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Abstract We study the eikonal approximation to quantum mechanicsherMoyal
plane. Instead of using a star product, the analysis isethaut in terms of operator—
valued wavefunctions depending on noncommuting, operastuied coordinates.

1 Introduction

That spacetime must stop being a continuum once sufficieiglyenergies are reached
is by now an old notion. Already in the 1930’s, Heisenberdaegd a continuum
spacetime with a lattice, in order to tame the divergencesiahtum field theory. This
lattice broke Lorentz invariance, which later modéls [1¢s@eded in preserving. At-
tempts to quantise gravity also lead to the introduction fifrlamental length scale.
This fundamental length scale, beyond which the concepistéice becomes mean-
ingless, is called the Planck length. Replacing a continwitin some kind of dis-
crete, or quantised, manifold, leads naturally to the amsioh that coordinates must
be operator—valued quantities.

The purpose of this paper is to analyse the eikonal (or sassidal) approximation
to nonrelativistic quantum mechanics on the Moyal pRjethe latter being coordina-
tised by operatorX’, Y satisfying the Heisenberg algebfa, Y] = XY - Y X =i61,
with 8 > 0. In particular we will need to write down the Hamilton—-Jacebuation,
and its close cousin the Schroedinger equation, on the momedative plane. Two
steps are involved here:

i) defining a classical mechanics on the noncommutative [#gne

i) quantising the classical mechanics so defined.

On an energy scale, quantisatiégn¥ 0) sets in well before noncommutativit§ ¢ 0).
In other words, in the real world one expects mechanics omasramutative space to
be automatically quantum, rather than classical. We wél that, in fact, step§ and
i) above are inextricably linked. However, if only methodatadly, we will consider
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the two steps above separately.

There are several alternative, though basically equitabgproaches to physics
on noncommutative spaces. One approach, by far the mosspvieked, uses number—
valued coordinates and momenta (and functions thereof)e wdplacing the commu-
tative pointwise product of functions with a noncommutasvar product[2]. Another
approach, little developed so far, uses operator-valueddatates and momenta al-
ready from the start. Coordinates and momenta are now rettips matrices. In par-
ticular, operator—valued coordinates satisfy certaintrivial commutation relations.
In this paper we will further develop this second approachwant our wavefunctions
¥ to be functions of the position operataks Y, the latter satisfyingX, Y] = 1.
This will imply that the wavefunctior¥ itself will become an operator. This property
is reminiscent of second—quantised theories. In fact itleas argued [3] that (yet an-
other) approach to noncommutative quantum mechanics isdao by the 1—particle
sector of noncommutative quantum field theory; then the aomoutative wavefunc-
tion, a c—number object, arises as a matrix element of a fiaadnlamdﬂ. However we
prefer to stay within the framework of a finite number of degref freedom, and to try
and construct wavefunctions that are operator—valued fhenstart, without resorting
to field theory. After all, at least on commutative spacess, jterfectly possible to for-
mulate the quantum mechanics of a finite number of degreegefiém, in a manner
that is totally independent of quantum field thedrg,, without embedding quantum
mechanics into an infinite number of degrees of freedom. Weseg that noncommu-
tative spaces also share this possibility. One surprisutgame of our approach will
be that the mechanical action itself (the solution to the Htam-Jacobi equation) will
also become an operator, without second—quantising tlogythe

One can turn our argument around and analyse to what extantumu mechanics,
especiallyemergenguantum mechanics][4] and alemergengravity [5,[6,7], im-
ply a granularity of spacetime. A comprehensive expositibemergent physics, with
extensive references, is given in the nice badk [8]. Thetiexjditerature on noncom-
mutative theories (deformation quantisation, quantumhaeics, field theory, string
theory, gravity) is too vast to quote here, but we would lixetention the general refs.
[©1[10,[11/12]. Geometric treatments of quantum mecharsies hlso been studied in
depth; for a sample see.g, [2,[13,[14] 15[ 16].

Approaches to quantum theory that are primarily based onilttamJacobi equa-
tions (and generalisations thereof) are well known; we judt mention[[17] and the
many references therein. For later use we recall that cllddamilton—Jacobi theory
on the commutative configuration spaRé coordinatised byz,y can be (extremely
succintly) summarised by the equations

oS oS
S=-Et+ /pmdx + pydy, P = Py =3, (1)
and ) )
oS 1 oS oS

10f course, the previous statement also applies to theoniesmmutative spacetimes.



wherel{(x, y) is a potential function. We use the notatiSrior theclassicalaction in-
tegral on the commutative plai, in order to distinguish it from theperator—valued
action S to be introduced presently on the Moyal plakg& The same notational con-
vention applies to the classical potential functidand to its operator—valued analogue
U, to be defined later.

