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ABSTRACT
The numerical investigation of Bondi-Hoyle accretion ontoa moving black hole has a long
history, both in Newtonian and in general-relativistic physics. By performing new two-
dimensional and general-relativistic simulations onto a rotating black hole, we point out a
novel feature, namely, that quasi-periodic oscillations (QPOs) are naturally produced in the
shock cone that develops in the downstream part of the flow. Because the shock cone in the
downstream part of the flow acts as a cavity trapping pressureperturbations, modes with fre-
quencies in the integer ratios2 : 1 and3 : 1 are easily produced. The frequencies of these
modes depend on the black-hole spin and on the properties of the flow, and scale linearly with
the inverse of the black-hole mass. Our results may be relevant for explaining the detection of
QPOs in Sagittarius A∗, once such detection is confirmed by further observations. Finally, we
report on the development of the flip-flop instability, whichcan affect the shock cone under
suitable conditions; such an instability has been discussed before in Newtonian simulations
but was never found in a relativistic regime.
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1 INTRODUCTION

Non-spherical accretion flows are astrophysically relevant in all
those situations where strong winds with a small amount of angu-
lar momentum are able to transport considerable amounts of matter
towards an accreting compact object,e.g.,a black hole or a neu-
tron star. Examples include the case of massive X-ray binaries in
which a compact object accretes from the wind of an early-type
star, or the case of young stellar systems orbiting in the gravita-
tional potential of their birth cluster and accreting from the dense
molecular interstellar medium. One of the most celebrated and
best studied types of non-spherical accretion flows is the Bondi-
Hoyle (Hoyle & Lyttleton 1939; Bondi & Hoyle 1944) which, we
recall, develops when a black hole moves relative to a uniform
gas cloud. The Bondi-Hoyle flow has been the subject of sev-
eral numerical investigations, starting from Matsuda et al. (1987)
and followed by Fryxell & Taam (1988); Sawada et al. (1989);
Benensohn et al. (1997). As a summary of the bulk of work done
so far on this topic, Table 1 of Foglizzo et al. (2005) reports
an overview of published numerical simulations of Bondi-Hoyle-
Lyttleton accretion over the last30 years and lists more than40
works. While providing detailed descriptions of the morphology of
the gas capture in the supersonic regime, several of the above men-
tioned investigations were aimed at verifying the occurrence of the
so called flip-flop instability. This consists of an instability to tan-
gential velocities of the shock cone that forms in the downstream
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region of the flow and it manifests in the oscillation of the shock
cone from one side to the other of the accretor.

In the relativistic regime, the first two-dimensional simula-
tions of Bondi-Hoyle accretion were performed by Petrich etal.
(1989) and subsequently by Font & Ibáñez (1998b); Font et al.
(1998, 1999). These investigations considered flows both inax-
isymmetry and in the equatorial plane; interestingly none of these
works showed the occurrence of the flip-flop instability, so that no
evidence existed, prior to this work, about the developmentof the
instability also in a curved spacetime. More recently, a fully gen-
eral relativistic investigation of the Bondi-Hoyle accretion has been
considered by Farris et al. (2010) in the context of the merger of su-
permassive black-hole binaries; in this case, however, no discussion
of the flip-flop instability was presented.

However, the occurrence of the instability is not the only rel-
evant physical process that may manifest in Bondi-Hoyle accre-
tion flows. An additional one, that does not seem to have been
considered so far, is related to the possibility that the shock cone
traps oscillation modes, thus producing Quasi Periodic Oscillations
(QPOs). The intuition is indeed simple yet rather suggestive. The
typical shocked cone of the Bondi-Hoyle accretion is likelyto pro-
vide a natural cavity for the development and confinement of os-
cillation modes of sonic nature. If the accretor is a compactobject,
Newtonian hydrodynamics is a good approximation only at large
radial distances, while it can lead to misleading conclusions when
studying the flow evolution close to the event horizon. In this paper
we perform two dimensional general relativistic hydrodynamics
simulations by focusing on the dynamical behavior of the Bondi-
Hoyle shock cone under a wide range of parameters. The QPOs
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that we have found have typical frequencies in the range from
10−5 Hz to 10−3 Hz for a black hole withM = 106M⊙ (and in
the range from1Hz to102 Hz for a black hole withM = 10M⊙).
As a result, they can become relevant for the interpretationof QPOs
observed both in the galactic center and in high-mass X-ray bina-
ries. Our analysis has also shown that the flip-flop instability does
occur even in the relativistic framework, and we have investigated
how such instability can interplay with the QPO phenomenon,by
suppressing or exciting specific modes of oscillations.

The plan of the paper is the following: in Section 2 we pro-
vide an overview of the hydrodynamical equations, of the numeri-
cal methods adopted and of the physical set up of the problem.In
Sec. 3 we describe our results, while Sec. 4 contains a discussion
of the potential applicability to two specific astrophysical cases. Fi-
nally, Sec. 5 is devoted to the conclusions of our work. We usea
geometrized system of units withG = c = 1.

