
ar
X

iv
:1

00
7.

49
29

v1
  [

he
p-

th
]  

28
 J

ul
 2

01
0

ON THE NONCOMMUTATIVE EIKONAL

J.M. Isidro 1,2,a, P. Fernández de Ćordoba1,b, J.M. Rivera–Rebolledo3,c
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Abstract We study the eikonal approximation to quantum mechanics on the Moyal
plane. Instead of using a star product, the analysis is carried out in terms of operator–
valued wavefunctions depending on noncommuting, operator–valued coordinates.

1 Introduction

That spacetime must stop being a continuum once sufficientlyhigh energies are reached
is by now an old notion. Already in the 1930’s, Heisenberg replaced a continuum
spacetime with a lattice, in order to tame the divergences ofquantum field theory. This
lattice broke Lorentz invariance, which later models [1] succeeded in preserving. At-
tempts to quantise gravity also lead to the introduction of afundamental length scale.
This fundamental length scale, beyond which the concept of distance becomes mean-
ingless, is called the Planck length. Replacing a continuumwith some kind of dis-
crete, or quantised, manifold, leads naturally to the conclusion that coordinates must
be operator–valued quantities.

The purpose of this paper is to analyse the eikonal (or semiclassical) approximation
to nonrelativistic quantum mechanics on the Moyal planeR2

θ, the latter being coordina-
tised by operatorsX,Y satisfying the Heisenberg algebra[X,Y ] = XY −Y X = iθ1,
with θ > 0. In particular we will need to write down the Hamilton–Jacobi equation,
and its close cousin the Schroedinger equation, on the noncommutative plane. Two
steps are involved here:
i) defining a classical mechanics on the noncommutative planeR

2
θ;

ii) quantising the classical mechanics so defined.
On an energy scale, quantisation (~ > 0) sets in well before noncommutativity (θ > 0).
In other words, in the real world one expects mechanics on a noncommutative space to
be automatically quantum, rather than classical. We will see that, in fact, stepsi) and
ii) above are inextricably linked. However, if only methodologically, we will consider
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the two steps above separately.
There are several alternative, though basically equivalent, approaches to physics

on noncommutative spaces. One approach, by far the most widespread, uses number–
valued coordinates and momenta (and functions thereof), while replacing the commu-
tative pointwise product of functions with a noncommutative star product [2]. Another
approach, little developed so far, uses operator–valued coordinates and momenta al-
ready from the start. Coordinates and momenta are now multiplied as matrices. In par-
ticular, operator–valued coordinates satisfy certain nontrivial commutation relations.
In this paper we will further develop this second approach: we want our wavefunctions
Ψ to be functions of the position operatorsX,Y , the latter satisfying[X,Y ] = iθ1.
This will imply that the wavefunctionΨ itself will become an operator. This property
is reminiscent of second–quantised theories. In fact it hasbeen argued [3] that (yet an-
other) approach to noncommutative quantum mechanics is provided by the 1–particle
sector of noncommutative quantum field theory; then the noncommutative wavefunc-
tion, a c–number object, arises as a matrix element of a field operator1. However we
prefer to stay within the framework of a finite number of degrees of freedom, and to try
and construct wavefunctions that are operator–valued fromthe start, without resorting
to field theory. After all, at least on commutative spaces, itis perfectly possible to for-
mulate the quantum mechanics of a finite number of degrees of freedom, in a manner
that is totally independent of quantum field theory,i.e., without embedding quantum
mechanics into an infinite number of degrees of freedom. We will see that noncommu-
tative spaces also share this possibility. One surprising outcome of our approach will
be that the mechanical action itself (the solution to the Hamilton–Jacobi equation) will
also become an operator, without second–quantising the theory.

One can turn our argument around and analyse to what extent quantum mechanics,
especiallyemergentquantum mechanics [4] and alsoemergentgravity [5, 6, 7], im-
ply a granularity of spacetime. A comprehensive expositionof emergent physics, with
extensive references, is given in the nice book [8]. The existing literature on noncom-
mutative theories (deformation quantisation, quantum mechanics, field theory, string
theory, gravity) is too vast to quote here, but we would like to mention the general refs.
[9, 10, 11, 12]. Geometric treatments of quantum mechanics have also been studied in
depth; for a sample see,e.g., [2, 13, 14, 15, 16].

Approaches to quantum theory that are primarily based on Hamilton–Jacobi equa-
tions (and generalisations thereof) are well known; we willjust mention [17] and the
many references therein. For later use we recall that classical Hamilton–Jacobi theory
on the commutative configuration spaceR2 coordinatised byx, y can be (extremely
succintly) summarised by the equations

S = −Et+
∫

pxdx+ pydy, px =
∂S
∂x

, py =
∂S
∂y

(1)

and
∂S
∂t

+
1

2m

[

(

∂S
∂x

)2

+

(

∂S
∂y

)2
]

+ U(x, y) = 0, (2)

1Of course, the previous statement also applies to theories on commutative spacetimes.
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whereU(x, y) is a potential function. We use the notationS for theclassicalaction in-
tegral on the commutative planeR2, in order to distinguish it from theoperator–valued
actionS to be introduced presently on the Moyal planeR2

θ. The same notational con-
vention applies to the classical potential functionU and to its operator–valued analogue
U , to be defined later.