This paper is organised as follows. Secfibn 2 presents theammutative algebra
of position and momentum operators that our constructibased upon. This algebra
can be unitarily represented in a number of different waps réasons that will become
clear presently, our favourite representation is giveeims ofnoncommutative oscil-
lator modes The latter can be thought of as harmonic oscillators on (xiliary copy
of) the Moyal plane; we provide an explicit construction leé$e noncommutative os-
cillator modes, in some detail. Once position and momentperatorsX, Y, Py, Py
are defined in terms of these modes, we need to define a meahaction.S depend-
ingon XY, Px, Py and such that properties as close as possible to thoseeshtisfi
its commutative counterpaftl(1L](2) continue to hold triiis is done in sectiohl 3.
By now we have an objed that plays the role of the classical mechanical actfon
HoweverS is operator—valued, because the position and momenturablesi it de-
pends on are themselves operators. The next step, at leasemiclassical analysis,
is to consider the exponential aftimes)S, and to derive the equation satisfied by the
latter, the Schroedinger equation on noncommutative spets is done in sectidn 4.
Despite the numerous formal analogies with quantum mecham the commutative
plane, there are some substantial differences that aréggladnit along the way. Finally
sectior’ b presents some concluding remarks concerning:

i) the role of the Bopp shift and the nonequivalent Poissorciiras that it relates;

i) the commutative limit of our model;

i) the resolution of some apparent clashes with some cladbieatems of Wigner,
and of Stone and von Neumann;

iv) some speculations about a classical/quantum duality icgromutative theories.

2 The noncommutative Poisson—Heisenberg algebra

2.1 The commutator algebra

The noncommutative plari®? is defined as the algebra of functions of two generators
X,Y satisfying the commutatd’X, Y] = 61, with > 0. We regardR? as a two—
dimensional configuration space endowed with noncommutireggdinatesX, Y. On

the corresponding noncommutative phase smwe have the operators, Y, Py,

Py satisfying a commutator algebra that we postulate to be

[X,Y]=i01, [X,Px|=[Y,Py]=ihl, [Px,Py]=I[X,Py]=1Y,Px]=0,
3)
We will call the set of eqns[{3) the 2—dimensiomaincommutative Poisson—Heisenberg
algebra The time variable will be taken to commute with all generatoXs Y, Px, Py-.



It has been known for long that tiBopp shift
0
YoV — =Px (4)

reduces the noncommutative Poisson—-Heisenberg algepta (Be usual Poisson—
Heisenberg algebra in two commuting space dimensions. fdtisithstanding, it is
instructive to work with the algebrBl(3). This is so because@an think of[(B) as being
the commutator algebra of quantum mechanics withdeformation parameters—one
quantum of ared, one quantum of actioh. Standard quantum mechanics contains
only the quantum of area on phase spac@&oncommutative quantum mechanics adds
a quantum of area on configuration spateln the presence of the two quaritand
6, and given a particle of mass, the quantity?/(m#@) has the dimensions of energy.
We will see that the quantity? /(m#) plays an important role in what follows.

As usual we define the adjoint action of operatoon operatoi3 by

ada(B) = [A, B]. (5)

The adjoint actiorad 4 (B) behaves formally as a derivative: it is linear and satisfies
the Leibniz rule
ada (BC’):adA (B) C + Bady (C) (6)

We also have the Jacobi identity
[ada,adp] = ad(a, ), (7)

which expresses a generalisation of the integrability eryd? f /0x0y = 2 f /0yOx
valid for derivatives of functiong(z, y). Replacing phase—space derivatives with ad-
joint actions will be an essential tool in our approach to cammmutative quantum
mechanics.

2.2 Commutative oscillator modes

We will first construct a Hilbert—space representation fer tommutator algebrgl(3),
in terms ofcommutativescillator modes. This is of course trivial, but it will seras

a warmup exercise for the construction in termsiohcommutativescillator modes.
Consider the usual harmonic oscillator eigenstétesn 1 dimension, where € N.
The space spanned by thg is ¢2, the Hilbert space of complex, square—summable
sequences. In two commuting dimensiang we have the eigenstates,,, (z,y) =
én(1)dm (y). The latter form an orthonormal basis for the Hilbert spéce ¢2. Posi-
tion and momentum operato®’, Y’, P4, P;. can be defined on the spatex (? as
usual [18]: acting on the first index,

X/¢nm = \/g(vn+1¢n+l,m+\/ﬁ¢n—l,m) ) (8)
ih
P;(¢nm = \;ﬁ (\/ n+ 1¢n+l,m - \/ﬁ(bn—l,m) . (9)



For the second index we define the actiorYdf P;, similarly, with the sole difference
that the (reverse) Bopp shiffl(4) must be taken into account:

Y/(bnm = \/g(\/ m + 1¢n,m+1 + \/E(bn,mfl) + %nggbnma (10)

P = = (VI L bnis = Vit bt 1)
One verifies that the operataks, Y, P%, Py, indeed satisfy the algebria (3). We have
denoted these operators with a prime because this repaéisents unsatisfactory for
our purposes. Indeed, there is nothing noncommutativetabheueigenstates,,,,, :
they are simply those of the harmonic oscillator on the comatiue planeR?, non-
commutativity being implemented in the algebra by meankef{inverse) Bopp shift.
Instead one would like to have a representation space sgdmyneigenstates,,,,, of
the harmonic oscillator on the noncommutative pl&ge This will be done explicitly

in sectiol 2.4.