2 MATHEMATICAL FORMULATION

2.1 General relativistic hydrodynamics equations

We study Bondi-Hoyle accretion of a perfect fluid in the curved
background spacetime of a rotating black hole. The energy mo-
mentum tensor of the fluid has the usual form

T µν = hρuµuν + pgµν , (1)

whereuµ is the four velocity of the fluid,h, ρ andp are the specific
enthalpy, the rest-mass density and the pressure, respectively. All
of these quantities are measured by an observer comoving withuµ,
while gµν is the metric of the spacetime. By adopting the3 + 1
formalism of general relativity and after choosing Boyer-Lindquist
coordinates(t, r, θ, φ), the line element of the metric is written as

ds2 = −
(

1− 2Mr

Σ2

)

dt2 − 4Mar

Σ2
sin2 θdtdφ

+
Σ2

∆
dr2 + Σ2dθ2 +

A

Σ2
sin2 θdφ2 ,

where

Σ2 ≡ r2 + a2 cos2(θ) , (2)

∆ ≡ r2 − 2Mr + a2 , (3)

A ≡ (r2 + a2)2 − a2∆sin2 θ , (4)

with a andM being the spin and the mass of the black hole. The
lapse function and theshift vector of the metric are given, re-
spectively, byα = (Σ2∆/A)1/2 andβi = (0, 0,−2Mar/A).
When solving numerically the general-relativistic hydrodynamic
equations it is important to write them in a conservation
form (Banyuls et al. 1997)

∂U

∂t
+

∂Fi

∂qi
= S . (5)

whereU, Fi andS are the vectors of the conserved variables, of
the fluxes and of the sources, respectively, whileqi is the gen-
eralized coordinate in thei−th direction. When performing two-
dimensional numerical simulations in the equatorial plane, Eq.(5)
reduces to

∂U

∂t
+

∂Fr

∂r
+

∂Fφ

∂φ
= S . (6)

Table 1. Initial models adopted in numerical simulation. From left to right
the columns report: the name of the model, the black hole spina, the asymp-
totic flow velocity V∞, the asymptotic Mach numberM∞ and the inner
boundaryrin of the grid. The final simulation time is set equal to10000M
in all of the models. The reference adiabatic index adopted is Γ = 4/3,
though we have also considered different values to explore the effect on the
results.

Model a/M V∞ M∞ rin(M)

A1 0.9 0.001 0.01 1.78
A2 0.9 0.1 1 1.78
A3 0.9 0.2 2 1.78
A4 0.9 0.3 3 1.78
A5 0.9 0.4 4 1.78
A6 0.9 0.5 5 1.78
A7 0.9 0.6 6 1.78

B 0.5 0.4 4 2.1

C1 0.0 0.001 0.01 2.1
C2 0.0 0.1 1 2.1
C3 0.0 0.2 2 2.1
C4 0.0 0.3 3 2.1
C5 0.0 0.4 4 2.1
C6 0.0 0.5 5 2.1
C7 0.0 0.6 6 2.1

The conservative variables, written in terms of the primitive vari-
ables(ρ, vi, p), are

U =









D
Sr

Sφ

τ









=









√
γWρ√

γρhW 2Vr√
γρhW 2Vφ√

γ(ρhW 2 − p−Wρ)









, (7)

whereV i = ui/W + βi/α is a spatial vector whose indices
are raised and lowered through the spatial metricγij and it rep-
resents the three-velocity of the fluid with respect to the Eu-
lerian observer associated to the3 + 1 splitting of the metric.
W = (1 − γijV

iV j)−1/2 is the Lorentz factor of the fluid and
γ = det(γij) = Σ4 sin2 θ/α2 is the determinant of three metric.
Although Font et al. (1999) already reported fluxes and sources for
the hydrodynamical equations in the Kerr metric, we explicitly list
them here for convenience as

F
r =









α(V r − βr/α)D
α{(V r − βr/α)Sr +

√
γp}

α(V r − βr/α)Sφ

α{(V r − βr/α)τ +
√
γV rp}









, (8)

F
φ =









α(V φ − βφ/α)D

α(V φ − βφ/α)Sr

α{(V φ − βφ/α)Sφ +
√
γp}

α{(V φ − βφ/α)τ +
√
γV φp}









(9)

and

S =









0
α
√
γT µνgνσΓ

σ
µr

α
√
γT µνgνσΓ

σ
µφ

α
√
γ(T rt∂rα− α(T rtΓt

rt + T rrΓt
rr + T rφΓt

rφ))









(10)

The equation of state that we adopt is that of an ideal gas,
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Figure 1. Rest-mass density distribution (left panel) and Lorentz factor distribution (right panel) for a black hole with spina = 0.9 and a supersonic flow with
asymptotic velocityV∞ = 0.5, and at timet = 10000M . In the downstream region a clear shock cone forms which is distorted by the non vanishing spin of
the black hole.

namely

p = (Γ− 1)ρǫ , (11)

whereΓ andǫ are the adiabatic index and the specific internal en-
ergy, respectively. The reference adiabatic index used in the simu-
lations isΓ = 4/3, though we have also considered different values
to explore the effect on the results.

We have solved the system of equations (5) through high-
resolution shock-capturing schemes (HRSC) based on approximate
Riemann solvers. Aminmodlinear algorithm for the reconstruction
of the left and right states at each interface between adjacent nu-
merical cells is adopted, while the numerical fluxes are computed
with the Marquina flux formula. More specific details about the nu-
merical scheme can be found in Dönmez (2004).

As a final remark we note that because we are not here consid-
ering any contribution coming from the cooling of the shocked gas,
the oscillations we will discuss are not related to those reported
by Molteni et al. (1996); Chakrabarti et al. (2004); Okuda etal.
(2007). In those studies, in fact, the presence of cooling processes
is a necessary ingredient for the appearance of oscillations along
the standing shocks.

