + r2

∂2

∂t2
G−Mf

∂

∂r
G,

h̃tr = htr −
∂

∂r
jt −

∂

∂t
jr +

2M

r2f
jt + r2

∂2

∂t∂r
G+

r − 3M

f

∂

∂t
G,

h̃rr = hrr − 2
∂

∂r
jr −

2M

r2f
jr + r2

∂2

∂r2
G+

2r − 3M

f

∂

∂r
G,

K̃ = K − 2f

r
jr + rf

∂

∂r
G+

λ

2
G,

and with these, the vacuum field equations are

0 = − ∂2

∂r2
K̃ − 3r − 5M

r2f

∂

∂r
K̃ +

f

r

∂

∂r
h̃rr +

(λ+ 2)r + 4M

2r3
h̃rr +

µ

2r2f
K̃,

0 =
∂2

∂t∂r
K̃ +

r − 3M

r2f

∂

∂t
K̃ − f

r

∂

∂t
h̃rr −

λ

2r2
h̃tr,

0 = − ∂2

∂t2
K̃ +

(r −M)f

r2
∂

∂r
K̃ +

2f

r

∂

∂t
h̃tr −

f

r

∂

∂r
h̃tt +

λr + 4M

2r3
h̃tt −

f2

r2
h̃rr −

µf

2r2
K̃,

0 =
∂

∂t
h̃rr −

∂

∂r
h̃tr +

1

f

∂

∂t
K̃ − 2M

r2f
h̃tr,

0 = − ∂

∂t
h̃tr +

∂

∂r
h̃tt − f

∂

∂r
K̃ − r −M

r2f
h̃tt +

(r −M)f

r2
h̃rr,

0 =− ∂2

∂t2
h̃rr + 2

∂2

∂t∂r
h̃tr −

∂2

∂r2
h̃tt −

1

f

∂2

∂t2
K̃ + f

∂2

∂r2
K̃

+
2(r −M)

r2f

∂

∂t
h̃tr −

r − 3M

r2f

∂

∂r
h̃tt −

(r −M)f

r2
∂

∂r
h̃rr +

2(r −M)

r2
∂

∂r
K̃

+
λr2 − 2(2 + λ)Mr + 4M2

2r4f2
h̃tt −

λr2 − 2µMr − 4M2

2r4
h̃rr,

0 =
1

f
h̃tt − fh̃rr.
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