2.3 Interlude

Before moving on to noncommutative oscillator modes we rteegkcall some ele-
mentary facts[[19]. Consider the spageof all entire functionsf : C — C such
that

flz)= 3 C—nz”, 3 len]? < oo (12)

This space is Hilbert with respect to the scalar product
3 1 * * r3 —|z|?
1P =5 [ 42" Ao @F ), (13)

where the asterisk denotes complex conjugation, and tegrimitextends over alk?
with z = (z + iy)/+v/2. An orthonormal basis is given by the set of all complex
monomials N
z

fn(2): Nk n € N. (14)
The spaceF' is calledBargman—Segal spaceThe f,, are in 1-to—1 correspondence
with the harmonic oscillator eigenstaigs of sectior 2.P.

Next consider the following variant of Bargman—Segal spae¢us consider func-

tionsg : R — C such that

o cn o
g(l’) = Z _/_xn’ Z |C71|2 < 09, (15)
n=0 n! n=0

thec, being complex coefficients. Here our functionare complex—valued analytic
functions of oneaeal variablez. Call G the space of all functions satisfying {15). A
basis forG is given by the set of all real monomials

gn(T) = ﬁ, n € N. (16)



We can define a scalar product 6rby declaring these monomials to be orthonormal,
<gn|gm> = §nm7 n,m €N, (17)

and extending the above to all elementglhy complex linearity. This scalar product
makes7 a complex Hilbert space. The difference with respect to Bamg—Segal space
Fis that, the functiong € G depending on the real variabteinstead of the complex
variablez, the scalar product of¥ is no longer given by (13), nor by its real analogue.
Indeed, given any twg, g € G, the analogue of (13) fa& would be the integral

[ g @stare (18)
Although this integral does define a scalar productinhis scalar product does not
make the basig (16) orthogonal, as one readily verifies. éfber one, and only one,
of the following properties can be satisfied:
i) the spacé? is Hilbert with respect to the scalar producil(18), but thenoraial basis
(@8) is not orthogonal with respect to it;
ii) the space is Hilbert with respect to the scalar produlct](17), and thenamoial
basis[(I6) is indeed orthonormal with respect to it, but $eslar product is not given
by the integral[(1B).
This being the case, we settle in favour of conditiprnabove as our choice for the
Hilbert space?.

Finally, the construction given by egnd._[15)J(17) can baightforwardly ex-
tended to complex—valued, analytic functionswb real variablest, y. This will be
used next.

2.4 Noncommutative oscillator modes

Next we construct a unitary, Hilbert—space representdtiothe algebra(3), in terms
of noncommutative oscillator modes. It will be based on tlibétt space, just men-
tioned in sectiof 213, of complex—valued, analytic funesiof two real variables—but
with noncommuting, selfadjoint operataesplacing the real variables.

Consider first an auxiliary copyt of the Heisenberg algebra, spanned by operators
V, W, 1 satisfying[V, W] = i01, where bothV” and W have dimensions of length.
The algebraH is realised in the standard way. acts on auxiliary wavefunctions
h(v) by multiplication, Vh(v) = vh(v), andW acts by differentiation}Vh(v) =
—ifdh/dv. That the dimension of is length squared, rather than that of an action,
should not bother us, sinc¥ is an auxiliary construct. The corresponding Hilbert
space of the wavefunctiorigv), also termed auxiliary, i€.?(R,dv). This Hilbert
space, however, isotthe carrier space of the unitary representation of the atgé)
that we are looking for. To reiterate, the algefiral¥’] = 161 just introduced, although
isomorphic to the subalgebfa’, Y| = i1 contained in[(B), acts on the auxiliary space
L?(R,dv), while the space on which the algelirg Y] = if1 will act is about to be
defined below.

Next letU (#) denote the universal enveloping algebr&bfBy definition,U (H)
is the algebra of polynomials in the operatdidV, 1, of arbitrarily high degree, with



V andW satisfying[V, W] = i#1. Some suitable completion 6f(?), denoted/ ()
and to be constructed presently, is the space of convergerdrseries i/, . We
take an arbitrary vector df (%) to be an expression of the form

o0

C
VW) = — YW, 19
(V. W) n,;) —— (19)

where thec,,, are complex coefficients, such that the above series coesdig a
sense to be specified presently). The fa¢gr-™)~1/2 ensures that all summands are
dimensionless. From now we will prescribe all vectoré/g¢#{) to be normal-ordered,
i.e, V will alwaysbe assumed to precetlé, if necessary by applying the commutator
[V, W] =i01.