2.2 Initial Conditions, Boundary Conditions and
Approximations

We perform numerical simulations on the equatorial plane,i.e.,θ =
π/2. The initial velocity field is given in terms of an asymptotic
velocityV∞ as in Font et al. (1998),i.e.,

V r =
√
γrrV∞ cos(φ) , (12)

V φ = −
√

γφφV∞ sin(φ) . (13)

These relations guarantee that the velocity of the injectedgas at
infinity is parallel to thex−direction, whileV 2 ≡ ViV

i = V 2

∞

everywhere in the flow. The value ofV∞ can then be chosen to in-

vestigate the different regimes of the flow and to consider therefore
subsonic or supersonic accretion.

During the evolution additional matter is injected supersoni-
cally from the outer boundary in the upstream region with thesame
analytic prescription of (12) and (13), thus reproducing a contin-
uous wind at large distances. The initial density and pressure pro-
files are adjusted to make the sound speed equal to a required value,
which we choose to becs,∞ = 0.1. In practice, oncecs,∞ is cho-
sen, we set the density to be a constant (i.e., ρ = 1) and then
the pressure is derived from the relativistic definition of the sound
speed,i.e.,p = c2s,∞ρ(Γ − 1)/(Γ(Γ − 1) − c2s,∞Γ). A brief de-
scription of the initial models is reported in Table 1, wheremodels
C∗ refer to Schwarzschild black holes and different fluid injection
velocities, while modelsA∗ andB refer to Kerr black holes respec-
tively with spina/M = 0.9 anda/M = 0.5, again spanning dif-
ferent fluid injection velocities.

The computational grid consists ofNr×Nφ uniformly spaced
zones in the radial and angular directions, respectively, covering a
computational domain extending fromrmin (reported in Table 1)
to rmax = 43M and from0 to 2π. For our fiducial simulation we
have chosenNr = 512 andNφ = 256, but have also verified that
the qualitative results (i.e., the appearance of the QPOs or of the
instability) are not sensitive to the resolution used or to the location
of the outer boundary, which has been moved tormax ≃ 80M in
some tests.

The boundary conditions in the radial direction are such that
at the inner radial grid point we implement outflow boundary con-
ditions by a simple zeroth-order extrapolation (i.e., a direct copy)
of all variables. At the outer radial boundary, on the other hand, we
must distinguish between the upstream region, withπ/2 < φ <
3/2π, and the downstream region, with−π/2 < φ < π/2. In the
upstream region we continuously inject matter with the initial ve-
locity field, while in the downstream region we use outflow bound-
ary conditions. Finally, periodic boundary conditions areadopted
along theφ direction.
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Figure 2. One dimensional profiles of the rest-mass density at timet = 10000M , showing the location of the shock at different radial shells for an asymptotic
flow velocityV∞ = 0.5. The left panel refers to Schwarzschild black hole, while the right one to a rotating black hole with spina/M = 0.9. Note that in this
latter case the shock is distorted and no longer symmetric.

Finally, we note that in order to validate the code, we have
carried out a number of comparisons with theECHO code presented
in Del Zanna et al. (2007), which, among other differences, uses
a non-uniform grid structure. The results obtained from thetwo
codes have not shown significant differences.

3 NUMERICAL RESULTS

3.1 Properties of the stationary pattern

The main features of Bondi-Hoyle accretion were first investigated
in the relativistic framework through a number of numericalsimu-
lations by Petrich et al. (1989); Font & Ibáñez (1998b); Font et al.
(1998, 1999). The overall results obtained can be summarized as
follows.

As already shown by several authors, when a homogeneous
flow of matter moves non radially towards a compact object, a
shock wave will form in the neighborhood of the accretor. Depend-
ing then on the properties of the flow, namely on the adiabaticin-
dex and on the asymptotic Mach numberM∞, the shock can either
reach very close to the accretor or be at a certain distance from it
[see,e.g., Foglizzo et al. (2005)]. More specifically, for any given
value ofM∞, there is a critical adiabatic indexΓ ≃ 2, below
which a shock wave of conic shape,i.e., a “shock cone”, forms in
the downstream part of the flow,i.e., downstream of the accretor.
Matter from the upstream region crosses continuously the shock
front, it undergoes a strong deceleration and, if it is inside the ac-
cretion radius, is ultimately accreted. As a result, the maximum
rest-mass density in the downstream region is always largerthan
the corresponding one in the upstream region and, consequently,
the mass accretion rate is significantly non-spherical and larger in
the downstream part of the flow. Interestingly, when suitable coor-
dinates are used (e.g.,Kerr-Schild coordinates), it has been shown
by Font et al. (1999) that the shock even penetrates the eventhori-
zon. On the other hand, for increasingly stiff fluids and thusfor val-

ues of the adiabatic index larger than the critical one, a bowshock
wave forms in the upstream part of the flow,i.e., upstream of the
accretor. In this case the accretion is almost spherical andbecause
the bow shock does not reach into the black-hole’s horizon, it is
often referred to as a “detached” shock.

The shape of the shock cone depends sensitively on the spin
of the black hole. If the black hole is not spinning, then the shock
cone is perfectly symmetric about theφ = 0 direction. On the other
hand, if the black hole is spinning, the induced frame-dragging ef-
fect produces a “wrapping” of the shock cone, as already shown
and discussed in great detail by Font et al. (1999).