This paper is organised as follows. Section 2 presents the noncommutative algebra
of position and momentum operators that our construction isbased upon. This algebra
can be unitarily represented in a number of different ways. For reasons that will become
clear presently, our favourite representation is given in terms ofnoncommutative oscil-
lator modes. The latter can be thought of as harmonic oscillators on (an auxiliary copy
of) the Moyal plane; we provide an explicit construction of these noncommutative os-
cillator modes, in some detail. Once position and momentum operatorsX,Y, PX , PY

are defined in terms of these modes, we need to define a mechanical actionS depend-
ing onX,Y, PX , PY and such that properties as close as possible to those satisfied by
its commutative counterpart (1), (2) continue to hold true.This is done in section 3.
By now we have an objectS that plays the role of the classical mechanical actionS.
HoweverS is operator–valued, because the position and momentum variables it de-
pends on are themselves operators. The next step, at least ina semiclassical analysis,
is to consider the exponential of (i times)S, and to derive the equation satisfied by the
latter, the Schroedinger equation on noncommutative space. This is done in section 4.
Despite the numerous formal analogies with quantum mechanics on the commutative
plane, there are some substantial differences that are pointed out along the way. Finally
section 5 presents some concluding remarks concerning:
i) the role of the Bopp shift and the nonequivalent Poisson structures that it relates;
ii) the commutative limit of our model;
iii) the resolution of some apparent clashes with some classicaltheorems of Wigner,
and of Stone and von Neumann;
iv) some speculations about a classical/quantum duality in noncommutative theories.

2 The noncommutative Poisson–Heisenberg algebra

2.1 The commutator algebra

The noncommutative planeR2
θ is defined as the algebra of functions of two generators

X,Y satisfying the commutator[X,Y ] = iθ1, with θ > 0. We regardR2
θ as a two–

dimensional configuration space endowed with noncommutingcoordinatesX,Y . On
the corresponding noncommutative phase spaceR4

θ,~ we have the operatorsX , Y , PX ,
PY satisfying a commutator algebra that we postulate to be

[X,Y ] = iθ1, [X,PX ] = [Y, PY ] = i~1, [PX , PY ] = [X,PY ] = [Y, PX ] = 0,
(3)

We will call the set of eqns. (3) the 2–dimensional,noncommutative Poisson–Heisenberg
algebra. The time variabletwill be taken to commute with all generatorsX,Y, PX , PY .
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It has been known for long that theBopp shift

Y 7→ Y − θ

~
PX (4)

reduces the noncommutative Poisson–Heisenberg algebra (3) to the usual Poisson–
Heisenberg algebra in two commuting space dimensions. Thisnotwithstanding, it is
instructive to work with the algebra (3). This is so because one can think of (3) as being
the commutator algebra of quantum mechanics withtwodeformation parameters—one
quantum of areaθ, one quantum of action~. Standard quantum mechanics contains
only the quantum of area on phase space,~; noncommutative quantum mechanics adds
a quantum of area on configuration space,θ. In the presence of the two quanta~ and
θ, and given a particle of massm, the quantity~2/(mθ) has the dimensions of energy.
We will see that the quantity~2/(mθ) plays an important role in what follows.

As usual we define the adjoint action of operatorA on operatorB by

adA(B) = [A,B]. (5)

The adjoint actionadA(B) behaves formally as a derivative: it is linear and satisfies
the Leibniz rule

adA (BC) = adA (B) C +B adA (C) . (6)

We also have the Jacobi identity

[adA, adB] = ad[A,B], (7)

which expresses a generalisation of the integrability property∂2f/∂x∂y = ∂2f/∂y∂x
valid for derivatives of functionsf(x, y). Replacing phase–space derivatives with ad-
joint actions will be an essential tool in our approach to noncommutative quantum
mechanics.

2.2 Commutative oscillator modes

We will first construct a Hilbert–space representation for the commutator algebra (3),
in terms ofcommutativeoscillator modes. This is of course trivial, but it will serve as
a warmup exercise for the construction in terms ofnoncommutativeoscillator modes.
Consider the usual harmonic oscillator eigenstatesφn in 1 dimension, wheren ∈ N.
The space spanned by theφn is ℓ2, the Hilbert space of complex, square–summable
sequences. In two commuting dimensionsx, y we have the eigenstatesφnm(x, y) =
φn(x)φm(y). The latter form an orthonormal basis for the Hilbert spaceℓ2 × ℓ2. Posi-
tion and momentum operatorsX ′, Y ′, P ′

X , P
′
Y can be defined on the spaceℓ2 × ℓ2 as

usual [18]: acting on the first index,

X ′φnm :=

√

θ

2

(√
n+ 1φn+1,m +

√
nφn−1,m

)

, (8)

P ′
Xφnm :=

i~√
2θ

(√
n+ 1φn+1,m −

√
nφn−1,m

)

. (9)
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For the second index we define the action ofY ′, P ′
Y similarly, with the sole difference

that the (reverse) Bopp shift (4) must be taken into account:

Y ′φnm :=

√

θ

2

(√
m+ 1φn,m+1 +

√
mφn,m−1

)

+
θ

~
P ′
Xφnm, (10)

P ′
Y φnm :=

i~√
2θ

(√
m+ 1φn,m+1 −

√
mφn,m−1

)

. (11)

One verifies that the operatorsX ′, Y ′, P ′
X , P

′
Y indeed satisfy the algebra (3). We have

denoted these operators with a prime because this representation is unsatisfactory for
our purposes. Indeed, there is nothing noncommutative about the eigenstatesφnm:
they are simply those of the harmonic oscillator on the commutative planeR2, non-
commutativity being implemented in the algebra by means of the (inverse) Bopp shift.
Instead one would like to have a representation space spanned by eigenstatesψnm of
the harmonic oscillator on the noncommutative planeR2

θ. This will be done explicitly
in section 2.4.

2.3 Interlude

Before moving on to noncommutative oscillator modes we needto recall some ele-
mentary facts [19]. Consider the spaceF of all entire functionsf : C → C such
that

f(z) =

∞
∑

n=0

cn√
n!
zn,

∞
∑

n=0

|cn|2 <∞. (12)

This space is Hilbert with respect to the scalar product

〈f |f̃〉 := 1

2πi

∫

dz∗ ∧ dz f∗(z)f̃(z)e−|z|2 , (13)

where the asterisk denotes complex conjugation, and the integral extends over allR2

with z = (x + iy)/
√
2. An orthonormal basis is given by the set of all complex

monomials

fn(z) :=
zn√
n!
, n ∈ N. (14)

The spaceF is calledBargman–Segal space. Thefn are in 1–to–1 correspondence
with the harmonic oscillator eigenstatesφn of section 2.2.

Next consider the following variant of Bargman–Segal space. Let us consider func-
tionsg : R → C such that

g(x) =

∞
∑

n=0

cn√
n!
xn,

∞
∑

n=0

|cn|2 <∞, (15)

thecn being complex coefficients. Here our functionsg are complex–valued analytic
functions of onereal variablex. CallG the space of all functions satisfying (15). A
basis forG is given by the set of all real monomials

gn(x) :=
xn√
n!
, n ∈ N. (16)

5



We can define a scalar product onG by declaring these monomials to be orthonormal,

〈gn|gm〉 := δnm, n,m ∈ N, (17)

and extending the above to all elements ofG by complex linearity. This scalar product
makesG a complex Hilbert space. The difference with respect to Bargman–Segal space
F is that, the functionsg ∈ G depending on the real variablex instead of the complex
variablez, the scalar product onG is no longer given by (13), nor by its real analogue.
Indeed, given any twog, g̃ ∈ G, the analogue of (13) forG would be the integral

∫ ∞

−∞

dx g∗(x)g̃(x)e−x2

. (18)

Although this integral does define a scalar product onG, this scalar product does not
make the basis (16) orthogonal, as one readily verifies. Therefore one, and only one,
of the following properties can be satisfied:
i) the spaceG is Hilbert with respect to the scalar product (18), but the monomial basis
(16) is not orthogonal with respect to it;
ii) the spaceG is Hilbert with respect to the scalar product (17), and the monomial
basis (16) is indeed orthonormal with respect to it, but thisscalar product is not given
by the integral (18).
This being the case, we settle in favour of conditionii) above as our choice for the
Hilbert spaceG.

Finally, the construction given by eqns. (15)–(17) can be straightforwardly ex-
tended to complex–valued, analytic functions oftwo real variablesx, y. This will be
used next.

2.4 Noncommutative oscillator modes

Next we construct a unitary, Hilbert–space representationfor the algebra (3), in terms
of noncommutative oscillator modes. It will be based on the Hilbert space, just men-
tioned in section 2.3, of complex–valued, analytic functions of two real variables—but
with noncommuting, selfadjoint operatorsreplacing the real variables.

Consider first an auxiliary copyH of the Heisenberg algebra, spanned by operators
V,W,1 satisfying[V,W ] = iθ1, where bothV andW have dimensions of length.
The algebraH is realised in the standard way:V acts on auxiliary wavefunctions
h(v) by multiplication,V h(v) = vh(v), andW acts by differentiation,Wh(v) =
−iθdh/dv. That the dimension ofθ is length squared, rather than that of an action,
should not bother us, sinceH is an auxiliary construct. The corresponding Hilbert
space of the wavefunctionsh(v), also termed auxiliary, isL2(R, dv). This Hilbert
space, however, isnot the carrier space of the unitary representation of the algebra (3)
that we are looking for. To reiterate, the algebra[V,W ] = iθ1 just introduced, although
isomorphic to the subalgebra[X,Y ] = iθ1 contained in (3), acts on the auxiliary space
L2(R, dv), while the space on which the algebra[X,Y ] = iθ1 will act is about to be
defined below.