A basis forU (H) is given by the vectors

1
vnlm! gn+tm

The simplest choice for a scalar product@(H) is to declare the basis vectofs]20)
orthonormal,

Vi (V, W) = VPW™, pomeN. (20)

<1/Jn1m1 |d]n2m2> = 5711712 (Smlmga (21)
and to extend (21) to all d¥ (%) by complex linearity. Then the squared norm of the
vector [I9) equaly ", |cnml|?:

[ (V, W)* = Z |eml?. (22)

n,m=0

Since this norm must be finite, this identifié§#) as the Hilbert space of square—
summable complex sequendes,,, } in two indicesn, m, the latter taken to be normal—
orderedas in [20); this defines the completionié{#) referred to above. It is worth-
while to observe that, although the vectdrs (19) are unbedogerators in their action
on the auxiliary Hilbert spacé?(R, dv), the same vectordo have a finite norm as
elements of the Hilbert spadé(#). This is so because the normfV, W) in (22)
is being measured by means of the complex coefficiepts not by means of the op-
erator norms o/, W (themselves infinite). We will henceforth call ths,,,, of (20)
noncommutative oscillator modes

The Hilbert spacd/(#) just constructed will become the carrier space of a rep-
resentation of the algebril (3). For this we need to define ¢tieraof the operators
X,Y, Px, Py on the noncommutative oscillator modgs|(20). We set

Xwnm = \/g ( vn + lwn+1,m + \/ﬁdjnfl,m) (23)
and "
PXwnm = \;ﬁ (\/ n+ lwnJrl,m - \/ﬁwnfl,m) . (24)



For the second index we define the actiotoPy similarly, with the sole difference
that the (reverse) Bopp shiffl(4) must be taken into account:

Ywnm = \/g(\/ m+ 11/]n,m+1 + \/Ed]n,m—l) + %wanm (25)

and
\;% (V m + 11/Jn,m+1 - \/Ewn,m—l) . (26)
Finally, the operatorX, Y, Px, Py so defined are Hermitian and satisfy the algebra (3)
as desired. The aboV&, Y, Px, Py are distinguished notationally from the operators
X'.Y' Py, Pj of (8)—(11) in order to stress the fact that they are actudifferent
operators acting on different spdaesven if the two sets of operators satisfy the same
algebral(B). From now on we will only work with the represeiataof the algebrd{3)
provided by [(ZB)-£(26).

Although they will not be used here, the previous resultstiapasily generalised
to higher dimensions [20].

wanm =

3 The Hamilton—Jacobi equation on the Moyal plane

Our next task is to write down the Hamilton—Jacobi equatibar. this we define the
following dimensionless coordinatés,, Q g and momentd,, Pg:

1 Vo 1 Vo NG
— —x, Py=Yp,. ——v-Yp. py=Yp,. (27
Qa 7 A Px QB 7 - Px B Py (27)

These operators satisfy the standard, dimensionlesgsdPsisleisenberg algebra:

[Qa, Pal = [Qp, Ps]l =11, [Qa,Q5]=[Pa, Pp]=[Qa, Ps] = [Qp, Pa] = 0.

(28)
One can think of the space spanneddy, @, P4, Pg as a commutative phase space,
the only difference being that coordinates and momentapeeators orl/ (#). Cor-
respondingly, phase—space derivatives will be replactutivée adjoint actior {5). Our
strategy will be to first write down the Hamilton—Jacobi efiprmon this commutative
phase space. Then we will transform the result back into dreommutative space
spanned bX, Y, Px, Py.

A key property of the classical mechanical act®mwhen expressed as a function
of the coordinates as in eqill (1), is that it serves as a patémiction for the momenta,
i.e, py; = 0S§/0x andp, = 9S/0y. This property must be maintained in the case un-
der consideration here, where coordinates and momentgparator-valued, and the
adjoint action replaces the partial derivatives. Thus wedrte find a Hermitian oper-
ator, that we will call theoperator-valued actiory, depending orQ 4, Pa, @5, Pz,
and such that it will yield the momenta when one takes theiaidgation with respect

2All infinite—dimensional, complex, separable Hilbert spabeing unitarily isomorphic, the above state-
ment is to be understood dgferent realisations of Hilbert space



to the coordinates. In order to obtain a linear expressidhemmomenta, we neeslto
be a quadratic combination of the momenta. This leads oreetéotlowing operator:
1
h
HereU(Q a4, @p) is a dimensionless real function f4, @ 5, that we can look upon

as an operator—valued generalisation of the classicahpatéunctionl/(x, y) of eqn.
(@). Indeed, whatever our choice fol(Q 4, Q ) we find

iPA = adQA (S), iPB = adQB (S) (30)