Our simulations essentially confirm this picture, and the main
features of the stationary pattern are summarized in Figure1,
which shows the two dimensional rest-mass density distribution
(left panel) and the Lorentz factor distribution (right panel) for
modelA6 with a/M = 0.9 andV∞ = 0.5. As evident from the
iso-density contours, the accretion in the upstream region, is es-
sentially spherical accretion, while a very well defined shock cone,
characterized by a strong density gradient, forms in the downstream
region. The shock cone, where the accretion rate is the largest, is
clearly distorted by the spin of the black hole and its opening an-
gle slightly decreases with increasing distance from the center. We
have also found that spinning black holes have maximum rest-mass
density in the shock cone which is higher than for non spinning
black holes. The right panel of Fig. 1, on the other hand, shows that
the overall flow is only very mildly relativistic, with a maximum
Lorentz factorWmax . 3, even ahead of the shock front in the
vicinity of the black hole. It is also interesting to note that accretion
in the shock cone takes place with a very small Lorentz factor. Mat-
ter inside the shock cone can accrete onto the black hole onlyfor
radii smaller than a givenaccretion radiusra, defined as the radius
where the accretion rate (as a function of radius) becomes negative.
The expressionra ≈ 2M/(V 2

∞ + c2s,∞), which is valid in the case
of a purely-spherical accretion, provides a good estimate of the ac-
cretion radius in the Bondi-Hoyle accretion. As an example,for a
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Figure 3. Logarithm of the density at different times for modelB with a/M = 0.5 andV∞ = 0.4. The flip-flop instability manifests after the shock cone has
reached a stationary state and it causes the shock cone to oscillate back and forth with an oscillation period around1046M .

model withV∞ = 0.5 andcs,∞ = 0.1, we foundra = 6.1, while
the predicted one isra = 7.6.

To complement the information in Fig. 1, Fig. 2 shows one-
dimensional profiles at timet = 10000M of the rest-mass density
at different radial shells for an asymptotic flow velocityV∞ = 0.5.
More specifically, the left panel refers to Schwarzschild black hole,
while the right one to a rotating black hole with spina/M = 0.9.
Clearly, a sharp transition in the density exists at the border of the
shock cone and this is particularly evident for the nonrotating black
hole. Note also the amount of distortion which is present in the case
of a rotating black hole; although this is in part due to our choice
of Boyer-Lindquist coordinates, similar distortions are present also
when using different and better suited coordinates, such asKerr-
Schild [see the discussion in Font et al. (1999)]. As alreadymen-
tioned above, the angular location of the shock is only weakly de-

pendent on the radial distance, with the size of the shock cone re-
ducing only slightly when moving away from the black hole. Asa
final remark we note that the large degree of symmetry shown inthe
left panel of Fig. 2 provides a convincing evidence of the abilities
of the code to maintain the symmetry acrossφ = 0.

3.1.1 The flip-flop instability

As shown through numerical simulations performed by several au-
thors over the years in Newtonian physics, the Bondi-Hoyle accre-
tion flow is subject to the so calledflip-flop instability, namely an in-
stability of the shock cone to tangential velocities, whichmanifests
in the oscillation of the shock cone from one side of the accretor to
the other. Such instability was first discovered by Matsuda et al.
(1987) in 2-D Newtonian axisymmetric simulations, and later
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confirmed and further investigated by Fryxell & Taam (1988),
Sawada et al. (1989), Benensohn et al. (1997), Foglizzo & Ruffert
(1999), Pogorelov et al. (2000). Three dimensional simulations
were performed by Ishii et al. (1993) and Ruffert (1997), who
confirmed the occurrence of the instability, although with defor-
mations of the shock cone only very close the accretor. In spite
of all these investigations, however, the nature and the physical
origin of the flip-flop instability remain obscure. According to
Foglizzo & Ruffert (1999), for example, local instabilities, such as
the Rayleigh-Taylor or the Kelvin-Helmholtz instabilities, should
not play a significant role and cannot account for the flip-flop
instability. On the other hand, Soker (1990) showed, through a
WKB analysis, that the two-dimensional axisymmetric accretion
flow (not the one considered in our work) can be unstable against
tangential modes, as well as against radial modes. When extending
these results to three-dimensional simulations, however,the persis-
tence of such instabilities is not fully clarified. Overall,it is fair to
say that, although the flip-flop instability has been confirmed nu-
merically both in two and three-dimensional simulations, it is still
unclear whether the physical mechanisms driving the instabilities
in the two cases are the same or not. Finally, to further complicate
the scenario, no evidence was found by Font et al. (1998) of such
instability within a relativistic framework, although theauthors ar-
gued that an instability might develop for very large valuesof the
asymptotic Mach number.

More recently, Foglizzo et al. (2005) performed a very de-
tailed analysis of the unstable behavior of Bondi-Hoyle accretion
flows, suggesting that the instability may be of advective-acoustic
nature, both in the case of shocks attached or detached (bow
shocks) to the accretor. Moreover, they also stressed that,though
physical, the instability is likely to be triggered or dumped by nu-
merical effects such as the carbuncle phenomenon at the shock, the
boundary condition at the surface of the accretor and the grid size.

Although a detailed analysis of the flip-flop instability is be-
yond the scope of this paper, which is rather focused on the devel-
opment of QPOs in Bondi-Hoyle accretion flows, our simulations
confirm for the first time the occurrence of the instability even in
a relativistic regime. Fig. 3, for instance, reports four snapshots of
the rest-mass density in a long term evolution of a model whenthe
instability is fully developed. The shock cone in the downstream
region oscillates back and forth in the orbital plane in thisrepresen-
tative model with black hole spina/M = 0.5 andV∞ = 0.4. The
reason why such unstable behaviour was not noticed by Font etal.
(1999) may be due to the short term evolution that they were forced
to consider at the time, or, as suggested by Foglizzo et al. (2005),
because of the high values of2M/ra = (V 2

∞ + c2s,∞) that they
considered.