Next letU(H) denote the universal enveloping algebra ofH. By definition,U(H)
is the algebra of polynomials in the operatorsV,W,1, of arbitrarily high degree, with
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V andW satisfying[V,W ] = iθ1. Some suitable completion ofU(H), denotedU(H)
and to be constructed presently, is the space of convergent power series inV,W . We
take an arbitrary vector ofU(H) to be an expression of the form

ψ(V,W ) =
∞
∑

n,m=0

cnm√
n!m! θn+m

V nWm, (19)

where thecnm are complex coefficients, such that the above series converges (in a
sense to be specified presently). The factor(θn+m)−1/2 ensures that all summands are
dimensionless. From now we will prescribe all vectors ofU(H) to be normal–ordered,
i.e., V will alwaysbe assumed to precedeW , if necessary by applying the commutator
[V,W ] = iθ1.

A basis forU(H) is given by the vectors

ψnm(V,W ) =
1√

n!m! θn+m
V nWm, n,m ∈ N. (20)

The simplest choice for a scalar product onU(H) is to declare the basis vectors (20)
orthonormal,

〈ψn1m1
|ψn2m2

〉 := δn1n2
δm1m2

, (21)

and to extend (21) to all ofU(H) by complex linearity. Then the squared norm of the
vector (19) equals

∑

nm |cnm|2:

||ψ(V,W )||2 =

∞
∑

n,m=0

|cnm|2. (22)

Since this norm must be finite, this identifiesU(H) as the Hilbert space of square–
summable complex sequences{cnm} in two indicesn,m, the latter taken to be normal–
orderedas in (20); this defines the completion ofU(H) referred to above. It is worth-
while to observe that, although the vectors (19) are unbounded operators in their action
on the auxiliary Hilbert spaceL2(R, dv), the same vectorsdo have a finite norm as
elements of the Hilbert spaceU(H). This is so because the norm ofψ(V,W ) in (22)
is being measured by means of the complex coefficientscnm, not by means of the op-
erator norms ofV,W (themselves infinite). We will henceforth call theψnm of (20)
noncommutative oscillator modes.

The Hilbert spaceU(H) just constructed will become the carrier space of a rep-
resentation of the algebra (3). For this we need to define the action of the operators
X,Y, PX , PY on the noncommutative oscillator modes (20). We set

Xψnm :=

√

θ

2

(√
n+ 1ψn+1,m +

√
nψn−1,m

)

(23)

and

PXψnm :=
i~√
2θ

(√
n+ 1ψn+1,m −

√
nψn−1,m

)

. (24)
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For the second index we define the action ofY, PY similarly, with the sole difference
that the (reverse) Bopp shift (4) must be taken into account:

Y ψnm :=

√

θ

2

(√
m+ 1ψn,m+1 +

√
mψn,m−1

)

+
θ

~
PXψnm (25)

and

PY ψnm :=
i~√
2θ

(√
m+ 1ψn,m+1 −

√
mψn,m−1

)

. (26)

Finally, the operatorsX,Y, PX , PY so defined are Hermitian and satisfy the algebra (3)
as desired. The aboveX,Y, PX , PY are distinguished notationally from the operators
X ′, Y ′, P ′

X , P
′
Y of (8)–(11) in order to stress the fact that they are actuallydifferent

operators acting on different spaces2, even if the two sets of operators satisfy the same
algebra (3). From now on we will only work with the representation of the algebra (3)
provided by (23)–(26).

Although they will not be used here, the previous results canbe easily generalised
to higher dimensions [20].

3 The Hamilton–Jacobi equation on the Moyal plane

Our next task is to write down the Hamilton–Jacobi equation.For this we define the
following dimensionless coordinatesQA, QB and momentaPA, PB:

QA :=
1√
θ
X, PA :=

√
θ

~
PX , QB :=

1√
θ
Y −

√
θ

~
PX , PB :=

√
θ

~
PY . (27)

These operators satisfy the standard, dimensionless, Poisson–Heisenberg algebra:

[QA, PA] = [QB, PB ] = i1, [QA, QB] = [PA, PB] = [QA, PB] = [QB, PA] = 0.
(28)

One can think of the space spanned byQA, QB, PA, PB as a commutative phase space,
the only difference being that coordinates and momenta are operators onU(H). Cor-
respondingly, phase–space derivatives will be replaced with the adjoint action (5). Our
strategy will be to first write down the Hamilton–Jacobi equation on this commutative
phase space. Then we will transform the result back into the noncommutative space
spanned byX,Y, PX , PY .

A key property of the classical mechanical actionS, when expressed as a function
of the coordinates as in eqn. (1), is that it serves as a potential function for the momenta,
i.e., px = ∂S/∂x andpy = ∂S/∂y. This property must be maintained in the case un-
der consideration here, where coordinates and momenta are operator–valued, and the
adjoint action replaces the partial derivatives. Thus we need to find a Hermitian oper-
ator, that we will call theoperator–valued actionS, depending onQA, PA, QB, PB,
and such that it will yield the momenta when one takes the adjoint action with respect

2All infinite–dimensional, complex, separable Hilbert spaces being unitarily isomorphic, the above state-
ment is to be understood asdifferent realisations of Hilbert space.
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to the coordinates. In order to obtain a linear expression inthe momenta, we needS to
be a quadratic combination of the momenta. This leads one to the following operator:

S := − 1

~
Et1+

1

2
P 2
A +

1

2
P 2
B − U(QA, QB). (29)

HereU(QA, QB) is a dimensionless real function ofQA, QB, that we can look upon
as an operator–valued generalisation of the classical potential functionU(x, y) of eqn.
(2). Indeed, whatever our choice forU(QA, QB) we find

iPA = adQA
(S) , iPB = adQB

(S) (30)

as one should; the factors ofi ensure the Hermitian property. Eqns. (29), (30) are to be
regarded as the noncommutative generalisation of eqn. (1).We would like to observe
that the following consistency check on (30) is satisfied. The integrability condition
∂2S/∂y∂x = ∂px/∂y = ∂py/∂x = ∂2S/∂x∂y holds true in eqn. (1). Therefore the
operator analogue of this classical integrability condition should read

adQA
(PB) = adQB

(PA), (31)

and, indeed, this is satisfied thanks to the Jacobi identity (7).
The operator actionS is a dimensionless, Hermitian quantum operator acting on

the carrier spaceU(H). Now, in order to write down the Hamilton–Jacobi equation, a
Hamiltonian is needed. We will make a judicious choice for the Hamiltonian operator,
followed by some consistency checks to ensure that our choice is correct. We claim
that the Hamiltonian operatorH correponding to (29) is given by

H =
1

2
P 2
A +

1

2
P 2
B + U(QA, QB). (32)

The above is also a dimensionless, Hermitian operator. Replacing phase–space deriva-
tives with adjoint actions, it is reasonable to demand that the Hamilton equations of
motion be

ṖA = −adQA
(H), Q̇A = adPA

(H) ṖB = −adQB
(H), Q̇B = adPB

(H).
(33)

We find, for the Hamiltonian (32) and the canonical pairQA, PA,

adPA
(H) = −i

∂U

∂QA
, adQA

(H) = iPA. (34)

Thus Newton’s law is satisfied as it should, because

Q̈A =
d

dt
(adPA

(H)) = ad ˙PA
(H) = −[[QA, H ], H ] = −i[PA, H ] = − ∂U

∂QA
. (35)

Obviously the same holds for the other canonical pairQB, PB.
We can now write down the noncommutative Hamilton–Jacobi equation for a par-

ticle of massm on the Moyal plane, subject to the potentialU(QA, QB). It reads

∂S

∂t
+

~

mθ

[

−1

2
(adQA

(S))
2 − 1

2
(adQB

(S))
2
+ U(QA, QB)

]

= 0. (36)
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We draw attention to the negative sign preceding the squaredadjoint actions, due to
the imaginary units in (30); otherwise (36) is the natural operator generalisation of
its classical counterpart (2). The factor~/(mθ) has the dimensions of time inverse,
thus making (36) dimensionally homogeneous. We will find it useful to separate out
in (29) the piece that is proportional to the identity, thus leaving the reduced, or time–
independent, operator actionS(0):

S = − 1

~
Et1+ S(0), S(0) :=

1

2
P 2
A +

1

2
P 2
B − U(QA, QB). (37)

Then (30) becomes

iPA = adQA

(

S(0)
)

, iPB = adQB

(

S(0)
)

, (38)

which gives the time–independent Hamilton–Jacobi equation

~2

mθ

[

−1

2

(

adQA
(S(0))

)2

− 1

2

(

adQB
(S(0))

)2

+ U(QA, QB)

]

= E. (39)

Here appears the quantity~2/(mθ) mentioned in section 2.
A comment is in order. In principle one would not expect Planck’s constant~ to be

present in the Hamilton–Jacobi equation, since the latter is a classical equation, which
arises before quantisation. This much is true of theories oncommutative spaces. How-
ever, as remarked in section 1, any theory on noncommutativespace must include~
because, on an energy scale, quantum effects set in much earlier than noncommutative
effects. This being the case, the distinction betweenclassicalandquantumturns out to
be rather formal.

A more mundane explanation of the same fact is provided by thefollowing argu-
ment. The noncommutative theory depends on the dimensionful parameterθ. The
latter must enter the Hamilton–Jacobi equation. Now (36) and (39) cannot be balanced
dimensionally in terms of just one dimensionful parameter;at least one more dimen-
sionful parameter is needed for homogeneity. Planck’s constant~ does precisely that
job.

Using (27) we can now rewrite the operator action of(29) in terms ofX,Y, PX , PY :

S := − 1

~
Et1+

θ

2~2
P 2
X +

θ

2~2
P 2
Y − U(X,Y, PX). (40)

Some caution is necessary here since, in general, the potential functionU(QA, QB)
suffers from ordering ambiguities once we expressQA, QB in terms ofX,Y, PX , PY .
This requires that some ordering prescription be adopted,e.g., Weyl’s symmetrisation3.
We also observe that the potentialU in (40) can depend onPX , but not onPY , due to
the Bopp shift (4). From the time–independent operator actionS(0) of (37) we similarly
obtain

S(0) :=
θ

2~2
P 2
X +

θ

2~2
P 2
Y − U(X,Y, PX). (41)

3This is not specific to our approach in terms of operator–valued quantities, since the same ordering
ambiguities would arise if we used a star product.
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For the time–dependent Hamilton–Jacobi equation (36) we find