1 1
S:=——Ftl+ §Pf, + §Pg, —U(Qa,QB). (29)

as one should; the factors oénsure the Hermitian property. Eqris.1(2B}.l (30) are to be
regarded as the noncommutative generalisation of €djnWeé)would like to observe
that the following consistency check dn{30) is satisfiede Trtegrability condition
028 /0ydx = Op,/dy = Op,/0x = 8>S /zdy holds true in eqn[{1). Therefore the
operator analogue of this classical integrability comditshould read

adQA (PB) = aJdQB (PA)v (31)

and, indeed, this is satisfied thanks to the Jacobi idefdjty (

The operator actioty is a dimensionless, Hermitian quantum operator acting on
the carrier spac& (H). Now, in order to write down the Hamilton—-Jacobi equation, a
Hamiltonian is needed. We will make a judicious choice fa tramiltonian operator,
followed by some consistency checks to ensure that our ehisicorrect. We claim
that the Hamiltonian operatdf correponding to[(29) is given by

1 1
H= §P§+§P§+U(QA7QB)- (32)

The above is also a dimensionless, Hermitian operator.aeeyp phase—space deriva-
tives with adjoint actions, it is reasonable to demand thatHamilton equations of
motion be

Py = —adg,(H), Qa=adp,(H) Pp=—adg,(H), Qp=adp,(H).

(33)
We find, for the Hamiltoniari{32) and the canonical gair, P4,
adp, (H) = —ia—U, adg, (H) =iPy. (34)
0Qa
Thus Newton'’s law is satisfied as it should, because
. d ) oUu
Qa = o (adp,(H)) = adp, (H) = ~[[Qa, H], H] = —i[Pa, H] = ~a0a (35)

Obviously the same holds for the other canonical pair, Px.
We can now write down the noncommutative Hamilton—Jacoba&iqn for a par-
ticle of massn on the Moyal plane, subject to the potenfiglQ 4, Q). It reads

as h 1

o T |5 (adaa(9))" - % (ado,(5))* + U(Qa,Qp)| =0.  (36)



We draw attention to the negative sign preceding the squadgint actions, due to

the imaginary units in[{30); otherwise_(36) is the naturaémpor generalisation of

its classical counterpaifl(2). The factlf(m#6) has the dimensions of time inverse,
thus making[(36) dimensionally homogeneous. We will findsiéful to separate out

in (29) the piece that is proportional to the identity, theaving the reduced, or time—
independent, operator actioh?:

1 1 1
S=-+Bt1+ SO g) .~ EPZ‘ + 5P,_%,, —U(Qa,QB). (37)
Then [30) becomes
iPy = adg, (5<0>) ., iPg =adg, (5<0>) , (38)

which gives the time—independent Hamilton—Jacobi equoatio

2
o |5 (10,(5)" = 5 (aden (5°) + UQu.Qu)| =B (39
mo 2 2
Here appears the quantity/(m#f) mentioned in section 2.

A commentis in order. In principle one would not expect Plémconstant: to be
present in the Hamilton—Jacobi equation, since the latardlassical equation, which
arises before quantisation. This much is true of theoriesoommutative spaces. How-
ever, as remarked in sectibh 1, any theory on noncommutspiaee must includé
because, on an energy scale, quantum effects set in mu@r ¢aaihh noncommutative
effects. This being the case, the distinction betwalassicalandquantunturns out to
be rather formal.

A more mundane explanation of the same fact is provided bydit@ving argu-
ment. The noncommutative theory depends on the dimendipafameterd. The
latter must enter the Hamilton—Jacobi equation. Now (3@)(&8) cannot be balanced
dimensionally in terms of just one dimensionful paramea¢dpast one more dimen-
sionful parameter is needed for homogeneity. Planck’'steon does precisely that
job.

Using [2T) we can now rewrite the operator actioffZd) in terms ofX, Y, Py, Py:

0

1 0
Si=——Etl+ —P% + =—
+ X+ 573

Some caution is necessary here since, in general, the j@temtctionU(Q4, Q)
suffers from ordering ambiguities once we expr@ss @ g in terms of X, Y, Px, Py.
This requires that some ordering prescription be adopted\Wey!'s symmetrisati(ﬁ
We also observe that the potentialin (40) can depend oR, but not onPy-, due to
the Bopp shiftl[#). From the time—independent operatooadi® of (37) we similarly

obtain o o
SO .= ﬁp)% + ﬁpg —U(X,Y,Px). (41)

3This is not specific to our approach in terms of operator-agiquantities, since the same ordering
ambiguities would arise if we used a star product.