Fig. 4 shows additional key features of the flip-flop instabil-
ity. The top panel, in particular, reports the shock openingangle,
as a function of the asymptotic velocity, computed in radians at
r = 4.43M and t = 10000M . Shown with different lines are
the values for a Schwarzschild black hole (red solid line) and for a
Kerr black hole (blue dashed line). The points withV∞ = 0.3 and
V∞ = 0.4 correspond to models which are flip-flop unstable and
they are located close to the local maximum of the shock opening
angle. This results confirms what already reported by Livio et al.
(1991), namely that the instability manifests when the shock open-
ing angle is larger than a given threshold. Once the instability is
fully developed, the mass accretion rate experiences high amplitude
oscillations (for any value of the spin considered). This isshown
in the bottom panel of Fig. 4, reporting the evolution of the one-

Figure 4. Top panel: shock opening angle in radians as computed at
r = 4.43M , t = 10000M , as a function ofV∞. Shown with different
lines are the values for a Schwarzschild black hole (red solid line) and for
a Kerr black hole (blue dashed line).Bottom panel:time evolution of the
mass accretion rate, computed atr = 6.08M , for different value ofV∞

and a rotating black hole with spina/M = 0.9. The mass accretion rate
manifests high amplitude oscillation in the two flip-flop unstable models
with V∞ ∼ 0.3− 0.4.

dimensional mass accretion ratėM defined as

Ṁ ≡ −
∫

2π

0

α
√
γρW

(

V r − βr

α

)

dφ , (14)

for different choices ofV∞; the specific values reported in the fig-
ure refer to a shell atr = 6.08M and a rotating black hole with
spin a/M = 0.9. It is therefore evident that for small values of
V∞, both the mass accretion rate and the shock opening angle are
increasing functions ofV∞. However, the accretion is no longer ef-
ficient above a critical value ofV∞ ≃ 0.4, and any further increase
of V∞ causes both the accretion rate and the maximum rest-mass
density in the shock cone to decrease.

3.2 QPOs in the shock cone

As mentioned in the Introduction, one of the most important results
presented in this work is about the development of QPOs in the
shock cone that forms in the downstream region once the system
has relaxed to the stationary state. Note that because a stationary
state is necessary for the development of the QPOs, the latter are not
found when the flip-flop instability develops. Although the occur-
rence of QPOs in Bondi-Hoyle accretion has not been discussed be-
fore in previous numerical investigations, Fig. 8 of Font & Ibáñez
(1998a) does shows a clear periodic behavior of the accretion rate.
So, although we can claim to be the first ones to have pointed out
the appearance of this effect and to have investigated it in detail, we
cannot claim to be the first to have shown found it from numerical
simulations.

In order to extract as much information as possible about the
emerged phenomenology and provide a first physical explanation,
we have carried out an extensive Fourier analysis of the differ-
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Figure 5. Power spectra of the timeseries of the rest-mass density as computed at the center of shock cone for a flow with asymptotic velocity V∞ = 0.1.
The left and right panels refer to black holes with spins fora/M = 0.0 anda/M = 0.9, respectively, while the mass is the same in the two cases and
M = 10M⊙. The different curves refer to timeseries recorded at different radial positions but have the same azimuthal position.

ent dynamical quantities. The two panels of Fig. 5, for instance,
show the power spectra obtained from the timeseries of the rest-
mass density as computed in a region which is in the middle of the
shock cone for a flow with asymptotic velocityV∞ = 0.1. The left
and right panels refer to black holes with spins fora/M = 0.0
anda/M = 0.9, respectively, while the mass is the same in the
two cases and equal toM = 10M⊙. The different curves refer to
timeseries recorded at different radial positions but havethe same
azimuthal position. After performing a series of tests at different
resolutions we have estimated the error bar in the measure ofeach
frequency to be∼ 3Hz.

A number of comments should be made regarding the spectra
reported in Fig. 5. The first one is that the modes of oscillation are
essentially independent of the radial position,i.e.,the power spectra
at different radii overlap extremely well. This is a clear indication
that the modes are local waves but they are global eigenmodesof
the system.

The second comment is that, among the modes reported in
Fig. 5, some are genuine eigenmodes, while others are simplythe
result of nonlinear couplings. In particular, the modes with frequen-
ciesf1 = 21Hz andf2 = 34Hz in the left panel of Fig. 5 are gen-
uine eigenmodes, while those at55, 68, 83 and106Hz are given,
within a few percent error, by nonlinear couplings of the eigen-
modes,i.e.,f1+f2, 2f2, 3f2−f1, and3f2, respectively. Similarly,
the modesf1 = 40 Hz andf2 = 64Hz in the right panel of Fig. 5
are genuine eigenmodes, while the modes at81, 104 and124Hz
are given, within few percent errors, by2f1, f1 + f2, and 3f1,
respectively. We recall that this behavior is typical of physical sys-
tems governed by non linear equations in the limit of small oscil-
lations (Landau & Lifshitz 1976) and has already been pointed out
by Zanotti et al. (2005) in the context of oscillation modes in thick
accretion discs around black holes. It should also be remarked that,
while a large number of modes due to nonlinear coupling exists, the
identification becomes difficult for frequencies larger than 100Hz.
Similarly, the low-frequency mode at∼ 5Hz, which is visible in
both the panels of Fig. 5, could be a genuine mode but it appears
with much smaller intensity and not all radii. As a result, its classi-

Figure 6. Spatial distribution of the power spectral density atf = 124Hz
for a black hole of massM = 10M⊙ and spina/M = 0.9 (cf. right
panel of Fig. 5). A very similar behaviour would be shown in the case of a
nonrotating black hole.

fication as a genuine mode will require more accurate simulations
and on much longer timescales.