∂S

∂t
+

~

mθ

[

− 1

2θ
(adX(S))

2 − 1

2θ

(

adY (S)−
θ

~
adPX

(S)

)2

+ U

]

= 0, (42)

while its time–independent version (39) becomes

~2

mθ

[

− 1

2θ

(

adX(S(0))
)2

− 1

2θ

(

adY (S
(0))− θ

~
adPX

(S(0))

)2

+ U

]

= E. (43)

Altogether, eqns. (42) and (43) above reexpress the Hamilton–Jacobi equations
(36) and (39) in terms of the noncommutative variablesX,Y, PX , PY . However, in
general one should stop short of calling (42) and (43) Hamilton–Jacobi equations in
the strict sense of the word. For such to be the case, one should be able to replace
any possible occurrence ofPX with its expression in terms ofadX(S). One such
occurrence happens within the potentialU . This makes the replacement impossible, as
we see from (40), because one hasPX = ~ adX(S+U)/(iθ): in trying to eliminatePX

in favour ofadX(S), the offending term in the potentialU reappears! Moreover,PX

also shows up in the termsadPX
(S) andadPX

(S(0)), where it should also be replaced.
A moment’s reflection shows that, in fact, things are exactlyas they should. Let us

go back to eqns. (1), (2), where it is implicitly understood thatx, y, px, py satisfy the
standard Poisson algebra{x, y} = 0 = {px, py}, {x, py} = 0 = {y, px}, {x, px} =
1 = {y, py}, which is isomorphic to that in (28). All these variables arecanonical.
This fact guarantees that the replacementspx = ∂S/∂x andpy = ∂S/∂y, as well as
their operator–valued analoguesiPA = adQA

(S), iPB = adQB
(S), can be performed.

Thus (36) and (39) arebona fideHamilton–Jacobi equations. However, neither the
Bopp shift (4) nor its inverse is a canonical transformation, because the algebra satisfied
byX,Y, PX , PY differs from that satified byQA, QB, PA, PB. The latter are canonical
variables, while the former are not.

To summarise, we have written down the Hamilton–Jacobi equation using a set of
(operator–valued) canonical variablesQA, QB, PA, PB, and we have then transformed
the resulting equation using a set of noncanonical variablesX,Y, PX , PY , by means of
a diffeomorphism (the Bopp shift) that doesnot qualify as a canonical transformation.
There is no way the Moyal phase spaceR4

θ,~ can becanonicallytransformed into the
standard phase spaceR4

~
. Physically this is so because the quantum of areaθ that is

present inR4
θ,~ is absent inR4

~
. The Bopp shift respects the quantum of action~, but

not the quantum of areaθ.

4 The Schroedinger equation on the Moyal plane

In order to write down the Schroedinger equation on the Moyalplane, we will follow
the same strategy of section 3. Namely, we will first work withthe canonical variables
QA, QB, PA, PB of (27), in terms of which we will write down the Schroedingerequa-
tion; only then will we transform back to the noncommutativevariablesX,Y, PX , PY .

The Schroedinger equation we will arrive at will turn out to be valid only semi-
classically. We first need explain what one understands as the semiclassical limit of
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noncommutative quantum mechanics. In the commutative case, the semiclassical limit
is obtained as~ → 0, when the Schroedinger equation reduces to the Hamilton–Jacobi
equation. Since noncommutative quantum mechanics contains two deformation pa-
rameters~, θ, we ask what the precise regime of these parameters is that corresponds
to the eikonal approximation. We claim that the eikonal approximation corresponds to
the limit ~ → 0 andθ → 0 while holding~2/(mθ) fixed. Obviously~ must go to
zero. However, as mentioned in the introduction, noncommutative effects set in (on
an energy scale) much later than quantum effects, so~ → 0 enforcesθ → 0 as well.
Since the ratio~2/(mθ) must be held fixed for the Hamilton–Jacobi equation (36) (or
its reexpression (42)) to be well defined, this proves our claim.

To begin with, let us consider the free case,U = 0. We expect a time–independent,
semiclassical wavefunctionΦ(0) to be given by the exponential of (i times) the reduced
action of eqn. (37):

Φ(0) = exp
(

iS(0)
)

= exp

(

i

2
P 2
A +

i

2
P 2
B

)

. (44)

Using the algebra (28) we find

adQA
Φ(0) = −PAΦ

(0), adQB
Φ(0) = −PBΦ

(0) (45)

and
ad2QA

Φ(0) =
(

P 2
A − i1

)

Φ(0), ad2QB
Φ(0) =

(

P 2
B − i1

)

Φ(0). (46)

Remembering (38) we arrive at

1

2

(

ad2QA
+ ad2QB

+ 2i
)

Φ(0) = −1

2

[

(

adQA
(S(0))

)2

+
(

adQB
(S(0))

)2
]

Φ(0).