10



For the time—dependent Hamilton—-Jacobi equafioh (36) vee fin

s h | 1 . 1 0 ?
E—i_% [—%(adx(S)) ~ 2 (ady(S)—ﬁade(S)) +U| =0, (42)
while its time—independent versidn {39) becomes
2|1 2 1 0 2
o= (0) _ 0y _ Z (0) —
— [ = (adX(S )) = < dy (5©) = Zadpy (S )> +U| =B (43)

Altogether, eqns. [(42) and@_(43) above reexpress the Hamilkacobi equations
(@38) and [(3D) in terms of the noncommutative variahley’, Px, Py-. However, in
general one should stop short of callingl(42) and (43) Ham#acobi equations in
the strict sense of the word. For such to be the case, onedsbeuhble to replace
any possible occurrence dfx with its expression in terms ofdx (S). One such
occurrence happens within the potential This makes the replacement impossible, as
we see from[(40), because one s = hadx (S+U)/(i6): in trying to eliminatePx
in favour ofad x (S), the offending term in the potentiél reappears! MoreoveFRx
also shows up in the termasl p, (S) andad p, (S(?)), where it should also be replaced.

A moment’s reflection shows that, in fact, things are exaasiyhey should. Let us
go back to eqns[11)[2), where it is implicitly understobdttz, y, p,, p, satisfy the
standard Poisson algebfa, y} = 0 = {p.,p,}, {z.p,} = 0 = {y,p.}, {z,p.} =
1 = {y,p,}, which is isomorphic to that if(28). All these variables aamonical.
This fact guarantees that the replacements= 0S/0x andp, = 0S/0y, as well as
their operator—valued analogug%, = adg, (S),1Pg = adg, (S), can be performed.
Thus [36) and[(39) arbona fideHamilton—Jacobi equations. However, neither the
Bopp shift[4) nor its inverse is a canonical transformatimtause the algebra satisfied
by X,Y, Px, Py differs from that satified by) 4, @ 5, Pa, Pg. The latter are canonical
variables, while the former are not.

To summarise, we have written down the Hamilton—Jacobitouasing a set of
(operator—valued) canonical variabtes , @ 5, P4, P, and we have then transformed
the resulting equation using a set of noncanonical var&a¥lé’, Px, Py, by means of
a diffeomorphism (the Bopp shift) that doest qualify as a canonical transformation.
There is no way the Moyal phase spd@ﬁ can becanonicallytransformed into the
standard phase spaBg. Physically this is so because the quantum of @réaat is
present inRj , is absent ifR}. The Bopp shift respects the quantum of actiorut
not the quantum of area

4 The Schroedinger equation on the Moyal plane

In order to write down the Schroedinger equation on the Mpjahe, we will follow
the same strategy of sectibh 3. Namely, we will first work vifite canonical variables
Qa, @B, Pa, Pg of (24), in terms of which we will write down the Schroedinggua-
tion; only then will we transform back to the noncommutatregiablesX, Y, Px, Py.
The Schroedinger equation we will arrive at will turn out te ‘malid only semi-
classically. We first need explain what one understandsesemiclassical limit of
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noncommutative quantum mechanics. In the commutative tassemiclassical limit
is obtained a& — 0, when the Schroedinger equation reduces to the Hamiltaobia
equation. Since noncommutative quantum mechanics centaim deformation pa-
rameterdi, 6, we ask what the precise regime of these parameters is thasponds
to the eikonal approximation. We claim that the eikonal agpnation corresponds to
the limit » — 0 and® — 0 while holdingh?/(m#) fixed. Obviouslyh must go to
zero. However, as mentioned in the introduction, nonconatiugt effects set in (on
an energy scale) much later than quantum effect#, se 0 enforced) — 0 as well.
Since the ratidi? /(m#) must be held fixed for the Hamilton—Jacobi equatfon (36) (or
its reexpression (42)) to be well defined, this proves ountla

To begin with, let us consider the free caBes= 0. We expect a time—independent,
semiclassical wavefunctich(®) to be given by the exponential aftfmes) the reduced
action of eqn.[(37):

o® = exp (iS®) = exp (%Pj + %Pg) . (44)
Using the algebrd (28) we find
adg, @ = —P,0®  adg, o = —ppa® (45)
and
adg, @ = (P§ —i1) @, ad}, o = (P —i1) @. (46)

Rememberind(38) we arrive at

1 . 1 2 2
5 (adg, +adg, +2i) o = — [(adQA (SO)" + (ades (5)) } 2
(47)
Now eqn. [39) suggests equating the right—hand sidert@®(®) /2
1 9 9 ) Emo
5 (adg, +adg,, +2i) ™ = = o), (48)
Setting® := &) exp (—iEt/h) we can finally write
12 9 2 . . 0P