The global nature of the oscillation modes inside the shock
cone is clearly shown in Fig. 6, which represents the power spectral
intensity of the most powerful mode in the right panel of Fig.5,
namely of the mode atf = 124Hz (A very similar behaviour can
be seen in the case of a nonrotating black hole.). In other words, for
each grid-cell inside the shock cone we store the evolution of the
rest-mass density and compute from this the power spectral density.
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We then consider a single frequency and study how its intensity is
distributed (in arbitrary units) inside the shock cone.

Note that the intensity is computed over the whole compu-
tational domain, but it has a non-negligible amplitude onlyinside
the shock cone, and this amplitude becomes increasingly stronger
near the black hole (We recall that in general we do not expectthe
amplitude to be constant in the shock cone, as this depends onthe
specific eigenfunction of the mode). What shown in Fig. 6 is not
specific to the mode atf = 124Hz and we have verified that the
spatial distribution of the intensity manifests a similar pattern for
all of the other modes. Besides providing evidence that these are
indeed global oscillation modes of the flow, Fig. 6 also highlights
that QPOs can be excited in the shock cone of a Bondi-Hoyle type
accretion and that these are particularly stronger close tothe black
hole.

Interestingly, when the flip-flop instability is triggered and de-
velops, the power spectra inside the shock cone change consid-
erably and in these cases only the periodicity of the shock-cone
oscillation can be found, which is then accompanied by the usual
nonlinear couplings. In general, therefore, the effect of the flip-flop
instability is that of suppressing most of the internal modes of os-
cillations. A more detailed analysis of this process, as well as of the
flip-flop instability will be presented in a future work.

A linear perturbative analysis of the stationary pattern would
certainly be of great interest for three important reasons.Firstly, in
order to identify unambiguously which of the modes are genuine
(or fundamental) and which are the effect of non-linear coupling.
Secondly, to compute the expected eigenfrequencies and eigen-
functions of the oscillations we have discovered numerically. Fi-
nally to clarify why some modes are more efficiently excited than
others. However, such perturbative analysis is probably going to be
extremely complicated, mainly because of the absence of an an-
alytic solution for the stationary flow inside the shock cone. To
counter these limitations and perform a first rudimentary analysis
of the eigenfunctions, we report in Fig. 7 a map of what can be re-
garded as a numerical eigenfunction for the modelC2 (V∞ = 0.1
and spina/M = 0.0). In fact, the two panels of Fig. 7 show the dif-
ferenceρ(r, φ)−ρ̃0(r, φ), whereρ̃0(r, φ) is the density distribution
when the flow is stationary (i.e.,for t & 1500M ). Considering, for
example, the left panel, which corresponds tot = t1 = 1871M
and using Cartesian coordinates, we show in the upper part ofthe
figure, i.e., for y/M > 0, the density perturbation along the shock
is negative close to the black hole, while it is positive far from it. A
specular behavior is detected in the lower part of the figure where
y/M < 0. The computed perturbation oscillates in time with a
given periodP , and the right panel of the figure shows a snapshot
at timet2 = t1+P/2 = 2162M , i.e.,at half a period of oscillation.
Although heuristic, this procedure allows to compute the period of
oscillation of the perturbation with a very good accuracy. The cor-
responding frequency, again computed assumingM = 10M⊙, is,
in fact,f ∼ 35Hz and it matches very well with the most powerful
mode, that with frequencyf2, reported in the left panel of Fig. 5. To
highlight the dependence of the eigenfrequencies on the black hole
spin, we report in Table 2 their values as measured within theshock
cone from the evolution of the rest-mass density. The mass ofthe
black hole is assumed to beM = 10M⊙, but the frequencies can
be easily computed for an arbitrary mass since they scale linearly
with the black hole mass. The data in Table 2 suggests that a linear
scaling is present also for the black hole spin, but clearly more data
is necessary to confirm this scaling, which we will investigate in a
future work.

As a final remark we note that, overall, the phenomenology

Table 2. Frequencies of the first two genuine modes measured within the
shock cone from the evolution of the rest-mass density. The values refer
to different black hole spins and different asymptotic velocities, while the
mass of the black hole is always assumed to beM = 10M⊙. Note that the
frequencies scale linearly withM and the values reported have an error bar
of ∼ 3 Hz.

a/M V∞ f1 [Hz] f2 [Hz]

0.0 0.1 21 34
0.5 0.1 32 53
0.9 0.1 40 64

0.0 0.2 32 46
0.9 0.2 46 84

we have found show strong similarities with that reported for per-
turbed relativistic tori orbiting around a black hole (Zanotti et al.
2003). In that case it was shown by Rezzolla et al. (2003) through
a perturbative investigation that the eigenfunctions and eigenfre-
quencies were those corresponding to thep modes of the torus.
Such modes, also known as inertial-acoustic waves, are closely re-
lated to the propagation of sound waves in the perturbed fluidand
have pressure gradients and centrifugal forces as the main restor-
ing forces. The major difference of the physical conditionsinvesti-
gated by Rezzolla et al. (2003) with the ones considered hereis that
centrifugal forces play a negligible role in Bondi-Hoyle accretion
flows. Apart from this, however, the physical nature of the modes
is essentially the same in the two cases. When applied to the oscil-
lations of a thick disc around a compact object, such modes moti-
vated the proposal of a model for explaining the detection ofHigh
Frequency Quasi Periodic Oscillations (HFQPOs) in the spectra of
X-ray binaries (Rezzolla et al. 2003).