(47)
Now eqn. (39) suggests equating the right–hand side toEmθΦ(0)/~2:

1

2

(

ad2QA
+ ad2QB

+ 2i
)

Φ(0) =
Emθ

~2
Φ(0). (48)

SettingΦ := Φ(0) exp (−iEt/~) we can finally write

~
2

2mθ

(

ad2QA
+ ad2QB

+ 2i
)

Φ = i~
∂Φ

∂t
. (49)

Let us take stock. The expressionad2QA
+ ad2QB

on the left–hand side can be in-
terpreted as an operator–valued analogue of the standard Laplacian∂2/∂x2+ ∂2/∂x2.
The term2i1 can be interpreted as a constant potential, and can therefore be dropped.
As it stands, (49) is strictly equivalent to the Hamilton–Jacobi equation (36) when
U = 0, and we can declare

~2

2mθ

(

ad2QA
+ ad2QB

)

Φ = i~
∂Φ

∂t
(50)

to be the Schroedinger equation for a free particle on the Moyal plane. Modulo the fac-
tor~2/2mθ, eqn. (50) is formally identical to the standard Schrodinger equation. How-
ever it must be borne in mind that its structure is substantially different. Eqn. (50) is

12



not the expression of an operator acting on a vector, to produce another vector. Rather,
it expresses an equality between operators. By the same token, its time–independent
form (48) is not a eigenvalue equation for a vector, but an eigenvalue equation for the
eigenoperatorΦ(0). (This is the operator analogue of the star–eigenvalue equations;
see,e.g., ref. [21]). Last but not least, we recall that no approximation has been made
in order to reproduce the Hamilton–Jacobi equation from theSchroedinger equation,
as (50) and (36) are strictly equivalent whenU = 0. We will see presently that this
equivalence will also remain in the interacting case, at least in the semiclassical limit.

In the presence of a potentialU , the natural generalisation of (50) is

~2

2mθ

[

ad2QA
+ ad2QB

+ U(QA, QB)
]

Ψ = i~
∂Ψ

∂t
. (51)

We look for semiclassical solutions to (51) in the formΨ := Ψ(0) exp (−iEt/~), where
Ψ(0) is suggested by (37):

Ψ(0) := exp
(

iS(0)
)

= exp

[

i

2
P 2
A +

i

2
P 2
B − iU(QA, QB)

]

. (52)

Unfortunately there is no neat expression for the analoguesof (45) and (46) whenU is
nontrivial. One can power–expand the exponential (52) and act with adQA

, adQB
term

by term, but the presence of a nonconstantU(QA, QB) prevents a tidy rearrangement
of the result into any manageable expression. This is ultimately due to the fact that,
whenU is nonconstant, (52) doesnot factorise as

exp

(

i

2
P 2
A +

i

2
P 2
B

)

exp [−iU(QA, QB)] . (53)

In turn, the impossibility of the factorisation (53) is due to the nonvanishing of the
following commutators:

[P 2
A, U ] = −iPA

∂U

∂QA
− i

∂U

∂QA
PA, [P 2

B, U ] = −iPB
∂U

∂QB
− i

∂U

∂QB
PB . (54)

However, we should remember that the commutators (54) have been computed using
the dimensionless algebra (28). When one reinstates powersof ~, one immediately
sees that the right–hand sides of (54) areO(~). In the semiclassical limit considered
throughout in this paper, one may drop terms of order~ while keeping~2/(mθ) fixed.
We may thus approximate the right–hand sides of (54) by zero.In this limit, the wave-
function (52) can be approximated by its factorised form (53):

Ψ(0) ≃ exp

(

i

2
P 2
A +

i

2
P 2
B

)

exp [−iU(QA, QB)] . (55)

Using the semiclassical wavefunction (55), one sees that the reasoning from eqn. (45)
to eqn. (50) continues to hold true in the presence of the potentialU(QA, QB). In this
way one establishes that the operator wavefunctionΨ := Ψ(0) exp (−iEt/~) satisfies
the Schroedinger equation (51). For the latter we claim validity within the semiclassical
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regime only, given the approximation made in (55). Moreover, as was already the case
for the free particle, the Schroedinger equation (51) in thepresence of a potentialU is
strictly equivalent to the Hamilton–Jacobi equation (36).In this sense, the difference
between these two equations lies in the choice one makes for the quantity one works
with, i.e., either the actionS or its exponential. We should also add that the reverse
order for the factors in (55) would be justified just as well inthe semiclassical limit.
Within the accuracy of this limit, it is actually a matter of choice which exponential
appears on the left and which one on the right.

As a final step, we need to recast the Schroedinger equation (51) in terms of the
noncommutative variablesX,Y, PX , PY . This is readily done: using (27) we perform
the replacement

ad2QA
+ ad2QB

=
1

θ
ad2X +

1

θ
ad2Y − 2

~
adPX

adY +
θ

~2
ad2PX

(56)

in (51). This gives

~2

2mθ

[

1

θ
ad2X +

1

θ
ad2Y − 2

~
adPX

adY +
θ

~2
ad2PX

+ U(X,Y, PX)

]

Ψ = i~
∂Ψ

∂t
.

(57)
The samecaveatdiscussed at length after eqn. (43) applies to (57) as well.