Let us take stock. The expressimgQA + aszB on the left-hand side can be in-
terpreted as an operator—valued analogue of the standpladiang? /9% + 62 /022
The term2il can be interpreted as a constant potential, and can thereéodropped.
As it stands, [(49) is strictly equivalent to the Hamiltoredlai equation[(36) when
U =0, and we can declare

h? 9 9 . 0P
m (adQA + adQB) q) = lhE (50)
to be the Schroedinger equation for a free particle on theaVjolane. Modulo the fac-
tor 42 /2m#, eqn. [BD) is formally identical to the standard Schrodireggiation. How-
ever it must be borne in mind that its structure is substhytikfferent. Eqn. [BD) is
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notthe expression of an operator acting on a vector, to produathar vector. Rather,
it expresses an equality between operators. By the sama,titkdime—independent
form (48) is not a eigenvalue equation for a vector, but aemiglue equation for the
eigeroperator®(®), (This is the operator analogue of the star—eigenvaluetiesa
see.e.qg, ref. [21]). Last but not least, we recall that no approximahas been made
in order to reproduce the Hamilton—Jacobi equation from3bleroedinger equation,
as [50) and[(36) are strictly equivalent whEn= 0. We will see presently that this
equivalence will also remain in the interacting case, atleathe semiclassical limit.
In the presence of a potentidl the natural generalisation ¢f(50) is

L OU
adp, +adp,, +U(Qa, Qp)] ¥ = lhE. (51)

h2
3mf |

We look for semiclassical solutions fo {51) in the foim= ¥(©) exp (—iFt/h), where
U0 is suggested by (37):

¥® = exp (is<0>) — exp [%Pj n %Pg —iU(Qa,Q38)] - (52)

Unfortunately there is no neat expression for the analogi@H) and[[46) whed/ is
nontrivial. One can power—expand the exponeritidl (52) ahdigh adg, , , adg,, term
by term, but the presence of a nonconsfaf®) 4, @) prevents a tidy rearrangement
of the result into any manageable expression. This is uléipalue to the fact that,
whenU is nonconstant[ ($2) doemt factorise as

exp (%Pj + %Pﬁ) exp [-1U(Qa, @B)] - (53)

In turn, the impossibility of the factorisatioh (53) is due the nonvanishing of the
following commutators:

ou . oU 2 . ou  oU
Qs agath e U= g0, "0,
However, we should remember that the commutafors (54) heee bomputed using
the dimensionless algebfa{28). When one reinstates pafidrsone immediately
sees that the right—hand sides[of](54) éx). In the semiclassical limit considered
throughout in this paper, one may drop terms of ordehile keepingh? /(m#) fixed.
We may thus approximate the right—hand side$ of (54) by zarihis limit, the wave-
function [52) can be approximated by its factorised fdrn) (53

[P3,U] = —iPa Pp. (54)

WO = oxp (373 + 57 ) exp [-iU(Qa. Q)] (55)

Using the semiclassical wavefunctign}(55), one sees tieatghsoning from eqnl_(45)
to egn. [(BD) continues to hold true in the presence of thentiatd/ (Q 4, Q). In this
way one establishes that the operator wavefunctias= ¥ exp (—iFEt/h) satisfies
the Schroedinger equatidn {51). For the latter we clainditdivithin the semiclassical
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regime only, given the approximation made[inl(55). Morepasmwas already the case
for the free particle, the Schroedinger equatfod (51) inpilessence of a potentiél is
strictly equivalent to the Hamilton—Jacobi equatibnl (36) this sense, the difference
between these two equations lies in the choice one makekdaguantity one works
with, i.e., either the actiorb or its exponential. We should also add that the reverse
order for the factors i (35) would be justified just as weltle semiclassical limit.
Within the accuracy of this limit, it is actually a matter diaice which exponential
appears on the left and which one on the right.

As a final step, we need to recast the Schroedinger equétif)riFerms of the
noncommutative variableX, Y, Px, Py. This is readily done: using (27) we perform
the replacement
1

éadfz

2 0
_ ﬁadpx ady + —ad?gx (56)

1
adQQA + ad? s = —ad3} + 2

0
in (&1). This gives
r? T1

A 2
5mg |320x +

0 00
adp, ady + ﬁadQPX +U(X,Y, Px)| ¥ =il

(57)

1
6

2
2 _— =
ady 5
The samecaveatdiscussed at length after eqn.(43) applietd (57) as well.