4 ASTROPHYSICAL APPLICATIONS

4.1 The case ofSgr A∗

A possible application of the results discussed in the previous Sec-
tion and, in particular, of the development of QPOs in the down-
stream part of a Bondi-Hoyle flow, is offered by the source Sagit-
tarius A∗ (or Sgr A∗). Such source is located at the centre of our
Galaxy and is widely believed to be a supermassive black hole
with an estimated mass of∼ 4.1 ± 0.6 × 106 M⊙ (Ghez et al.
2008; Gillessen et al. 2009).Sgr A∗ is one of the most intensely
observed astronomical objects and the phenomenology of itsemis-
sion is both rich and particularly complex. Interestingly,however,
QPOs from its emission have been observed by Aschenbach et al.
(2004) (see also Aschenbach (2009)), when analyzing two dis-
tinct near-infrared and X-ray flares (Genzel et al. 2003). Inpartic-
ular, Aschenbach et al. (2004) reported five different peaksat peri-
ods of100 s,219 s,700 s,1150 s, and2250 s in the power spectral
density of such flares. Soon after, Abramowicz et al. (2004) noticed
that (1/700) : (1/1150) : (1/2250) ≈ 3 : 2 : 1, that is, the pe-
riods are in a harmonic ratio. Indeed, while discussing the same
source, Török (2005) confirmed the measurement of a doublepeak
of QPOs inSgr A∗ in the same typical3 : 2 ratio observed in sev-
eral low mass X-ray binaries and suggested the epicyclic resonance
model by Abramowicz et al. (2003) as a possible explanation for
this phenomenology. Chan et al. (2009), on the other hand, per-
formed two dimensional magnetohydrodynamical simulations of a
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Figure 7. Numerical eigenfunctions computed asρ(r, φ) − ρ̃0(r, φ), whereρ̃0(r, φ) is the density distribution when the flow is stationary (i.e., for t &

1500M ). The left and the right panels report two snapshots att = 1871M andt = 2162M , and are separated by half a period of oscillation; both refer for
to a black hole with spina/M = 0.0 andV∞ = 0.1.

putative accretion disc inSgr A∗ and showed that the QPOs fre-
quencies could be due to non-axisymmetric density perturbations,
and which may be used to set a lower limit on the orbital periodat
the innermost stable circular orbit.

In addition to QPOs,Sgr A∗ is likely to have a Bondi-Hoyle
accretion flow. This possibility was first pointed out by Melia
(1992), who, after looking at the broad He I, Brα and Brγ emission
lines, inferred that there is a strong circumnuclear wind near the
dynamical center of the Galaxy. In this scenario, the central black
hole is assumed to be fed by stellar winds within several arcseconds
from the compact object (Shcherbakov & Baganoff 2010). In order
to investigate this possibility further, Ruffert & Melia (1994) per-
formed the first three-dimensional hydrodynamical simulations of
this system and computed the line-integrated flux assuming that the
emission is dominated by bremsstrahlung. By collecting informa-
tion coming from more recent observations, Cuadra et al. (2006)
and Cuadra & Nayakshin (2006) performed SPH simulations of
wind accretion ontoSgr A∗, including optically thin radiative cool-
ing and finding, among other results, that most of the accreted gas
is hot and has a nearly-stationary accretion rate. Althoughthe ob-
served luminosity is some orders of magnitude smaller than what
is predicted by the Bondi-Hoyle model, this may be due to a low
radiative efficiency of the accretion flow, rather than to a failure of
the Bondi-Hoyle model itself.

Should the two observational features mentioned above be
confirmed by additional and more accurate observations, there
would be a unique astronomical realization of a source for which
both QPOs and Bondi-Hoyle accretion are simultaneously present.
It should be stressed that the typical lengthscale at which the QPOs
develop in our simulations is≈ 20M , which thus corresponds to
≈ 4× 10−6 pc for the estimated mass ofSgr A∗. This lengthscale
is much smaller than the closest approach to the Galactic Center of
the closest star S16, which is around≈ 2×10−4pc, as reported by
Ghez et al. (2005). Therefore, the Bondi-Hoyle accretion flow that
could potentially be present inSgr A∗, would take take place in a
gas-dominated region very close to the central black hole and far
from the orbits of the S-stars.

Interestingly, after analyzing recent data about a high-level X-

ray activity ofSgr A∗ observed with XMM-Newton (Porquet et al.
2008; Aschenbach 2009), Aschenbach (2009) reports nine promi-
nent peaks, namedν1 . . . ν9. Out of them, only three are identified
as fundamental by Aschenbach (2009), namelyν6, ν7 andν9, while
the other six are obtained as linear combinations of the fundamen-
tal ones, like, for instance,ν6 + ν7, ν6 + ν9, ν7 − ν9. Aschenbach
(2009) interprets the three fundamental modes in terms of orbital,
radial epicyclic and vertical epicyclic frequencies. In doing so, a
specific radius where the oscillation is excited must be provided,
the above osscillation frequencies being intrinsecally local. On the
contrary, no radial specification is required within our interpreta-
tion, since the modes are global and just confined within the shock
cone. Finally, although Aschenbach (2009) does not give anyexpla-
nation for the other six modes, they are naturally provided within
our interpretation of a Bondi-Hoyle accretion in which the down-
wind shock cone acts as a cavity, generating a whole series ofnon-
linear couplings among few genuine and trapped pressure modes.