5 Discussion

In this paper we have taken some first steps towards a head–on approach to quantum
mechanics on noncommutative spaces, an approach that has been demanded and stud-
ied to some extent in the literature [22]. The novelty lies inthe attempt to express
wavefunctions purely in terms of operator–valued coordinates, rather than in terms of
c–valued functions that are multiplied together by means ofa star product. The under-
lying logic is as follows. CoordinatesX,Y on the Moyal plane are operators satisfying
[X,Y ] = iθ1. This implies that wavefunctionsΨ, as functions ofX,Y , must also
be operators. This represents a radical departure from the viewpoint of deformation
quantisation, where noncommutativity lies hidden under the star product of c–valued
wavefunctions. Not only wavefunctions, but the mechanicalaction itself (the solution
to the Hamilton–Jacobi equation) must become an operator. This is totally natural
since, at least in the semiclassical limit, one expects the mechanical action to be pro-
portional to the logarithm of the wavefunction. If the latter is an operator, so must be
the former.

The strategy followed in writing down the Hamilton–Jacobi and the Schroedinger
equations on the Moyal plane involves three steps. The first step is to use the Bopp shift
(4), in order to transform the original noncommutative variablesX,Y, PX , PY (satisfy-
ing the algebra (3)) into dimensionless variablesQA, QB, PA, PB (satisfying the alge-
bra (28)). In terms of the latter there is a well–defined procedure for writing down the
Hamilton–Jacobi equation. The second step is to pass therefrom to the Schroedinger
equation. This second step involves some generally accepted guesswork4. The third,

4This guesswork is sometimes summarised in the statement that first quantisation is a mystery, second
quantisation is a functor.
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and final, step, is to undo the Bopp shift and transform the equations so obtained back
into the original noncommutative variablesX,Y, PX , PY . The Bopp shift is a dif-
feomorphism that doesnot qualify as a canonical transformation. However we need
canonical variables in order to first write down the Hamilton–Jacobi equation, which
one later uses as a bridge to the Schroedinger equation. As explained in detail towards
the end of section 3, it is impossible tocanonicallytransform the Moyal phase space
R4

θ,~ into the standard phase spaceR4
~
. Physically this is so because the quantum of

areaθ that is present inR4
θ,~ is absent inR4

~
. The existence of the two quanta~ andθ

leads to the existence of a natural energy scale~2/(mθ) (for any given particle mass
m), which is absent in standard quantum mechanics.

A key element in our construction is provided by the noncommutative oscillator
modesψnm of section 2.4. Theψnm are quantum mechanical wavefunctions of a
harmonic oscillator defined on (an auxilary copy of) the Moyal plane. Asθ → 0, the
ψnm must be replaced with the commutative oscillator modesφnm of section 2.2 (the
φnm are standard oscillator modes onR2). Finally settingθ = 0 but

√
θ = 1 (as befits

the fact that
√
θ > θ whenθ → 0) we see that eqns. (23) to (26) respectively become

eqns. (8) to (11): this is the commutative limit.
The symmetry algebra (the commutator algebra of section 2.1) is realised unitarily

on the Hilbert spaceU(H) spanned by the noncommutative oscillator modesψnm. The
latter are not to be confused with the true quantum statesΨ of the theory. We thus meet
a situation in which the quantum statesΨ of the theory donotsupport a representation
of the symmetry algebra—in apparent violation of Wigner’s theorem. There is how-
ever no violation, because Wigner’s theorem implicitly assumes a commutative space.
The statesψnm that support a representation of the symmetry algebra are intermediate
states in our construction, while the true quantum statesΨ, being operator–valued and
thus noncommutative, are not bound by Wigner’s theorem to furnish a representation.
Similar arguments apply to the Stone–von Neumann theorem asapplied to the subal-
gebra[X,PX ] = i~ = [Y, PY ]. This latter theorem is also not violated since it too
presupposes a commutative space.

The following thoughts, of a somewhat speculative nature, are collected here to
conclude. It was mentioned in the introduction, and also right after the Hamilton–
Jacobi equation (39) that, in the presence of noncommutativity, the distinction between
classicalandquantumturns out to be somewhat formal, devoid of physical content.
This is so because, in principle, one does not expect Planck’s constant to arise at the
level of the classical Hamilton–Jacobi equation—but the fact is, it does arise. There is
also no way one can have apurely classicalnoncommutative theory because quantum
effects set in much earlier, on an energy scale, than noncommutative effects. Moreover,
when the potential is constant on the Moyal plane, the Schroedinger equation (for the
exponential of the action operator) and the Hamilton–Jacobi equation (for the action
operator alone) are actually equivalent. This is in marked contrast with the case of com-
mutative quantum mechanics, where the same equivalence holds only semiclassically.
In the interacting case on the Moyal plane this equivalence (between Schroedinger and
Hamilton–Jacobi) is generally lost (of course, it continues to hold in the semiclassical
limit). One is thus tempted to call this state of affairs aclassical/quantum dualityof
noncommutative quantum mechanics. It is interesting to observe that analogous ef-
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fects have been reported in [7, 8, 23]. Although the latter refer to somewhat different
contexts, they are by no means totally different from ours. One is also reminded of
the UV/IR mixing of noncommutative field theories [24]. Altogether, we find these
similarities very suggestive.
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