5 Discussion

In this paper we have taken some first steps towards a heagpooazh to quantum
mechanics on noncommutative spaces, an approach thatémasi&manded and stud-
ied to some extent in the literature [22]. The novelty lieghie attempt to express
wavefunctions purely in terms of operator—valued cooridisarather than in terms of
c—valued functions that are multiplied together by mearessthr product. The under-
lying logic is as follows. CoordinateX, Y on the Moyal plane are operators satisfying
[X,Y] = i#1. This implies that wavefunction§, as functions ofX, Y, must also
be operators. This represents a radical departure fromiéwepwint of deformation
quantisation, where noncommutativity lies hidden underdtar product of c-valued
wavefunctions. Not only wavefunctions, but the mecharacsibn itself (the solution
to the Hamilton—Jacobi equation) must become an operathis i$ totally natural
since, at least in the semiclassical limit, one expects thetranical action to be pro-
portional to the logarithm of the wavefunction. If the latie an operator, so must be
the former.

The strategy followed in writing down the Hamilton—Jacobilahe Schroedinger
equations on the Moyal plane involves three steps. The faptis to use the Bopp shift
(@), in order to transform the original noncommutative abtesX, Y, Px, Py (satisfy-
ing the algebrd(3)) into dimensionless varialiles, Q 5, Pa, Pp (satisfying the alge-
bra [28)). In terms of the latter there is a well-defined pdoce for writing down the
Hamilton—Jacobi equation. The second step is to pass tberad the Schroedinger
equation. This second step involves some generally acntgnMSwov& The third,

4This guesswork is sometimes summarised in the statemerifirdtequantisation is a mystery, second
guantisation is a functor
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and final, step, is to undo the Bopp shift and transform theguos so obtained back
into the original noncommutative variablés, Y, Px, Py. The Bopp shift is a dif-
feomorphism that doesot qualify as a canonical transformation. However we need
canonical variables in order to first write down the Hamiftdacobi equation, which
one later uses as a bridge to the Schroedinger equation.phaied in detail towards
the end of sectiohl3, it is impossible tanonicallytransform the Moyal phase space
R;‘_’h into the standard phase spakg. Physically this is so because the quantum of
aread that is present ifR; , is absent irR}. The existence of the two quarftand?
leads to the existence of a natural energy séajgme) (for any given particle mass
m), which is absent in standard quantum mechanics.

A key element in our construction is provided by the nonconatine oscillator
modes,,,, of section[Z.#. The),,, are qguantum mechanical wavefunctions of a
harmonic oscillator defined on (an auxilary copy of) the Mgylane. Asf — 0, the
Ynm Must be replaced with the commutative oscillator moglgs of sectiof 2.P (the
$nm are standard oscillator modes BR). Finally settingd = 0 but/6 = 1 (as befits
the fact that/d > # whend — 0) we see that eqnd_(23) {0 (26) respectively become
egns.[(B) to[(111): this is the commutative limit.

The symmetry algebra (the commutator algebra of seLtidnirealised unitarily
on the Hilbert spac¥ (#) spanned by the noncommutative oscillator moggs. The
latter are not to be confused with the true quantum stiitekthe theory. We thus meet
a situation in which the quantum statéf the theory daot support a representation
of the symmetry algebra—in apparent violation of Wignehsdrem. There is how-
ever no violation, because Wigner's theorem implicitlyuaess a commutative space.
The stateg),.,,, that support a representation of the symmetry algebra taenediate
states in our construction, while the true quantum stétdseing operator-valued and
thus noncommutative, are not bound by Wigner’s theoremnaigh a representation.
Similar arguments apply to the Stone—von Neumann theoresipplged to the subal-
gebralX, Px] = ih = [Y, Py]. This latter theorem is also not violated since it too
presupposes a commutative space.

The following thoughts, of a somewhat speculative nature,callected here to
conclude. It was mentioned in the introduction, and alsatrafter the Hamilton—
Jacobi equatio (39) that, in the presence of noncommittative distinction between
classicaland quantumturns out to be somewhat formal, devoid of physical content.
This is so because, in principle, one does not expect Plamckistant to arise at the
level of the classical Hamilton—Jacobi equation—but thet i it does arise. There is
also no way one can haveparely classicahoncommutative theory because quantum
effects set in much earlier, on an energy scale, than nonedative effects. Moreover,
when the potential is constant on the Moyal plane, the Sdhinger equation (for the
exponential of the action operator) and the Hamilton—-Jaeqbation (for the action
operator alone) are actually equivalent. This is in markedrast with the case of com-
mutative quantum mechanics, where the same equivalends boly semiclassically.

In the interacting case on the Moyal plane this equivaleheerfeen Schroedinger and
Hamilton—Jacobi) is generally lost (of course, it contistee hold in the semiclassical
limit). One is thus tempted to call this state of affairslassical/quantum dualitgf

noncommutative quantum mechanics. It is interesting teokesthat analogous ef-
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fects have been reported [n [7,[8] 23]. Although the lattéerris somewhat different
contexts, they are by no means totally different from oursie @ also reminded of
the UV/IR mixing of noncommutative field theori€s [24]. Adfether, we find these
similarities very suggestive.
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