4.2 QPOs in HMXBs

A second application of our result is in principle represented
by QPOs observed in the spectra of high mass X-ray binaries
(HMXBs), which are composed of a compact object and of an early
type (OB) star. The catalog by Liu et al. (2006) lists 114 HMXBs
candidates in the Galaxy, some of which are believed to contain a
black hole, like Cyg X-1, NGC 5204 (Liu et al. 2004), M 33 X-
7 (Pietsch et al. 2004), M 101 ULX-1 (Mukai et al. 2005). Because
in these systems the accretion flow occurs preferentially inthe form
of an accretion wind rather than in the form of an accretion disc, the
Bondi-Hoyle accretion flow has been traditionally considered very
relevant for them (see the review by Edgar (2004) for the applica-
tion of the Bondi-Hoyle solution to binary systems). However, the
QPOs that have been detected in HMXBs have frequencies that are
seen to lie in the range of1 mHz to400 mHz, with the remarkable
exception of XTE J0111.2-7317, which shows a QPO feature at
1.27 Hz (Kaur et al. 2007). On the other hand, the QPOs we have
computed assuming a black hole of massM = 10M⊙ have fre-



10 O. Donmez, O. Zanotti and L. Rezzolla

quencies which lie in the range from1 Hz to500 Hz , and therefore
that overlap only marginally with the observed ones.

5 CONCLUSIONS

Although viscous accretion discs represent the most natural chan-
nel by means of which compact objects accrete large amounts of
matter with significant angular momentum, non-spherical accretion
flows appear in all those situations in which the accreting matter
has only a modest amount of angular momentum, such as in winds.
Bondi-Hoyle accretion is the most representative example of this
type of flow and its study via numerical investigation has a long his-
tory, both in Newtonian and in general-relativistic physics. We have
reconsidered this old problem by performing new two-dimensional
and general-relativistic simulations onto a rotating black hole. Be-
sides recovering many of the features of this flow which were dis-
cussed by other authors over the years, we have also pointed out a
novel feature. More specifically, we have shown that under rather
generic conditions a shock cone develops in the downstream region
of the flow and that such a cone acts like a cavity trapping pressure
modes and giving rise to QPOs.

These modes are global in the sense that they represent har-
monic oscillations across the cavity, but have amplitudes that are
larger in the region very close to the black hole,i.e., for r . 10M .
While the black hole spin influences the absolute frequencies of the
trapped modes, which lie in the range from1 Hz to 500 Hz for a
representative black hole of massM = 10M⊙, it does not affect
the fact that they appear in a series of integer numbers1 : 2 : 3.
This is because nonlinear coupling of modes is common in systems
governed by nonlinear equations, and once a mode is excited,all of
its integer multiples are also excited, thus producing a wide range
of possible ratios of integer numbers.

In addition to pointing out this novel feature of the
Bondi-Hoyle accretion, we have discussed its possible appli-
cation to the phenomenology reported inSgr A∗, where both
QPOs (Aschenbach et al. 2004) and Bondi-Hoyle accretion (Melia
1992) are likely to be present. Remarkably, a large family oflinear
combinations of modes has been identified recently by Aschenbach
(2009) after analyzing data about a high-level X-ray activity of
Sgr A∗ observed with XMM-Newton (Porquet et al. 2008). This
phenomenology could indeed be interpreted in terms of a shock
cone that behaves like a cavity and that generates a whole class of
nonlinear coupling among pressure modes.

Finally, we have provided the first evidence for the occurrence
in a general relativistic context of the so called flip-flop instability
of a Bondi-Hoyle flow. More specifically, we have shown that for
a fixed choice of the black hole spin and of the sound speed, there
exists a critical value of the asymptotic flow velocity at which the
shock cone undergoes large-scale and coherent oscillations. When
this happens, the opening angle of the shock cone reaches itsmax-
imum value, the accretion rate increases considerably and is no
longer stationary. A more comprehensive analysis is neededto clar-
ify the physical nature of the instability and its dynamics in the
relativistic regime. This will be the focus of a future work.

Finally, among the future improvements of our work we plan
to investigate the effects of a magnetic field, which is certainly
likely to play a role but whose effective contribution has not been
considered yet in numerical simulations of Bondi-Hoyle accretion
flows. In particular, the potential interplay of the magnetorotational
instability (MRI) with the flip flop instability has to taken into ac-
count, though it is not clear whether a local instability such as the

MRI can substantially affect a global instability. As far asthe oc-
currence of QPOs, on the other hand, we believe that it will remain
essentially unchanged. The reason for this is that as long asa shock
cone forms in the downstream part of the flow, QPOs will be natu-
rally excited and trapped, the only difference being that they will be
of magnetosonic nature rather than of a sonic one, and hence with
eigenfrequencies that will depend not only on the properties of the
shock-cone (and thus of the fluid) but also on the strength of the
magnetic field.
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Font J. A., Ibáñez J. M., 1998a, MNRAS, 298, 835
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